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Abstract

This paper studies the representation of a positive polynomial f(x) on a noncompact
semialgebraic set S = {x ∈ Rn : g1(x) ≥ 0, · · · , gs(x) ≥ 0} modulo its KKT (Karush-Kuhn-
Tucker) ideal. Under the assumption that the minimum value of f(x) on S is attained at some
KKT point, we show that f(x) can be represented as sum of squares (SOS) of polynomials
modulo the KKT ideal if f(x) > 0 on S; furthermore, when the KKT ideal is radical, we have
that f(x) can be represented as sum of squares (SOS) of polynomials modulo the KKT ideal if
f(x) ≥ 0 on S. This is a generalization of results in [18], which discuss the SOS representations
of nonnegative polynomials over gradient ideals.

Key words: Polynomials, semialgebraic set, sum of squares (SOS), Karush-Kuhn-Tucker
(KKT) system, KKT ideal.

1 Introduction

There has been much recent interest in developing algorithms for optimizing polynomial func-
tions on semialgebraic sets using representation theorems from real algebraic geometry for
positive polynomials. The idea is to turn a problem of this type into a question about the
existence of a representation involving sums of squares (SOS) polynomials and the polyno-
mials defining the semialgebraic set – an SOS representation for short. This can then be
implemented as a semidefinite program (SDP), and solved numerically [21, 25]. In the global
case, i.e., when the semialgebraic set is the whole space Rn, an SOS representation gives a
convex relaxation of the original problem and hence a lower bound for the minimum. In the
case of compact semialgebraic sets, using results on SOS representations, Lasserre [14] gave
a procedure for finding natural sequences of computationally feasible SDP relaxations of the
original problem, whose solutions converge to a solution of the original problem.

However, these methods do not always work well. In the global case, the resulting SDP
might not have a solution even if the polynomial attains a minimum. This can also occur
in the case of a semialgebraic set which is not compact. In the compact case, the procedure
proposed by Lasserre in [14] can generate a sequence of lower bounds which converge to the
minimum under a certain constraint qualification condition. Recently, Nie and Schweighofer
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[19] gave results on the convergence rate of these lower bounds. However, Lasserre’s procedure
is based on SOS representations of positive polynomials on compact semialgebraic sets and the
lower bounds generated usually have only asymptotic convergence, i.e., the finite convergence
is usually not guaranteed, as shown in an example due to Stengle [30].

As is well known, most numerical optimization methods targeting local (including global)
minimizers are often based on the optimality conditions: the Karush-Kuhn-Tucker (KKT)
system. In the unconstrained global case, the KKT system reduces to the zero gradient
condition. Thus an approach with great potential in global optimization is to look at SOS
representations of a polynomial modulo its gradient ideal or an ideal arising from the KKT
system. There is some related work in SOS representations of positive polynomials modulo
certain ideals, such as Hanzon and Jibetean [9], Laurent [15], Parrilo [25], Jibetean and Laurent
[13].

Nie, Demmel and Sturmfels [18] proposed using SOS representations of positive polynomi-
als modulo their gradient ideals, i.e., the ideals generated by all the partial derivatives. This
kind of representation works reasonably well in finding the global minimum of a polynomial
when the minimum is attained at some point. In this paper, we generalize the results in [18]
and give similar representation theorems using a KKT system for polynomials positive on a
basic closed semialgebraic set. Note that we do not need to assume that the semialgebraic set
is compact, which is necessary in Schmüdgen’s or Putinar’s Theorem (see below). We will also
discuss the application of this representation theorem to finding the minimum of a polynomial
on a noncompact basic closed semialgebraic set.

Denote by R[X] = R[x1, . . . , xn] the ring of polynomials in X = (x1, · · · , xn) with real
coefficients and write

P
R[X]2 for the cone of polynomials which are sums of squares in R[X].

We say f(x) is SOS if f ∈
P

R[X]2. For a finite set G = {g1, . . . , gs} ⊂ R[X], let S(G) denote
the basic closed semialgebraic set generated by G, i.e.,

S(G) = {α ∈ Rn | g1(α) ≥ 0, . . . , gs(α) ≥ 0}.

A polynomial f ∈ R[X] is PSD (resp. PD) if f(α) ≥ 0 (resp. f(α) > 0) for all α ∈ Rn. We
define PSD (resp. PD) on a subset K of Rn similarly and denote these by “f ≥ 0 on K” (resp.
“f > 0 on K”).

As is well-known, for n ≥ 2, there always exists f ∈ R[X] that is PSD but not SOS. An
SOS decomposition of a polynomial f is an explicit witness to the fact that f is PSD. More
generally, one can ask for a witness to the fact that f > 0 or f ≥ 0 on some S(G).

Denote by M(G) the quadratic module generated by the G, i.e.,

M(G) :=
n
σ0 + σ1g1 + · · ·+ σsgs

˛̨̨
σi ∈

X
R[X]2

o
.

We write P (G) for the preorder generated by G, i.e.,

P (G) =

8<: X
ε∈{0,1}s

σεg
ε1
1 . . . gεs

s

˛̨̨̨
˛̨σε ∈

X
R[X]2

9=; .

Note that P (G) is simply the quadratic module generated by the 2s products of the gi’s.
Clearly, if f ∈M(G), then f ≥ 0 on S(G) and an expression f = σ0 + σ1g1 + · · ·+ σsgs is

an explicit witness to the fact that f ≥ 0 on S(G), and similarly for f ∈ P (G). In general it
is not true that f ≥ 0 on S(G), or f > 0 on S(G), implies that f ∈M(G). However, we have
the following remarkable theorem:

Theorem 1.1 (Schmüdgen [27]). If S(G) is compact, then f > 0 on S(G) implies f ∈ P (G).

In general, even with the assumption that S(G) is compact, this does not hold if we replace
P (G) by M(G), nor if we assume only that f ≥ 0 on S(G). See [23] for details.
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A quadratic module M is archimedean if there exists p(x) ∈M such that the set {x ∈ Rn :
p(x) ≥ 0} is compact, equivalently, if there exists N ∈ N such that N −

Pm
i=1 x

2
i ∈M , see [4,

5.3.8]. Note that if M(S) or P (S) is archimedean, then S is compact.

Theorem 1.2 (Putinar [26]). Suppose M(G) is archimedean, then for any f ∈ R[X], f > 0
on S(G) implies f ∈M(G).

Remarks 1.1. (i) There are examples of compact S(G) for which the corresponding quadratic
module M(G) is not archimedean and the conclusion of Putinar’s Theorem does not hold, see
Example 6.3.1 in [4]. In the case of the preorder P (G), it is a deep theorem of Schmüdgen
[27] that if S(G) is compact then P (G) is archimedean.

(ii) The Putinar and Schmüdgen Theorems say that if the conditions are satisfied, then
there always exists an SOS representation of f positive on S(G). Thus, in this case, there
is trivially an SOS representation modulo the gradient ideal. On the other hand, all of the
assumptions of the theorem are necessary.

Given f ∈ R[X], let f∗ denote the minimum of f on S, i.e., the solution to the optimization
problem

f∗ := min
x∈Rn

f(x) (1.1)

s.t. gi(x) ≥ 0, i = 1, · · · , s. (1.2)

The KKT system associated to this optimization problem is

∇f −
sX

j=1

λj∇gj = 0 (1.3)

gj ≥ 0, λjgj = 0, j = 1, · · · , s (1.4)

where the variables λ :=
ˆ
λ1 · · ·λs

˜T
are called Lagrange multipliers and ∇f denotes the

gradient of f , i.e., the vector of partial derivatives. Under certain regularity conditions, for
example if the gradients of the gj ’s are linearly independent (see [20]), the local (including
global) minimizers of f(x) on S satisfy the KKT system above. A point is said to be a KKT
point if the KKT system holds at that point. We note that we do not include the condition
that the Lagrange multipliers λj are nonnegative, as is usual. It turns out that we do not need
the nonnegativeness of λj to obtain our representation theorems, as we shall see. Since taking
the sign of λj into account adds unnecessary complication to the representation, we omit it.

It is possible that the KKT system sometimes fails at some minimizers, thus the assumption
that the KKT system holds may be very restrictive in some situations. However, in most
practical applications, the minimizers often satisfy the KKT system and for this reason most
optimization theory and methods are based on KKT systems. Thus using the KKT system is a
natural way to proceed from the point of view of practical techniques for optimization, although
it might be restrictive sometimes. Most numerical algorithms targeting local (including global)
minimizers generate a sequence of points {(x(k), λ(k))} whose limit or accumulation points
satisfy the KKT system (1.3)-(1.4). We refer to [20] and the references therein for general
numerical methods in optimization.

We work in the polynomial rings C[X,λ] := C[x1, . . . , xn, λ1, . . . , λs] and R[X,λ]. Let

Fi = ∂f
∂xi

−
Ps

j=1 λj
∂gj

∂xi
and define the KKT ideal IKKT and the varieties associated with

KKT system (1.3)-(1.4) as follows:

IKKT = 〈F1, · · · , Fn, λ1g1, · · · , λsgs〉 ,
VKKT = {(x, λ) ∈ Cn × Cs : p(x, λ) = 0, ∀p ∈ IKKT },

V R
KKT = {(x, λ) ∈ Rn × Rs : p(x, λ) = 0, ∀p ∈ IKKT }.
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Keeping in mind that we are now working in the larger polynomial ring, we use P (G), resp.
M(G), to denote the preorder, resp. quadratic module, in R[X,λ] generated by G. The
associated KKT preorder PKKT and KKT quadratic module MKKT in R[X,λ] are defined as

PKKT = P (G) + IKKT

MKKT = M(G) + IKKT .

Finally, let H be the set satisfying constraints (1.2):

H = {(x, λ) ∈ Rn × Rs : gj(x) ≥ 0, j = 1, · · · , s}.

The main results of this paper are the following: Assume f∗ is attained at some KKT
point. If IKKT is radical and f ≥ 0 on V R

KKT ∩H, then f ∈ PKKT ; if IKKT is not radical but
f > 0 on V R

KKT ∩H, then f ∈ PKKT .

This paper is organized as follows. Section 2 contains some background in algebraic geom-
etry and real algebra. In Section 3 we study the SOS representations of polynomials modulo
KKT ideals. Section 4 shows the applications of this kind of SOS representations in optimiza-
tion on noncompact semialgebraic sets. We draw some conclusions in Section 5.

2 Preliminaries

In this section we present some notions and results from algebraic geometry and real algebra
needed for our discussion. Readers may consult [2, 3, 29] for more details.

Throughout this section, denote by R[Z] the ring of polynomials in Z = (z1, · · · , zm) with
real coefficients. Given an ideal I ⊆ R[Z], define its variety to be the set

V (I) = {z ∈ Cm : p(z) = 0 for all p ∈ I},

and its real variety to be

V R(I) = {z ∈ Rm : p(z) = 0 for all p ∈ I}.

An ideal I ⊆ R[X] is said to be zero-dimensional if its variety V (I) is a finite set. This
condition is much stronger than requiring that the real variety V R(I) be a finite set. For
example, I = 〈Z2

1 + Z2
2 〉 is not zero-dimensional, however the real variety V R(I) = {(0, 0)}

consists of one point of the curve V (I).
A nonempty variety V = V (I) ⊆ Cm is irreducible if there do not exist two proper sub-

varieties V1, V2 $ V such that V = V1 ∪ V2. The reader should note that in this paper,
“irreducible” means that the set of complex zeros cannot be written as a proper union of
subvarieties defined by real polynomials.

Given any ideal I of R[Z], its radical ideal
√
I is defined to be the following ideal

√
I =

˘
q ∈ R[Z] : q` ∈ I for some ` ∈ N

¯
.

Clearly, I ⊆
√
I; I is a radical ideal if

√
I = I. As usual, for a variety V ⊆ Cm, I(V ) denotes

the ideal in C[Z] of polynomials vanishing on V . We will write IR(V ) for the ideal R[Z]∩I(V ).
We need versions of the Nullstellensatz for varieties defined by polynomials in R[Z]. The

following are normally stated for ideals in C[Z], however, keeping in mind that V (I) lies in
Cm, they hold as stated.

Theorem 2.1 ([3]). If I is an ideal in R[Z] such that V (I) = ∅ then 1 ∈ I.
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Theorem 2.2 ([3]). If I is an ideal in R[Z] then IR(V (I)) =
√
I.

Finally, we need the following real algebra version of Theorem 2.1 see e.g. [4, 4.2.13].

Theorem 2.3. Suppose S(G) and P (G) are defined as above, then S(G) = ∅ if and only if
−1 ∈ P (G).

We will also need the following lemma which is the “variety version” of Lagrangian inter-
polation:

Lemma 2.4 (Lemma 1 [18]). Let V1, · · · , Vr be pairwise disjoint varieties of Cm. Then there
exist polynomials p1, · · · , pr ∈ C[X] such that pi(Vj) = δij, where δij is the Kronecker delta
function.

Remark 2.5. If each V` is conjugate symmetric, i.e., a point z ∈ Cm belongs to V` if and only
if its complex conjugate z̄ ∈ V`, then the polynomials p` can be chosen such that p` ∈ R[Z],
since we can replace pi(Z) by (pi(Z) + p̄i(Z))/2, where p̄i(Z) is obtained from pi(Z) by
conjugating its coefficients.

3 Sums of squares modulo KKT ideals

In this section, we discuss the SOS representation of nonnegative and positive polynomials on
a noncompact basic closed semialgebraic set S modulo the corresponding KKT ideals.

When S = Rn, the problem is reduced to the SOS representation of nonnegative or positive
polynomials modulo gradient ideals, as discussed in [18]. Nie, Demmel and Sturmfels [18]
showed that if a polynomial f ∈ R[X] is nonnegative on its real gradient variety and its
gradient ideal is radical, then f has a representation as a sum of squares modulo the gradient
ideal; if the gradient ideal of f(x) is not radical but f(x) is positive on its real gradient
variety, then f(x) also has a representation as a sum of squares modulo its gradient ideal.
When f(x) is just nonnegative on its real gradient variety and its gradient ideal is not radical,
the polynomial f(x) might not have such an SOS representation modulo its gradient ideal, as
shown in Example 1 in [18].

In this section we generalize this result to real polynomials which are nonnegative on a basic
closed semialgebraic set. The real gradient variety and real gradient ideal are replaced by a
variety and an ideal defined by the KKT system corresponding to the optimization (1.1)-(1.2).

Fix G = {g1, . . . , gs} ⊆ R[X] and let S = S(G). Given f ∈ R[X], define the ideal IKKT ,
varieties VKKT , V

R
KKT , preorder PKKT and quadratic module MKKT associated to the KKT

system (1.3)-(1.4) defined in Section 1.
As is well-known, if an ideal I in a polynomial ring is zero-dimensional, then every PSD

polynomial f on V (I) is SOS modulo
√
I. This follows easily from the Chinese Remainder

Theorem, for a proof see, e.g., [25]. From this fact, we immediately obtain the following
representation theorem:

Theorem 3.1. Assume IKKT is zero-dimensional and radical. If f(x) is nonnegative on
V R

KKT ∩H, then f(x) belongs to MKKT .

Using a proof similar to that of Theorem 8 in [18], we can remove the restrictive hypothesis
that IKKT is zero-dimensional, however to obtain the most general result we must replace the
quadratic module MKKT by the preorder PKKT .

Theorem 3.2. Assume IKKT is radical. If f(x) is nonnegative on V R
KKT ∩ H, then f(x)

belongs to PKKT .

To prove the above theorem, we need the following lemma

Lemma 3.3. Let W be an irreducible component of VKKT and assume WR 6= ∅. Then f(x)
is constant on W .
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Proof. Since W is irreducible and contains a real point, it remains irreducible if we replace
R[X,λ] by C[X,λ]. Thus W is connected in the strong topology on Cn+s and hence is path-
connected (see e.g. [31, 4.1.3]).

The Lagrangian function

L(x, λ) = f(x) +

sX
i=1

λigi(x)

is equal to f(x) on VKKT , which contains W . Choose two arbitrary points (x(1), λ(1)),
(x(2), λ(2)) in W . We claim that f(x(1)) = f(x(2)).

First, assume both (x(1), λ(1)) and (x(2), λ(2)) are nonsingular points. Since the set of
nonsingular points is a manifold and W is path-connected, there exists a piecewise-smooth
path ϕ(τ) = (x(τ), λ(τ)) (0 ≤ τ ≤ 1) lying inside W such that ϕ(0) = (x(1), λ(1)) and
ϕ(1) = (x(2), λ(2)). Let µj(τ) be the principle square root of λj(τ), 1 ≤ j ≤ s (for a com-
plex number z = |z| exp(

√
−1θ) with 0 ≤ θ < 2π, its principle square root is defined to bep

|z| exp{ 1
2

√
−1θ}). From the KKT system (1.3)-(1.4), we can see that the function

f(x) +

sX
i=1

µ2
i gi(x)

has zero gradient on the path ϕ(τ) (0 ≤ τ ≤ 1). By the Mean Value Theorem, it follows that
f(x(1)) = f(x(2)).

Now suppose that at least one of (x(1), λ(1)) and (x(2), λ(2)) is singular. Since the set of
nonsingular points of W is dense and open in W ([31, Chap. 4]), we can choose arbitrarily
close nonsingular points to approximate (x(1), λ(1)) and (x(2), λ(2)). By continuity of f(x), we
immediately have f(x(1)) = f(x(2)) and hence that f is constant on W . �

Proof of Theorem 3.2. Decompose VKKT into its irreducible components and let W0 be the
union of all the components whose intersection with H is empty. We note that this includes
all components W with WR = ∅. Thus, by Lemma 3.3, f is constant on each of the remaining
components. We group together all components for which f takes the same value, then we
have disjoint components W1, . . . ,Wr such that f is constant on each Wi. Further, since each
contains a real point and f is nonnegative on VKKT , the value of f on each Wi is real and
non-negative.

Suppose f = αi ≥ 0 on Wi for 1 ≤ i ≤ r. We have VKKT = W0 ∪ W1 ∪ · · · ∪ Wr,
and the Wi are pairwise disjoint. Note that by our definition of irreducibility, each Wi is
conjugate symmetric. By Lemma 2.4, there exist polynomials p0, p1, · · · , pr ∈ R[x, λ] such
that pi(Wj) = δij , where δij is the Kronecker delta function.

By assumption, W0∩H = ∅ and so, by Theorem 2.3, there is some v0 ∈ P := P (g1, . . . , gs)
such that −1 ≡ v0 mod I(W0). We have f = s1 − s2 for the SOS polynomials s1 = (f + 1

2
)2

and s2 = (f2 + ( 1
2
)2). Hence

f ≡ s1 + v0 · s2 mod I(W0),

Let q0 = s1 + v0 · s2 ∈ P . Recall that f(x) = αi, a non-negative real constant, on each
Wi(1 ≤ i ≤ r). Set qi(x) =

√
αi, then f(x) = qi(x)

2 on I(Wi).

Now let q = q0(p0)
2 +
`Pr

i=1 qipi

´2
. Then f−q vanishes on VKKT and hence f−q ∈ IKKT

since IKKT is radical. It follows that f ∈ PKKT . �

Remark 3.4. The assumption that IKKT is radical is needed in Theorem 3.2, as shown by
Example 3.4 in [18]. However, when IKKT is not radical, the conclusion also holds if f(x) is
strictly positive on V R

KKT .

Theorem 3.5. If f > 0 on V R
KKT ∩H, then f belongs to PKKT .
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Proof. As in the proof of Theorem 3.2, we decompose VKKT into subvarieties W0,W1, · · · ,Wr

such that W0 ∩ H = ∅, the Wi’s are pairwise disjoint, and for i = 1, . . . r, f(x) = αi, a real
constant, on Wi. Since f > 0 on V R

KKT , each αi > 0.
Consider the primary decomposition IKKT = ∩r

i=0Ji corresponding to our decomposition
of VKKT , i.e., V (Ji) = Wi for i = 0, 1, · · · , r. Since Wi ∩Wj = ∅, we have Ji + Jj = R[x, λ]
by Theorem 2.1. The Chinese Remainder Theorem, see e.g. [5, 2.13], implies that there is an
isomorphism

ρ : R[x, λ]
‹
IKKT → R[x, λ]

‹
J0 × R[x, λ]

‹
J1 × · · · × R[x, λ]

‹
Jr.

For any p ∈ R[x, λ], let [p] and ρ([p])i denote the equivalence classes of p in R[x, λ]
‹
IKKT

and R[x, λ]
‹
Ji respectively.

Recall that that V (J0) ∩ H = ∅, hence by Theorem 2.3 there exist SOS polynomials
uθ (θ ∈ {0, 1}s) such that

−1 ≡
X

θ∈{0,1}s

uθρ([g
θ1
1 ])0 · · · ρ([gθs

s ])0
def
= u0 mod J0 .

As in the proof of Theorem 3.2, we write f = f1 − f2 for SOS polynomials f1, f2 and then we
have

f ≡ f1 + u0f2 ≡
X

θ∈{0,1}s

vθ(ρ([g
θ1
1 ]))0 · · · (ρ([gθs

s ]))0
def
= q0 mod J0

for some SOS polynomials vθ (θ ∈ {0, 1}s). Thus the preimage ρ−1((q0, 0, · · · , 0)) ∈ PKKT .
Now on each Wi, 1 ≤ i ≤ r, f = αi > 0, and hence (f

‹
αi) − 1 vanishes on Wi. Then by

Theorem 2.2 there exists some integer ` ∈ N such that (f
‹
αi − 1)` ∈ Ji. From the binomial

theorem, it follows that„
1 +

„
f

αi
− 1

««1/2

≡
`−1X
k=1

 
1/2

k

!
(f
‹
αi − 1)k def

= qi

‹√
αi mod Ji .

Thus (ρ([f ]))i = q2i is SOS modulo Ji, and hence ρ−1(q2i ei+1) is SOS modulo IKKT , where
ei+1 is the (i+ 1)-st standard unit vector in Rr+1.

Finally, we see that ρ([f ]) = (q0, q
2
1 , · · · , q2r). The preimage of the latter is

ρ−1`(q0, q21 , · · · , q2r)
´

= ρ−1`q0e1)´+

rX
i=1

ρ−1`q2i ei+1

´
,

which implies that f ∈ PKKT . �

Remark. The conclusions in Theorem 3.2 and Theorem 3.5 cannot be strengthened to show
that f(x) ∈MKKT , as the following example shows.

Example 3.6. Let g1 = 1 − x1, g2 = x2, and g3 = x3 − x2 − 1 and set G = {g1, g2, g3}.
Let f = (x3 − x2

1x2)
2 − 1 + ε, where 0 < ε < 1. It is easy to see that the minimum of f∗ on

S := S(G) is f∗ = ε. In particular, f > 0 on S. The corresponding KKT ideal

IKKT =
D
2x1x2(x3 − x2

1x2)− λ1x1, 2x
2
1(x3 − x2

1x2) + λ2 − λ3,

2(x3 − x2
1x2)− λ3, λ1(1− x2

1), λ2x2, λ3(x3 − x2 − 1)
E

is radical (verified in Macaulay 2 [6]). However, f 6∈ MKKT . Suppose to the contrary that
f ∈MKKT , then there exist SOS polynomials σ0, σ1, σ2, σ3 and general polynomials φ1, φ2, φ3

such that

f(x) = σ0 + σ1g1 + σ2g2 + σ3g3 + φ1(
∂f

∂x1
− λ1x2) + φ2(

∂f

∂x2
− λ2 + λ3) + φ3(

∂f

∂x3
− λ3).
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Plugging λ = (0, 0, 0) into the above identity yields

0 = 1− ε+ σ0 + σ1(1− x2
1) + σ2x2 + σ3(x3 − x2 − 1) + φ(x3 − x2

1x2)

where φ = −4x1φ1 − x2
1φ2 + 2φ3 − (x3 − x2

1x2). Now substitute x3 = x2
1x2 in the above,

yielding
σ3((1− x2

1)x2 + 1) = 1− ε+ σ0 + σ1(1− x2
1) + σ2x2.

Here σ0, σ1, σ2, σ3 are now considered SOS polynomials in (x1, x2). Since 1− ε > 0, σ3 cannot
be the zero polynomial. If σ3 = σ3(x1) is independent of x2, we can derive a contradiction
using an argument identical to the argument in the proof of [23, Thm. 2]. Thus 2m =
degx2

σ3(x1, x2) ≥ 2 and 2d = degx1
σ3(x1, x2) ≥ 0. On the left hand side, the leading term

is of the form A · x2d+2
1 x2m+1

2 with coefficient A < 0. Since the degree in x2 on the left hand
side is odd, the leading term on the right hand side must come from σ2(x1, x2)x2, and is of
the form B · x2d

1 x
2m+1
2 with B > 0. This is a contradiction. Therefore we can conclude that

f /∈MKKT .

4 Applications in Optimization

Given f, g1, . . . , gs ∈ R[X], recall the optimization problem from the introduction

f∗ := min
x∈Rn

f(x) (4.1)

s.t. gi(x) ≥ 0, i = 1, · · · , s (4.2)

and suppose we are interested in computing numerically the optimal value f∗. In other words,
we wish to compute the minimum of f on the basic closed semialgebraic set S(G), where
G = {g1, . . . , gs}.

Finding the global optimal solutions to (4.1) − (4.2) is an NP-hard problem, even if f is
quadratic and the gi are linear. For instance, the Maximum-Cut problem for graphs is of this
form, and it is NP-hard [8]. Recently, techniques using sum of squares (SOS) relaxations and
moment matrix methods have made it possible to approximate the global optimal solutions to
(4.1)-(4.2) by approximating nonnegative polynomials with SOS polynomials, which allows the
problem to be implemented as a semidefinite program which can then be solved numerically.
For details about these methods and their applications, see [13, 14, 15, 17, 18, 21, 22, 28].

In the case where S is compact, the SOS methods are based on representation theorems
for positive polynomials on compact semialgebraic sets, i.e., the theorems of Schmüdgen and
Putinar. However, these theorems do not hold in the case where S is not compact. As
discussed in the introduction, a more traditional approach in numerical optimization methods
is to use the first order optimality conditions (the Karush-Kuhn-Tucker (KKT) system in the
constrained case). Using Theorem 3.2 and Theorem 3.5, we combine these two methods to give
a procedure for approximating f∗ in the case where the semialgebraic set is not necessarily
compact.

Recall the KKT system corresponding to (4.1)-(4.2):

∇f(x)−
sX

j=1

λj∇gj(x) = 0 (4.3)

gj(x) ≥ 0, λjgj(x) = 0, j = 1, · · · , s. (4.4)

Let f∗KKT be the global minimum of f(x) over the KKT system defined by (4.3)-(4.4). Assume
the KKT system holds at at least one global optimizer. Then we claim that f∗ = f∗KKT .
First, f∗ ≤ f∗KKT follows immediately from the fact that all solutions to the KKT system
are feasible. Now let x∗ be a global minimizer such that f(x∗) = f∗, then by assumption,
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there exist Lagrange multipliers λ∗ such that (x∗, λ∗) satisfies the above KKT system. Thus
f∗ ≥ f∗KKT and hence they are equal.

In order to implement membership in PKKT as a semidefinite programming problem, we
need a bound on the degrees of the sums of squares involved. Thus, for N ∈ N, we define the
truncated KKT ideal

IN,KKT =
n nX

k=1

φkFk+

sX
j=1

ψjλjgj

˛̨̨
deg(φkFk), deg(ψjλjgj) ≤ 2N

o
.

and the truncated preorder

PN,KKT =

8<: X
θ∈{0,1}s

σθg
θ1
1 gθ2

2 · · · gθt
s

˛̨̨̨
˛̨ deg(σθg

θ1
1 · · · gθs

s ) ≤ 2N

9=;+ IN,KKT .

Then we define a sequence {f∗N} of SOS relaxations of the optimization problem (4.1)-(4.2)
as follows:

f∗N = max
γ∈R

γ (4.5)

s.t. f(x)− γ ∈ PN,KKT . (4.6)

Obviously each γ feasible in (4.6) is a lower bound of f∗. So f∗N ≤ f∗. When we increase
N , the feasible region defined by (4.6) is increasing, and hence the sequence of lower bounds
{f∗N} is also monotonically increasing. Thus we have

f∗1 ≤ f∗2 ≤ f∗3 ≤ · · · ≤ f∗.

It can be shown that the sequence of lower bounds {f∗N} obtained from (4.5)-(4.6) converges
to f∗ in (1.1)-(1.2), provided that f∗ is attained at one KKT point. We summarize in the
following theorem:

Theorem 4.1. Assume f(x) has a minimum f∗ := f(x∗) at one KKT point x∗ of (1.1)-(1.2).
Then lim

N→∞
f∗N = f∗. Furthermore, if IKKT is radical, then there exists some N ∈ N such

that f∗N = f∗, i.e., the SOS relaxations (4.5)-(4.6) converge in finitely many steps.

Proof. The sequence {f∗N} is monotonically increasing, and f∗N ≤ f∗ for all N ∈ N, since f∗

is attained by f(x) in the KKT system (1.3)-(1.4) by assumption and the constraint (4.6)
implies that γ ≤ f∗. Now for arbitrary ε > 0, let γε = f∗ − ε and replace f(x) by f(x)− γε in
(1.1)-(1.2). The KKT system remains unchanged, and f(x)− γε is strictly positive on V R

KKT .
By Theorem 3.5, f(x) − γε ∈ PKKT . Since f(x) − γε is fixed, there must exist some integer
N1 such that f(x) − γε ∈ PN1,KKT . Hence f∗ − ε ≤ f∗N1 ≤ f∗. Therefore we have that
lim

N→∞
f∗N = f∗.

Now assume that IKKT is radical. Replace f(x) by f(x) − f∗ in (1.1)-(1.2). The KKT
system still remains the same, and f(x)− f∗ is now nonnegative on V R

KKT . By Theorem 3.2,
f(x) − f∗ ∈ PKKT . So there exists some integer N2 such that f(x) − f∗ ∈ PN2,KKT , and
hence f∗N2 ≥ f∗. Then f∗N ≤ f∗ for all N implies that f∗N2 = f∗. �

Remarks: The assumption in Theorem 4.1 that f has a minimum at a KKT point is nontrivial
and cannot be removed, as the following example shows.

Example 4.2. Consider the optimization: min x s.t. x3 ≥ 0. Obviously f∗ = 0 and the
global minimizer x∗ = 0. However, the KKT system

1− λ · 3x2 = 0, λ · x3 = 0, x3 ≥ 0

9



is not satisfied, since VKKT = ∅. Actually we can see that the lower bounds {f∗N} given by
(4.5)-(4.6) tend to infinity. By Theorem 2.3, VKKT = ∅ implies that 1 ∈ PKKT , i.e.,

(1 + 3λx2)(1− 3λx2) + 9λ2x · λx3 = 1.

In the SOS relaxation (4.5)-(4.6), for arbitrarily large γ, x− γ ∈ PKKT , since

x− γ = (x− γ)(1 + 3λx2)(1− 3λx2) + 9ν2x(x− γ) · λx3 ∈ PKKT .

Thus f∗4 = ∞.

The SOS relaxation (4.5)-(4.6) is essentially a semidefinite program [21, 22, 33] and can
be solved numerically. The dual problem of (4.5)-(4.6) is to minimize a linear functional over
some linear moment matrix inequalities. It can also be obtained by applying moment matrix
methods [14] to minimize f over the semialgebraic set defined by KKT system (1.3)-(1.4).
Using software like Gloptipoly [10] and SOSTOOLS [24], the SOS program (4.5)-(4.6) or its
dual problem can be solved, and in many cases, the global minimizer x∗ and the Lagrange
multiplier λ∗ can be extracted. For more details about extracting minimizers from SOS
relaxations or moment matrix methods, we refer to [11].

Example 4.3 (Exercise 2.18, [12]). Consider the global optimization problem:

min (−4x2
1 + x2

2)(3x1 + 4x2 − 12)

s.t. 3x1 − 4x2 ≤ 12, 2x1 − x2 ≤ 0, −2x1 − x2 ≥ 0.

The semialgebraic set S defined by the constraints is non-compact. The global minimum
f∗ = − 1024

55
≈ −18.6182 and the minimizer x∗ = (−24/55, 128/55) ≈ (−0.4364, 2.3273).

The lower bound obtained from (4.5)-(4.6) is f∗4 ≈ −18.6182. The extracted minimizer x̂ =
(−0.4364, 2.3273).

Example 4.4. Consider the Quadratically Constrained Quadratic Program (QCQP):

min − 4

3
x2

1 +
2

3
x2

2 − 2x1x2

s.t. x2
2 − x2

1 ≥ 0, −x1x2 ≥ 0.

The global minimum f∗ = 0 and minimizer x∗ = (0, 0). The semialgebraic set S defined by
the constraints is non-compact. The lower bound returned by (4.5)-(4.6) is f∗4 = −2.6×10−15

(Note: this computation was done in double precision floating point, with round off error
bounded by 2−53 ∼ 10−16). The extracted minimizer is x̂ = (6.1× 10−16,−9.0× 10−17).

We conclude with another application of our theorem, to a nonconvex QCQP problem
which was posed by Zhi-Quan Luo and communicated to us by Paul Tseng.

Example 4.5. Consider the following nonconvex quadratic optimization

min
x∈R2

f(x) := x2
1 + x2

2 (4.7)

s.t. g1(x) := x2
2 − 1 ≥ 0 (4.8)

g2(x) := x2
1 −Mx1x2 − 1 ≥ 0 (4.9)

g3(x) := x2
1 +Mx1x2 − 1 ≥ 0 (4.10)

over a non-compact semialgebraic set, where M is a positive constant. Simple calculation
shows that the global minimum is

f∗ =
1

2
(M2 +M

p
M2 + 4) + 2

10



and the global minimizers are

(±1

2
(M +

p
M2 + 4), 1), , (±1

2
(M +

p
M2 + 4),−1).

Let P := P (g1, g2, g3), the preorder in R[x1, x2] generated by {g1, g2, g3}. Suppose we apply
the standard SOS method, i.e., we find the maximum γ so that f − γ in P . Note that
f − 2 = g2 + g3 ∈ P ; we claim that the maximum γ is 2.

Suppose we have a representation

f(x)− γ = σ0 + g1σ1 + g2σ2 + g3σ3 + g1g2σ12 + g1g3σ13 + g2g3σ23 + g1g2g3σ123 (4.11)

where σ0, σ1, σ2, σ3, σ12, σ13, σ23, σ123 are all SOS polynomials in R[x1, x2]. Since the highest
(total) degree monomial of each gi has coefficient 1 and the leading coefficients of sums of
squares are positive, the coefficients of the monomials of highest degree for each term on the
right are positive. It follows that there is no leading term cancellation on the right and hence
every term on the right has degree 2 or less. Thus we must have that σ12 = σ13 = σ23 =
σ123 = 0 and σ1, σ2, and σ3 are all constant. It is then easy to see that (4.11) is impossible if
γ > 2. This proves our claim.

Since the maximum γ such that f −γ ∈ P is 2, no matter how large we take the degree for
the SOS relaxation using the Lasserre method, we can get only the lower bound 2. Thus the
ratio of this lower bound to the true global minimum tends to zero when M goes to infinity.
This shows that the SOS lower bounds can be arbitrarily bad.

Of course, the reason that the SOS method using the preorder fails in this case is that
the feasible set (4.8)-(4.10) is noncompact, hence Schmüdgen’s Theorem does not apply. To
overcome this problem, we might consider using the standard SOS method to solve problem
(4.7)-(4.10) by adding a redundant condition like

R− x2
1 − x2

2 ≥ 0

as introduced in [14]. Here R is a sufficiently large positive number. We implemented this
approach using SOSTOOLS and found that the lower bounds obtained this way are still very
bad. The bigger the M is, the worse the bound we obtain.

Let us apply instead the optimization method described at the beginning of this section,
using our representation theorems based on the KKT system. The KKT system for problem
(4.7)-(4.10) is

2(1− λ2 − λ3)x1 + (λ2 − λ3)Mx2 = 0

2(1− λ1)x1 + (λ2 − λ3)Mx1 = 0

(x2
2 − 1)λ1 = 0

(x2
1 −Mx1x2 − 1)λ2 = 0

(x2
1 +Mx1x2 − 1)λ3 = 0.

Using Macaulay 2[6], we check that the KKT ideal IKKT in this case is radical. Now let

q(x) = ρ1

„
x2

1 −
1

4
(M +

p
M2 + 4)2)2

«2

λ2
1

`
(x2

1 +Mx1x2 − 1)λ2
2 + (x2

1 −Mx1x2 − 1)λ2
3

´
+

ρ2λ
2
1

 „
2λ1

2 +M2
− 1

«2

−
„

M2

M2 + 4

«2
!2

(x2
1 +Mx1x2 − 1)+

ρ3(4λ1λ2)
2(x2

2 − 1) + ρ4(x
2
1 +Mx1x2 − 1)2(x2

1 +Mx1x2 − 1)2(x2
2 − 1)+

(λ2(1− 2λ2))
2

„
ρ5

“p
M2 + 1x2

1 + 1
”

(x2
2 − 1) + ρ6

“p
M2 + 1x2

1 − 1
”2

(x2
2 − 1)

«
+

(λ3(1− 2λ3))
2

„
ρ5

“p
M2 + 1x2

1 + 1
”

(x2
2 − 1) + ρ6

“p
M2 + 1x2

1 − 1
”2

(x2
2 − 1)

«
.
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Here the constants are defined as

ρ1 =
4(M2 + 4)3/2

(
√
M2 + 4)5M2(2 +M2)2

, ρ3 = 1 +
1

2
M(M +

p
M2 + 4),

ρ2 =
1 + 1

2
M(M +

√
M2 + 4)“

M4

(M2+2)2
− M2

M2+4

”2 , ρ4 = 2 +
1

2
M(M +

p
M2 + 4)

ρ5 =

M10
√
M2 + 1

„
1
2
M(M +

√
M2 + 4) + 2− 2

√
M2+1−1

M2

«
8(M2 + 2)(

√
M2 + 1− 1)3(M2 + 4− 4

√
M2 + 1)2

ρ6 =

M10
√
M2 + 1

„
1√

M2+1
+ 1

2
M(M +

√
M2 + 4) + 2 +

(
√

M2+1+1)2

M2
√

M2+1

«
16(M2 + 2)(

√
M2 + 1 + 1)3(M2 + 4 + 4

√
M2 + 1)2

.

Then q(x) is visibly in MKKT and hence in PKKT . It can be shown, e.g. using Macaulay 2,
that

f(x)− f∗ ≡ q(x) mod I5,KKT .

This implies that f∗5 = f∗, hence we converge to the exact solution for N = 5. So for problem
(4.7)-(4.10), our method returns the global minimum exactly. Thus the KKT system plays a
crucial role in this example.

5 Conclusions

This paper studies representations of positive polynomials on non-compact semialgebraic sets
via the KKT ideal. We give a representation theorem for polynomials positive on a basic closed
semialgebraic set, even in the case where the semialgebraic set is not compact. This theorem
can be used to numerically solve an optimization problem of the form (1.1)-(1.2) in the case
where the feasible region is not compact. However, we must make the assumption that one
of the global minimizers satisfies the KKT system. As discussed in [18], this assumption is
sometimes very restrictive. Also, in general, the SOS relaxations (4.5)-(4.6) are very hard to
solve when there are many constraints, since this introduces many Lagrange multipliers. The
structure of (4.5)-(4.6) should be exploited to improve the efficiency of the method.
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thank Bernd Sturmfels and the referee for many helpful comments.

References

[1] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, Berlin,
Heidelberg: Springer-Verlag, 2003.

[2] J. Bochnak, M. Coste and M-F. Roy, Real Algebraic Geometry, Berlin, Heidelberg:
Springer-Verlag, 1998.

[3] D.A. Cox, J.B. Little, and D.O’Shea, Ideals, Varieties and Algorithms: An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra, Second Edition,
Undergraduate Texts in Mathematics, New York: Springer-Verlag, 1997.

[4] C. Delzell and A. Prestel, Positive Polynomials, Monographs in Mathematics, Berlin:
Springer-Verlag, 2001.

12



[5] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate
Texts in Mathematics, Vol. 150. New York: Springer-Verlag, 1995.

[6] D. Eisenbud, with Daniel R. Grayson, Michael Stillman, and Bernd Sturmfels (Eds.)),
Computations in Algebraic Geometry with Macaulay 2, Algorithms and Computation in
Mathematics, New York: Springer-Verlag, 2002.

[7] C.A. Floudas and P.M. Pardalos, A collection of test problems for constrained global op-
timization algorithms, Lecture Notes in Computer Science 455, Berlin: Springer-Verlag,
1990.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the theory of
NP-completeness, W. H. Freeman and Company, 1979.

[9] B. Hanzon and D. Jibetean, Global minimization of a multivariate polynomial using
matrix methods. Journal of Global Optimization, 27:1-23, 2003.

[10] D. Henrion and J. Lasserre, GloptiPoly: Global optimization over polynomials with Mat-
lab and SeDuMi. ACM Trans. Math. Soft., 29:165-194, 2003.

[11] D. Henrion and J. Lasserre, Detecting global optimality and extracting solutions in Glop-
tiPoly. In Positive Polynomials in Control, D. Henrion and A. Garulli, eds., Lecture Notes
on Control and Information Sciences, Springer Verlag, 2005.

[12] R. Horst, P. Pardalos and N. Thoai, Introduction to global optimization, second edition,
Kluwer Academic Publishers, 2000.

[13] D. Jibetean and M. Laurent, Semidefinite approximations for global unconstrained poly-
nomial optimization. To appear in SIAM Journal on Optimization.

[14] J. Lasserre, Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization 11 (2001), No. 3, 796–817.

[15] M. Laurent, Semidefinite representations for finite varieties. To appear in Mathematical
Programming.

[16] M. Marshall, Optimization of polynomial functions, Canad. Math. Bull., 46 (2003) 575–
587.

[17] J. Nie and J. Demmel, Minimum ellipsoid bounds for solutions of polynomial systems via
sum of squares, to appear in Journal of Global Optimization.

[18] J. Nie, J. Demmel and B. Sturmfels, Minimizing polynomials via sum of squares over the
gradient ideal, to appear in Mathematical Programming.

[19] J. Nie and M. Schweighofer, On the complexity of Putinar’s Positivstellensatz. Preprint,
2005. ArXiv: math.AG/0510309.

[20] Jorge Nocedal and Stephen J. Wright, Numerical Optimization, Springer Series in Oper-
ations Research, New York: Springer-Verlag, 1999.

[21] P. Parrilo and B. Sturmfels, Minimizing polynomial functions, in Proceedings of the DI-
MACS Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry,
Mathematics and Computer Science (March 2001), (eds. S. Basu and L. Gonzalez-Vega),
American Mathematical Society, 2003, pp. 83–100.

[22] P. Parrilo, Semidefinite Programming relaxations for semialgebraic problems. Mathemat-
ical Programming, Ser. B 96 (2003), No. 2, 293–320.

[23] V. Powers and B. Reznick, Polynomials positive on unbounded rectangles, in Positive
Polynomials in Control, Springer Lecture Notes in Control and Information Sciences,
Vol. 312, 2005.

[24] S. Prajna, A. Papachristodoulou and P. Parrilo, SOSTOOLS User’s Guide.
http://www.mit.edu/∼parrilo/SOSTOOLS/.

13



[25] P. Parrilo, An explicit construction of distinguished representations of polynomials non-
negative over finite sets, IfA Technical Report AUT02-02, March 2002.

[26] M. Putinar. Positive polynomials on compact semi-algebraic sets, Ind. Univ. Math. J. 42
(1993) 203–206.
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