"The Book proof" of Vizing's Generalized Theorem and Shannon's Theorem (proof obtained from B. Toft)

Let G be a multigraph and let $k \geq \Delta(G)$. Let ϕ be a k-edge coloring of $G-e$ for some $e \in E(G)$. Assume that G is not k-edge colorable.

For a vertex v, let $\phi(v)$ be the set of colors of ϕ present at vertex v. Similarly, let $\bar{\phi}(v)$ be the set of colors of ϕ not present at v.

A fan F_{x} is an ordered sequence of edges $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ at vertex x such that for every j, $2 \leq j \leq n$, there exists an $i, 1 \leq i \leq j-1$ such that $\phi\left(e_{j}\right) \in \bar{\phi}\left(y_{i}\right)$.

Figure 1: The Fan F_{x}.
Claim 1: In a fan $F_{x}, \bar{\phi}\left(y_{j}\right) \cap \bar{\phi}(x)=\emptyset$ for all $j, 1 \leq j \leq n$.
Proof: Assume this is not the case. Choose the fan F_{x} and coloring ϕ such that $\bar{\phi}\left(y_{j}\right) \cap \bar{\phi}(x) \neq \emptyset$ with j as small as possible. Let $\alpha \in \bar{\phi}\left(y_{j}\right) \cap \bar{\phi}(x)$.

If $y_{j}=y_{1}$, then color α is missing at both x and y_{1}. Then e can be colored $\alpha\left(e_{1}=e\right.$ and $G-e$ is k-edge colorable) and G is k-edge colorable. Since this is not the case, $y_{j} \neq y_{1}$.

Let $\beta=\phi\left(e_{j}\right)$ Then there is an $i, 1 \leq i \leq j-1$ such that $\beta \in \bar{\phi}\left(y_{i}\right)$. Recolor e_{j} with the color α. The result is a new k-edge coloring ϕ^{\prime} of $G-e$. Then, $\left(e_{1}, e_{2}, \ldots, e_{i}\right)$ is a fan with respect to ϕ^{\prime} and $\overline{\phi^{\prime}}\left(y_{i}\right) \cap \overline{\phi^{\prime}}(x) \neq \emptyset$ since β is in this intersection. This contradicts the minimality of j and completes the proof of the claim.

Claim 2: In a fan $\bar{\phi}\left(y_{i}\right) \cap \bar{\phi}\left(y_{j}\right)=\emptyset$ for all i and j where $y_{i} \neq y_{j}$.
Proof: Assume this is not the case. Choose the fan F_{x} and coloring ϕ such that $\bar{\phi}\left(y_{i}\right) \cap \bar{\phi}\left(y_{j}\right) \neq \emptyset$ with $y_{i} \neq y_{j}$, and with i as small as possible and subject to this $j-i$ as small as possible.

Let $\alpha \in \bar{\phi}\left(y_{i}\right) \cap \bar{\phi}\left(y_{j}\right)$. Let $\beta \in \bar{\phi}(x)$. Such a β exists since $k \geq \Delta(G)$ and there is an uncolored edge at x. By Claim 1, $\beta \in \phi\left(y_{h}\right)$ for all h and $\alpha \in \phi(x)$.

For $1 \leq h \leq n$ let P_{h} denote the alternating $\alpha-\beta$ chain containing y_{h}.
Case 1: Suppose $x \notin P_{i}$.
Change α and β on P_{i} and obtain ϕ^{\prime}. The color β is then missing at y_{i} and at x. Then $\left(e_{1}, e_{2}, \ldots, e_{i}\right)$ is a fan with respect to ϕ^{\prime}, contradicting Claim 1.

Case 2: Suppose $x \in P_{i}$ and $x \notin P_{j}$.
Change color α and β on P_{j} and obtain ϕ^{\prime}. The color β is then missing at y_{j} and x. Then $\left(e_{1}, e_{2}, \ldots, e_{j}\right)$ is a fan with respect to ϕ^{\prime}, contradicting Claim 1.

Case 3: Suppose $x \in P_{i}$ and $x \in P_{j}$.
Then $P_{i}=P_{j}$ and x, y_{i}, y_{j} all have degree 1 in P_{i}. This is impossible.
Let F_{x} be maximal. Let $\phi\left(\bar{F}_{x}\right)$ be the colors of ϕ at x not in the fan F_{x}.
Claim 3: $\phi\left(\bar{F}_{x}\right) \cap \bar{\phi}\left(y_{i}\right)=\emptyset$ for all $i, 1 \leq i \leq n$.
Proof: This follows directly from F_{x} being maximal and the definition of a fan.
Now let $z_{1}\left(=y_{1}\right), z_{2}, \ldots, z_{m}$ be the different y_{i} (recall we are in a multigraph so y^{\prime} s may be repeated) $(2 \leq m \leq n)$. Claims $1,2,3$ imply that $\bar{\phi}\left(z_{1}\right), \bar{\phi}\left(z_{2}\right), \ldots, \bar{\phi}\left(z_{m}\right), \bar{\phi}(x)$ and $\phi\left(\bar{F}_{x}\right)$ are disjoint subsets of the set of k colors of ϕ. Hence,

$$
\left|\bar{\phi}\left(z_{1}\right)\right|+\left|\bar{\phi}\left(z_{2}\right)\right|+\ldots+\left|\bar{\phi}\left(z_{m}\right)\right|+|\bar{\phi}(x)|+\left|\phi\left(\bar{F}_{x}\right)\right| \leq k .
$$

Hence,
$k-\left(\operatorname{deg}\left(z_{1}\right)-1\right)+\left(k-\left(\operatorname{deg}\left(z_{2}\right)\right)+\ldots+\left(k-\operatorname{deg}\left(z_{m}\right)\right)+(k-(\operatorname{deg}(x)-1))+(\operatorname{deg}(x)-1-(n-1)) \leq k\right.$.
Thus,

$$
k(m+1)+2-n-\left(\sum_{i=1}^{m} \operatorname{deg}\left(z_{i}\right)\right) \leq k
$$

or

$$
2 \leq\left(\sum_{i=1}^{m} \operatorname{deg}\left(z_{i}\right)\right)+n-m k
$$

If $\mu\left(x, z_{i}\right)$ denotes the number of edges between x and z_{i}, then $n \leq \sum_{i=1}^{m} \mu\left(x, z_{i}\right)$. With this the following inequality holds:

$$
(*) 2 \leq \sum_{i=1}^{m}\left(\operatorname{deg}\left(z_{i}\right)+\mu\left(x, z_{i}\right)-k\right)
$$

with $m \geq 2$.
From $\left({ }^{*}\right)$ we get the following:
A. There exists a z_{i} such that $\operatorname{deg}\left(z_{i}\right)+\mu\left(x, z_{i}\right)-k \geq 1$.
B. There exists $z_{i}, z_{j}\left(z_{i} \neq z_{j}\right)$ such that

$$
\operatorname{deg}\left(z_{i}\right)+\operatorname{deg}\left(z_{j}\right)+\mu\left(x, z_{i}\right)+\mu\left(x, z_{j}\right)-2 k \geq 2 .
$$

Further, since $\operatorname{deg}(x) \geq \mu\left(x, z_{i}\right)+\mu\left(x, z_{j}\right)$, B implies:
C. There exists $z_{i}, z_{j}\left(z_{i} \neq z_{j}\right)$ such that

$$
\operatorname{deg}\left(z_{i}\right)+\operatorname{deg}\left(z_{j}\right)+\operatorname{deg}(x)-2 k \geq 2 .
$$

If $k \geq \Delta(G)+\mu(G)$, where $\mu(G)$ is the max. multiplicity of G, then A gives a contradiction. Hence the assumption that G is not k-edge colorable must be wrong and Vizing's theorem holds.

Further note: If $k \geq\left\lfloor\frac{3}{2} \Delta(G)\right\rfloor$, then C (B) gives a contradiction. Hence, again the assumption that G is not k-edge colorable must be wrong. From this we conclude:

Thm: G is $\Delta(G)+\mu(G)$ edge colorable. (generalized Vizing, 1964)
Thm: G is $\frac{3}{2} \Delta(G)$ - edge colorable. (Shannon, 1949).

