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1. Introduction33

The study of cycles has a long and diverse history. Many different peoperties34

have been developed concerning cycles. For example, early on Bondy [2] studied35

one of the most important of these; pancyclicity. We say a graph G is pancyclic36

if G contains a cycle of each length from three to the order of G and G is k-37

pancyclic if it contains cycles of all lengths from k to the order of the graph.38

Natural relaxations of pancyclic graphs have also been developed. In his thesis,39

Brandt [3] introduced one such variation of pancyclic graphs. A graph is weakly40

pancyclic if it contains cycles of all lengths from the girth to the circumference41

of the graph. Further, a graph is weakly k-pancyclic if it contains cycles of all42

lengths from k to the circumference (see for example, [5]).43

Another, more recent cycle variation is that of chorded cycles. We say an44

edge between two vertices of a cycle is a chord if it is not an edge of the cycle.45

We say cycle C is a chorded cycle if the vertices of C induce at least one chord.46

Pósa [13] asked what conditions imply a graph contains a chorded cycle. This47

question has seen considerable interest lately (see for example [7], [8], [9]).48

In this paper we consider a merging of the ideas we have discussed. We say49

a graph is chorded k-pancyclic if it contains chorded cycles of all lengths from k50

to |V (G)| (see for example [10]). Further, G is chorded weakly k-pancyclic if G51

contains chorded cycles of each length from k to the circumference of the graph.52

Note that we did not say chorded cycles existed from the girth on up, since the53

smallest chorded cycle contains a smaller cycle.54

We consider only simple graphs in this paper. We use the standard notation55

of V (G), E(G), and δ(G) for the vertex set, edge set, and minimum degree of the56

graph G. Let Ka,b denote the complete biartite graph with parts of order a and b.57

Let Ck deonte the cycle of order k and Pk denote the path of order k. Let NH(x)58

denote the set of neighbors of the vertex x in the graph (or subgraph) H and59

let < S > denote the graph induced by the vertex set S. Given an orientation60

of some path or cycle, we denote by x+ and x− the successor and predessor61

of the vertex x following the given orientation. Further, let x+2 = (x+)+ and62

similarly, let x−2 = (x−)−, etc. Similarly, N+
C (x) denotes the set of successors63

of the neighbors of x on the cycle C following the given orientation. Let d(u, v)64

denote the distance in the graph between vertices u and v. Given a subgraph or65

vertex subset S let G − S be the graph obtained by removing S from G. The66

girth is the length of the shortest cycle and the circumference is the length of a67

longest cycle. For terms not defined here see [11].68

In his thesis, Brandt [3] showed the following result.69

Theorem 1. Let G 6= C5 be a nonbipartite triangle-free graph of order n. If70

δ(G) > n/3, then G is weakly pancyclic with girth 4 and circumference min{2(n−71

α(G)), n}.72
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In [4] it is shown that Theorem 1 is best possible.73

Brandt, Faudree, and Goddard [5] provided another result on weak pancyclic74

graphs, removing the triangle free condition of the previous result.75

Theorem 2. Every nonbipartite graph G of order n with minimum degree δ(G) ≥76

(n+ 2)/3 is weakly pancyclic with girth 3 or 4.77

This result is almost best possible. The graph formed from Km+1 and Km,m78

(m ≥ 3) by identifying a vertex from each has order n = 3m and minimum degree79

m = n
3 , but contains no odd cycle of length more than m + 1, while having all80

even cycles up to 2m.81

We extend each of these last two results as follows.82

Theorem 3. Let G be a nonbipartite triangle-free graph of order n ≥ 13. If83

δ(G) ≥ n+1
3 , then G is chorded weakly 6-pancyclic with circumference min{2(n−84

α(G)), n}.85

Theorem 4. Every nonbipartite graph G of order n ≥ 13 with minimum degree86

δ(G) ≥ (n+ 2)/3 is chorded weakly 6-pancyclic.87

Theorem 3 is best possible in the sense that as G is triangle-free, it contains88

no chorded 4 or 5-cycles. We will prove Theorems 3 and 4 in Section 2.89

Our second goal concerns the following. A well-known result of Chvátal90

and Erdős relates connectivity (κ(G)) and independence number (α(G)) to cycle91

length.92

Theorem 5 Chvátal-Erdős [6]. If G is a graph of order n ≥ 3 such that α(G) ≤93

κ(G), then G is hamiltonian, that is, it contains a spanning cycle.94

Amar et al. [1] conjectured that if α(G) ≤ κ(G) and G is not bipartite, then95

G has cycles of every length from 4 to |V (G)|. Lou [12] considered this conjecture96

and proved the following.97

Theorem 6. Let G be a triangle-free graph of order n ≥ 4 with α(G) ≤ κ(G).98

Then G is 4-pancyclic or G = Kn
2
,n
2
, or G = C5.99

Our goal is to extend Lou’s Theorem as follows.100

Theorem 7. Let G be a triangle-free graph of order n ≥ 13 with α(G) ≤ κ(G).101

Then G is chorded weakly 8-pancyclic, or G = Kn
2
,n
2
.102

Note that since G is triangle-free, there cannot be a chorded C4 or C5 in G.103

In Section 3 we will prove Theorem 7 and provide examples to show there may104

not be chorded 6 and 7-cycles in such graphs. Thus, in general, this result is best105

possible.106



4 M. Cream and R. J. Gould

2. Proofs of Theorems 3 and 4107

In this section we prove Theorems 3 and 4. In order to do so, we begin with108

several general lemmas that will apply in both proofs.109

Lemma 8. Let G be a graph of order n ≥ 12 with δ(G) ≥ n+1
3 . If H is a

subgraph of G of order 6 + t (0 ≤ t ≤ 5) and x, y, z are vertices of H such that
d = degH(x) + degH(y) + degH(z) ≤ 6 + t, and

NG−H(x) ∩NG−H(y) = ∅ = NG−H(x) ∩NG−H(z),

then |NG−H(y) ∩NG−H(z)| ≥ 1.110

Proof. Since δ(G) ≥ n+1
3 , we see that 3δ(G) − d ≥ n − 5 − t. But from the111

neighborhood intersection conditions, since |V (G − H)| = n − 6 − t, it then112

follows that |NG−H(y) ∩NG−H(z)| ≥ 1.113

Lemma 9. If G has order n ≥ 12 and δ(G) ≥ n+1
3 , then G contains a chorded114

6-cycle.115

Proof. By Theorem 1 we know G contains 6-cycles. Suppose that G satisfies116

the conditions of the Theorem and further, suppose the result fails to hold. Let117

C : v1, v2, v3, . . . , v6, v1 be a chordless 6-cycle in G and let H = C.118

Case 1. Assume that no two consecutive vertices of C have a common neighbor119

in G− C.120

Consider the vertices v1, v2, v3. By our assumption and Lemma 8, we see that121

there exists a vertex x with x ∈ NG−H(v1)∩NG−H(v3). Let H1 =< V (C)∪{x} >122

and now consider v2, v3, v4. Again by Lemma 8, we can select a vertex y with123

y ∈ NG−H1(v2)∩NG−H1(v4). But then, the cycle v1, x, v3, v4, y, v2, v1 is a 6-cycle124

with chord v2v3.125

Case 2. Assume that there are two consecutive vertices of C with at least one126

neighbor in G−H.127

Without loss of generality, we may assume that x ∈ NG−H(v1) ∩NG−H(v2).128

Let H1 =< V (C) ∪ {x} > and consider x, v2, v5. If there exists a vertex y with129

y ∈ NG−H1(v2)∩NG−H1(v5) then v1, x, v2, y, v5, v6, v1 is a 6-cycle with chord v1v2.130

Similarily, if y ∈ NG−H1(x)∩NG−H1(v5) then v1, v2, x, y, v5, v6, v1 is a 6-cycle with131

chord xv1. If both these fail to hold, then by Lemma 8, we conclude instead that132

y ∈ NG−H1(x) ∩NG−H1(v2) and let H2 =< V (H1) ∪ {y} > .133

Now consider v6, x, y. If there exists a vertex z ∈ NG−H2(v6) ∩ NG−H2(x)134

then v1, v2, y, x, z, v6, v1 is a 6-cycle with chord xv2. If instead z ∈ NG−H2(y) ∩135

NG−H2(v6) then v1, v2, x, y, z, v6, v1 is a 6-cycle with chord xv1. If both of these136

fail to hold, we conclude from Lemma 8 that z ∈ NG−H2(x) ∩NG−H2(y) and we137

let H3 =< V (H2) ∪ {z} > .138
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Now consider v1, v3, z. If there exists a vertex w ∈ NG−H3(v1) ∩ NG−H3(v3)139

we then have a 6-cycle v1, w, v3, v2, y, x, v1 with chord xv2. But, if instead w ∈140

NG−H3(z) ∩ NG−H3(v3) then v2, y, x, z, w, v3, v2 is a 6-cycle with chord xv2. Fi-141

nally, if both of these fail to hold, then by Lemma 8, w ∈ NG−H3(v1)∩NG−H3(z),142

then v1, w, z, x, y, v2, v1 is a 6-cycle with chord xv2, completing the proof.143

Lemma 10. If G has order n ≥ 12 and δ(G) ≥ n+1
3 , then G contains a chorded144

7-cycle.145

Proof. By Theorem 1 we know G contains a 7-cycle. Let G be as stated, and146

suppose the result fails to hold. Let C : v1, v2, v3, . . . , v7, v1 be a chordless 7-cycle147

in G and let R = G− C and H = C. We now consider the following cases.148

Case 1. Suppose that no two consecutive vertices of C have a common neighbor149

in R.150

Consider v1, v2, v3. By our assumption and Lemma 8 we see that there exists151

a vertex x ∈ NR(v1) ∩ NR(v3). Let H1 =< H ∪ {x} >. Now consider v2, v5, v6.152

If there exists a vertex w ∈ NG−H1(v2)∩NG−H1(v5), then v1, v2, w, v5, v4, v3, x, v1153

is a 7-cycle with chord v2v3. If instead w ∈ NG−H1(v2) ∩ NG−H1(v6), then154

v1, v7, v6, w, v2, v3, x, v1 is a 7-cycle with chord v1v2. However, by our assump-155

tion and Lemma 8, one of these two facts must hold.156

Case 2. Suppose there are two consecutive vertices on C with a common neighbor157

in R.158

Without loss of generality let x ∈ NR(v1) ∩ NR(v2), set H1 =< C ∪ {x} >
and consider v2, v5, x. If there exists y ∈ NG−H1(v2) ∩NG−H1(v5), then

v1, x, v2, y, v5, v6, v7, v1

is a 7-cycle with chord v1v2. If instead y ∈ NG−H1(x) ∩ NG−H1(v5), then159

v1, v2, x, y, v5, v6, v7, v1 is a 7-cycle with chord xv1. If both of these fail to happen,160

then by Lemma 8 there exists y ∈ NG−H1(v2)∩NG−H1(x). LetH2 =< H1∪{y} > .161

Now consider x, y, v6. If there exists a vertex z ∈ NG−H2(v6) ∩ NG−H2(x),162

then v1, v2, y, x, z, v6, v7, v1 is a 7-cycle with chord xv1. If instead, z ∈ NG−H2(y)∩163

NG−H2(v6), then v1, v2, x, y, z, v6, v7, v1 is a 7-cycle with chord xv1. Otherwise, by164

Lemma 8, there is a vertex z ∈ NG−H2(x)∩NG−H2(y). We now consider v3, v7, z,165

with H3 =< H2 ∪ {z} > .166

If there exists a vertex w such that w ∈ NG−H3(z) ∩ NG−H3(v7), then
v1, v2, y, x, z, w, v7, v1 is a 7-cycle with chord xv1. If instead w ∈ NG−H3(z) ∩
NG−H3(v3), then v2, v1, x, y, z, w, v3, v2 is a 7-cycle with chord yv2. Otherwise, by
Lemma 8, there us a vertex w ∈ NG−H3(v3) ∩NG−H3(v7) and then

v1, x, y, v2, v3, w, v7, v1

is a 7-cycle with chord v1v2. This completes the proof of the Lemma.167
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Lemma 11. Let G have order n ≥ 12 and δ(G) ≥ n+1
3 , then G contains a chorded168

8-cycle.169

Proof. By Theorem 1 we know that G contains an 8-cycle. Suppose all 8-cycles170

are chordless and consider the 8-cycle C : v1, v2, v3, . . . , v8, v1 and let H = C. We171

now consider two cases.172

Case 1. Suppose no two consecutive vertices on C have a common neighbor in173

G−H.174

Consider v1, v2, v3. Then, by our assumption and by Lemma 8 there exists a175

vertex x ∈ NG−H(v1)∩NG−H(v3). Let H1 =< H ∪{x} > . Similarly, there exists176

a vertex y with y ∈ NG−H1(v2) ∩NG−H1(v4). Let H2 =< H1 ∪ {y} > .177

Next consider v8, v1, v2. Again, by our assumption and Lemma 8, there exists178

a vertex z such that z ∈ NG−H2(v2)∩NG−H2(v8). Then, v1, x, v3, v4, y, v2, z, v8, v1179

is an 8-cycle with chord v1v2.180

Case 2. Suppose there is a pair of consecutive vertices on C with a common181

neighbor in G−H.182

Without loss of generality, let x ∈ NG−H(v1) ∩ NG−H(v2) and H1 =< H ∪183

{x} > . Now consider v2, x, v5. If there exists y with y ∈ NG−H1(x)∩NG−H1(v5)184

then, v1, v2, x, y, v5, v6, v7, v8, v1 is an 8-cycle with chord xv1. If instead y ∈185

NG−H1(v2)∩NG−H1(v5) then, v1, x, v2, y, v5, v6, v7, v8, v1 is an 8-cycle with chord186

v1v2. If both these cases fail to hold, then by Lemma 8 there exists y with y ∈187

NG−H1(x) ∩NG−H1(v2).188

Let H2 =< H1 ∪ {y} > and now consider x, y, v6. If there exists w ∈189

NG−H2(x) ∩ NG−H2(v6), then v1, v2, y, x, w, v6, v7, v8, v1 is an 8-cycle with chord190

xv1. If instead w ∈ NG−H2(y) ∩NG−H2(v6), then v1, v2, x, y, w, v6, v7, v8, v1 is an191

8-cycle with chord xv1. If both of these cases fail to hold, then again by Lemma192

8, there eists w ∈ NG−H2(x) ∩NG−H2(y).193

Now let H3 =< H2 ∪ {w} > and consider v7, w, v4. If there exists z ∈194

NG−H3(v7)∩NG−H3(v4), then v1, x, v2, v3, v4, z, v7, v8, v1 is an 8-cycle with chord195

v1v2. If instead z ∈ NG−H3(w) ∩NG−H3(v7), then v1, v2, y, x, w, z, v7, v8, v1 is an196

8-cycle with chord xv1. If both the previous cases fail to hold, then by Lemma 8197

there exists z ∈ NG−H3(v4) ∩NG−H3(w), in which case v2, v1, x, y, w, z, v4, v3, v2198

is an 8-cycle with chord xv2. This completes the proof of the Lemma.199

Lemma 12. Let G be a graph of order n ≥ 13 with δ(G) ≥ n+1
3 . Then G contains200

chorded cycles of each length from 9 to the circumference of the graph.201

Proof. By Theorem 1, G contains cycles of each length from 9 to the circumfer-202

ence of G. Let G be as stated and suppose G has no chorded k-cycle for some203

k ≥ 9. Let C = Ck : v1, v2, . . . , vk be such a cycle in G. Further, let H = G−Ck.204

We consider the following cases.205
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Case 1: Suppose, no two consecutive vertices of Ck have a common neighbor off206

C.207

By our assumption and Lemma 8, for any three consecutive vertices on Ck,
vi, vi+1, vi+2, NG−H(vi) ∩NG−H(vi+2) 6= ∅. Let w ∈ NG−H(v1) ∩NG−H(v3) and
let H1 =< H ∪ {w} > . If NG−H1(v2) ∩NG−H1(v6) 6= ∅, then take
w2 ∈ NG−H1(v2) ∩NG−H1(v6) and note that

v1, w, v3, v2, w2, v6, v7, . . . , vk, v1

is a k-cycle with chord v1v2. Thus, we may assume NG−H1(v2) ∩NG−H1(v6) = ∅208

and by symmetry NG−H1(v2) ∩NG−H1(vk−2) = ∅.209

If NG−H1(v3) ∩NG−H1(v7) 6= ∅, then let w3 ∈ NG−H1(v3) ∩NG−H1(v7). Now, by
our assumptions there exists wk ∈ NG−H1(vk) ∩NG−H1(v2). Now by Lemma 8,
we have that

v2, v1, w, v3, w3, v7, v8, . . . , vk, wk, v2

is a k-cycle with chord v2v3. Note that if any pair of vertices vi, vi+4 for210

i = 2, 3, . . . , k − 3 share a common neighbor off C, then we can always find a211

chorded k-cycle in a similar fashion. So we may assume this never happens.212

Then, in particular, considering v2, v5, v6, we know by our assumptions there213

exists a vertex x ∈ NG−H1(v2) ∩NG−H1(v5), and let H2 =< H1 ∪ {x} >,214

Similarly, considering v5, v8, v9, we know there exists a vertex215

y ∈ NG−H2(x5) ∩NG−H2(v8). Now v1, w, v3, v2, x, v5, y, v8, v9, . . . , vk, v1 is a216

k-cycle with chord v1v2, completing this case.217

Case 2: Suppose two consecutive vertices of C = H do have a common neighbor218

in G−H.219

Without loss of generality, say w ∈ NG−H(v1) ∩NG−H(v2). and let220

H1 =< H ∪ {w} > . Then if any pair vi, vi+3 for i = 2, 3, . . . , k − 3 satisfies221

NG−H1(vi) ∩NG−H1(vi+3) 6= ∅ with a vertex x ∈ NG−H1(vi) ∩NG−H1(vi+3),222

there exists a k-cycle v1, w, v2, v3, . . . , vi, x, vi+3, . . . , vk, v1 with chord v1v2.223

Thus, assume no such pair exists. Then, in particular, considering v2, v5, v8 we224

see that there exists a vertex, say w2, such that w2 ∈ NG−H(v2) ∩NG−H(v8),225

and considering the triple v3, v6, v9, there must exists a vertex226

w3 ∈ NG−H(v3) ∩NG−H(v9) and considering v4, v7, v10 (here v10 may be v1) we227

have a vertex w4 ∈ NG−H(v4) ∩NG−H(v10). Then the cycle228

v1, v2, w2, v8, v9, w3, v3, v4, w4, v10, v11, . . . , v1 (note again that it is possible that229

v1 = v10) is a k-cycle with chord v2v3. This completes the proof.230

Note that Case 2 may require at least 13 vertices, hence the condition that231

n ≥ 13. As this Lemma is used in Theorems 3 and 4, the condition that n ≥ 13232

must be assumed in each result.233
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Figure 1. Sharpness example for Theorem 6.

We are now ready to prove Theorem 3.234

235

Proof of Theorem 3.236

Proof. By Theorem 1, G is weakly pancyclic with girth 3 or 4. Let G be a graph237

of order n ≥ 13 with δ(G) ≥ n+1
3 . Then by Lemmas 9, 10, 11, and 12 we see that238

G contains chorded cycles of length 6 up to the circumference of G.239

As G is triangle-free, there can be no chorded 4 or 5-cycles, thus the result240

is best possible.241

Example for Theorem 3 We construct a graph G as follows. Begin with a242

copy of C4 = v1, v2, v3, v4, v1. Blowup each of the vertices v1 and v3 into sets of243

n−2
3 independent vertices and blowup the vertices v2 and v4 into sets of n−2

6 inde-244

pendent vertices. For any edge of C4 insert all edges between the corresponding245

sets. Finally, insert two new vertices x and y that are themselves adjacent and246

join x to all vertices in the blowup of v1 and y to all vertices in the blowup of v3247

(see Figure 1). Note that δ(G) = n+1
3 . Further, it is easy to see that G is chorded248

weakly 6-pancyclic.249

250

Proof of Theorem 4.251

Proof. By Theorem 2, G is weakly pancyclic with girth 3 or 4. Again by Lemmas252

9, 10, 11, and 12, we see that G has chorded cycles of each length from 6 to the253

circumference of G.254
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Figure 2. Here α(G) = 3.

3. Proof of Theorem 7255

The following from [12] will be useful.256

Lemma 13. If G is a triangle-free graph of order n ≥ 4 and C is a cycle in G,257

then for every vertex v ∈ G − C, the set N+
C (v) is non-empty and N+

C (v) is not258

an independent set, hence |N+
C (v)| ≥ 2.259

The next Lemma has appeared in numerous papers, thus we attribute it to260

folklore.261

Lemma 14. Let C be a cycle in a graph G and v ∈ V (G − C). If there is an262

edge in N+
C (v), then G contains a cycle D with V (D) = V (C) ∪ {v}.263

We now state, in more detail, what Lou [12] proved.264

Theorem 15. If G (G 6= Km,m or C5) is a triangle-free graph with α(G) ≤ κ(G),265

then266

1. G is k-regular and267

2. k = α(G) = κ(G) = κ and G is κ-regular268

3. G has diameter 2, and269

4. G contains cycles of length 4 up to |V (G)|.270

What Lou proved actually puts some real restrictions on graphs G that satisfy271

the conditons of being triangle-free with α(G) = κ(G). The most severe is a bound272

on the order of G.273
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Figure 3. Here α(G) = 4.

Lemma 16. If G is a triangle-free graph of order n with α(G) = κ(G) = k, then274

n ≤ k2 + 1.275

Proof. Let G be as stated above. Select any vertex v. Then v has exactly k276

mutually nonadjacent neighbors and each of these vertices may have at most k−1277

distinct new neighbors. If there are any other vertices, say x, then d(v, x) > 2278

and there is no way to create a path to v that would be of length at most 2.279

Thus, no such x exists and so n ≤ 1 + k + k(k − 1) = k2 + 1.280

This Lemma provides another simple observation that if α(G) = 2, then G281

is either C5 or C4, and if α(G) = 3, then n ≤ 10. Thus, from now on we need282

only consider α(G) ≥ 4.283

The graphs in Figures 2 and 3 show that the conditions of being triangle-free284

with α(G) = κ(G) are not enough to guarentee that 6 and 7-cycles are chorded.285

We now present our proof of Theorem 7, the extension of Lou’s Theorem,286

which utilizes an expansion of the ideas in his approach.287

Proof. Suppose the result fails to hold. Then by Theorem 6, there must exist288

an integer k with 4 ≤ k ≤ |V (G)| − 2, such that G contains a Ck but no chorded289

Ck+2. We next show that each of the following structures (see Figure 4) on a Ck,290

actually provides a chorded Ck+2.291

To see this for structure (I), consider the (k + 2)-cycle a, u, v, a+, a+2, . . . , a292

with chord aa+.293

294
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For structure (III), consider the (k+2)-cycle a, u, b, b−, . . . , a+, v, b+, b+2, . . . , a295

with chord aa+.296

297

For structure (IV), consider the (k+2)-cycle a, u, v, b, b−, . . . a+, b+, b+2, . . . , a298

with chord aa+.299

In order to handle structure II we first need to develop several facts.300

Claim 1: Every vertex off the k-cycle Ck : x1, x2, . . . , xk, x1 (k ≥ 6) has at least301

one adjacency on Ck.302

Proof. Suppose there is a vertex v 6∈ V (Ck) such that v has no adjacencies on303

Ck. Then since G is triangle-free, E(N(v)) = ∅. However, for any xi ∈ V (Ck),304

N(v) ∪ {xi} is a set of cardinality κ(G) + 1. If this set is independent, a305

contradiction arises to Theorem 15. Thus, every vertex on Ck is adjacent to at306

least one vertex in N(v). Without loss of generality, say x1v1 ∈ E(G) for some307

v1 ∈ N(v). Now d(v, x3) > 2. Either there exists v3 ∈ N(v) such that v3 6= v1308

with v3x3 ∈ E(G) or x3v1 ∈ E(G).309

First suppose latter happens, then d(v, x4) > 2. Since G is triangle-free,
v1x4 6∈ E(G), which implies there exists v4 ∈ N(v) such that v4x4 ∈ E(G). Next
note that d(v, x2) > 2. If x2v4 ∈ E(G) we obtain structure III, and hence a
chorded (k + 2)-cycle exists in G, a contradiction. Further, to avoid a triangle,
x2v1 6∈ E(G), so there exists v2 ∈ N(v) (v2 6= v1, v4) such that v2x2 ∈ E(G).
Note that we can extend Ck to a (k + 2)-cycle

C∗ = x2, v2, v, v4, x4, x5, . . . , x1, x2.

Now d(x2, x5) > 2. Further, x2x5 6∈ E(G) as that would provide a chord for C∗.310

Also x1x5 6∈ E(G) for the same reason, and x3x5 6∈ E(G) since G is311

triangle-free. Thus, there exists some w 6∈ V (Ck) such that x2w, x5w ∈ E(G).312

Now x1, v1, v, v2, x2, w, x5, x6, . . . , xk, x1 is a (k + 2)-cycle with chord x1x2, a313

contradiction.314

Now consider the former case, that is, that there exists v3 /∈ V (Ck) such that
v3 6= v1 and v3v, v3x3 ∈ E(G). Since d(v, x2) > 2 and v1x2, v3, x2 /∈ E(G), there
exists a v2 ∈ N(v) with v2x2 ∈ E(G). Again there is a (k + 2)-cycle

C ′ : x1, v1, v, v3, x3, x4, . . . , xk, x1.

If there are any chords in Ck not involving x2, then C ′ is chorded, a
contradiction. Now d(x2, x5) > 2. If there exists w ∈ NG−Ck

(x2)− {x1} such
that wx5 ∈ E(G), then

x1, v1, v, v2, x2, w, x5, x6, . . . , xk, x1
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Figure 4. Four structures producing chorded (k + 2)-cycles.

is a (k + 2)-cycle with chord x1x2. So we may assume x2x5 ∈ E(G). Next note
that d(x3, xk) > 2. If v3xk ∈ E(G), then again C ′ is chorded with chord v3xk.
So we may assume there exists a vertex w ∈ NG−Ck

(x3) with wxk ∈ E(G). Now
we see that

x3, v3, v, v2, x2, x5, x6, . . . xk, w, x3

is a (k + 2)-cycle with chord x2x3, a contradiction completing this case and the315

proof of the claim.316

Claim 2: If structure II exists in G, then a chorded (k + 2)-cycle exists in G.317

Proof. Suppose structure II arises and let Ck = x1, x2, , . . . , xk. Without loss of318

generality suppose that v1, v3 ∈ NG−C(v) and v1x1 and v3x3 are edges of G.319

Now, by Claim 1, vertex v must have an adjacency on the cycle Ck. If320

vx2 ∈ E(G), then structure I is formed and we have a chorded (k + 2)-cycle, a321

contradiction to our assumption. Thus, assume vx2 6∈ E(G). Further,322

vx1, vx3 6∈ E(G), since either edge would create a triangle in G. Thus,323

vxi ∈ E(G) for some i, 4 ≤ i ≤ k. Now this edge is a chord of the (k + 2)-cycle324

x1, v1, v, v3, x3, x4, . . . , x1, a contradiction which completes the proof of the325

claim.326

Next choose a cycle C of length m such that r = max
v∈G−C

|NC(v)| (that is, over all327

vertices off C, v has the maximum number of adjacencies, and the maximum is328

taken over all choices of cycles of length m). Take a vertex v from G− C with329
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|NC(v)| = r and another vertex u ∈ V (G− C) which is, if possible, adjacent to330

v. By Lemma 13, the vertex u must have two neighbors y1 and y2 on C such331

that y+1 y
+
2 ∈ E(G). Thus, by Lemma 14, there is an (m+ 1)-cycle D with332

V (D) = V (C) ∪ {u}. If r ≥ κ− 1, then v has all of its neighbors on D, so again333

by Lemma 14 there is a cycle on |V (D) ∪ {v}| = m+ 2 vertices with chord334

y1y
+
1 , a contradiction.335

Now we may assume that r ≤ κ− 2. Then uv ∈ E(G) and v has another336

neighbor w ∈ G− C. By Lemma 14, w also has two neighbors z1, z2 on C such337

that z+1 z
+
2 ∈ E(G). Since G is triangle-free, in any direction on C, there are at338

least two vertices between z1 and z2, otherwise < z+1 , z2, z
+
2 >= K3. Thus, we339

may assume z1 6∈ {y−1 , y1, y
+
1 }. Fix an orientation on D with the path340

y+2 , . . . , y
−
1 , y1 and let S ⊂ D be the set of vertices y of C satisfying y− ∈ NC(v).341

We wish to show that NG−C(v) ∪ S ∪ {z+2
1 } (with respect to the orientation on342

D) is an independent set with cardinality κ+ 1, the final contradiction.343

In order to do this note that on C, the vertex z1 6= x1
+2, x−21 or structure II

results, a contradiction. Thus, the edges z1z
+
1 and z+1 z

+
2 on D are also on C.

Similarly, avoiding structure I, we see that there is no edge between any vertex
in NG−C(v) and any vertex of S. For the same reason, on D, z+2

1 /∈ S and, in
particular, v is not adjacent to z+1 on D. Also, on D, vz+2

1 /∈ E(G) otherwise,

z+2
1 , z+3

1 , . . . , z1, w, v, z
+2
1

is an (m+ 2)-cycle with chord wz2. Moreover, z+2
1 is not adjacent to a vertex344

y ∈ S since otherwise z1, w, v, y
−, y−2, . . . z+2

1 , y, y+, . . . z−1 , z1 is an (m+ 2)-cycle345

with chord wz2, again a contradiction to our assumption. Since an edge in S346

also creates an (m+ 2)-cycle with chord yy−, all that remains is to show that347

z+2
1 is not adjacent to any vertex of NG−C(v). For any vertex of NG−C(v) other348

than w, this follows, as structure II would be formed and hence a chorded349

(m+ 2)-cycle would exist. But if z+2
1 is adjacent to w, we can form a new m350

cycle C ′ with w replacing z+1 . As v is adjacent to w but not to z+1 , v now has351

r + 1 neighbors on C ′, contradicting our choice of cycle C. Thus, the set352

NG−C(v) ∪ {z+2
1 } ∪ S is independent and has cardinality at least r + 1, a353

contradiction completing the proof.354

355

4. Conclusion356

It is clear from recent work that many conditions implying various cycle properties357

in a graph can be used to show stronger results concerning cycles with chords.358

This paper is just one such situation. Broading our meta-conjecture from [9]:359
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Almost any condition that implies some cycle property in a graph also implies360

a chorded cycle property, possibly with some families of exceptional graphs, and361

small order exceptions.362
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