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Abstract Let G be a connected claw-free graph. A conjecture of Matsuda, Ozeki, and Yamashita [9]
posits the existence of either a spanning tree with few branch vertices or a large independent set of small
degree sum. The possible appearances of this minimal spanning tree may be ruled out piecemeal. This
paper treats one particular class, which may be the easiest to rule out but also fits, to our knowledge, all
proposed sharpness examples.
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Introduction
In a tree, vertices of degree one and vertices of degree at least three are called leaves and branch vertices,
respectively. A hamiltonian path can be regarded as a spanning tree with maximum degree at most two, a
spanning tree with at most two leaves, or a spanning tree with no branch vertex. A natural extension of the
hamiltonian path problem is, therefore, to look for conditions that guarantee the existence of a spanning
tree with low maximum degree, few leaves, or few branch vertices. Many researchers have investigated
independence number conditions and degree sum conditions for the existence of such spanning trees; low
maximum degree [3, 8, 11, 14], few leaves [1, 13, 15], and few branch vertices [2, 4, 5, 6, 9]. A paper of
Matsuda, Ozeki, and Yamashita [9] conjectures a particular condition on connected claw-free graphs which
ensures the existence of a spanning tree with at most k branch vertices.

Conjecture 1. Let k be a non-negative integer and let G be a connected claw-free graph of order n. If
σ2k+3 ≥ n− 2, then G has a spanning tree with at most k branch vertices.

With an eye toward proving this conjecture, we will pose a slightly stronger one, but must first lay out a
few definitions:

Definition 1. Let B(T ) denote the set of branch vertices of a tree T , and let L(T ) denote the set of leaves.

Definition 2. For any rooted spanning tree T with root r ∈ B(T ), each branch vertex x ∈ B(T )\{r} has a
distance pair (d(x, r), degT (x)). We order the pairs lexicographically (shortest distance first, and smallest
degree first given equal distance). The tree T is minimal if:

(T1) B(T ) is as small as possible.

(T2) The distance pairs of B(T ) \ {r} are lexicographically as small as possible, subject to (T1).

Given the above definition of minimal, the general truth of the following conjecture will imply that of
Conjecture 1 (though not for each individual value of k):
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Conjecture 2. If G is connected, claw-free, and has some minimal rooted spanning tree (T, r) with k + 1

branch vertices, then there is some independent set X of size 2k + 3, and
∑
x∈X

degG(x) ≤ n− 3.

If the conditions in Definition 2 are kept consistent, Conjecture 2 may be provable by considering classes
of spanning trees at a time. In this paper, we handle the trees for which B3(T ) = B(T ). Before launching
into our main result, we introduce some useful notation and a widely applicable lemma:

Definition 3. Let T be a tree and let u, v ∈ V (T ). We denote by uTv the unique path from u to v in T ,
and we denote uv := V (uTv) ∩NT (u). This notation applies to all vertices.

Definition 4. Given two vertices x and p, the notation (V (xTp) ∩ NG(x))− refers to all vertices of the
form ax where a ∈ V (xTp) ∩NG(x).

Lemma 1. If x ∈ B(T ) \ {r} has degree 3, then the two children of x are adjacent in G.

Proof. Suppose xr is adjacent to some child x∗ of x. Then T ′ := T − {xx∗}+ {xrx∗} violates (T2). Since
no claw can be centered at x, this requires that the two children are adjacent.

Theorem 1. If G is connected, claw-free, and has some minimal rooted spanning tree (T, r) on k + 1
branch vertices, all with degree 3, then X := L(T ) ∪ B(T ) \ {r} is an independent set of size 2k + 3, and∑
x∈X

degG(x) ≤ n− 3.

Proof. Let G be a connected, claw-free graph, and let (T, r) be a minimal rooted spanning tree on k + 1
branch vertices, all with degree 3. Denote NT (r) =: {r1, r2, r3}. Since no claw can be centered at r, we
may assume by symmetry that r1r2 ∈ E(G).

We will first show that X is independent. Suppose xy ∈ E(G) for some x, y ∈ X. If there is some branch
vertex z in the interior of xTy, then T ′ := T −{zzx}+{xy} violates (T1). If there is none, we may assume
by symmetry that x ∈ V (rTy). Define {x∗} := NT (x) \ {xy, xr}, so Lemma 1 insures that xyx

∗ ∈ E(G),
so T ′ := T − {xxy, xx∗}+ {xy, xyx∗} violates (T1). Therefore X is independent.

To limit the degree sum of X, we consider the spanning tree piecemeal, addressing the neighbors of different
vertices of X within each part and showing that certain sets of these neighbors cannot overlap, which in
turn will limit their sum total in cardinality, which will equal their degree sum when applied to the entire
spanning tree.

For each x ∈ X, define p(x) as the branch vertex on the path xTr nearest to x (other than x itself, but may
be r). If p := p(x) 6= r, then define {p∗} := NT (p)\{px, pr}, so Lemma 1 gives that pxp

∗ ∈ E(G). Note that
the 2k+ 3 sets (V (xTp)∩NG(x))− and V (xTpx)∩NG(y) for each y ∈ X \ {x} are all subsets of V (xTpx).
We will show that these 2k + 3 sets are pairwise disjoint. We begin by showing that (V (xTp) ∩NG(x))−

is disjoint from each of the other 2k+ 2 sets. Let y ∈ X \ {x} and suppose there is some a ∈ V (xTp) such
that xa, yax ∈ E(G). Consider three cases regarding the location of y:

Case 1: Suppose y = p. Then T ′ := T − {aax, ppx, pp∗}+ {xa, pax, pxp∗} violates (T1) since p is no longer
a branch vertex.

Case 2: Suppose p ∈ V (xTy). Then T ′ := T − {ppx, aax}+ {xa, yax} violates (T1) since p is no longer a
branch vertex.



Case 3: Suppose x ∈ V (yTp). Define {x∗} := NT (x)\{xy, xr}, so Lemma 1, so T ′ := T −{aax, xxy, xx∗}+
{xa, yax, xyx∗} violates (T1) since x is not longer a branch vertex.

Therefore (V (xTp) ∩ NG(x))− is disjoint from the other 2k + 2 sets. We will now show that they are
pairwise disjoint from each other. Let y, z ∈ X \ {x} and suppose some a ∈ NG(y) ∩ V (xTpx) ∩ NG(z).
Consider six cases regarding the locations of y and z:

Case 1: Suppose y = p (or, symmetrically, z = p) and pr ∈ V (xTz). Since {a, ax, p, z} is not a claw, either
axp ∈ E(G) or axz ∈ E(G). If axp ∈ E(G), then T ′ := T − {aax, ppx, pp∗}+ {az, axp, pxp∗} violates (T1).
Otherwise axz ∈ E(G), so T ′ := T − {aax, ppx, pp∗} + {ap, axz, pxp∗} violates (T1) since p is no longer a
branch vertex.

Case 2: Suppose y = p (or z = p) and p∗ ∈ V (xTz). Since {a, ax, p, z} is not a claw, either axp ∈ E(G)
or axz ∈ E(G). If axz ∈ E(G), then T ′ := T − {aax, ppx, pp∗} + {ap, axz, pxp∗} violates (T1) since p is
no longer a branch vertex. Otherwise axp ∈ E(G), so since {p, pr, px, ax} is not a claw and prp

∗ ∈ E(G),
either prax ∈ E(G) or pxax ∈ E(G). If pxax ∈ E(G), then T ′ := T − {aax, ppx}+ {pxax, za} violates (T1)
since p is no longer a branch vertex. Otherwise prax ∈ E(G), so T ′ := T −{aax, ppx}+ {prax, za} violates
(T2) by the proximity of pr to r.

Case 3: Suppose y = p (or z = p) and x ∈ V (pTz). Then T ′ := T −{xxp, ppx, pp∗}+{pa, za, pxp∗} violates
(T1) since two branch vertices are lost (x and p) while one is gained (a).

Case 4: Suppose p ∈ V (xTy) and x ∈ V (pTz) (or vice versa). Then T ′ := T − {ppx, xxp} + {ya, za}
violates (T1) since two branch vertices are lost (x and p) while one is gained (a).

Case 5: Suppose p ∈ V (xTy) and p ∈ V (xTz). Since {a, ax, y, z} is not a claw, we may assume by
symmetry that axy ∈ E(G), so T ′ := T −{aax, ppx}+ {axy, az} violates (T1) since p is no longer a branch
vertex.

Case 6: Suppose x ∈ V (pTy) and x ∈ V (pTz). Since {a, ap, y, z} is not a claw, we may assume by
symmetry that apy ∈ E(G), so T ′ := T −{aap, xxp}+{apy, az} violates (T1), since x is no longer a branch
vertex.

Therefore all 2k + 3 of these sets are pairwise disjoint. This holds true for all x such that p(x) 6= r. To
cover the remainder of the spanning tree, we must consider each x such that p(x) = r. For each i ∈ [3],
there is exactly one x with p(x) = r and rx = ri; call it xi. Note that the 2k+ 3 sets (V (x3Tr)∩NG(x3))

−

and V (x3Tr) ∩NG(y) with y ∈ X \ {x3} are all subsets of V (x3Tr); we will show that they are pairwise
disjoint and none of them include r. The − superscript ensures that (V (x3Tr)∩NG(x3))

− does not include
r. Suppose ry ∈ E(G) for some y ∈ X \ {x3}. If x3 ∈ V (rTy), then T ′ := T − {x3(x3)r} + {ry} violates
(T1). Otherwise r ∈ V (x3Ty), so T ′ := T − {rr1, rr2}+ {ry, r1r2} violates (T1). Therefore none of these
sets contain r; we will next show that they are disjoint.

We will first show that (V (x3Tr) ∩NG(x3))
− is disjoint from the other 2k + 2 sets. Let y ∈ X \ {x3} and

suppose some a ∈ V (x3Tr) with x3a, yax3 ∈ E(G). If r ∈ V (x3Ty), then T ′ := T−{aax3 , rr3}+{x3a, yax3}
violates (T1). Otherwise x3 ∈ V (rTy), so define {x∗3} := NT (x3) \ {(x3)y, (x3)r}. Now Lemma 1 ensures
that x∗3(x3)y ∈ E(G), so T ′ := T − {aax3 , x3(x3)y, x3x

∗
3} + {x3a, yax3 , (x3)yx

∗
3} violates (T1). Therefore

(V (x3Tp) ∩NG(x3))
− is disjoint from the other 2k + 2 sets. We will now show that the remaining 2k + 2

sets are pairwise disjoint. Let y, z ∈ X \ {x3} and let a ∈ V (x3Tr) such that ya, za ∈ E(G). Consider
three cases regarding the locations of y and z:



Case 1: Suppose x3 ∈ V (rTy) and r ∈ V (x3Tz) (or vice versa). Then T ′ := T − {rr3, x3(x3)r}+ {ya, za}
violates (T1) since two branch vertices are lost (r and x3) while only one is gained (a).

Case 2: Suppose x3 ∈ V (rTy) and x3 ∈ V (rTz). Since {a, ar, y, z} is not a claw, we may assume by
symmetry that ary ∈ E(G), so T ′ := T − {aar, x3(x3)r}+ {ary, az} violates (T1), since x3 is no longer a
branch vertex.

Case 3: Suppose r ∈ V (x3Ty) and r ∈ V (x3Tz). Since {a, ax3 , y, z} is not a claw, we may assume by
symmetry that ax3y ∈ E(G), so T ′ := T − {aax3 , rr3} + {ax3y, az} violates (T1), since r is no longer a
branch vertex.

Therefore these 2k + 3 sets are all pairwise disjoint. We will now show a few things about r1 and x1,
which, by symmetry, will also be true of r2 and x2. Note that the 2k + 3 sets (V (x1Tr) ∩NG(x1))

− and
V (x1Tr1) ∩ NG(y) with y ∈ X \ {x1} are all subsets of V (x1Tr1); we will show that they are pairwise
disjoint and none of them include r1. If r1 ∈ (V (x1Tr) ∩ NG(x1))

−, then x1r ∈ E(G), so T ′ := T −
{rr1, rr2} + {x1r, r1r2} violates (T1). Now suppose r1y ∈ E(G) for some y ∈ X \ {x1}. If r ∈ V (x1Ty),
then T ′ := T −{rr1}+{r1y} violates (T1). Otherwise x1 ∈ V (rTy), so T ′ := T −{x1(x1)y}+{r1y} violates
either (T1) or (T2). Therefore none of these sets contain r1; it remains to show that they are disjoint.

We will first show that (V (x1Tr) ∩NG(x1))
− is disjoint from the other 2k + 2 sets. Let y ∈ X \ {x1} and

suppose some a ∈ V (x1Tr) with x1a, yax1 ∈ E(G). If r ∈ V (x1Ty), then T ′ := T−{aax1 , rr1}+{x1a, yax1}
violates (T1). Otherwise x1 ∈ V (rTy), so define {x∗1} := NT (x1) \ {(x1)r, (x1)y}. Lemma 1 requires
that (x1)yx

∗
1 ∈ E(G), so T ′ := T − {aax1 , x1(x1)y, x1x

∗
1} + {x1a, yax1 , (x1)yx

∗
1} violates (T1). Therefore

(V (x1Tr) ∩NG(x1))
− is disjoint from the other sets; it remains to show that these other sets are pairwise

disjoint. Let y, z ∈ X \ {x1} and let a ∈ V (x1Tr1) such that ya, za ∈ E(G). Consider three cases:

Case 1: Suppose x1 ∈ V (yTr) and r ∈ V (x1Tz) (or vice versa). Then T ′ := T − {x1(x1)r, rr1}+ {ya, za}
violates (T1), since two branch vertices are lost (x and r) and only one is gained (a).

Case 2: Suppose x1 ∈ V (yTr) and x1 ∈ V (zTr). Since {a, ar, y, z} is not a claw, we may assume by
symmetry that ary ∈ E(G), so T ′ := T − {aar, x1(x1)r}+ {yar, za} violates (T1), since x1 is no longer a
branch vertex.

Case 3: Suppose r ∈ V (x1Ty) and r ∈ V (x1Tz). Since {a, ax1 , y, z} is not a claw, we may assume by
symmetry that ax1y ∈ E(G), so T ′ := T − {aax1 , rr1} + {ax1y, az} violates (T1), since r is no longer a
branch vertex.

Therefore these 2k+3 sets are all pairwise disjoint. For each x ∈ X\{x1, x2, x3} (again denoting p := p(x)),
we have:∑

y∈X
|V (xTpx) ∩NG(y)| =

∣∣(V (xTp) ∩NG(x))−
∣∣+

∑
y∈X\{x}

|V (xTpx) ∩NG(y)| ≤ |V (xTpx)|

Meanwhile:



∑
y∈X
|V (x3Tr) ∩NG(y)| =

∣∣(V (x3Tr) ∩NG(x3))
−∣∣+

∑
y∈X\{x3}

|V (x3Tr) ∩NG(y)|

≤ |V (x3Tr) \ {r}| = |V (x3Tr)| − 1,∑
y∈X
|V (x1Tr1) ∩NG(y)| =

∣∣(V (x1Tr1) ∩NG(x1))
−∣∣+

∑
y∈X\{x1}

|V (x1Tr1) ∩NG(y)|

≤ |V (x1Tr1) \ {r1}| = |V (x1Tr1)| − 1, and∑
y∈X
|V (x2Tr2) ∩NG(y)| =

∣∣(V (x2Tr2) ∩NG(x2))
−∣∣+

∑
y∈X\{x2}

|V (x2Tr2) ∩NG(y)|

≤ |V (x2Tr2) \ {r2}| = |V (x2Tr2)| − 1.

Summing all these inequalities gives
∑
x∈X

degT (x) ≤ n− 3, so the theorem is proven.

Concluding remarks
To our knowledge, since the proposal of Conjecture 1, this is the first result whose only shortfall from
proving the conjecture is the degrees of the branch vertices. We consider this promising, since the only
sharpness examples we are aware of will have the kind of spanning tree we consider here. If a proof of
Conjecture 1 is within reach, it is likely to be a generalization of our results here, with some clever choices
based on the branch vertices of higher degree.
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