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Introduction

The real holomorphy ring of a formally real field K is by definition the intersection
of all valuation rings of K with a formally real residue class field. It is used extensively in
the study of formally real fields, especially for quadratic forms and sums of 2n-th powers,
and in real algebraic geometry, see for example [Sch], [B1]-[B4], [KS], III, § 12. Several
authors have begun a theory of the real holomorphy ring of a commutative ring, for
instance K. G. Valente [ V], N. Schwartz [Sch], M. Marshall [M], and M. Prechtel [P].
Also, M. Knebusch and C. Scheiderer introduce in their book [KS] a relative real holo-
morphy ring (although they do not call it this).

Following these examples we define the real holomorphy ring of a commutative ring
R with 1 as the subring H(R) of elements which are globally finite on Sper R. With this
definition we can carry much of the field theory over to H(R). We obtain particularly
complete results in the case where each element in 1 + X R? is a unit in R: We show that
H(R) is a Priifer ring in R, and establish a correspondence between the ideal — and unit —
theory of H(R) and the units of R which are sums of 2n-th powers. This correspondence
allows us to study quantitative problems on sums of 2n-th powers in R.

When the elements of 1+ ZR? are not units our results are not as complete, but
there are still new and interesting phenomena: We show in §1 that we have a representa-
tion H(R) —» C(X,R), where X is a suitable compact topological space. In general, one
cannot interpret X using places and valuation theory as in the case where 1 + ZR? © R*.
In the general case, the sums of 2n-th powers are replaced by the elements of R which are
non-negative with respect to all orderings of level n in R.

Special attention is given to affine algebras 4 and their quotient algebras Ag over
suitable fields k. For example, if k = R, the holomorphy ring H(A) is investigated by
appealing to the geometric properties of 4. Setting H"*1(4) = H(H"(A)), H'(A4) = H(A)
we prove H?*1(4) = H*(A) if dimA4 = d.
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§ 1. The real holomorphy ring

Throughout the paper, R denotes a commutative ring with 1. The real spectrum of
R, denoted Sper R, is the set of (prime) orderings of R, i.e. the subsets P < R that satisfy
the following properties (see [B4], [BCR], Ch. 7, [KS], III, [L], §4):

P+PcP, P-P<P, Pu—P=R, Pn—PecSpecR.

Alternatively, the elements of Sper R can be defined as pairs (g, P), where g € Spec R
and P is an ordering of k(g):= the quotient field of R/ . The identification is given by

(9,P)«> P={aeR|a+ peP},
in which case g = PN — P=:supp(P). We write Min Sper R (respectively Max Sper R) for
the elements of Sper R minimal (resp. maximal) with respect to inclusion. Of course, if K
is a field then Min Sper K = Max Sper K = Sper K. If P < Q we say Q is a specialization of

P and P is a generalization of Q.

An element a € R induces a mapping

SperR — [] k(supp(P)),
PeSperR

where P+ a + supp(P)=:a(P).

We write a(P) > 0 (resp. a(P) 2 0, a(P) = 0), if P = (g, P) satisfies a + g >50 (resp.
a+ p 250,a+ g =0). As is well-known, the family {D(a)},.r With

D(a) = {PeSperR|a(P)> 0}

defines a subbasis of a compact topology of Sper R. Note: Here, and throughout the paper,
the term “‘compact” does not imply Hausdorfr.

Definition. Given X & Sper R.

(i) WesayaeR is.bounded on X if there exists some ke N such that (k —a)(P) 2 0
and (k+a)(P)=0 forall Pe X.

(i) Set H(X):={ae R|a bounded on X}.
(iii) The real holomorphy ring of R is H (Sper R), denoted H (R).

Remark. A more general notion of the relative real holomorphy ring of an extension
of rings f: B — R is defined in [Sch], 7.3, [P], 1.1 and [KS], III, §11. Note that in our
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case B = Z. Most of the basic results on the real holomorphy ring can be found in [KS],
II, §11.

Definition. Suppose P e SperR. If a is bounded on {P}, then we say a is bounded
with respect to P. '

One can show directly that H(X) is a ring or deduce it from Corollary 1.2.
Proposition 1.1. Given X & Sper R.

- (1) Suppose X is compact. Then ae R is bounded on X iff a is bounded with respect
to each Pe X.

(i) If X is the closure of X, then H(X) = H(X).

Proof. (i) We prove the nontrivial direction. Suppose a is bounded with respect to
each Pe X. Then, given P, there exists r, € N such that (r, + a)(P) = 0. Replacing r, by
rp + 1, we can assume (7 + @) (P) > 0. Thus (r? — a?)(P) > 0 and hence X < U D(r7 — a?).

Since X is compact we have X € U D@} — az) for some 7, ..., 7, € N. Let r =max{r;},
i=1
then clearly X < D(r?> — a?). Hence, given any P, since (r>—a?)(P)>0 and r>0 it

follows that (r — a)(P) > 0 and (r + a)(P) > 0.

(i) H(X)c H(X) is clear. Given ae H(X) and Q€ X. Pick neN such that
(n+a)(P)>0 for all PeX. Suppose (n+a)(Q)<0, then (—n—a)(Q)>0 and so
Q € D(—n — a). Butthen D(—n — a)n X + ¢ which contradicts (n + a)(P) > Oforall P e X.
Thus (n + a)(Q) = 0, and similarly (» — a)(Q) = 0. Hence a is bounded with respect to Q
and so a is bounded on X by (i). 0O

Definition. For P e Sper R we set:

@ P*=P\(—P)={acR|a(P)> 0},

(i) A(P)={a€e R|a is bounded with respect to P}.

Since A(P) is a ring’(in fact, a valuation ring), it follows from the identity

A(P) = {ae R|a(P)e A(P)}
that A(P) is a ring.

For g € Spec R, let n,, denote the canonical map R — k(). As asual, we say g is
real if k(g) 1s formally real.

Corollary 1.2. (i) HR)= [) A(P),

PeSperR

() HR)= () n;'H(k(p),

peSpecR
o real
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(iii) H(R) is integrally closed in R.

Proof. (i) follows from 1.1, since Sper R is compact. Then

H® = N ( N n;1<A<P>>)= N = Hk ).

@real PeSperk(p) @ real

which proves (ii). It is well-known that (iii) holds for fields, and thus it holds generally by
@i). o

Definition. (i) T(R)= () P, the set of totally positive elements of R,
PeSperR

(i) T*(R):== () P7, the set of strictly totally positive elements of R.
PeSperR

For a further description of H(R), we note the following characterization of elements
in T(R) (resp. T*(R)), essentially due to Stengle, see [St], [B4], §4, [KS], IIL, §9, [L1,
§7. Clearly ZR* < T(R).

Proposition 1.3. Given a€ R. Then

() aeT(R) iff there exists ke N, t,t'€ ZR* with at = a** + 1,

(i) ae T*(R) iff there exists t,t'€ ZR* withat=1+1'.

Remark. In (i), ¢ can be replaced by 1+ s for some se ZR” as follows: Given
at=1+1,t,t'€e ZR? then a’t=a(1 +¢t') and thus

a(l+t+t)=at+a(l+t)=1+("+a*1),
and s = t'+ a?t does the job.
From the definition of the real holomorphy ring and the proof of 1.1 it follows that

ae H(R) < there exists ke N with k + ae T(R)
<> there exists ke N with k+aeT*(R).

The following propositioﬁ follows immediately from 1.3:
Proposition 1.4. H(R)={aeR|3k,le Nand t,t'e 2 R? with
| (k* —ad)t=(k* —a®)* +1'}
={ae R|3k, le:N and t,t'€ TR? with (k> —a*)t=1+1"}.

Note that in the aboVe\equatior‘ls, we can replace the condition on k? — a? by the
same conditions on k — a and k + a separately, see the proof of 1.1.



Becker and Powers, Real holomorphy ring 75

The description of H(R) before 1.4 shows that H(R)nT(R) and H(R) N T*(R) are
archimedean partial orderings of H(R). Further, using 1.3 we get:

Corollary 1.5. (i) If ¢ : R — S is a ring homomorphism, then
e(HR) < H(S), o(TMR)T(S) and o(T*R)ST(S).

(ii) The mappings R (H(R), H(R)NT(R)) and R— (H(R), HR)NT" (R)) are co-
variant functors from the category of commutative rings to the category of archimedean
partially ordered rings.

The holomorphy ring H(K) of a field K admits a topological representation
H(K) - C(M,R), where M is the space of real places of X, see [S], [B3], §1, [KS], I1I,
§12. In general, there is a corresponding representation for H (R), however the represen-
tation space cannot necessarily be interpreted as a space of “places”. Such an interpreta-

tion is possible in the case where the elements 1+ 2 R? are units in R, see §4.

The representation of H(R) is a consequence of the Representation Theorem of
Kadison-Dubois. We use the version in [BS]. As stated above,

Q=HR)NTR) and Q*=(HRNT*(R)u{0}
are archimedean partial orderings of H(R). According to [BS], the topological space
X:=Hom ((H(R), 2*), R, R))
is non-empty and compact. For the representation
¢:H(R) » CX,R), aw (o ¢(@)

we apply the results from [BS], see also [B3], 1.1:

Proposition 1.6. (i) @™ '(C,(X,R)) ={ac H(R) | for each ne N,

(1+na)eQ*}=0.
(i) ker® is a radically closed ideal of H(R).
(iii) Q- ®(H(R)) is dense in C(X,R).

Remark. Instead of the partial ordering Q" we could have used Q in the above.
However this would not yield a different representation.

We now take a look at some examples.
Examples 1.7. (i) Suppose K is a formally real field in which all orderings are

archimedean. Then clearly H(K) = K. The identity H(R) = R also holds if R is an integral
domain, R/Z an integral extension. In this case, Sper R = {(0, P)| P € Sper K }, where K is
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the quotient field of R. Since K is an algebraic extension of Q, K has only archimedean
orderings, thus H(R) = R and T(R) = R0 TK*=T*"(R)u{0}.

(ii) For any ring R and its polynomial ring we have
H(R[xy.--»%,0) = H(R) .

This can be shown using the surjection Sper R[x, ..., x,] — SperR, see e.g. [V], 52.In
particular, we have

H(R[x{,....x, D) =R
for R=127,Q,R.

(iii) Let X be a topological space and R = C(X,R). Then T(R) = C,(X,R) and hence
(cf. [M], 4.1)

HCX,R)={f:X->R|fis bounded} =: C*(X, R) .

We need some notations from Algebraic Geometry, which will provide a rich source
of examples. In this paper, an affine variety V over R is a reduced affine scheme over R
of finite type, i.e., V'=Spec4, where A is a reduced affine R-algebra. As usual set
R[V]:= A. Define ¥ (R):= Homg(4, R), the set of real points of V. There is a natural
embedding

V(R) ¢ SperAd

given by x> { f|f(x) 2 0}. The topology of Sper4 induces the subspace topology on
V¥ (R), which is contained in the compact Hausdorff space Max Sper 4. By the Artin-Lang
Homomorphism Theorem (see, €.g., [BCR], 4.1.12), V(R) is dense in Max Sper 4 and
Sper A. If we have a representation of A, say A =R[X]/¥U, then the evaluation map gives
a natural homeomorphism between {a € R"| f(x) =0 for all fe A} and V(R).

An ideal U of R is real if £a? € A implies ;€ A for all i. R itself is called real if the
zero ideal is real. Note that an ideal o is real iff R/ is real and that a prime ideal g is
real (in the present sense) iff the residue field k(gp) is formally real. A variety V is real if
¥ (R) is dense in V. By the Artin-Lang Theorem, V is real iff R[V] is a real ring.

Proposition 1.8. Let V be a real affine variety over R, then HR[V]) = H(V(R)).

Proof. By 1.1, H(V(R))=H(V(R)). By density, V(R) = Sper R[V']. Hence
HR[V]) =HV®). ©

Example 1.9. Let ¥ be an affine variety over R and let R =R[V]s, where Sis a
semigroup of functions that do not vanish on V(R). Then s(P) +0 for all Pe Sper R and
se S, hence the inclusion R[V'] — R induces a homeomorphism

Sper R —=— SperR[V].

Then, by 1.8, H(R) = { fe RIVVf bounded on V(R)}.
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Specializing to R = R[x;, ..., x,], we get H(R) = R, as in 1.7. Localizing at

S= {1+ Zx®)*|keN},

it folldws that:

f(xla"'9xn)

a1 zx0) deg f < Zk} .

HR[x,--» X,]5) = {

We list some cases in which we can determine explicitly the representation space X
of 1.6: '

Examples 1.10. (i) If X is a formally real field, then X = M(K), the space of real
places of K, see [B1], 2.17 and [BG?2] for a recent survey.

(ii) Suppose T (R) is an archimedean partial ordering of R. Then H(R) =R, hence,
by 1.5, every homomorphism ¢ : R = R (relative to T'(R) and R,) is order preserving.
The natural mapping Hom (R,R) — SperR, given by ¢ — ¢~ Y(R,), is injective. We have

X = Hom(R, R) — MaxSperR, cf.[BG2], 2.9.

Specializing to R satisfying the conditions of example 1.7 (i) above, then the homomorphism
¢: R —» R must be injective. Let K be the quotient field of R, then we get

X = Hom(R, R) @ Hom(K, R) = M(K)
(as topological spaces).
(iii) Let Y be a Hausdorff topological space and R = C(Y, R). We saw that
HR)=C'(T,R),

and clearly T(R) = C, (Y,R) and HR)NT(R) = Ct(Y,R)={f:Y > R|f=g? for some
ge C’(Y,R)}. Thus X = Hom(C® (¥, R), R) = Max C*(¥, R) and hence X = fY, the Stone-
Cech compactification of Y.

(iv) Let R=R[T];+r2- Then it is easy to see that

H(R) = {ZTI]:T—ZF | feR[T] and deg f < Zk} — RNV,
where V. is the valuation ring of the degree valuation. Let .#, be the maximal ideal of
V. Similarly, we see that Spec H(R) = {(0), #,NH(R), M,nH (R), p an irreducible
polynomialin R[T],p+1+ T?}, where M, =pR[T], is the maximal ideal of the p-adic
valuation ring. The localization H(R),, € Spec H(R)\(0) is a discrete, trivial on R,
valuation ring. Hence H(R) is a Priifer ring of R(T) cf. e.g. [G]. Thus we getin a natural
way that

X =Hom(H(R),R) = {#,"H(R), My,nH(R) forp=T—a,ac R}
~ M(R(T)) = P'(R),
see [S].

6 Journal fiir Mathematik. Band 480
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(v) We reconsider example 1.9. We will use the language of schemes from Algebraic
Geometry; for details and results see [H], II. Let R be as in 1.9. Using homogenization

of polynomials we have H(R) = {ji(—(%’;—;c—z—;—k)—ci’z f is homogeneous and deg f = Zk}. In
0Xi
the projective n-space over R, Pg:=ProjR[x,, ..., x,], we consider the open affine sub-

variety D, (u), where u = X§ x?. Then H(R) is the coordinate ring of D, (u), i.e.,
H(R) =T'(D. (W),

by [H], II, 2.5. This means that H(R) is an affine R-algebra with P"(R) as its space of
real points, more precisely, we have the natural homeomorphism P"(R) — Hom (H(R), R)

given by x> e, where ex(—/—;) = M
u u

every homomorphism H(R) — R is order preserving relative to T and R, i.e., X = P"(R)

is the representation space. This follows from the above identification of H(R) with

I'(D. (w)), since this implies T = {f(XO_’uk’,’f_nz

, with x =[xq:---:x,]. We claim that

f homogeneous and /=0 on R**15.

We finish this section by developing some machinery we will need later on when
computing H(R) for various types of rings. We are interested in reduction results, i.e.,
results which will allow us to reduce our calculation of H(R) to simpler rings.

Lemma 1.11. Suppose R = }1_1{1} R;, then H(R) = m H(R).

Proof. The characterization of H(R) given in 1.4 shows that the natural map
l_i_n_l) H(R;) — H(R) is a surjection. 0O

Given an element fe R, we have R := {_a_ ke N}. Then the natural map R — R,

fk
induces an embedding
Sper R, ¢, Sper R

with open image {P|f(P)+0}. We allow f to be nilpotent, in which case R, =0 and
SperR, =0.

If A is an ideal in R then R — R/ induces a mapping
Sper R/U ¢ Sper R

with closed image {P|f (P) =0 for all fe A}. We often identify Sper R, and Sper R/
with their images in Sper R.

Remark. The expressions H(Sper R;) and H(Sper R/) are now somewhat am-
biguous depending on whether we view Sper R, (resp. Sper R/ ) as a subset of Sper R or
not. However this is not a problem since r € R is bounded on Sper R, (resp. Sper R/ )

considered as a subset of Sper R iff —lr—e R, (resp. r +Ue R/A) is bounded on Sper R,
(resp. Sper R/ ).



Becker and Powers, Real holomorphy ring 79

The following is now clear:

Lemma 1.12. Given an ideal A = R, then there is a natural decomposition

SperR = ( U Speer) U Sper R/ .

fe¥

Definition. Given an ideal 2 in R, the real radical of U, rf/ﬁ, is{reR|r’"+oce
for some me N and o € ZR?}. The real radical of R is 'f/ﬁ. :

Lemma 1.13. Let A=1/0, then H(R)={reRI|FeH(R/W}, where F denotes
r+Ue R/

Proof. By [L], 6.5, SperR, = ¢ for all feA. The lemma now follows using the
decomposition in 1.12. O

Lemma 1.13 allows us to reduce to the case where R is real. For the rest of this
section we assume R is a real ring. Then R is a reduced ring and the minimal prime ideals
are real [L], 2.9. Given @ a minimal prime ideal. Then R reduced and g minimal implies
k() = R, and the mapping R — R, induces a mapping

(*) ' Sper R, — SperR.

Definition. P e SperR is a central point if there exists a minimal prime ideal g in
R and Q in the image of (x) such that P is a specialization of Q, i.e., Q & P. We write
Sper, R for the set of central points of Sper R, and set Max Sper, R = Sper, R n Max Sper R.

Proposition 1.14. Suppose R has only finitely many minimal prime ideals. Then
Sper, R and Max Sper, R are compact.

Proof. Combining the specialization map Sper R — Max Sper R with () we have,
for any minimal prime g, a mapping

¢, : Sper R, — Sper R — Max Sper R.
14 £

By [L], 4.7, Sper R,, and Max Sper R are compact and ¢, is continuous. Hence im¢,, the
image of ¢, is a compact subspace of Max Sper R. Note that im ¢, < Sper, R by defini-
tion. It follows that Max Sper, R is compact.

Assume Sper, R < | U;, where U, are open sets. Then Max Sper, R € {J U;, thus
there exist U,, ..., U, such that Max Sper, Rg U, v -~V U,. Since each U, is open, any
generalization of Pe U, is also in U;. Thus Sper, R £ {generalizations of points in
Max Sper, R} € U, u -+ u U, and hence Sper, R is compact. O

Proposition 1.15. Suppose R has only finitely many minimal prime ideals. Then
R = H(Sper,R) iff R/p = H(R,) for all minimal prime ideals @ in R.
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Proof. This follows from the definition of Sper, R plus the fact that if Q specializes
P, then f= 0 on Pimplies f=0on Q. O

Definition. (i) The regular locus of R, denoted Reg R, is the set of prime ideals g
such that R is a regular local ring. The singular locus of R, denoted SingR, is

{9 eSpecR|p ¢ RegR} .
(i) Reg-Sper R:={P = (0, P) e Sper R| ¢ € Reg R} and
Sing-Sper R:={P = (p, P) e Sper R| o € Sing R} .
Proposition 1.16. Assume R is noetherian. Then Reg-SperR & Sper, R.
Proof. Given P = (g, P) € Reg-Sper R. Given a prime ideal p’< 0, then

Ry, = Ry R,

and so g’ is also regular. In particular, let g’ be the unique minimal prime ideal contained
in . Then p'R, = 0, since R, is an integral domain, and hence R, is the quotient field
of R,. Since R, is regular the natural map R, = (R,)/(9R,) = k() extends to a place
At R, — k(p)uo,seee.g [B1]. Let QO be a pullback of P to R, then P is a specialization
of O =(g',0), hence PeSper,R. O

§ 2. Integral domains and affine algebras
In this section we take a closer look at integral domains and affine algebras. We fix

a real integral domain A with quotient field F and set V= Spec 4. A key question in this
case is when does H(A) = A~ H(F)? We give a partial answer to this question.

Note that the inclusion map i: 4 ¢ F induces a map
i: Sper F — Min Sper A
given by P— PN A.
Remark. From the definition given in §1 we see that P e Sper4 is a central point
if there exists Q € Sper F such that P2 QN 4, i.e., Sper .4 = {specializations of elements
in image i}.

Proposition 2.1. H(Sper, A) = H(Max Sper,4A) = An H(F).

Proof. Given fe Athenforne N, (n+ f)(P)>0forall Pe Sper Fiff (n + f)(P)> 0
for all Peimi. Thus H(Sper, A) = A H(F).
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Clearly H(Sper, 4) < H(Max Sper, 4). Suppose for some n € N, we have

(n£f)(Q)>0

for all Q e Max Sper, 4. Given Pe Sper 4, let Q€ Max Sper 4 be a specialization of P.
Then Q € Max Sper, 4, hence (n + f)(P) > 0. Thus H(Max Sper, A) € H(Sper,4). O

Proposition 2.2. P is archimedean for all P = (¢, P) e Max Sper. 4 iff A < H(F).
Proof. This follows from 1.14, 1.1(i) and 2.1. O

Proposition 2.3. Suppose A is noetherian, Sing 4 is closed and A = H(F). Then the
quotient field of H(A) is F and either H(A) = A or H (A) is not noetherian.

Proof. Let A= (g, where the intersection is over all o eSingA, and set
B = rf/@l— Then B = (0) since (0) € Reg A. We have Sper 4 = Sper, 4 U Sper 4/ B. By 2.1,
A < H(Sper, A), hence

H(A) = {acA|ae H(A/B)} .

Given beB\(0) and any ae A, then b, abe H(A), hence aequot(H(4)). Thus
quot (H(4)) = F.

Suppose H(A) is noetherian, then B is finitely generated as an H(A)-ideal, say
B =(b,, ..., b,). Pick any ac 4. Then ab; = X o, ;b;, where «; ;€ H(A). Thus

L% g

Let ¢ be the characteristic polynomial of (¢; ;), then applying Cramer’s rule to () we get
¢ (a) b; = 0 for all j. Since some b;+ 0 we get ¢(a) =0, 1.e.,a is integral over H(A). Hence
ae H(A) by 1.2 and therefore H(A)=A4. O

If A is a k-algebra, let tr(4|k) denote the transcendence degree of A over k.
Proposition 2.4. Suppose A contains a totally-archimedean field k. Then if
tr(Flk) =1,
we have H(A) = An H(F).
Proof. A has dimension < 1. Note that if g is a prime ideal in A with height d and
tr(4/g|k) = e, then tr(4|k) 2 d + e ([Ku], II, 3.6). Hence if o = {0} is a prime ideal in
A, then g is maximal and A/ is algebraic over k. Thus 4/p & H (A/g) and so every

ae A is bounded with respect to P = (g, P) if g =+ {0}. This implies H(A) = H(Sper, A)
and we are done by 2.1. O

For the rest of this section we assume that A4 is an affine integral domain over R and
F = quot (A) is formally real. Let ¥ be the associated real affine variety, as defined in §1.
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Definition. Set V. ,(R) =V (R)n Reg-Sper 4, the regular real points of V,
Ving(R) = V(R)n Sing-Sper 4 ,
the singular real points of V, and V,(R) = V(R) ~Sper, 4, the central real points of V.
Proposition 2.5. (i) Sper, 4 S V,,(R), V.(R) = Vg ®) AV (R).
(i) H(V.(R)) =ANH(F).

Proof. The first statement in (i) is a result by Dubois and Efroymson rephrased in
terms of the real spectrum. The proof follows from the Artin-Lang homomorphism theorem

and is given in [B4], 3.2. We deduce V.(R) = V(R)nMaxSper. 4 & V(R) NV, (R). On
the other hand, Max Sper, 4, being compact, is a closed subspace of Max Sper 4. Hence

¥ (R) n Max Sper, 4 is closed in V(R)and V,(R) = ¥,(R). This, together with 1.16, yields

Vi, ®) "V (R) € V,(R). From V,,(R) € V.(R) < Sperc 4 < Vs (R) we derive
H(Sper, 4) = H(V,(R)) .
(i) now follows from 2.1. O
Proposition 2.6. H(A) = A iff V(R) is compact.
Proof. Choose a representation A=R[xy,...,x,]/U. Then V(R) = {xeR"|g(x)=0
for all ge A}. Set f= i %2. If H(A) =4, then fe H (4) which means that f is bounded
on V(R). Hence V(R) ils closed and bounded in R", thus compact. t

Now suppose V(R) is compact. Given fe A, then fis bounded, since it is a continuous
function on a compact set V(R). Thus fe H (V(R)). Hence, by 1.8, H(4)=4. O

We now look at the classical notion of central points in V(R).

Definition. Suppose ¥ is a valuation ring in F with maximal ideal m, and 4 ¥~
We say ¥ has center p on Aif A< Vand p =mynA.

Proposition 2.7. A prime ideal S A is the center of a real valuation ring VS F iff
@ is the support of a point in Sper, A.

Proof. Given P e Sper, A with g = supp (P). Then there is some Q e Sper F such
that P20OnA. Let (F,Q) be a real closure of Q. By [B4], 2.9, there is a place
A:F — Lu{co}, for some real closed L, extending w: A — A/ p. Let "< F be the valua-
tion ring associated to 4. Then m,n4 = {ae AlA(@) =0} =p.

Conversely, suppose @ = m, n A for some real vziluation ring ¥ < F with AS Y.
Then there is some Q € Sper F such that 4(Q) &7~ Let O be the pushdown of Q along v,
i.e., theimage of Q in ¥"/ m,. Itis well-known that 0 is an order. We have the canonical map

A Alp oV | my.

Set P = ¢~ (), then supp(P) = g and Pe Sper, A since P specializes Q NnA. O
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Definition. We say A is real complete if every real valuation ring on F has a center
on A.

Theorem 2.8. The following are equivalent:
(i) A is real complete.

(i) Ag H(F).

(iii) V,(R)= Max Sper, 4.

@iv) V.(R) is compact.

Proof. (i) = (i) If A4 is real complete, then 4 € A(P) for each Pe SperF. Hence
Ag H(F).

(i) = (iii) Assume 4 € H(F) and consider P e SperF. We have 4 £ A(P) by as-
sumption which gives us a natural map ¢: Ao A(P) - R. Clearly ¢ € V(R) and it is easy
to check that ¢ maps to the maximal specialization of (0, P) e Sper 4 under the natural
embedding V(R) ¢ Sper4. Thus Max Sper. 4 & V(R) and hence V,(R) = Max Sper 4.

(iii) = (iv) Max Sper 4 is compact, by 1.14.

(iv) = (i) Given f€ 4, then f is finite in each P eV, (R) < V(R). Then, using 1.1,
by compactness we have € H(V,(R)). Thus A=H (V.(R)) and hence, by 2.5,

A HF)cV

for any real valuation ring V. O

Proposition 2.9. If V. (R) is compact, then H(A) = An H(F). In particular,

I/sirxg (R) = (b

implies H(A) = An H(F).

Proof. By 2.6, A= H(Vsing (R)). Since V(R)=V.(R)u Ving(R), 1t follows that
H(A) = H(V,(R)). Therefore H(4) = 4 NnH(F)by25. 0O

§ 3. Iteration of the real holomorphy ring

Since H(R) is a ring, we can compute H(H(R)), etc. In this section we study the
rings H"(R)==H(H(... H(R)...)), iterated n times.

Examples. (1) By[M],3.3,[P], 1.7, [Sch], 7.6, if R is any ring with 1 + X R?>< R*,
then H(H(R)) = H(R) and hence H"(R)= H(R) for all n. In particular this holds for
fields.
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(2) In R[xy,...,x,], set u=1+ Zx? and let R=R[x,,..., x,]g, Where
S ={u*lkeN}.
By 1.9, we have H(R) = {I;ldegfé Zk}. By 1.10 (v), H(R) is an affine algebra and if
u
V= Spec H(R), then V(R) = P*(R). In particular, V'(R) is compact and thus

H(H(R) = HR)
by 2.6.

Fix k, a totally archimedean field. For any k-algebra R, not necessarily reduced, we
write tr(R) for the transcendence degree of R over k. Our goal is to prove the following:

Theorem 3.1. Suppose R is a k-algebra such that tr(R/ @) £ d for every real prime
¢ € Min Spec R. Then H**1(R) = H*(R).

Lemma 3.2. Suppose X < Sper R, W is an ideal in R such that R = H(X) and

SperR = XU SperR/U .
Then

() H(R)={reR|F=r+UeH(R/A},
(i) A< H(R),

(iii) H(R), =R, for all fe 9,

(iv) H(R)/U=H(R/N).

Proof. (i) Given r e R, by assumption r is bounded with respect to all P € X. Hence
re H(R) iff r is bounded with respect to all P e Sper R/, which clearly implies (i).

(i) ForreU, 7=0, hence Fe H(R/N). Thus r e H(R) by (i).
(iii) Pick any re R and fe ¥, then rfe A, hence rf'e H(R). Given any ke N,

ro_
fk“fk+1

and so the natural map H(R); — R, is a bijection.
(iv) follows easily from (i). O
Corollary 3.3. Given the hypotheses of 3.2, then

H"(R) = {re R|Fe H"(R/N)} forallneN.
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Proof. For n=1, this is proven in 3.2 (i). Assume »>1 and the conclusion of 3.2

holds for H"~1(R). Then, since A £ H" " (R) and H" *(R)/U = H" "' (R/N), using 1.12

we can apply 3.2 to H"~!(R). This yields '

H"(R)=H(H" '(R))={reR|Fe H(H" *(R/W))} = {re R|Fe H"(R/W)} .

The remaining parts of 3.2 follow easily for H"(R) and we are done by induction. O
The following is the key reduction result we need to prove Theorem 3.1:
Proposition 3.4 (Central Reduction Lemma). Let R be a noetherian real ring of

dimension d with Sing R closed in Spec R. Assume further that R/ S H(R,) for every

minimal prime ideal g of dimension d. Let
M = {g e Spec R| @ =2 q for some q € Min Spec R with dimq < d}uSing R

and set W= /1, where I is the intersection of all primes in M. Then
(i) R< H(SperR) for all fe ¥,

() H"(R)={feR|fe H"(R/W)} for all neN,
(i) dmA < d.

Proof. 'We will use results from the ideal theory of noetherian rings, see e.g. [Ku].
Since R is noetherian, R has finitely many minimal prime ideals, say {@,, ..., @,}. Let
C,=SpecR/gp; < SpecR. Then SpecR= (] C;, dimC;=dimgp;, and the C;’s are the

i=1
irreducible components of Spec R. Renumber so that C,, ..., C, are the components of
dimension <d and C, 4, ..., C, are the components of dimension d. Then

k
M= SingRu( U C,-).
i=1

s

Let L= {(go, P)eSperR| g € Reg-Spec RN ( U C,-)}. Then clearly
je=k+1
(*) SperR = LU SperR/U.
Claim. R= H(L).
Proof of claim. Given r € R, fix a component C = Spec R/ of dimension 4 and
let C:= {(g, P) € Sper R| g € C}. By assumption, R/ ¢ < H(R,), henceby 1.15,7is bounded

on Sper, R/ g. Then, by 1.16, 7 is bounded on Reg-Sper R/ . Inside R, this means that r
is bounded on Reg-Sper R/ % < Sper R. From

CnReg-Sper R = Reg-Sper R/ ¢ < Sper R
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we see that r is bounded on CnReg-Sper R. Since this holds for all components C of
dimension d, the claim is proven.

Using the claim and (%), (i) and (i) of the proposition follow from 3.2 and 3.3.

It remains to prove that dim U < d. Clearly it is enough to prove dim 7 < d. Suppose
dim I = d, then there is some g € Min Spec R with dimg = d and I € . This means there
is some component C of Spec R with dimension d such that C £ M. But the C]s are closed,
as is Sing R, and C is irreducible, which implies C € C; for some 1 =i <k, or C<SingR.
Since dim C; < d, the first is impossible and the second is impossible since

MinSpec R < RegR.
Thus dim A < 4 and we are done. O

We begin our proof of 3.1 by studying the affine case.

Lemma 3.5. Suppose A is a real affine algebra over a totally archimedean field k with
dim A = d. Set H:= H(A). Then:

(i) MinSpec H is finite.
(ii) Given p € Min Spec H, then H, = quot (H | ) is a function field with tr (H /p)<d.

(iii) If g € MinSpec H such that tr(H,)=d, then @ has a unique extension to
peMinSpecd and H, = 4,,.

Proof. By [Ku], I, 4.9, Min Spec 4 is finite and by [Bo], 11, Prop.16, every
¢ € Min Spec H
extends to Min Spec 4. (i) now follows easily.

(ii) Given g € MinSpecH, let pe MinSpec 4 be such that o =pnH. Then there
is a mapping

ke Hlp o Alp o 4,.
Because of chark=0, H, is a function field.

(iii) Pick p € MinSpec 4 such that o = Hp. We first prove H, = 4,,. Since H,, is
a subfield of 4, and they have the same transcendence degree over k, the extension A,|H,
is algebraic. Hence, given x € 4, there is some s € H\g such that 3X is integral over H,.
Thus we have an equation (depending on p)

'¢)) (sx)‘:—f—al(sx)‘”1+~-+at=bep

where g; € H. We claim we can find an s that works for all possible choices of p. First note

that since Min Spec 4 is finite, there are only finitely many equations. If {s;,55, ..., 5} are
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the s’s corresponding to the equations, multiply the i-th equation by a suitable power of
§ -85, to obtain a uniform s. -

1

Now we can multiply the equations for each p € Min Spec 4 over g. Thus we end
up with an equation :

) X' t+a ) 4 g =benp,

for suitable ¢, where the intersection is over all p € Min Spec 4 lying over g, s€ H \g, and
a,e H.Let {q,, ..., q,} be the set of elements of Min Spec 4 which do not lie over @, and
set A = () (q;nH). Then A p, else q;nH < p for some i which implies g;"H =g, a
contradiction. Thus we can find u € A\ . Multiplying (2) by ' we get, since 4 is reduced,

(qx)t+b1(qx)t_1+“'+bk=ce ﬂ q.—.:O,

geMinSpec A

where b, € H and g € H\ . Hence gx is integral over H. Thus, since H is integrally closed
in 4 by 1.2, gxe H where ge H\gp. Hence §xe€ H=H/g and § + 0. This proves that
H =4,

14 P

Now we claim p = {xe A|sx € p for some se H\p}. Given x € p, then as shown,
there exists s e H \g such that sxe Hnp = g. Conversely, if xe 4 and xs € p for some
se H\gp, then sx e p and s ¢ p imply x € p. Thus the claim is proven from which it follows
that p is the unique minimal prime lying over .

Proposition 3.6. If A is an affine algebra over k with dim A = d, then T heorem 3.1
holds for A.

Proof. Set H:= H(A). The proof is by induction on
d:=max{tr(4 /)| € Min Spec 4} .

If d=0 then for any g € MinSpec 4, 4/ = A, is an algebraic extension of k. Hence
H(A/p)= A/ since k is totally archimedean. Then it follows from 1.2(ii) that H = 4
and we are done.

Let e:=max {tr (H/ )| € Min Spec H}. By 3.5(ii), we know e = d.

Clearly H = }gg B, where { B} ranges over all affine subalgebras contained in H. Then

by 1.11, H = li_n_l’H‘*(B). Also, note tr(B/g) < e for all such B and any g € Min Spec B.
If e < d, then by induction HY(H) = H*~'(H). Hence H**' = H*.

Now suppose e = d.

Claim. In the above limit, we can restrict to subalgebras B such that B, = H, for
every g € Min Spec B and q € Min Spec H with g = qn B.

Proof of claim. Given B < H any affine algebra, then

dim B = max {tr(B/q)|q € Min Spec B} < max {tr(H/)|p € Min SpecH} <d.
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By 3.5(i), we have MinSpec H finite. Given @ € MinSpec H and g€ MinSpec4 with
g = @ n H, then H, is a subfield of the function field 4,. Because chark =0, H, is finitely
generated over k, say of transcendence degree m. Clearly m < d. Thus we can find r,e H

and s;€ H\g, i=1 to m, such that H, = k(—;—l, ) Let E be the (finite) set of all such
1

r’s and s;’s corresponding to all g and q’s as above. Then B,:=k[E] is an affine sub-

algebra of H(R).

Now we restrict to all subalgebras B < H with B, & B. For each q € Min Spec H such
that g = g B e Min Spec B, consider the natural mapping

Bo Ho Hlgo H, .

From this we get an injection B/ @ < H/q and hence the quotient field B, of B/p is H,,.
Thus the claim is proven.

Now we need only prove the proposition holds for all subalgebras B of H satisfying
the conditions of the claim. If dim B < d, then by induction we have H%(B) = H*~!(B).
Suppose dim B = d, let g be a minimal prime of dimension d. Then, by 3.5 (iv), there is
some minimal prime q in H and a minimal prime p of 4 such that B, = H, = 4,. Also,
we have B/p < H/q < H(A,) = H(B,). We have shown that all of the assumptions of the

Central Reduction Lemma hold for B. Hence H%(B) = { fe B| fe H*(B/ ie/ﬁ)}, where A
is defined as in the lemma. Since dim(B/ ic/ﬁ) < d, by induction we get H*(B) = H*~1(B)
and the proposition is proven. 0O

Proof of 3.1.  Clearly R =lim R;, where {R;} is the set of affine subalgebras con-
tained in R. Then by 1.11, H*(R) = E_IE)H 4(R,). Also, note tr(R;/g) = d for all R; and
any g € Min Spec R;. Thus we may assume R is an affine algebra and hence we are done
by 3.6. O

We end this section with an example where H(H(R)) + H(R).

Example. Let ¢(x,y,2) = (x> +y)(1 —x*—y?—z?) —x?*y*eR[x,y,z], and set .
B=R[x,y,z]/(¢). An easy check shows ¢ is irreducible. Note that

Ve ®) = {(x, 7,2 e VR) [ x* + y* + 0} + 0,
hence (¢) is a real prime‘ideal. Also note V;,.(R) = {(0,0,2)|z€e R}. Let F = quot(B).
Let R = B,, then R is ah affine algebra with real points
W(Ifk) ={(x,y,2) e V(R)|x =% 0} .

Then W is an open subvariétyof ¥, and W (R) g V., (R). Hence every real point of W is
regular. Thus, by Prop. 2.9, H(R) = Rn H(F).



Becker and Powers, Real holomorphy ring 89

1— 252 )
Consider ¢ = ——{-C-E—E- € R.ZInzF we have (x? 4+ y?)(1 — x? — y2 —z?) = x?*y? and
. X"y
then, since x 0, 1 —y?—zt= e + x2. Thus
y? 1
t=1+ =1+ eH(F)nR=H(R).
x2+y2 (X/y)2+1 ( ) ( )

Claim 1. H(R) = B[1].

Proof of claim. By the above, B[r]< H(R). Suppose fe H(R), we can write

k h
f=h(x,y,2)+ Y ’(yl.’ Z). Since h(x, y, z) € B< B[], without loss of generality we can
i=1

x
assume h(x, y,z) = 0. Let K= {(0, y, 2) | y* + z*> = 1} and fix (0, y,, z,) € K. Then there exists
a sequence of points (x;, y;, z;) € W(R) converging to (0, y,, z,). By definition f is bounded
on W(R). Hence, for fixed i, since h;(y;,z;) converges to h;(y,,z,), we must have

1
hi(¥o» 20) =0 (— has a “pole” of order i).

Fix h = h; for some i. We have h(y,z) =0 for all (0, y,z) € K. We claim this implies
1 — y2 — z2 divides 4. To see this, consider 4 as an element of R(x)[y] and use the division
algorithm to write

(*) hef(x)=q0 A —x>=p*)+r(x)+s(x)y,
where f(x), r(x), s(x) e R[x]. Then fix x,, —1 < x, <1 and choose y, such that
1—xt—y2=0.
Evaluating (x) at (x,, +yo) We get r(xy) + 5(xg) ¥o = r(xg) — 5(x0) yo = 0, from which
follows r(x,) = 0. Since this holds for all x, € (—1,1), it follows that r(x) = 0. Similarly,
we have s(x) = 0. Thus we have 4 - f(x) = q(x,y)(1 — x* — y*). Assume f = const. Since

£ does not divide (1 — x? — y?), it follows that f divides ¢(x, y) and so we get 1 — x? — y?
divides 4. This also holds if f = const.

We have shown that for each i,

hi(y.2) _ t<g(y, z)

xt xi-—-l

). Repeating the above argu-
ment, by induction we obtain fe B[], proving the claim.
y2
Now set D:=R [x,y, m]
Claim 2. D isomorphic to R[X,Y, Z]/(Y? - Z(X? +Y?)).

Proof of claim. Seta=Y?and b= X?+ Y2 Define 6: R[X,Y,Z] - D by

2
9(X)=x, O(Y)=y, and ¢(Z)=;2—)i—yz-.
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Clearly, 0 is onto. By [Ku], 5.10, the kernel of 0 is (a — Zb). (Note that, {x%, x*+y*}is
a R[x, y]-regular sequence.) Thus 6 is an isomorphism.

From the claims we see that H(R) = B[] = R[x, y,t,z]/U, where
A =(y2—t(x>+y?), 22 —=1— x> —y> = x*1).

Thus the line {(0, 0, 1)| e R} £ V(R). In particular, V'(R) is not compact and hence, by
2.6, H(H(R)) = H(R). Note that H>(R) = H?(R) since R has dimension 2.

§ 4. H(R) and sums of higher powers

In the first section we characterized H(R) using T'(R) and T (R). For formally real
fields K the set of quadratic sums T'(K)=2K 2 can be replaced by the set of sums of
2n-th powers for each n e N, see [B3], 2.5, [B1], 3.3. In this section we study this question
for rings. We use the idea of orderings of level n as in [BG1] and [Be].

Definition. A subset P < R is an ordering of level n on R if there exists a ring homo-
morphism ¢ : R — K, where K is a field, and an ordering P of level n on K with

P=¢ *(P).

Alternatively we can define orderings of level n as pairs P = (9, P), ¢ a real prime in R
and P an ordering of level n in k(). For further descriptions and results on orderings of
level n, see [BG1].

Note that orderings of level 1 are precisely the orderings defined in §1, i.e., the
elements of Sper R.

Definition. (i) For an ordering P of level n, we set P*=P\—P.

(i) The set of totally positive elements of level n in R is T,(R)= ()P, the inter-
section over all orderings of level n.

(iii) The set of strictly totally positive elements of level nis T," (R) = ﬂ P, the inter-
section over all orderings of level n. ‘

Clearly T,(R) =T(R) and Ty (R) = T*(R). In [Be], R. Berr generalizes Stengle’s
abstract Positivstellensatz to orderings of level n: '

Proposition 4.1 ([Be], 1.6). Given a€ R, then

(i) aeT,(R) <> there exists ke Ny and t,1'€ T R*" with at =a?™ + ',

(i) aeT,* (R) < there exists t,1'e ZR*" with at =1+1".

Remark. In [W], it is shown that in (ii), ¢ can be replaced by an element of the

form 1+s, se TR?". This can also be shown as follows: From at =1+t we deduce
a-(at)* '=a(l +1)* ! hence a*"t*" "' =a(l+ 1), 1€ > R?". Finally,
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a(l+t+t)=1+t'+a*"t*>" 1.

As in §1, we have

Corollary 4.2. (i) If ¢ : R — S in a ring homomorphism, then ¢ (T,(R)) € T,(S) and
o(T*(R) € T, (S).

(ii) The mappings R+ (H(R), HR)NT, (R)) and R— (H(R), HR)NT," (R)) are
covariant functors from the category of commutative rings to the category of archimedean
partially ordered rings. :

Proposition 4.3. (i) H(R) = {a€ R|there exists ke N with k + ae T,(R)}.

(i) H(R) = {ae R|there exists ke N with k + ae T, (R)}.

Proof. (i) Given ae H(R). By definition, there exists k€ N such thatk + a€T; (R).
We want to show (1+k)+aeT,(R). Let p be a real prime ideal in R and set
a=a+ g €k(p). Then
k+aeH(k(p)nZk(p)®.

By [B2], (1.6), for a field K and b€ H(K)nZK? we have
1+beHK)*NnZK*<c () ZK*".
Thus, in our case: (1 + k) + ae Zk(p)*". Hence, in R,
(1+k)+aenP, Panorderingof leveln, p=Pn—P.
Since every real prime ideal is of this form, we have (1 +k) +ae n P =T,(R).
(i) follows from (i) since 1 + T, €T, T,. O
Definition. Set

T(R):={fe H(R)| f(P) e H(k(g))* for all P= (g, P)e Sper R}

and
S(R) ={feR|f(P)*0 for all PeSperR}.

Note that H(R)* = T(R) and T(R) < S(R).

Lemma 4.4. (i) T(R) = {fe H(R)| f is bounded away from 0 on Sper R, i.e., there
is some r e Q% such that | f(P)| > r for all Pe SperR}.

(i) If H(R) = R, then T(R) = S(R).
Proof. (i) Let C denote the right-hand side of the equation, i.e., the elements of

H(R) that are bounded away from 0. If F is a field, it is easy to show that for x € H(F),
x is a unit in H(F) iff x is bounded away from 0. This implies C & T(R).
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Now suppose f€ T(R). Then for any P = (g, P) e SperR, fis bounded away from 0
in k(p). By a compactness argument, as in the proof of 1.1, we get that f is globally
bounded away from 0, i.e., fe C.

(i) T(R) < S(R) is clear. Given fe S(R). Fix P = (g, P) € Sper R and suppose f(P)
is not bounded away from 0 with respect to P in k(g). Then f(P)el (P), where I(P)
denotes the maximal ideal of the valuation ring A(P) associated to P. Set

p:=I(P)nH(k(),

then f(P)ep. As is well-known, p is a real prime ideal in H (k(g¢)). Since H(R) = R, we
have a map R — R/ — H(k())/p, which induces Q = (g, O)eSperR. But f(P)ep
implies f(Q) = 0, contradicting fe S(B). Hence f is bounded away from 0 with respect
to all P e SperB and thus fe T(B) by (). O

Theorem 4.5. (i) TnT(R) = T,(R) for all n.

(i) If B is a subring of R such that H(B) = B, then S(B)nT(R) & T,(R) for all n.
Proof. (i) This is proven using an argument similar to that of 4.3.

(ii) Use (i) and 4.4 (i) and note S(B)nT(R) = TB)NTR) cT(R)NT(R). O

Remark. 4.5 generalizes Theorem 1.6 of [B2] to rings.

1 2, o .
Example. Let R=Z[X]+ x2@2+x2 Then 3 i zz is a unit in H(R) and contained
2

X~ & () T, (R). Because of T," (R) € ZQ(X)>", this

1
in T(R). It follows from 4.5 that + 5
2+ x

generalizes the result in [B2], 1.7. See also [R], §5.

The above results, particularly Theorem 4.5, will allow us to analyse the multiplica-
tive semigroup 1 + £ R*".

The following result is well-known. The equivalence of (i) and (ii) is proven for
example in [L], 3.9; the remaining cases were proven by Joly [J]. ‘

Proposition 4.6. The following are equivalent for a ring R:
(i) SperR=*9,

(i) —1¢ZR?

(iii) —1¢ZR*" for eachneN,

(iv) —1¢ZR>" for some r;e N.

Proof. The implicatidns @) = (ii) = (ii)) = (iv) are clear. We thus prove (iv) = (i):
Assume (iv) holds and set S:==1+ 2 R?" then 0 ¢ S. Let g be an ideal maximal with respect
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to g N S = 0. Itis well-known that o € Spec R. We claim g isreal. The equivalence (ii) <> (iv)

is known for fields, thus it is enough to show —1¢ Zk(g)>". Assume not, then there exists
s¢ p and x,, ..., x, € R with s2" + Ix?"e p. By the maximality of g it follows that

(p +Rs)NS*0,
ie., u+asesS for ue p, ae R. Taking powers, we have (u+ as)*"=u'+ a's*"e S with
u'e @, a’'eR. Multiplying s*"+ Zx?"egp with a’ and adding u’ it follows that
u' +a's*+ ZyPtep,ie., pnS+0, acontradiction. O
Definition. Given a multiplicative semigroup S in R, then
Sat(S) = {se R|ss'e S for some s'€ S}

is called the saturated hull of S.

Krull’s Theorem on the existence of prime ideals says that

Sat($)= () &

peSpecR
PnS=0

where p°= R\p.
Theorem 4.7. For each ne N

Sat(1+ XR*) =Sat(1+ ZR*™ = (] °.
peSpec R
@ real

Proof. If 01+ ZR?, then by 4.6 we have 0e1+ ZR*" and Sper R = 0. Thus, in
this case, we have Sat(1+ ZR?")=R and the theorem is proven. Hence we asume
0¢1-+ ZR?, thus also 0¢1+ ZR*" If p is a real prime ideal, then clearly

A+ZR™np=0.
Suppose conversely that g, is a prime ideal with @0 (1+ ZR*") =0. Then there is a
prime ideal g over @, which is maximal with respect to this property and hence, as in

the proof of 4.6, @ is real. Thus we have

1+ IR S p° s ph,

and the theorem follows. 0O
Corollary 4.8. Suppose —1¢ 2 R?. Then for each n the natural mapping
Ry, sren = Rysspe

is an isomorphism, and every maximal ideal in R, , g2« is real.

7 Journal fir Mathematik. Band 480
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Proof. It is well-known that in general the natural mapping Ry — Rg,, 1S an iso-
morphism. The ring R':= R, , ;5. satisfies 1+ 2R’> < (R)* and in such a ring every
maximal ideal is real cf. the following 5.1. O

By 4.8 we have for any n,me N:

1+ ZR?*"< Sat(1 + ZR*™),
i.e., for any g € £ R?" there exists x € R with
A+ ¢@xel+ ZR*™.

We will now show that we can find factors x of a very special type.

Proposition 4.9. Given n,meN and qe T,(R).

() q"eT,,(R).

(i) There exist t,t' e £ R*>™ with

A+gm-t=1+1".
(iii) There exists t,t'e€ £ R2"™ with
RA+qgm—1]-t=1+1¢".

Proof. (i) follows from the fact that if K is a field of characteristic 0, then

(%) CEK*™Mmc ZK*,
see [B2], 1.9. (ii) follows easily from (iii). To prove (iii) we note that if g is any real prime
ideal, then x:=2(1 + q)™ —1¢ p. This together with (*) implies that xe 7). (iii) now
follows from 4.1 (ii). 0

Remark. From 4.9 (ii) it is obvious that Sat(1 + £ R*") = Sat(1 + Z R?).

Example. (i) Let R be a ring with Z< R< Q. Then g = 0 is the only real prime
ideal and hence Sat(1 + X R?) = R\{0}.

(ii) Let ¥ be an irreducible real affine variety and let R = R[¥]. Then by [BCR],
4.4.3 we have

Sat(1 + ZR?) = { fe R| f has no zeros on R"} .
§ 5. Rings with 1 + T R* & R*
The following proposition is well-known.

Proposition 5.1. The following are equivalent for a ring R:
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(@ 1+ ZR*cR*,
() 1+ ZR?*"< R* for each neN,
(i) 1+ ZR>" < R* for some ne N,
(iv) every maximal ideal of R is real.
Proof. The implication (i) = (iv) is easy, and the implications (iv) = (iii) = (i) = (1)

follow from 4.7 and the fact that R*= [ ° O

peMax Spec R

We assume for the rest of the paper that 1+ X R? < R*.

Examples 5.2. (i) Suppose A4 is a ring with Sper4 + 0, then 0¢1+ X A% Then

(ii) Suppose V is a real affine variety with coordinate ring R[ V], then
O (V)={fe R(V)| f is regular at every point x€ V' (R)} = R[V1, 4 srpy2-
To prove this, use Stengle’s Positivstellensatz, see [BCR], 44.5.
(iii) Let ¥ be a topological space, then R:=C(Y, R) satisfies 1 + ZR? < R*.

Proposition 5.3. Let V be an irreducible real affine variety with coordinate ring R[ V],
and let F be the quotient field of R[V].

(i) V(R) is compact iff HR[V]) = R[V] iff H(Oxg(V)) = Ox(V).
(i) V,(R) is compact iff R[V1< H(F) iff Oa[V] < H(F).

Proof. (i) V(R)compactiff H(R[V])= R[V]is2.6. Suppose V' (R) is compact. Let
S =1+ ZR[V]? then as in 5.2(ii), Og[V] = R[V]s. Hence, by 1.8,

H(0g[V]) = { fe Og[V]] f bounded on V(R)}.
Since V(R) is compact, it follows that H(Ox[V]) = Ox[V].

Now suppose H(Ug[V]) = 0g[V], then Zx} must be bounded on V(R), which
implies V' (R) is compact.

(ii) This follows from the fact that if y € ZF?, then 1 :_ eH(F). O

y

Remark. For any ring R’ the natural mapping R’ — R}, ;g induces a homo-
morphism Sper(R; ; yr-2) — Sper R From this fact we see immediately that

H(R) = R'nHR}y 5r2)

(with the obvious interpretation of the right side).
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Theorem 5.4. For each ne N
(i) T.,*(R)= R*nXR*",
(i) 7,"(R) = (HR)*NT(R)) - (T (R)"

Proof. (i) The inclusion R* n ZR?*" < T,"(R) is true for any ring R. Given ae T},
it follows from 4.1 (iii) that at=1+1¢ for t,t'e 2 R?*". Since 1 + ¢’ is a unit in R, so are
aand t. Thus a=(1+ t)t2" "t (t H*"e R*n ZR*".

(i) From 4.5 we have H(R)* n T(R) < T,* (R). Then 4.9 (i) yields (T *)" < T,". Hence

(H*AT) - (T T,". Nowseta= Zx?"eT,". Then a € R* by (i). Because every maximal
2n

(ZxP)™
@ we have b+ @, b~ + p e H(k(p))*, which implies be H*nT. Clearly

ideal in R is real, this shows Xx? € R*. Consider b = For each real prime ideal

Ix?eR*NnIR*=T",

then it follows that be (H*nT) - (T*)". O

2

1+ X
Example. Let R= Z[X]1+EZZ[X]2' Then IS

hence, using 5.4, we have -2—::_—X—2 e() ZR*". Thus we have improved the results
1+ X2 "
W € ﬂ ZQ(X)Z" from [BZJ

is an element of H(R)*NT(R),

For a ring A4, let quot (4) be the total quotient ring Ay, where N is the multiplicative
semigroup of non-zero-divisors of 4. Clearly 4 ¢, quot(4).

Proposition 5.5. (i) H(R) < R < quot(H(R)).
(i) 1+ ZH(R)*> < HR)*.
Proof. (i) For any x € R we have 1 + x? e R*. Further, we see that

1 X
1+ x% 1+x2€H(R)'

x 1\t
H = R)).
ence x (1 +x2) (1 +x2) € quot (H(R))

(ii) follows from the fact that (1 + q)"'e H(R) for every ge ZR*. O

Remark. By 5.5 (i) and 5.1, every maximal ideal of H(R) is real. In general, a prime
ideal of H(R) need not be real, as the next example will show. However we always have
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Lemma 5.6. Given g € Spec H(R) and Zx? € g such that Zx}? € R*. Then each x; € .

X
1 R).
foeH( )

In this case x; = (;:}2) - Xx} and

Proof. Easy. 0O

. Example. SetR= R[X,Y],, spx, vyz- Then p = (%) is a non-real prime
ideal of H(R) = { fe R| f bounded on R?}.

Proposition 5.7. For each ne N

(i) H(R)={reR|k+reZR*" for some ke N},

@ B0 =2| o |

1+ 2R
Proof. (i) is a consequence of 4.3 (i) and 5.4.
(ii) We first note that
@gZ[T;Rz;] c H(R).

Given ae H(R), by (i) we can find ke N with k+a =1+ x, where xe ZR?*". Clearly
1+ xe H, hence m — (1 + x) =1+ y for suitable me N and y € ZR*". We have

1
ity

R*N X R?",
14+ x

thus writing a= —k+m 1+—1—i—y- ~1wehavean 1
Ba= 1+ x 1+ 2R |

In the first section, we considered the mapping
¢:HR) - CX,R),
where X = Hom ((H(R), 0%), (R, R,)), 0" = H(R)nT*. There is a mapping
X = Hom(H(R), R) —— Max Sper H(R) ,

where i is the inclusion mapping, Hom (H(R),R) is given the subspace topology of the
Tychonoff-Product space R¥, and j is defined by:

oo '(R,).

That ¢~ !(R.) € Max Sper H(R) is shown in [KS], Kor. 5, p. 134 or [BG 2], 2.9.
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Proposition 5.8. (i) The mappings X —— Hom(H(R), R) —/, Max Sper H(R)
are homeomorphisms.

(i) H(R*NIR*=d"'(C}(X,R)).

(i) H(R)* " ZR*= {r St4
t+q

r,s,te@;,quRz"}for allneN.

Proof. See [M], 3.4. In [KS], Kor. 5, p.314, or [BG2], 2.9, it is also shown that
j is a bijection. O

For a topological space Y, let B(Y) be the group of clopen subsets of Y relative to
the symmetric difference. As in [B2] we set R_ = {reR|r < 0} and we get:

Corollary 5.9. The mapping ¢+ ¢~ '(R_) induces an isomorphism

H(R)*/ ~ B(X).

H(R)*nIR2

In the case of R = K, K a field, X has a natural interpretation as the space M (K) of
real places 4: K — Ruoo. This is the basis for the fact that H(K) is a Priifer ring with
quotient field K. In [M], Marshall has a corresponding interpretation in the case of rings
with 1+ Z R? < R*. It is not proven in [M] that if R is a ring with 1+ ZR* g R¥, then
the real holomorphy ring H(R) is a Priifer ring of R. We would like to prove this, thus
we need the concept of M. Griffin [G] of Priifer rings of 4 as overrings R of 4 in the
total quotient ring quot (). (In our situation we have H(R) € R < quot(H(R)), see 5.5.)

Definition. Suppose A is a subring of R and g € Spec 4.

(i) Set A,;=={reR|rse A for some seA\p} and p*:={reR|rse p for some
se A\p}.

(i) Asin [G], 4 is called a Priifer ring of R, if for each maximal ideal p of A the
pair (A4, @*) is a Manis valuation ring of R, i.e., the pair satisfies: for all x € R\A4y,
thereisa ye p* with xye A,)\p ™.

Theorem 5.10. Every overring of H(R) in R is a Priifer ring in R.

Proof. Given a ring B such that H(R)= B< R and ¢ € Spec B. Set H=H (R),
A= By,, and p,= p N H. For each r € R the following are in H(R) € B¢ A:

1 r? _1 nd r
T+r2 1412 1+r% 1+ r?

Now given r € R\ 4, from the definition of By, it follows that rs¢ H for each se H\g,.
Since r/(1 +r?), 1/(1 +r*) e H it follows that

57 € o, S o ¥. Then clearly
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r? . r?
m-z-eA\go , thus 1_’}_r2=r-

r r \? r? 1
and it remains to show that € p* We have —] = . e p¥,
nd it remains TT72€¢ (1+r2> T2 1329 from

. r
whlch follows T2 ep* O

Remark. 5.10 can also be proven using [Po], 1.7.

Corollary 5.11. Given ne N and B a ring with 1 + XB*" < B*. If A is a subring of
B with 1/(1 + x) € A for every x€ X B*", then A is a Priifer ring of B.

Proof. It follows from 5.1 that 1+ XB*< B*, and from 5.7 (ii) that H(B) € 4.
Now apply 5.10. o

Remarks. (i) For R = C(¥, R) we saw that H(R) = C*(¥, R). Griffin notes that C®
is a Priifer ring of C, see [G], p.417.

(i) In 5.8 we defined for the given space X a homeomorphism X = Hom(H(R), R).
If peHom(H(R),R) and @ =kerg, then clearly ¢ induces ¢*: H (R),, — R with
kerp* = g *. Then, since (H(R),,;, #*) is a Manis valuation pair, we can interpret ¢* as
aplace @ : R = Ru oo. This is the basis of Marshall’s interpretation of X as a space of places.

Priifer rings can be characterized by the property that finitely generated ideals are
invertible, see [G].

Definition. Suppose H is a subring of R.
(i) An H-module a € R is a fractional ideal (with respect to H) if aR = R.

(i) Inv(H, R) = {ala is a fractional ideal and ab = H for some fractional ideal b},
the group of invertible fractional ideals.

(iii) R* = {aH|ae R*} is the subgroup of fractional principal ideals of Inv(H, R).
The factor group
CI(H, R):=Inv(H, R) /g«

is the class group of (H, R) (of H for short).

Remark. Usually when defining fractional ideal, one requires ya & H for some
ye Hn R*. But in our case of finitely generated H-modules this always holds, see 5.12
below. With the usual proof one shows that every invertible fractional ideal is a finitely
generated H-module.

Proposition 5.12. Set H = H(R). Given ne N, the following are equivalent for an
H-module (a,, ...,a,)=2Ha; S R:
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i) (ays.--,a)R=R,
(i) Za?"e R*.

Proof. (i) = (ii) Assume b:=Xa?"¢ R*. Then there is a maximal ideal .# of R with
b e M. Since 4 is real, it follows that each g, lies in #. Thus (a,, ..., a,) RS # and hence
(i) does not hold.

(i) = (i) is clear since Za?" e (ay,...,q,). O
Corollary 5.13. (i) Every finitely generated fractional ideal is invertible.
(ii) For any fractional ideal (a,, ..., a,) we have (a,, ...,a,)*" = (Za").

Proof. (i) follows from (ii) using 5.12 (ii): Set a = (ay, ..., a,), then clearly Za?" € a*".

The fractional ideal a2" is generated by the elements [] af, 1, 2 0, Z't; = 2n, thus it remains
i=1

to show that [ a}/Za?"e H. This equation holds for formally real fields, hence it holds

in our situation by 1.2 (i)). ©

Q;
Ta¥

Remark. For a=(a,,...,a,), we have a™ ! = (, ) Hence CI(H,R) is a

group of exponent 2.

In the following we consider the connection between the elements of R* n X R*" and
the invertible fractional ideals.

Proposition 5.14. (i) Suppose a and b are invertible fractional ideals with a* =b* for
some te N. Then a=Db.

(i) If Zia?", Z{b"e R*NZR>" and Zial" =¢- Zb}", where e€ H*, then
(ay,...,a)=(by, ..., by).

Proof. (i) We have (ab™!)" = H, thus need only show a'= H implies a = H. So
suppose a' = H and given a € a, then a' € H. Since H is a Priifer ring in R, by [G], Prop. 6,
p.416, H is integrally closed in R. Hence a € H and thus a £ H. Hence a = H.

(i) Set a=(ay,...,a,)*" and b=(b,,...,b,)*", then a®"=(Zaf") = (Zb?")=b>".
Thus a=b by (i). 0

Theorem 5.15. The mapping Za?"— (ay, ..., a,), Xa’" € R*, induces a group iso-
morphism
R* M ZRZR/(R*)Zn.(H*(\ERz) = CI(H, R) .

Proof. We have (a,,...,a,)(by,...,b)=(...,a;b;,...) and also

S ZibP =5, j(aib)*,
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hence there is a group epimorphism R* N R?" — CI(H, R), where Za?" > the class of
(a,...,a,). Given (a,, ..., a,) = (@), ae R*. Then (Za?") = (a*"), where Za?" = ¢ - a*" with
ee H* Then e H* N ZR*" = H*N X R?, the latter by 5.5. If Za?"e (H*n R?)- R*?" it
follows that (a,, ..., a,)*" = (¢ a*") = (a*") = (@)*", ae R*, i.e, (a;,...,a,)=(a). O

As in [B2] we can use the connection between R* n X R2" and the fractional ideals
to study quantitative problems on sums in R. We need to make use of the idea of Waring-con-
stants g(K, n) as in [B3], p. 887, thus we define:

Definition. Suppose 4 is any ring and ne N. Then we set

g*¥(4,n) =inf{l|A*nZA4" = A*n X[ A"} or ©
the n-th Waring-constants for the units of 4.

In our situation we also need

~ Definition. u(R) = min{r | each invertible fractional ideal of H can be generated by
r elements} or co.

Looking at the proof of [B2], 2.11, 2.12, we see that the facts used in the proof
— for example, 1.6 (iii) with 2 € H, 5.6 (ii) — also hold in our situation. Thus we get the
following results:

Proposition 5.16. (i) u(R) =< g*(R,2n) for all n.

(i) If p = u(R) < 00, then R* " ZR*" = (H(R)*N ZR?) - (R*N ZLR*™).

Theorem 5.17. The following are equivalent:

@H &*(R,2)<oo,

(ii) g*(R,2n) < oo for some ne N,

(i) g*(R,2n) < oo for all ne N.

If g* = g*(R, 2) < o0, it follows that

e ”) .G@2n) - u(R),

g*(R,2n) = g*(R,2) <

where G (2n) = classical Waring-constant for the representation of sufficiently large natural
numbers as sum of 2n-th powers.

Remark. In [CDLR] many results on the Pythagoras number P(R) = g(R,2) are
proven. Clearly g(R,2) <co implies g*(R,2) < oo and in the case of Z[X] one has
g(2,Z[X]) =0 and g*(Z[X],2) =1 (see [CDLR], 4.14).
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Theorem 5.18. Let V be an irreducible real affine variety of dimension d. Then:

@)

2n+2"+2)

g2 s ()

(i) If V(R) is compact, then Oxg(V)*nZ0x(V)* < Z0(V)*".

Proof. (i) We have g*(0x(V),2) £2¢ [Mal]. The result now follows from 5.16
and 5.17 since in this case the factor G(2#n) can be dropped. O

(ii) This follows from 5.3 and 5.4. O

Remark. The statement (ii) in 5.18 is also proven by R. Berr, cf. [Be2], 4.1.

Added in proof. Rings R satisfying H(R) = R are treated in [ABR], p. 164{f.
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[Be]

[Be2]
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[H]
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