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Abstract

If a real polynomial f can be written as a sum of squares of real polynomials,
then clearly f is nonnegative on Rn, and an explicit expression of f as a sum of
squares is a certificate of positivity for f . This idea, and generalizations of it,
underlie a large body of theoretical and computational results concerning positive
polynomials and sums of squares. In this survey article, we review the history of the
subject and give an overview of recent results, both theoretical results concerning
the existence of certificates of positivity and work on computational and algorithmic
issues.

Keywords: sums of squares, positive polynomials, certificates of positivity, Hilbert’s
17th Problem, positivstellensätze.

In theory, theory and practice are the same. In practice, they are
different. - A. Einstein

If a real polynomial f in n variables can be written as a sum of squares
of real polynomials, then clearly f must take only nonnegative values in
Rn. This simple, but powerful, fact and generalizations of it underlie a
large body of theoretical and computational results concerning positive
polynomials and sums of squares.

An explicit expression of f as a sum of squares is a certificate of positiv-
ity for f , i.e., a polynomial identity which gives an immediate proof of the
positivity of of f on Rn. In recent years, much work has been devoted to the
study of certificates of positivity for polynomials. In this paper we will give
an overview of some recent results in the theory and practice of positivity
and sums of squares, with detailed references to the literature. By “the-
ory”, we mean theoretical results concerning the existence of certificates of
positivity. By “practice”, we mean work on computational and algorithmic
issues, such as finding certificates of positivity for a given polynomial.

For the most part, we restrict results to those in a real polynomial
ring. This is somewhat misleading, since it is impossible to prove most
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of the results for polynomials without using a more abstract approach.
For example, in order to obtain a solution to Hilbert’s 17th problem, it
was necessary for Artin (along with Schreier) to first develop the theory
of ordered fields! The reader should keep in mind that underneath the
theorems in this paper lie the elegant and beautiful subjects of Real Algebra
and Real Algebraic Geometry, among others.

The subject of positivity and sums of squares has been well-served by
its expositors. There are a number of books and survey articles devoted
to various aspects of the subject. Here we mention a few of these that
the interested reader could consult for more details and background on
the topics covered in this paper, as well as related topics that are not
included: There are the books by Prestel and Delzell [69] and Marshall
[44] on positive polynomials, a survey article by Reznick [75] about psd
and sos polynomials with a wealth of historical information, and a recent
survey article by Scheiderer [84] on positivity and sums of squares which
discusses results up to about 2007. Finally, there is a survey article by
Laurent [42] which discusses positivity and sums of squares in the context
of applications to polynomial optimization.

1 Preliminaries and background

In this section, we introduce the basic concepts and review some of the
fundamental results in the subject, starting with results in the late 19th
century. For a fuller account of the historical background, see the survey
[75]. For a more detailed survey of the subject up to about 2007, readers
should consult the survey article [84].

1.1 Notation

Throughout, we fix n ∈ N and let R[X] denote the real polynomial ring
R[X1, . . . , Xn]. We denote by R[X]+ the set of polynomials in R[X] with
nonnegative coefficients. The following monomial notation is convenient:
For α = (α1, . . . , αn) ∈ Nn, let Xα denote Xα1

1 · · ·Xαn
n . For a commutative

ring A, we denote the set of sums of squares of elements of A by
∑
A2.

We define the basic objects studied in real algebraic geometry. Given a
set G of polynomials in R[X], the closed semialgebraic set defined by G is

S(G) := {x ∈ Rn | g(x) ≥ 0 for all g ∈ G}.

If G is finite, S(G) is the basic closed semialgebraic set generated by G.
The basic algebraic objects of interest are defined as follows. For a finite
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subset G = {g1, . . . , gr} of R[X], the preordering generated by G is

PO(G) := {
∑

e=(e1,...,er)∈{0,1}r
seg

e1
1 . . . gerr | each se ∈

∑
R[X]2}.

The quadratic module generated by G is

M(G) := {s0 + s1g1 + · · ·+ srgr | each si ∈
∑

R[X]2}.

Notice that if f ∈ PO(G) or f ∈M(G), then f is clearly positive on S(G)
and an identity f =

∑
e∈{0,1}r seg

e1
1 . . . gerr or f = s0 + s1g1 + · · ·+ srgr is a

certificate of positivity for f on S(G).
Traditionally, a result implying the existence of certificates of positivity

for polynomials on semialgebraic sets is called a Positivstellensatz or a
Nichtnegativstellensatz, depending on whether the polynomial is required
to be strictly positive or non-strictly positive on the set. We will use the
term “representation theorem” for any theorem of this type and refer to
a “representation of f” (as a sum of squares, in the preordering, etc.),
meaning an explicit identity for f .

1.2 Classic results

A polynomial f ∈ R[X] is positive semidefinite, psd for short, if f(x) ≥ 0
for all x ∈ Rn. We say f is sos if f ∈

∑
R[X]2. Of course, f sos implies

that f is psd, and for n = 1, the converse follows from the Fundamental
Theorem of Algebra.

We begin our story in 1888, when the 26-year-old Hilbert published his
seminal paper on sums of squares [28] in which he showed that for n ≥ 3,
there exist psd forms (homogenous polynomials) in n variables which are
not sums of squares. In the same paper, he proved that every psd ternary
quartic – homogenous polynomial of degree 4 in 3 variables – is a sum of
squares. 1 Hilbert was able to prove that for n = 3, every psd form is
a sum of squares of rational functions, but he was not able to prove this
for n > 2. This became the seventeenth on his famous list of twenty-
three mathematical problems that he announced at the 1900 International
Congress of Mathematicians in Berlin. In 1927, E. Artin [2] settled the
question:

Theorem 1 (Artin’s Theorem). Suppose f ∈ R[X] is psd, then there exists
nonzero g ∈ R[X] such that g2f is sos.

1Hilbert worked with forms, however for the purposes of this paper we prefer to work in a non-
homogenous setting. A form can be dehomogenized into a polynomial in one less variable and the
properties of being psd and sos are inherited under dehomogenization. When discussing work related to
Hilbert’s work, we will use the language of forms, otherwise, we state results in terms of polynomials.
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The following Positivstellensatz has until recently been attributed to
Stengle [93], who proved it in 1974. It is now known that the main ideas
were in a paper of Krivine’s from the 1960’s.

Theorem 2 (Classical Positivstellensatz). Suppose S = S(G) for finite
G ⊆ R[X] and f ∈ R[X] with f > 0 on S. Then there exist p, q ∈ PO(G)
such that pf = 1 + q.

1.3 Bernstein’s and Pólya’s theorems

Certificates of positivity for a univariate p ∈ R[x] such that p ≥ 0 or
p > 0 on an interval [a, b] have been studied since the late 19th century.
Questions about polynomials positive on an interval come in part from the
relationship with the classic Moment Problem, in particular, Hausdorf’s
solution to the Moment Problem on [0, 1] [27].

In 1915, Bernstein [6] proved that if p ∈ R[x] and p > 0 on (−1, 1),
then p can be written as a positive linear combination of polynomials (1−
x)i(1 + x)j for suitable integers i and j; however, it might be necessary for
i + j to exceed the degree of p. Notice that writing p as such a positive
linear combination is a certificate of positivity for p on [−1, 1].

Pólya’s Theorem, which he proved in 1928 [58], concerned forms positive
on the standard n−1-simplex ∆n−1 := {(x1, . . . , xn) ∈ Rn | xi ≥ 0,

∑
i xi =

1}.
Theorem 3 (Pólya’s Theorem). Suppose f ∈ R[X] is homogeneous and is
strictly positive on ∆n−1, then for sufficiently large N , all of the coefficients
of (X1 + · · ·+Xn)Nf are positive.

Here “all coefficients are positive” means that every monomial of degree
deg f +N appears with a strictly positive coefficient.

Bernstein’s result is equivalent to the one-variable dehomogenized ver-
sion of Pólya’s Theorem: If p ∈ R[x] is positive on (0,∞), then there exists
N ∈ N such that (1 + x)Np has only positive coefficients. The equivalence
is immediate by applying the “Goursat transform” which sends p to

(x+ 1)dp

(
1− x
1 + x

)
,

where d = deg p.

1.4 Schmüdgen’s Theorem and beyond

In 1991, Schmüdgen [88] proved his celebrated theorem on representations
of polynomials strictly positive on compact basic closed semialgebraic sets.
This result began a period of much activity in Real Algebraic Geometry,
which continues today, and stimulated new directions of research.
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Theorem 4 (Schmüdgen’s Positivstellensatz). Suppose G is a finite subset
of R[X] and S(G) is compact. If f ∈ R[X] is such that f > 0 on S(G),
then f ∈ PO(G).

Schmüdgen’s theorem yields “denominator-free” certificates of positiv-
ity, in contrast to Artin’s theorem and the Classic Positivstellensatz. The
underlying reason that such certificates exist is that the preordering PO(G)
in this case is archimedean: Given any h ∈ R[X], there exists N ∈ N such
that N ± h ∈ PO(G). Equivalently, there is some N ∈ N such that
N −

∑
X2
i ∈ PO(G). It is a fact that if S(G) is compact, then PO(G) is

archimedean. This follows from Schmüdgen’s proof of his theorem; there
is a direct proof due to Wörmann [95].

The definition of archimedean for a quadratic module M is the same
as for a preordering. If M(G) if archimedean, then it is immediate that
S(G) is compact; the converse is not true in general. In 1993, Putinar [70]
gave a denominator-free representation theorem for archimedean quadratic
modules.

Theorem 5 (Putinar’s Positivstellensatz). Suppose G is a finite subset of
R[X] and M(G) is archimedean. If f ∈ R[X] is such that f > 0 on S(G),
then f ∈M(G).

In 1999, Scheiderer began a systematic study of questions concerning
the existence of certificates of positivity in a broader setting. Let A be a
commutative ring, then a ∈ A is called psd if its image is nonnegative in
every element of the real spectrum of A. One then asks when does psd =
sos in A? In a series of fundamental papers, Scheiderer settles this question
in many cases for coordinate rings of real affine varieties, and more general
rings [80], [81], [83], [86], [87]. This work led to many new representation
theorems for polynomial rings. See [84] for a detailed account.

2 Theory: Certificates of Positivity

In this section we look at very recent theoretical results concerning sums
of squares, psd polynomials, and certificates of positivity. We start with
some modern riffs on Hilbert’s 1888 paper. We then look at the sums of
squares on algebraic curves. We discuss stability in quadratic modules,
a topic which is important in computational questions and applications.
Finally, we look at recent work concerning sums of squares in cases where
the polynomials have some special structure.
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2.1 Psd ternary quartics

Hilbert’s 1888 proof that a psd ternary quartic is a sum of three squares of
quadratic forms is short, but difficult; arguably a high point of 19th century
algebraic geometry. Even today the proof is not easy to understand and
Hilbert’s exposition lacks details in a number of key points. Several authors
have given modern expositions of Hilbert’s proof, with details filled in.

There is an approach due to Cassels, published in Rajwade’s book
Squares [72, Chapter 7], and articles by Rudin [77] and Swan [94]. In
1977, Choi and Lam [15] gave a short elementary proof that a psd ternary
quartic must be a sum of five squares of quadratic forms. In 2004, Pfister
[54] gave an elementary proof that a psd ternary quartic is a sum of four
squares of quadratic forms and he gave an elementary and constructive
argument in the case that the ternary quartic has a non-trivial real zero.
Very recently, Pfister and Scheiderer [55] gave a complete proof of Hilbert’s
Theorem, different from Hilbert’s proof. Although the proof is not easy, it
uses only elementary techniques such as the theorems on implicit functions
and symmetric functions.

In the “Practice” section of this paper, we will discuss computational
issues around Hilbert’s theorem on ternary quartics.

2.2 Hilbert’s construction of psd, not sos, polynomials

In Hilbert’s 1888 paper, he described how to find psd forms which are
not sums of squares. However, his construction did not yield an explicit
example of a psd, not sos, polynomial. It took nearly 80 years for an explicit
example of a psd, not sos, polynomial to appear in the literature; the first
published example was due to Motzkin. Since then, other examples and
families of examples have been produced (see the survey [75] for a detailed
account), however only recently has there been attempts to exploit the
constructive side of Hilbert’s proof.

Reznick [73] has isolated the underlying mechanism of Hilbert’s con-
struction and shown that it applies to more general situations than those
considered by Hilbert. He is then able to produce many new examples of
psd, not sos, polynomials.

Hilbert’s proof, and Reznick’s modern exposition and generalization, use
the fact that forms of degree d satisfy certain linear relations, known as the
Cayley-Bacharach relations, which are not satisfied by forms of full degree
2d. Very recently, Blekherman [9] shows that the Cayley-Bacharach rela-
tions are, in fact, the fundamental reason that there are psd polynomials
that are not sos. In small cases, he is able to give a complete characteriza-
tion of the difference between psd and sos forms. For example, the result
for forms of degree 6 in 3 variables is the following:
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Theorem 6 ([9],Theorem 1.1). Let H3,6 be the vector space of degree 6
forms in 3 variables. Suppose p ∈ H3,6 is psd and not sos. Then there
exist two real cubics q1, q2 intersecting in 9 (possible complex) projective
points γ1, . . . , γ9 such that the values of p on γi certify that p is not a sum
of squares in the following sense: There is a linear functional l on H3,6,
defined in terms of the γi’s, such that l(q) ≥ 0 for all sos q and l(p) < 0.

2.3 The gap between psd and sos polynomials

It is often useful to view the sets of psd and sos polynomials as cones in the
vector space of all polynomials. One might ask how big is the “gap” between
the sos and psd polynomials, i.e., what is the quantitative relationship
between the cones of psd and sos polynomials. Blekherman [8] showed
that for fixed degree, there are significantly more psd polynomials than sos
polynomials, in a precise quantitative sense. He gives asymptotic bounds
for the sizes of these sets as the number of variables grows.

On the other hand, there are results which show that if the degree is
variable, then in some sense sos polynomials are plentiful among psd poly-
nomials. Berg, Christensen, and Ressel [4] showed that sos polynomials are
dense among polynomials which are non-negative on the unit cube [−1, 1]n

with respect to the l1-norm of coefficients. An explicit version of this result
is given by Lasserre and Netzer [41]. Lasserre [39], [40] showed that psd
polynomials can be approximated coefficient-wise by sos polynomials. Of
course, the degrees of the approximating polynomials go to infinity in these
results.

Finally, we mention recent work of Chesi [14], who gives a matrix char-
acterization of psd, not sos, polynomials. This characterization is based on
eigenvector and eigenvalue decompositions.

2.4 Denominators in Artin’s Theorem

Artin’s Theorem says that if f ∈ R[X] is psd, then there exists nonzero
p ∈ R[X] such that p2f is a sos. We can think of p2 as a denominator in a
representation of f as a sum of squares of rational functions. Artin’s proof
was not constructive, which leads to a natural question: Given psd f , what
type and degree of denominators can occur? In this section, we discuss
both classical and more recent work related to denominators in Artin’s
Theorem.

In 1893, Hilbert showed that if f ∈ R[x, y] is psd of degree m, then there
exists psd p 6= 0 of degree m− 4 so that pf is a sum of three squares. This
implies that there is a representation of p as a quotient of sums of squares
with denominator of degree ≤ (m − 4)(m − 8) . . . . In [21], de Klerk and
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Pasechnik use Hilbert’s result to give an an algorithm for finding p and
writing pf as a sum of squares.

Pólya’s Theorem implies that if f is both positive definite and even,
then for sufficiently large r, f is a sum of squares of rational functions with
common denominator (1 +

∑
Xi)

r. Habicht [26] used Pólya’s Theorem to
show that a positive definite form is a quotient of two sums of squares of
monomials. It follows that if f is positive definite, then f can be written
as a sum of squares of rational functions with positive denominators. In
1995, in [74], Reznick showed that for a positive definite form f , there is
N so that (

∑
Xi)

nf is sos. He gave a bound on N , in terms of the degree,
number of variables, and a measure of how close f is to having a zero.

In the above examples for positive definite forms f , a “uniform” denom-
inator is obtained in the sense that for every such f , (

∑
Xi)

r will serve as
a denominator. The restriction to positive definite forms in necessary, due
to the fact that there exist psd forms f in n ≥ 4 variables so that if p2f
is sos, the p must have a specified zero. The existence of these so-called
“bad points” means that (

∑
Xi)

rf can never be sos. Bad points were first
noticed by Straus and were extensively studied by Delzell in his PhD thesis
[22].

Scheiderer [83] has shown that in the case of forms of three variables
(dehomogenizing, polynomials of two variables), there is a uniform denom-
inator and in fact, any positive de

nite quadratic form will serve. This shows that ternary forms do not
have bad points. On the other hand, Reznick [76] showed that for any given
n,m, there does not exist a single form p which serves as a denominator
for every psd form f in n variables of degree m.

Very recently, Guo, Kaltofen, and Zhi [25] developed an algorithmic
method for proving lower bounds for the degree of the denominator in any
representation in

∑
R[X]2 of a specified psd polynomial. As an example,

they look at some symmetric forms of degree 6 in four and
five variables and prove that any representation as a quotient of sums of

squares must have denominator degree at least 4 and 6, respecitively. This
will be discussed further in §3.3.

2.5 Polynomials positive on noncompact semialgebraic sets

We now turn to representation theorems for polynomials positive on non-
compact basic closed semialgebraic sets. Given finite G ⊆ R[X], let S =
S(G) and suppose that S is not compact. Let P = PO(G) and M = M(G).
We would like to know if Schmüdgen’s Theorem or Putinar’s Theorem ex-
tends to this case: Given f > 0 on S, is f ∈ P or f ∈M? More generally,
we can ask whether this holds for f ≥ 0 on S, in which case we say that P
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or M is saturated. We have the following negative results due to Scheiderer:

Theorem 7 ([80]). 1. Suppose dimS ≥ 3. Then there exists p ∈ R[X]
such that p ≥ 0 on Rn and p 6∈ P.

2. If n = 2 and S contains an open 2-dimensional cone, then there is
p ∈ R[X] with p ≥ 0 on R2 and p 6∈ P.

In contrast to these, the n = 1 case has been completely settled, by
Kuhlmann and Marshall [35], extending work of Berg and Maserick [5]. In
this case, the preordering P is saturated, provided one chooses the right
set of generators.

Definition 1 ([35], 2.3). Suppose S is a closed semialgebraic set in R, then
S is a union of finitely many closed intervals and points. Define a set of
polynomials F in R[x] as follows:

• If a ∈ S and (−∞, a] ∩ S = ∅, then x− a ∈ F .

• If a ∈ S and (a,∞) ∩ S = ∅, then ax ∈ F .

• If a, b ∈ S and (a, b) ∩ S = ∅, then (x− a)(x− b) ∈ F .

It is easy to see that S(F ) = S; F is called the natural choice of
generators for S.

Theorem 8 ([35],Thm. 2.2, Thm. 2.5). Let S be as above and suppose G
is any finite subset in R[X] such that S(G) = S. Let P = PO(G) and let
F be the natural choice of generators.

1. Every p ∈ R[x] such that p ≥ 0 on S is in P iff the set of generators
G of S contains F .

2. Let M = M(F ), then every p ∈ R[x] such that p ≥ 0 on S is in M iff
|F | ≤ 1, or |F | = 2 and S has an isolated point.

One case not covered by the above results is that of noncompact semial-
gebraic subsets of R2 which do not contain a 2-dimensional cone. We write
R[x] for the polynomial ring in one variable and R[x, y] for the polynomial
ring in two variables. The first example given of a noncompact basic closed
semialgebraic set in R2 for which the corresponding preordering is saturated
is due to Scheiderer [83]. His example is the preordering in R[x, y] gener-
ated by {x, 1− x, y, 1− xy}. Powers and Reznick [63] studied polynomials
positive on noncompact rectangles in R2 and obtained some partial results.
They showed that if F = {f1, . . . , fr, y} with f1, . . . , fr ∈ R[x] and S(F ) is
the half-strip [0, 1]×R+, then there always exists g > 0 on [0, 1]×R+ with
g 6∈M(F ). On the other hand, it is shown that under a certain condition,
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g ≥ 0 on [0, 1]×R implies g = s+t(x−x2) with s, t ∈
∑

R[x, y]2. Recently,
Marshall proved this without the condition on g, settling a long-standing
open problem.

Theorem 9 ([45]). Suppose p ∈ R[x, y] is non-negative on the strip [0, 1]×
R. Then there exist s, t ∈

∑
R[x, y]2 such that p = s+ t(x− x2).

In other words, any p which is nonnegative on the strip [0, 1] × R is in
the quadratic module M(x − x2). This result has been extended by H.
Nguyen in her PhD thesis [48] and by Nguyen and Powers.

Theorem 10 ([49], Thm. 2). Suppose U ⊆ R is compact and F is the
natural choice of generators for U . Let S = U × R ⊆ R2 and let M be the
quadratic module in R[x, y] generated by F . Then every p ∈ R[x, y] with
p ≥ 0 on S is in M .

By the result from [63], we know that this does not generalize to the half-
strip case, however we do obtain a representation theorem if the quadratic
module is replaced by a preordering and we use the natural choice of gen-
erators.

Theorem 11 ([49], Thm. 3). Given compact U ⊆ R with natural choice
of generators {s1, . . . , sk} and q(x) ∈ R[x] with q(x) ≥ 0 on U , let F =
{s1, . . . , sk, y− q(x)}, so that S(F ) is the upper half of the strip U ×R cut
by {q(x) = 0}. If P is the preordering in R[x, y] generated by F , then P is
saturated.

There are also examples for which no corresponding finitely generated
preorder is saturated. The following from [49] is a generalization of an
example from [17] due to Netzer.

Example 1. Suppose F = {x − x2, y2 − x, y}, so that S = S(F ) is the
half-strip [0, 1]×R+ cut by the parabola y2 = x. Then for any F̃ ⊆ R[x, y]
such that S(F̃ ) = S, there is some p ∈ R[x, y] such that p ≥ 0 on S and
p 6∈ PO(F̃ ).

For all of the positive examples above, the fibers S ∩ {y = a} are con-
nected. It is not known if there are positive examples for which this doesn’t
hold, e.g., we have the following open problem:

Question: Let S = S({x − x2, y2 − 1}) in R2, so that S = [0, 1] ×
((−∞,−1] ∪ [1,∞)). Given g ∈ R[x, y] such that g ≥ 0 on S, is g ∈
PO({x− x2, y2 − 1})?

2.6 Sums of squares on real algebraic varieties

We now look at a more general setting than polynomial rings. Let V be
an affine variety defined over R, R[V ] the coordinate ring of V , and V (R)
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the set of real points of V . Then f ∈ R[V ] is psd if f(x) ≥ 0 for all
x ∈ V (R), and f is sos if f is a finite sum of squares of elements of R[V ].
It is interesting to ask whether psd = sos in this more general setting.

If dim(V ) ≥ 3, then Hilbert’s result that psd 6= sos has been extended
extended to R[V ] by Scheiderer [80] . In the dimension 2 case, Scheiderer
proves the surprising theorem that if V is a nonsingular affine surface and
V (R) is compact, then psd = sos holds on V , see [83]. There is a nice
application of this to Hilbert’s 17th problem: If f ∈ R[x, y, z] is a psd
ternary forms and g is any positive definite ternary form, then there exists
N ∈ N such that gNf is sos.

The case where dim(V ) = 1 (real algebraic curves) is completely un-
derstood in the case where V is irreducible, again due to Scheiderer [81].
In 2010, Plaumann [56] showed that in the reducible case, the answer de-
pends on the irreducible components of the curve, and also on how these
irreducible components are configured with respect to each other. He gives
necessary and sufficient conditions for psd = sos in this case. He shows,
for example, that for the family of curves Ca = {(y − x2)(y − a) = 0} for
a ∈ R (the union of a parabola and a line), psd 6= sos always.

2.7 Stability

A quadratic module M = M(g1, . . . , gk) in R[X] is stable if there exists
a function φ : N → N such that the following holds: For every d ∈ N
and every f ∈ M with deg f ≤ d, there is a representation of f in M ,
f = s0 + s1g1 + · · · + skgk such that for all i, deg si ≤ φ(d). A similar
definition can be made for preorders, although stability has been studied
mostly in the quadratic module case. The notion of stability was introduced
in [66], where it was used to study the multivariable Moment Problem for
noncompact semialgebraic sets.

The easiest example of a stable quadratic module in R[X] is
∑

R[X]2:
If f is sos and f = h21 + · · · + h2r, then for all i, deg h2i ≤ deg f , since the
leading forms of the h2i ’s cannot cancel. A generalization of this simple
argument yields families of stable preorderings in [66]. (The arguments
apply immediately to quadratic modules as well.) On the other hand, if
S(G) has dimension ≥ 2 and M(G) is archimedean, then M(G) is never
stable; this follows from [82, Thm. 5.4].

The notion of stability is important for computational problems as well
as applications to the Moment Problem. It is this key property of stability
that allows for effective algorithms for the problem of deciding whether
f ∈ R[X] is sos, and finding an explicit representation if so. See §3.1 for
further discussion of these algorithims. In the case of compact semialgebraic
sets, the non-stability of the underlying preordering or quadratic module
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means the problem of finding representations of polynomials positive on
the set must be difficult.

Netzer [47] generalizes the idea of stability of a quadratic module to
the notion of stable with respect to a given grading on a polynomial ring.
The usual notion of stability is then stability with respect to the standard
grading. Considering stability with respect to other gradings allows the
development of tools to prove stability with respect to the standard grading
by proving it first for finitely many non-standard ones. The paper [47]
contains interesting new examples of stable quadratic modules.

2.8 Certificates of positivity for polynomials with special struc-
ture

If a polynomial f for which there is a certificate of positivity has some
special structure, it can happen that there exists a certificate of positivity
with nice properties related to the structure. This can have implications
for applications, since it can imply the existence of smaller certificates for
f than the general theory implies.

2.8.1 Invariant sums of squares

In practical applications of sums of squares, there is often some inherent
symmetry in the problem. This symmetry can be exploited to yield finer
representation theorems which in turn can lead to a reduction in problem
size for applications.

Consider the following general situation: Suppose K is a closed subset
of Rn which is invariant under some subgroup G of the general linear group.
Can we characterize G-invariant polynomials which are positive on K? For
example, can they be described in terms of invariant sums of squares, or
even sums of squares of invariant polynomials?

Gatermann and Parrilo [23] considered these questions in the context of
finding effective sum of squares decompositions of invariant polynomials.
They look at finding a decomposition of an sos polynomial f which is
invariant under the action of a finite group. Cimpric, Kuhlmann, and
Scheiderer [17] consider a more general set-up: G is a reductive group
over R acting on an affine R-variety V with an induced dual action on
the coordinate ring R[V ] and on the linear dual space of R[V ]. In this
setting, given an invariant closed semialgebraic set K in Rn, they study
the problem of representations of invariant polynomials that are positive
on K using invariant sums of squares. Most of their results apply in the
case where the group G(R) is compact. They obtain a generalization of
the main theorem of [23] and apply their results to an investigation of the
equivariant version of the K-moment problem.
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2.8.2 Polynomials with structured sparsity

We discuss a “sparse” version of Putinar’s theorem, where the variables
consist of finitely many blocks that are allowed to overlap in certain ways,
and we seek a certificate of positivity for a polynomial f that is sparse in
the sense that each monomial in f involves only variables in one block.
Then there is a representation of f in the quadratic module in which the
sums of squares respect the block structure.

For I ⊆ {1, . . . , n}, let XI denote the set of variables {Xi | i ∈ I} and
R[XI ] the polynomial ring in the variables XI . Suppose that I1, . . . Ir are
subsets of {1, . . . , n} satisfying the running intersection property: For all
i = 2, . . . , r, there is some k < i such that Ii ∩

⋃
j<i Ij ⊆ Ik. Suppose

that for each i, i = 1, . . . , r, we are given a finite set of polynomials Gi =

{g(j)1 , . . . , g
(j)
lj
} in R[XIj ] . Then let Sj = S(Gj) and let Mj be the quadratic

module in R[XIj ] generated by Gj. Also, let S = ∩jSj. The following
theorem was proven by Lasserre [38] in the case where S has non-empty
interior and in the general case by Kojima and Muramatsu [34]:

Theorem 12. Suppose all of the quadratic modules Mj are archimedean,
and f ∈ R[XI1 ] + · · · + R[XIk ] is strictly positive on S. Then f ∈ M1 +
· · ·+Mk.

Notice that the case r = 1 is Putinar’s Theorem. Grimm, Netzer, and
Schweighofer [24] gave a new simple proof of the theorem.

2.9 Pure states and sums of squares

Recently, a new approach to certificates of positivity for polynomials non-
negative on compact basic closed semialgebraic has been introduced by
Burgdorf, Scheiderer, and Schweighofer [11]. Their techniques allow sim-
ple, uniform proofs of already known representation theorems, as well as
several new results.

This new approach is based on pure states of convex cones in R[X].
The techniques come from the Eidelheit-Kakutani separation theorem for
convex sets in a real vector space V and when combined with the Kerin-
Milman theorem yield a sufficient condition for membership in a convex
cone C ⊆ V provided that C has an order unit (an algebraic interior
point). This condition can then be applied to preorderings and quadratic
modules in R[X]. Here is a concrete example of the type of results that are
proven. Recall that a semiring in commutative ring is a subset containing
{0, 1} and closed under addition and multiplication.

Theorem 13 ([11],Theorem 7.8). Let K ⊆ Rn be a nonempty compact
convex polyhedron defined by linear inequalities g1 ≥ 0, . . . gs ≥ 0. Let S be
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the semiring in R[X] generated by R+ and the polynomials g1, . . . , gs. Let F
be a face of K and suppose f ∈ R[X] satisfies f |F= 0 and f | K \ F > 0.
For every z ∈ F and every y ∈ K \F , assume Dy−zf(z) > 0. Then f ∈ S.

Here Dvf(z) denotes the directional derivative of f at z in the direction
of v. Roughly speaking, the last assumption in the theorem says that every
directional derivative of f at a point of F pointing into K and not tangential
to F should be strictly positive.

Previous to this work, examples of Nichtnegativstellensätze required
that the nonnegative polynomial f on a compact basic closed semialge-
braic set S have discrete zeros in S. Results in [11] are the first that allow
f to have arbitrary zeros in S.

Example 2 ([11], Example 7.13). Suppose M is an archimedean quadratic
module in R[x, y, z], K = {x ∈ R3 | g(x) = 0 for all g ∈ M} and let
Z = {(0, 0, t) | t ∈ R}, the z-axis in R3. Assume p, q, r ∈ R[x, y, z] are such
that

f = x2p+ y2q + 2xyr,

f > 0 on S \Z, and f = 0 on Z. Then if p and pq− r2 are strictly positive
on Z ∩ S, f ∈M .

3 Practice: Computational and algorithmic issues

Recently, there has been much interest in developing algorithms for decid-
ing positivity of a polynomial and finding certificates of positivity, in part
because of the many applications of these algorithms. In this section, we
discuss computational problems and issues related to postivity and sums
of squares. We will discuss algorithms for finding explicit certificates of
positivity for f ∈ R[X], both in the global case (sums of squares) and
for f positive on a compact basic closed semialgebraic set (algorithmic
Schmüdgen and Putinar theorems). We also discuss computational issues
around Bernstein’s Theorem and Pólya’s Theorem as well as quantitative
questions on psd ternary quartics (Hilbert’s Theorem).

3.1 Finding sum of squares representations

For f ∈ R[X], suppose we would like to decide if f is sos and if so, find an
explicit representation of f as a sum of squares. The method we describe,
sometimes called the Gram matrix method reduces the problem to linear
algebra. For more details and examples, see e.g. [16], [67], [42, §3.3].

Suppose f ∈ R[X] has degree 2d, let N =
(
n−1+d

d

)
and let V be the

N × 1 vector of all monomials in R[X] of degree at most d. Then f is sos
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iff there exists an N ×N symmetric psd matrix A such that

f(X) = V · A · V T , (1)

The set of matrices A such that (1) holds is an affine subset L of the
space of N ×N symmetric matrices; a matrix in L is often called a Gram
matrix for f . Then f is sos iff L ∩ PN 6= ∅, where PN is the convex cone
of psd symmetric N × N matrices over R. Finding this intersection is a
semidefinite program (SDP). There are good numerical algorithms – and
software – for solving semidefinite programs. For details on using SDPs to
find sum of squares representations , see e.g. [52], [68].

Since there is an a priori bound on the size of the SDP corresponding to
writing a particular f as a sum of squares, this gives an exact algorithm.
However, since we are using numerical software, there are issues of exact
versus numerical answers.

Consider the following example, due to C. Hillar: Suppose

f = 3− 12y − 6x3 + 18y2 + 3x6 + 12x3y − 6xy3 + 6x2y4,

is f sos? If we try to decide this with software we might get the answer
“yes” and a decomposition similar to this:

f = (x3 + 3.53y + .347xy2 − 1)2 + (x3 + .12y + 1.53xy2 − 1)2+

(x3 + 2.35y − 1.88xy2 − 1)2. (2)

The coefficients of the right-hand side of (2) are not exactly the same as
the coefficients of f , so we might wonder if f is really sos. It turns out that
f is sos, and (2) is an approximation of a decomposition for f of the form

(x3 + a2y + bxy2 − 1)2 + (x3 + b2y + cxy2 − 1)2 + (x3 + c2y + axy2 − 1)2,

where a, b, c are real roots of x3 − 3x+ 1.
In theory, a SDP problem can be solved purely algebraically, for ex-

ample, using quantifier elimination. In practice, this is impossible for all
but trivial problems. Work by Nie, Ranestand, and Sturmfels [50] shows
that optimal solutions of relatively small SDP’s can have minimum defining
polynomials of huge degree, and hence we could encounter sos polynomials
of relatively small size which have decompositions using algebraic numbers
of large degree.

Since solving the underlying SDP exactly is impossible in most cases,
we are led to the following question: Suppose f ∈

∑
Q[X]2 and we find a

numerical (approximate) certificate f =
∑
g2i (via SDP software, say), can

we find an exact decomposition of f in
∑

Q[X]2? Recent approaches using
hybrid symbolic-numeric approaches are very promising.
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Peyrl and Parrilo [53] give an algorithm for converting a numerical sos
decomposition into an exact certificate, in some cases. The idea: Given
f ∈

∑
Q[X]2, we want to find a symmetric psd matrix A with rational

entries so that
f = V · A · V T (3)

The SDP software will produce a psd matrix A which only approximately
satisfies (3). The idea is to project A onto the affine space of solutions to
(3) in such a way that the projection remains in the cone of psd symmetric
matrices. The Peyrl-Parrilo method is (theoretically!) guaranteed to work
if there exists a rational solution and the underlying SDP is strictly feasible,
i.e., there is a solution with full rank. Kaltofen, Li, Yang, and Zhi [31]
have generalized the technique of Peyrl and Parrilo and used these ideas to
find sos certificates certifying rational lower bounds for several well-known
problems.

3.2 Certificates of positivity via Artin’s Theorem

Recall Artin’s solution to Hilbert’s 17th Problem which says that if f ∈
R[X] is psd, then f is a sum of squares in the rational function field R(X),
i.e., f can be written as a quotient of sos polynomials. Recent work of
Kaltofen, Li, Yang, and Zhi [32] turns Artin’s theorem into a symbolic-
numeric algorithm for finding certificates of positivity for any psd f ∈
Q[X]. They extend the hybrid symbolic-numeric approaches to finding an
exact sos representation of a polynomial discussed above. The algorithm
finds a numerical representation of f as a quotient g/h, where g and h are
sos, and then converts this to an exact rational identity using techniques
described above. The algorithm has been implemented as software called
ArtinProver. Kaltofen, Yang, and Zhi have used this technique and the
software to settle the dimension 4 case of the Monotone Column Permanent
Conjecture, see [33].

3.3 Cerificates of impossibility of sos representability

The proof that the Motzkin form M(x, y) is not sos involves a term-by-term
inspection of the equation M(x, y) =

∑
hi(x, y)2. Proofs for examples of

Choi and Lam were done using a similar term-inspection method. This
term-inspection method was generalized by Choi, Lam, and Reznick [16]
using the Newton polytope of a polynomial. Proofs for other known exam-
ples, e.g. the Robinson example, involve the zeros of the polynomial.

Recently, another method for proving that a given polynomial is not
sos, and producing a certificate of impossibility, was given by Ahmadi and
Parrilo [1], using a generalization of Farkas Lemma to semidefinite pro-
gramming. As discussed in §3.1, determining if a given polynomial is sos is
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equivalent to deciding if a certain semidefinite program has a solution. This
method produces a certificate of infeasibility for the semidefinite program
via a separating hyperplane.

This method has been generalized by Guo, Kaltofen, and Zhi [25],
who developed an algorithm, using semidefinite programming and Farkas
Lemma, for certifying a lower bound on the degree of the denominator in
any representation in

∑
R(X)2 of a specified psd polynomial.

3.4 Schmüdgen’s and Putinar’s theorems

Let G ⊆ R[X] be a finite and suppose S := S(G) is compact. Set P =
PO(G). Recall Schmüdgen’s Theorem says that every polynomial that
is strictly positive on S is in P , regardless of the choice of generating
polynomials G. Schmüdgen’s proof uses functional analytic methods and
is not constructive in the sense that no information is given concerning how
to find an explicit certificate of positivity in P for a given f which is strictly
positive on S.

3.4.1 Algorithmic Schümdgen Theorem

In 2002, Schweighofer [90] gave a proof of Schmüdgen’s Theorem which is
algorithmic, apart from an application of the Classical Positivstellensatz.
The idea of the proof is to reduce to Pólya’s Theorem (in a larger number
of variables). The Classical Positivstellensatz is used to imply the existence
of a “certificate of compactness” for S, i.e., the existence of s, t ∈ P and
r ∈ R such that

s(r2 −
∑

X2
i ) = 1 + t (4)

3.4.2 Degree bounds for Schmüdgen Theorem

Unlike the global (sum of squares) case, in general, there is no bound on
the degree of the sums of squares in a representation of f in P in terms
of the degree of f only. This has obvious implications for applications of
Schmüdgen’s Theorem, for example in recent work on the approximation
of polynomial optimization problems via semidefinite programming. Using
model and valuation theoretic methods, Prestel [69, Theorem 8.3.4] showed
that there exists a bound on the degree of the sums of squares which de-
pends on three parameters, namely, the polynomials G used to define S,
the degree of f , and a measure of how close f is to having a zero on S.
Schweighofer [91] used his algorithmic proof of the result to give a bound
on the degree of the sums of squares in a representation of f in P . Roughly
speaking, the bound makes explicit the dependence on the second and third
parameter in Prestel’s theorem. The first parameter appears in the bound
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as a constant, which depends only on the polynomials G, and which comes
from the compactness certificate (4). The exact result is as follows:

Theorem 14 ([91],Theorem 3). Let G = {g1, . . . , gk}, S, and P be as
above and suppose S ⊆ (−1, 1)n. Then there exists c ∈ N so that for every
f ∈ R[X] of degree d with f > 0 on S and f ∗ = min{g(x) | x ∈ S},

f =
∑

e∈{0,1}k
seg

e1
1 . . . gekk ,

where se ∈
∑

R[X]2 and se = 0 or

deg(seg
e1
1 . . . gekk ) ≤ cd2

(
1 +

(
d2nd
||f ||
f ∗

)c)
.

Here ||f || is a measure of the size of the coefficients of f . The constant
c depends on the polynomials G in an unspecified way, however in concrete
cases one could (in theory!) obtain an explicit c from the proof of the
theorem.

3.4.3 Putinar’s Theorem

Let G and S be as above and set M = M(G). Recall Putinar’s Theorem
says that if M is archimedean, then every f > 0 on S is in M . Again,
Putinar’s proof is functional analytic and does not show how to find an
explicit certificate of positivity for f in M . In [92], Schweighofer extends
the algorithmic proof of Schmüdgen’s Theorem to give an algorithmic proof
of Putinar’s Theorem. Nie and Schweighofer [51] then use this proof to give
a bound for the degree of the sums of squares in a representation, similar
to Theorem 14. Recently, Putinar’s Theorem has been used by Lasserre
to give an algorithm for approximating the minimum of a polynomial on a
compact basic closed semialgebraic set, see [37]. The results in [51] yields
information about the convergence rate of the Lasserre method.

3.5 Rational certificates of positivity

In §3.1, an algorithm for finding sum of squares certificates of positivity
for sos polynomials f is described, using semidefinite programming. This
technique can also be used to find certificates of positivity for a polynomial
f which is positive on a compact semialgebraic set. However, there is
another question which arises when we are using numerical software: All
polynomials found in a certificate of positivity, for example in the sums
of squares, will have rational coefficients. But do we know that such a
certificate exists, even if we start with f ∈ Q[X]?
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3.5.1 Sums of squares of rational polynomials

Sturmfels asked the following question: Suppose f ∈ Q[X] is in
∑

R[X]2,
is f ∈

∑
Q[X]2? Here is a trivial, but illustrative example: The rational

polynomial 2x2 is a square, since 2x2 = (
√

2x)2. But 2x2 is also in
∑

Q[x]2

since 2x2 = x2 + x2. Less trivially, recall the Hillar example:

f = 3− 12y − 6x3 + 18y2 + 3x6 + 12x3y − 6xy3 + 6x2y4,

as noted above, f is a sum of three squares in R[x, y]. It turns out that f
is a sum of five squares in Q[x, y]:

f = (x3+xy2+
3

2
y−1)2+(x3+2y−1)2+(x3−xy2+5

2
y−1)2+(2y−xy2)2+3

2
y2+3x2y4.

Partial results on Sturmfels question have been given: In the univari-
ate case, the answer is “yes”; proofs have been given by Landau [36] and
Schweighofer [89]. Pourchet [59] showed that at most five squares are
needed. Hillar [29] showed that the answer to Sturmfel’s question is “yes”
if f ∈

∑
K2, where K is a totally real extension of Q, and he gave bounds

for the number of squares needed. There is a simple proof of a slightly more
general result with a better bound given (independently) by Scheiderer [78]
and Quarez [71].

Recently, Scheiderer [79] answered Sturmfels question in the negative.
He constructed families of polynomials with rational coefficients that are
sums of squares over R but not over Q. He showed that these counterex-
amples are the only ones in the case of ternary quartics.

Remark 1. The proof of Artin’s Theorem shows immediately that if f ∈
Q[X] is psd, then there always exist g, h ∈

∑
Q[X]2 such that f = g/h.

The rationality question is not an issue in this case.

3.5.2 Rational certificates of positivity on compact sets

There is an obvious analog of Sturmfels’ question for the case of polynomials
positive on compact semialgebraic sets. Let P = PO(G) for finite G ⊆
Q[X]. If f ∈ Q[X] is in P , does there exist a representation of f in P
such that the sums of squares that occur are in

∑
Q[X]2? We can ask a

similar question for the quadratic module M(G). In [60], it is shown that
the answer is “yes” for P in the compact case and “yes” for M with an
additional assumption.

Theorem 15. Let G = {g1, . . . , gr} ⊆ Q[X] and suppose S = S(G) is
compact. Let P = PO(F ) and M = M(F ). Given f ∈ Q[X] such that
f > 0 on S, then
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1. There is a representation of f in the preordering P,

f =
∑

e∈{0,1}r
σeg

e1
1 . . . gerr ,

with all σe ∈
∑

Q[X]2.

2. There is a rational representation of f in M provided one of the gener-
ators is N −

∑
X2
i . More precisely, there exist σ0 . . . σs, σ ∈

∑
Q[X]2

and N ∈ N so that

f = σ0 + σ1g1 + · · ·+ σsgs + σ(N −
∑

X2
i ).

The proof of the first part follows from an algebraic proof of Schmüdgen’s
Theorem, due to T. Wörmann, which uses the Abstract Positivstellensatz.
Wörmann’s proof can be found in [7] or [69, Thm. 5.1.17]. The second
part follows from Schweighofer’s algorithmic proof of Putinar’s Theorem.

3.6 Certificates of positivity using Bernstein’s and Pólya’s the-
orems

Using Bernstein’s Theorem and Pólya’s Theorem, certificates of positiv-
ity for polynomials positive on simplices can be obtained. Furthermore,
this approach yields degree bounds for the certificates and, in some cases,
practical algorithms for finding certificates.

3.6.1 The univariate case

For k ∈ N, define in R[x]:

Bk :=

{∑
i+j≤k

cij(1− x)i(1 + x)j | cij ≥ 0

}
.

Suppose a univariate p ∈ R[x] is strictly positive on [−1, 1], then Bernstein’s
Theorem says that there is some r = r(p) such that p ∈ Br. Suppose
p ∈ R[x] has degree d, then let p̃ denote the Goursat transform applied to
p, i.e.,

p̃(x) = (1 + x)dp

(
1− x
1 + x

)
.

Powers and Reznick gave a bound on r(p) in terms of the minimum of p
on [−1, 1] and size of the coefficients of p̃, which in turn yields a bound for
the size of a certificate of positivity for p.

More recently, F. Boudaoud, F. Caruso, and M.-F. Roy [10] obtain a
local version of Bernstein’s Theorem which yields a better bound. They
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show that if deg p = d and p > 0 on [−1, 1], then there exists a subdivision
−1 = y1 < · · · < yt = 1 of [−1, 1] such that Bernstein-like certificates of
positivity for p can be obtained on each interval [yi, yi+1]. This yields a
certificate of positivity for p on [−1, 1] of bit-size O((d4(τ + log2 d)), where
d = deg p and the coefficients of p have bit-size ≤ τ . Moreover, their
result holds with R replaced by any real-closed field, which is not true for
Bernstein’s Theorem.

3.6.2 Polynomials positive on a simplex

Recall that Pólya’s Theorem says that if a form (homogeneous polynomial)
f is strictly positive on the standard simplex ∆n−1 := {x ∈ Rn | xi ≥ 0
for all i and

∑
xi = 1}, then for sufficiently large N ∈ N, all coefficients of

(
∑
Xi)

Nf are strictly positive. Powers and Reznick [62] gave a bound on
N , in terms of the degree of f , the minimum of f on ∆n−1, and the size of
the coefficients. This result has been used in several applications, for exam-
ple the algorithmic proof of Schmüdgen’s theorem given by Schweighofer
discussed in §3.4.1. Also, de Klerk and Pasechnik [20] used it to give results
on approximating the stability number of a graph.

In theory, the bound for Pólya’s Theorem could be used to obtain certifi-
cates of positivity on the simplex, however in practice the bounds require
finding minimums of forms on closed subsets of the simplex and so are
not of much practical use. Another, more feasible, approach to certificates
of positivity for polynomials positive on a simplex, due to R. Leroy [43],
uses the multivariable Bernstein polynomials and a generalization of the
ideas in [10]. The Bernstein polynomials are more suitable that the stan-
dard monomial basis in this case since this approach gives results for an
arbitrary non-degenerate simplex and yields an algorithm for deciding pos-
itivity of a polynomial on a simplex. The idea is to subdivide the simplex
and obtain local certificates so that the sizes of the local certificates are
smaller than those of a global certificate.

Let V be a non-degenerate simplex in Rn, i.e., the convex hull of n + 1
affinely independent points v0, v1, . . . , vn in Rn. The barycentric coordi-
nates of V , λ1, . . . , λk, are linear polynomials in R[X] such that

n∑
i=0

λi = 1, (X1, . . . , Xn) =
n∑
i=1

λi(X)vi.

Then for d ∈ N, the Bernstein polynomials of degree d with respect to V
are {Bd

α | α ∈ Nn+1, |α| = d}, where

Bd
α =

d!

α0!α1! · · ·αn!

n∏
i=0

λαi
i .
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They form a basis for the vector space of polynomials in R[X] of degree
≤ d, hence any f ∈ R[X] of degree ≤ d can be written uniquely as a
linear combination of the Bd

α’s. The coefficients are called the Bernstein
coefficients of f . If f > 0 on V , then for sufficiently large D, the Bernstein
coefficients using the BD

α ’s are nonnegative, which yields a certificate of
positivity for f on V .

This can be made computationally feasible, as well as lead to an algo-
rithm for deciding if f is positive on V . The idea is to triangulate V into
smaller simplices and look for certificates of positivity on the sub-simplices.
A stopping criterion is obtained using a lower bound on the minimum of a
positive polynomial on V , in terms of the degree, the number of variables,
and the bitsize of the coefficients. This was proven by S. Basu, Leroy, and
Roy [3] and later improved by G. Jeronimo and D. Perrucci [30].

3.6.3 Pólya’s Theorem with zeros

What can we say if the condition “strictly positive on ∆n−1” in Pólya’s
Theorem is replaced by “nonnegative on ∆n−1”? It is easy to see that
in this case we must use a slightly relaxed version of Pólya’s Theorem,
replacing the condition of “strictly positive coefficients” by “nonnegative
coefficients”. Let Po(n, d) be the set of forms of degree d in n variables for
which there exists an N ∈ N such that (X1+· · ·+Xn)Np ∈ R+[X]. In other
words, Po(n, d) are the forms which satisfy the conclusion of Pólya’s The-
orem, with “positive coefficients” replaced by “nonnegative coefficients.”

It is easy to see that p ∈ Po(n, d) implies p ≥ 0 on ∆n−1 and that
p > 0 on the interior of ∆n−1. Further, Z(p), the zero set of p, must be a
union of faces of ∆n−1. Pólya’s Theorem and the bound are generalized to
forms that are positive on the simplex apart from zeros on the corners (zero
dimensional faces) of ∆n−1, in papers by Powers and Reznick [64] and M.
Castle, Powers, and Reznick [12]. See also work by H.-N. Mok and W.-K.
To [46], who give a sufficient condition for a form to satisfy the relaxed
version of Pólya’s Theorem, along with a bound in this case.

Very recently, Castle, Powers, and Reznick [13] give a complete char-
acterization of forms that are in Po(n, d) along with a a recursive bound
for the N needed. Before stating the main theorem of [13], we need a few
definitions.

Definition 2. Let α = (α1, . . . , αn), β = (β1, . . . , βn) be in Nn.

1. We write α � β if αi ≤ βi for all i, and α ≺ β if α � β and α 6= β.

2. Suppose F is a face of ∆n−1, say F = {(x1, . . . , xn) ∈ ∆n−1 | xi =
0 for i ∈ I} for some I ⊆ {1, 2, . . . , n}. Then we denote by αF the
vector (α̃1, . . . , α̃n) ∈ Nn, where α̃i = αi for i ∈ I and α̃j = 0 for j /∈ I.
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3. For a form p ∈ R[X], let Λ+(p) denote the exponents of p with positive
coefficients and Λ−(p) the exponents of p with negative coefficients.

4. For a face F of ∆n−1 and a subset S ⊆ N, we say that α ∈ N is
minimal in S with respect to F if there is no γ ∈ S such that γF ≺ αF .

Theorem 16. Given p =
∑
aβX

β, a nonzero form of degree d, such that
p ≥ 0 on ∆n−1 and Z(p) ∩ ∆n−1 is a union of faces. Let Λ+(p) denote
the exponents of p with positive coefficients and Λ−(p) the exponents of p
with negative coefficients. Then p ∈ Po(n, d) if and only if for every face
F ⊆ Z(p) the following two conditions hold:

1. For every β ∈ Λ−(p), there is α ∈ Λ+(p) so that αF � βF .

2. For every α ∈ Λ+(p) which is minimal on Λ+(p) with respect to F , the
form

∑
is strictly positive on the relative interior of F .

3.6.4 Certificates of positivity on the hypercube

Finally, we mention briefly some recent work by de Klerk and Laurent
[19] concerning polynomials positive on a hypercube Q = [0, 1]n. Using
Bernstein approximations, they obtain bounds for certificates of positivity
for a polynomial f which is strictly positive on Q, in terms of the degree of
f , the size of the coefficients, and the minimum of f on Q. They also give
lower bounds, and sharper bounds in the case where f is quadratic.

3.7 Psd ternary quartics

Recall Hilbert’s 1888 theorem that says every psd ternary quartic (homo-
geneous polynomial of degree 4 in 3 variables) is a sum of three squares
of quadratic forms. Hilbert’s proof in non-constructive in the sense that it
gives no information about the following questions: Given a psd ternary
quartic, how can one find three such quadratic forms? How many “funda-
mentally different” ways can this be done?

Several recent works have addressed these issues. In [61], Powers and
Reznick describe methods for finding and counting representations of a psd
ternary quartic and answer these questions completely for some special
cases. In several examples, it was found that there are exactly 63 inequiv-
alent representations as a sum of three squares of complex quadratic forms
and, of these, 8 correspond to representations as a sum of squares of real
quadratic forms. By “inequivalent representations” we mean up to orthog-
onal equivalence; two representations are equivalent iff they have the same
Gram matrix (see §3.1).

The fact that a psd ternary quartic f has 63 inequivalent representations
as a sum of squares of complex quadratic forms is a result due to Coble [18].
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In 2004, Powers, Reznick, Scheiderer, and Sottile [65] showed that for every
real psd ternary quartic f such that the complex plane curve Q defined by
f = 0 is smooth, exactly 8 of the 63 inequivalent representations correspond
to a sum of three squares of real quadratic forms. More recently, in [85],
Scheiderer extends this analysis to the singular case and computes the
number of representations, depending on the configuration of the singular
points. For example, if f is a psd singular ternary quartic and Q has a real
double point, then there are exactly four inequivalent representations of f
as a sum of three squares of quadratic forms.

Information about the number of representations also follows from the
elementary proof of Hilbert’s Theorem on ternary quartics given by Pfister
and Scheiderer in [55]. The quantitative analysis in [65] and [85] uses
tools of modern algebraic geometry and is not in any sense elementary.
The work in [55] yields a new, elementary proof of the fact that for a
generically chosen psd ternary quartic f , there are exactly 8 inequivalent
representations and when f is generically chosen with a real zero, there are
4 inequivalent representations.

Finally, we mention very recent work on quartic curves due to Plaumann,
Sturmfels, and Vinzant [57]. They give a new proof of the Coble result
which yields an algorithm for computing all representations of a smooth
ternary quartic as a sum of squares of three complex quadratic forms.
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