“The Book proof” of Vizing’s Generalized Theorem and Shannon’s Theorem (proof obtained
from B. Toft)

Let G be a multigraph and let £ > A(G). Let ¢ be a k-edge coloring of G —e for some e € E(G).
Assume that G is not k-edge colorable.

For a vertex v, let ¢(v) be the set of colors of ¢ present at vertex v. Similarly, let ¢(v) be the
set of colors of ¢ not present at v.

A fan F, is an ordered sequence of edges (ej,ea,...,e,) at vertex = such that for every j,
2 < j < n, there exists an ¢, 1 <7 < j — 1 such that ¢(e;) € ¢(v;).

Figure 1: The Fan F}.

Claim 1: In a fan Fy, ¢(y;) N¢(x) =0 for all j, 1 < j <n.

Proof: Assume this is not the case. Choose the fan F), and coloring ¢ such that ¢(y;) N é(z) # 0
with j as small as possible. Let a € ¢(y;) N é(z).

If y; = y1, then color « is missing at both x and y;. Then e can be colored « (e; = e and G —e
is k-edge colorable) and G is k-edge colorable. Since this is not the case, y; # 1.

Let 3 = ¢(e;) Then there is an i, 1 <7 < j — 1 such that 8 € ¢(y;). Recolor e; with the color
a. The result is a new k-edge coloring ¢’ of G — e. Then, (e1,ea,... ,¢;) is a fan with respect to
¢ and ¢/ (y;) N ¢'(x) # () since B is in this intersection. This contradicts the minimality of j and
completes the proof of the claim.
O

Claim 2: In a fan ¢(y;) N ¢(y;) = 0 for all i and j where y; # y;.

Proof: Assume this is not the case. Choose the fan F}, and coloring ¢ such that ¢(y;) N ¢(y;) # 0
with y; # y;, and with ¢ as small as possible and subject to this j — i as small as possible.

Let o € ¢(y;) N d(y;). Let B € ¢(x). Such a B exists since k > A(G) and there is an uncolored
edge at z. By Claim 1, § € ¢(y;) for all h and « € ¢(z).
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For 1 < h <n let P, denote the alternating o — 8 chain containing yy,.
Case 1: Suppose = & P;.

Change o and 3 on P; and obtain ¢/. The color 3 is then missing at y; and at . Then (e, ez, ... ,€;)
is a fan with respect to ¢’, contradicting Claim 1. O

Case 2: Suppose z € P; and x € P;.

Change color a and  on P; and obtain ¢'. The color § is then missing at y; and . Then
(e1,€2,...,€;) is a fan with respect to ¢', contradicting Claim 1. O

Case 3: Suppose x € P; and x € P;.
Then P; = P; and z,y;,y; all have degree 1 in P;. This is impossible. O
Let F, be maximal. Let ¢(F,) be the colors of ¢ at x not in the fan F,.
Claim 8: ¢(Fy) No(y;) =0 for all i, 1 < i < n.
Proof: This follows directly from F} being maximal and the definition of a fan. O
Now let z1(= y1),22,... ,2m be the different y; (recall we are in a multigraph so y’s may be

repeated) (2 < m < n). Claims 1, 2, 3 imply that ¢(21), ¢(22), ... ,0(2m), ¢(z) and ¢(F,) are
disjoint subsets of the set of k colors of ¢. Hence,

[0(21)| + |D(22)| + .. + [0(zm)] + [(2)] + [¢(F2)| < K.
Hence,
k—(deg(z1) — 1)+ (k—(deg(22)) +. ..+ (k—deg(zm)) + (k— (deg(x) — 1))+ (deg(z) —1— (n—1)) < k.

Thus,

E(m+1)+2—-n— (i deg(z)) < k
i=1

or



2 < (i deg(z;)) +n — mk.
i=1

If p(z, z;) denotes the number of edges between x and z;, then n < 77" p(x, z;). With this the
following inequality holds:

(%) i (deg(z) + p(x, z;) — k)
with m > 2. )
From (*) we get the following;:
A. There exists a z; such that deg(z;) + p(z, z;) — k > 1.
B. There exists z;, zj(2; # z;) such that
deg(z;) + deg(z;) + (@, z;) + p(@, zj) — 2k > 2.

Further, since deg(x) > p(z, z;) + p(x, zj), B implies:
C. There exists z;, zj (2; # z;) such that

deg(z;) + deg(z;) + deg(x) — 2k > 2.

If K > A(G) + pu(G), where u(G) is the max. multiplicity of G, then A gives a contradiction.
Hence the assumption that G is not k-edge colorable must be wrong and Vizing’s theorem holds.

Further note: If k > |3A(G)], then C (B) gives a contradiction. Hence, again the assumption that
G is not k-edge colorable must be wrong. From this we conclude:

Thm: G is A(G) + pu(G) edge colorable. (generalized Vizing, 1964)

Thm: G is $A(G)- edge colorable. (Shannon, 1949).



