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Recently, Kostochka and Yancey [7] proved that a conjecture 
of Ore is asymptotically true by showing that every k-critical 
graph satisfies |E(G)| ≥

⌈(
k
2 − 1

k−1

)
|V (G)| − k(k−3)

2(k−1)

⌉
. They 

also characterized [8] the class of graphs that attain this bound 
and showed that it is equivalent to the set of k-Ore graphs. 
We show that for any k ≥ 33 there exists an ε > 0 so that if G
is a k-critical graph, then |E(G)| ≥

(
k
2 − 1

k−1 + ε
)
|V (G)| −

k(k−3)
2(k−1) −(k−1)εT (G), where T (G) is a measure of the number 
of disjoint Kk−1 and Kk−2 subgraphs in G. This also proves 
for k ≥ 33 the following conjecture of Postle [12] regarding the 
asymptotic density: For every k ≥ 4 there exists an εk > 0
such that if G is a k-critical Kk−2-free graph, then |E(G)| ≥(

k
2 − 1

k−1 + εk

)
|V (G)| − k(k−3)

2(k−1) . As a corollary, our result 
shows that the number of disjoint Kk−2 subgraphs in a k-Ore 
graph scales linearly with the number of vertices and, further, 

E-mail addresses: rg@emory.edu (R.J. Gould), victor.larsen@usiouxfalls.edu (V. Larsen), 
lpostle@uwaterloo.ca (L. Postle).
1 Heilbrun Distinguished Emeritus Fellowship from Emory University Emeritus College.
2 Canada Research Chair in Graph Theory.
https://doi.org/10.1016/j.jctb.2022.04.004
0095-8956/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jctb.2022.04.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jctb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jctb.2022.04.004&domain=pdf
mailto:rg@emory.edu
mailto:victor.larsen@usiouxfalls.edu
mailto:lpostle@uwaterloo.ca
https://doi.org/10.1016/j.jctb.2022.04.004


R.J. Gould et al. / Journal of Combinatorial Theory, Series B 156 (2022) 194–222 195
that the same is true for graphs whose number of edges is 
close to Kostochka and Yancey’s bound.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Given a graph G the chromatic number of G, denoted χ(G), is the smallest integer 
k such that there exists a mapping φ : V (G) → {1, . . . , k} where φ(u) �= φ(v) whenever 
uv ∈ E(G). Such a mapping is called a proper k-coloring of G. We say that G is k-
colorable if G has a proper k-coloring. There is an obvious connection between the 
number of edges in a graph and the graph’s chromatic number. Each edge is a restriction 
on the vertex labeling, and thus removing edges can lower the chromatic number of a 
graph. Indeed, the chromatic number of G − e is either χ(G) or χ(G) −1. It is natural to 
study the class of graphs which are as sparse as possible for a given chromatic number.

A graph G is k-critical if χ(G) = k and every proper subgraph is (k − 1)-colorable. 
Viewing k-critical graphs as minimal graphs with chromatic number k leads to the ques-
tion of how small such graphs can be. Let fk(n) denote the minimum number of edges 
in a k-critical graph, Ore conjectured [10] the following.

Conjecture 1.1 (Ore 1967 [10]). If k ≥ 4, then

fk(n + k − 1) = fk(n) + (k − 1)
(
k

2 − 1
k − 1

)
.

As δ(G) ≥ k − 1 for any k-critical graph, it is clear that fk(n) ≥ k−1
2 n. Since Dirac’s 

1957 paper [2], there have been many improvements over the years to the bounds for 
fk(n) ([3], [6], [9]) Recently, Kostochka and Yancey [7] made an important breakthrough.

Theorem 1.2 (Kostochka and Yancey 2014 [7], Theorem 3). If k ≥ 4 and G is k-critical, 
then

|E(G)| ≥
⌈(

k

2 − 1
k − 1

)
|V (G)| − k(k − 3)

2(k − 1)

⌉
.

They also showed in [8] that the class of graphs which attain this bound are k-Ore 
graphs, which are defined below. First, we begin with a definition used to construct k-Ore 
graphs.

Definition 1. An Ore composition of two graphs G1 and G2 is a graph obtained by the 
following procedure: (1) delete an edge xy from G1, (2) split some vertex z of G2 into 
two vertices z1 and z2 of positive degree, and (3) identify x with z1 and y with z2.
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Note that the Ore composition of two graphs is not unique, depending on which edge is 
deleted from G1, which vertex z of G2 is split, and how the neighbors of z are partitioned. 
Indeed, even the order in which we list the graphs is important; when we say that G is 
an Ore composition of H and F we mean that G is one of the graphs obtained by an Ore 
composition where H plays the role of G1 (called the edge-side of the composition) and 
F plays the role of G2 (called the split-side of the composition). The identified vertices 
xz1 and yz2 are called the overlap vertices of the composition. Further, we call the edge 
xy from step (1) the replaced edge of H and call the vertex z from step (2) the split 
vertex of F .

Definition 2. A graph G is a k-Ore graph if it is in the smallest class of graphs containing 
Kk which is closed under the Ore composition operation.

Equivalently, this is the class of graphs obtainable by successive Ore compositions of 
either Kk or other k-Ore graphs.

To prove Theorem 1.2, which shows that Ore’s Conjecture is asymptotically true, 
Kostochka and Yancey established the following result on the density of a k-critical 
graph using a potential function,

ρKY (G) := (k − 2)(k + 1)|V (G)| − 2(k − 1)|E(G)|.

Theorem 1.3 (Kostochka and Yancey 2014 [7], Theorem 5). If k ≥ 4 and G is k-critical, 
then ρKY (G) ≤ k(k − 3).

In a later paper, they also showed the following.

Theorem 1.4 (Kostochka and Yancey 2016+ [8], Theorem 6). If k ≥ 4 and G is k-critical, 
then ρKY (G) = k(k − 3) if and only if G is a k-Ore graph.

The k-Ore graphs are the graphs which attain the bound of Theorem 1.3, and hence it 
is natural to ask if an increase in edge density is possible when forbidding subgraphs which 
arise through Ore constructions. In [11], Postle shows an increase in asymptotic density 
for 4-critical graphs when forbidding both K3 and C4 subgraphs. By a construction of 
Thomas and Walls [13], it is not sufficient to forbid only K3.

Theorem 1.5 ([11]). There exists ε > 0 such that if G is a 4-critical graph of girth at 
least five, then

|E(G)| ≥
(

5
3 + ε

)
|V (G)| − 2

3 .

For larger values of k, it is also not sufficient to forbid only Kk−1. This leads to the 
following conjecture.
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Conjecture 1.6 ([12]). For every k ≥ 4, there exists εk > 0 such that if G is a k-critical 
Kk−2-free graph, then

|E(G)| ≥
(
k

2 − 1
k − 1 + εk

)
|V (G)| − k(k − 3)

2(k − 1) .

The conjecture has been proven for k = 5 [12] and k = 6 [4]. In this paper, we prove 
the conjecture for k ≥ 33. The method of proof also gives information about the structure 
of k-Ore graphs; in particular, we also prove that there are linearly many vertex-disjoint 
Kk−2 subgraphs in k-Ore graphs. In order to track vertex-disjoint Kk−2 subgraphs (in-
cluding those inside Kk−1 subgraphs), we define the following graph parameter.

Definition 3. When a graph H is a disjoint union of r copies of Kk−1 and s copies of 
Kk−2 subgraphs, define T (H) := 2r+ s. Let G be an arbitrary graph. If G is Kk−2-free, 
then T (G) = 0. Otherwise, define

T (G) := max
H⊆G

{T (H) | H is a disjoint union of Kk−1 and Kk−2 components}.

In a k-Ore graph, T (G) can be shown to be lower-bounded by some constant times 
the number of vertices (Lemma 3.3). Using the subgraph-measuring parameter T (G) we 
define the following modified potential function.

Definition 4. Let ε = 4
k3−2k2+3k and δ = (k−1)ε. Given a graph G define the ε-potential

to be

ρ(G) := ((k − 2)(k + 1) + ε)|V (G)| − 2(k − 1)|E(G)| − δT (G).

For a vertex subset R ⊆ V (G), we define

ρG(R) := ((k − 2)(k + 1) + ε)|R| − 2(k − 1)|E(G[R])| − δT (G[R]),

where G[R] is the induced subgraph of G on R.

One can check that the construction of ε guarantees that ε ≤ 1 for all k ≥ 2 (in 
particular, it is true for all values of k covered in this paper). With this modified potential 
function in hand, we are now able to state the main result of this paper.

Theorem 1.7. If G is a k-critical graph that is not a k-Ore graph and k ≥ 33, then 
ρ(G) ≤ k(k − 3) − 2(k − 1).

We prove this using the potential method of Kostochka and Yancey; however, a lim-
itation in the discharging method used restricts this result to the range where k ≥ 33. 
Because reductions used in our proof could possibly create k-Ore graphs as auxiliary 



198 R.J. Gould et al. / Journal of Combinatorial Theory, Series B 156 (2022) 194–222
graphs, it is important that we also establish bounds for the ε-potential of k-Ore graphs. 
In Section 3, we prove the following.

Theorem 1.8. If G is a k-critical graph that is a k-Ore graph and k ≥ 4, then

1. ρ(G) = k(k − 3) + kε − 2δ if G = Kk, and
2. ρ(G) ≤ k(k − 3) + |V (G)|ε −

(
2 + |V (G)|−1

k−1

)
δ if G �= Kk.

Note that Theorem 1.8 is proven using similar methods for k = 5 in [12]. Removing 
the notation of ε-potential, Theorem 1.7 and 1.8 give the following corollaries.

Corollary 1.9. If k ≥ 33 and G is k-critical, then

|E(G)| ≥
⌈

[(k − 2)(k + 1) + ε] |V (G)| − k(k − 3) + 2δ − kε− δT (G)
2(k − 1)

⌉
,

where ε = 4
k3−2k2+3k , δ = (k− 1)ε, and T (G) is the subgraph-measuring parameter from 

Definition 3.

Corollary 1.10. If k ≥ 33, then there exists some εk > 0 such that if G is k-critical and 
Kk−2-free, then

|E(G)| ≥
(
k

2 − 1
k − 1 + εk

)
|V (G)| − k(k − 3)

2(k − 1) .

Corollary 1.10 confirms Conjecture 1.6 for k ≥ 33. We note that the class of Ks-free 
k-critical graphs was also studied by Krivelevich [9].

1.1. Outline of paper and notation

The paper is organized as follows. In Section 2, we establish some values for ε-potential. 
We also prove some results about list colorings which are used in Section 7. In Section 3, 
we prove Theorem 1.8 and also prove results about subgraphs in k-Ore graphs. These 
results are needed for our approach to Theorem 1.7. Sections 4–7 address Theorem 1.7. 
In Section 4, we define an auxiliary graph constructed from a partial (k − 1)-coloring 
of a graph, and prove lemmas about the ε-potential of said graph. In Section 5, we 
work towards an important lemma (Lemma 5.7) which says that subgraphs in a minimal 
counterexample to Theorem 1.7 must be many edges away from being k-critical. In 
Section 6, we prepare for discharging by proving results on the structure near vertices of 
low degree in a minimal counterexample to Theorem 1.7. In Section 7, we complete the 
proof of Theorem 1.7 using a discharging argument.

Throughout the paper, we make use of the following concepts and notation. Given 
a graph G, let x, y be vertices of G and R be a proper vertex subset of G. We use 
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G/xy to refer to the graph obtained from G by identifying x and y; that is G/xy is 
obtained by deleting x, y and adding a new vertex xy which is adjacent to each vertex 
in NG(x) ∪ NG(y). The boundary vertices of R (in G) is the set ∂GR := {u ∈ R |
NG(u) −R �= ∅}. The closed neighborhood of x is the set NG[x] := NG(x) ∪ {x}.

The maximum independent cover number of G, denoted mic(G), is the maximum of ∑
x∈I degG(x) over all independent sets I ⊆ V (G). For terms not defined here see [14].

2. Preliminaries

When proving bounds on ρ(G), it is important to know the ε-potential of complete 
graphs.

Observation 2.1.

1. ρ(Kk) = k2 − 3k + kε − 2δ.
2. ρ(K1) = k2 − k − 2 + ε.
3. ρ(Kk−1) = 2k2 − 6k + 4 + (k − 1)ε − 2δ.
4. For 1 < � < k − 1, the ε-potential of K� is bounded by ρ(K�) ≥ 2k2 − 4k − 2 + 2ε.

We now establish some edge bounds which will be needed for the final stage of dis-
charging in Section 7. Given a graph G and vertex subsets A, B, we define e(A, B) to 
be the number of edges from a vertex in A to a vertex in B. That is, let e(A, B) :=∑

a∈A |NG[A∪B](a) ∩B|. We use the following lemma due to Kierstead and Rabern.

Lemma 2.2 (Kierstead and Rabern 2015 [5], Main Lemma). Let G be a nonempty graph 
and f : V → N with f(v) ≤ degG(v) + 1 for all v ∈ V (G). If there is an independent set 
A ⊆ V (G) such that

e(A, V (G)) ≥
∑

v∈V (G)

[degG(v) + 1 − f(v)] , (1)

then G has a nonempty induced subgraph H that is fH-choosable where fH(v) := f(v) +
degH(v) − degG(v).

Lemma 2.3. Let G be a k-critical graph with vertex subsets A, B0, B1 such that A is 
independent, degG(a) = k−1 for each a ∈ A, and degG(b) = k+ i for each b ∈ Bi where 
i ∈ {0, 1}. Then e(A, B0 ∪B1) < |A| + 2|B0| + 3|B1|.

Proof. Suppose that G is a k-critical graph with vertex subsets A, B0, B1 such that A
is independent, degG(a) = k − 1 for each a ∈ A, and degG(b) = k + i for each b ∈ Bi

where i ∈ {0, 1}. Let B = B0 ∪ B1. Suppose to the contrary that e(A, B0 ∪ B1) ≥
|A| + 2|B0| + 3|B1| holds true.
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Let f : A ∪B → N where f(v) = degG[A∪B](v) if v ∈ A and f(v) = degG[A∪B](v) −1 −i

if v ∈ Bi. Then the right side of Equation (1) becomes
∑
v∈A

1 +
∑
v∈B0

2 +
∑
v∈B1

3 = |A| + 2|B0| + 3|B1|.

It follows from Lemma 2.2 that G[A ∪B], and thus G, has a nonempty induced subgraph 
H that is fH -choosable where fH(v) := f(v) + degH(v) − degG[A∪B](v).

Since G is k-critical, there exists a (k − 1)-coloring φ of G −H. For each vertex v ∈
V (H) ∩A, there are at least degH(v) colors available and we see that fH(v) = degH(v). 
Similarly, for each v ∈ V (H) ∩B, there are at least degH(v) − 1 − i colors available and 
fH(v) = degH(v) − 1 − i. Therefore, we can use fH-choosability to extend φ to all of G, 
which is a contradiction. �

3. k-Ore graphs

Here, we build up results regarding k-Ore graphs, which will be needed in order to 
bound the ε-potential for the reductions of general k-critical graphs that we will be using 
in subsequent sections.

Proposition 3.1. Given a k-Ore graph G, there is a sequence of k-Ore graphs G1, G2, . . . ,
Gs where G1 = Kk, Gs = G, and for each 2 ≤ i ≤ s, the graph Gi is an Ore composition 
of Gi−1 and a k-Ore graph.

Proof. Let G be a k-Ore graph. We will prove this by induction on |V (G)|. If G is Kk the 
result is trivial, so we may assume that G is an Ore composition of two k-Ore graphs G1
and G2 with overlap vertices {x, y}. By induction, there is a sequence H = H1, H2, ..., Hr

where H1 = Kk and Hr = G1 and each Hi is an Ore composition of Hi−1 and a k-Ore 
graph. Then the desired sequence for G is H, G. �

Using this proposition, one can picture each k-Ore graph as a copy of Kk where 
some number of edges are replaced by split k-Ore graphs. In fact, any k-Ore graph can 
be obtained by simultaneously replacing some edges of a Kk with suitable split k-Ore 
graphs. Before examining ε-potential, we establish bounds on the subgraph-measuring 
parameter T (G).

Lemma 3.2. If G is an Ore composition of G1 and G2, then T (G) ≥ T (G1) +T (G2) − 2. 
Moreover, if G1 = Kk or G2 = Kk, then T (G) ≥ T (G1) + T (G2) − 1. Further, if both 
G1 and G2 are Kk, then T (G) = 4.

Proof. Suppose that G is an Ore composition of G1 and G2. Let e be the replaced edge 
of G1 and z be the split vertex of G2. From the definition of an Ore composition, it 
follows that T (G) ≥ T (G1 − e) + T (G2 − {z}), and hence T (G) ≥ T (G1) + T (G2) − 2. 
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If G1 = Kk, then T (Kk − e) = 2 = T (Kk) so we get T (G) ≥ T (G1) + T (G2) − 1. We 
obtain a similar result if G2 = Kk as T (Kk− z) = 2. Further, if both G1 and G2 are Kk, 
then T (G) = 4. �

Note that the conclusion of Lemma 3.2 is symmetric.

Lemma 3.3. If G is a k-Ore graph and G �= Kk, then T (G) ≥ 2 + |V (G)|−1
k−1 .

Proof. We proceed by induction on |V (G)|. Let G be an Ore composition of two k-Ore 
graphs G1 and G2. If both G1 and G2 are Kk, then |V (G)| = 2k − 1; in this case, 
T (G) = 4 as desired. Suppose instead that exactly one of G1, G2 is Kk. Because the 
conclusion of Lemma 3.2 is symmetric and any Ore composition of a graph with Kk

adds k − 1 vertices, we may assume without loss of generality that G1 = Kk. It follows 
that

T (G) ≥ T (G2) + 1 ≥
(

2 + |V (G2)| − 1
k − 1

)
+ 1 = 2 + |V (G)| − 1

k − 1 ,

as desired. Finally, suppose that neither G1 nor G2 is Kk. Then as |V (G)| = |V (G1)| +
|V (G2)| − 1, it follows from Lemma 3.2 and induction that

T (G) ≥
(

2 + |V (G1)| − 1
k − 1

)
+

(
2 + |V (G2)| − 1

k − 1

)
− 2 = 2 + |V (G)| − 1

k − 1 . �

Using Lemma 3.3, we now prove Theorem 1.8.

Proof of Theorem 1.8. By the definition of ε-potential, it follows that ρ(Kk) = k(k −
3) + kε − 2δ. Now suppose that G is a k-Ore graph which is not Kk. Then G has 
k+�(k−1) vertices and (�+1)k(k−1)

2 −� edges for some � ≥ 1. Using Lemma 3.3, it is again a 

straightforward calculation to show that ρ(G) ≤ k(k−3) +|V (G)|ε −
(
2 + |V (G)|−1

k−1

)
δ. �

It is essential for the proof of Theorem 1.7 to understand the behavior of certain 
subgraphs of k-Ore graphs. Two useful subgraphs are defined below.

Definition 5. A subgraph D ⊆ G is a diamond of G if D = Kk −uv and degG(x) = k− 1
for each x ∈ V (D) − {u, v}. The vertices u and v are the endpoints of the diamond. 
A subgraph D′ ⊆ G is an emerald of G if D′ = Kk−1 and degG(x) = k − 1 for each 
x ∈ V (D′).

Lemma 3.4. If G is a k-Ore graph and v ∈ V (G), then there exists a diamond or emerald 
of G in G − v.

Proof. We prove this by induction on |V (G)|. Suppose that G is a k-Ore graph and let 
v ∈ V (G) be an arbitrary vertex. If G = Kk, then G − v is an emerald of G, as desired. 



202 R.J. Gould et al. / Journal of Combinatorial Theory, Series B 156 (2022) 194–222
Therefore we may assume that G is an Ore composition of two k-Ore graphs G1 and G2

with overlap vertices {a, b}. We choose this composition to minimize |V (G1)|, the order 
of the edge-side. By induction, there is an emerald or diamond D of G2 not containing 
ab. Hence, if v ∈ V (G1), then D is as desired. So we may assume that v ∈ V (G2) −{ab}.

Now if G1 = Kk, then G1−ab is a diamond of G not containing v as desired. Therefore, 
we may assume that G1 is a composition of two k-Ore graphs H1 and H2 with overlap 
vertices {x, y}. By our choice of G1 it follows that ab ∈ E(H1). Thus there is an emerald 
or diamond subgraph D of H2 not containing xy. Note that D is also an emerald or 
diamond of G and v /∈ V (D), as desired. �

Lemma 3.5. If G is a k-Ore graph and D = Kk−1 is a subgraph of G, then either G = Kk

or there exists a diamond or emerald of G disjoint from D.

Proof. We prove this by induction on |V (G)|. Suppose that G is a k-Ore graph and let 
D = Kk−1 be a subgraph of G. When G = Kk, the lemma is trivial. So we may assume 
that G is an Ore composition of two k-Ore graphs G1 and G2 with overlap vertices {a, b}. 
Choose this composition to minimize the order of the edge-side, |V (G1)|. As {a, b} is an 
independent cutset in G, it follows that either D ⊆ G1 − ab or D ⊆ G2. If D ⊆ G1 − ab, 
then by Lemma 3.4 there exists a diamond or emerald D′ of G2 − ab and D′ is disjoint 
from D as desired.

Thus we may assume that V (D) ⊆ V (G2) ∪ {a, b}. We examine two cases based on 
whether V (D) contains any of the overlap vertices {a, b} or not.

Since a is not adjacent to b in G2, they cannot both be in D. So first, suppose that 
|V (D) ∩{a, b}| = 1 and without loss of generality, we assume that a ∈ V (D). If G2 �= Kk, 
then by induction, there is a diamond or an emerald of G2 disjoint from D and this is 
also a diamond or an emerald of G, as desired. Therefore we may assume that G2 = Kk

and thus b has one neighbor on the split-side of G. It follows that degG1
(b) = degG(b). 

By Lemma 3.4 there is a diamond or emerald D′ of G1 in G1 − a. If D′ is a diamond, 
then D′ is also a diamond of G. If D′ is an emerald, then because degG1

(b) = degG(b), 
it follows that D′ is an emerald of G. In either case, D′ ∩D = ∅ as desired.

Second, suppose that V (D) contains neither a nor b. If G1 = Kk, then G1 − ab is a 
diamond that is disjoint from D. Otherwise, G1 is a composition of two k-Ore graphs 
H1 and H2 with overlap vertices {x, y}. By our choice of G1 it follows that ab ∈ E(H1). 
By Lemma 3.4 there is a diamond or emerald D′ of H2 − xy, which then contains no 
vertices of D. Thus, D′ is also a diamond or emerald of G, as desired. �

4. Critical extensions

We now turn towards proving the main result, Theorem 1.7. We do this by discharging 
on a minimal counterexample; therefore we need to precisely define what makes a graph 
minimal.
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Definition 6. A graph H is smaller than a graph G if |V (G)| > |V (H)| or, if |V (G)| =
|V (H)|, then H is smaller if either |E(G)| > |E(H)| or if |E(G)| = |E(H)| and G has 
fewer pairs of vertices with the same closed neighborhood.

Given a k-critical graph G, we have a particular method of examining what subgraphs 
exist in G. Note that if R is a proper vertex subset of G, then we can properly (k−1)-color 
G[R]. Such a coloring is used to create the following auxiliary graph.

Definition 7. Given a k-critical graph G and a proper (k − 1)-coloring φ on a vertex 
subset R, we define the graph GR,φ to be the graph obtained from G by identifying all 
vertices in φ−1(i) to a single vertex xi for 1 ≤ i ≤ k − 1, adding the edge xixj for each 
1 ≤ i < j ≤ k − 1, and then deleting any parallel edges so that the new vertices form a 
complete subgraph with no parallel edges.

Note that if uv ∈ E(G) for u ∈ R and v ∈ V (G) −R, then vxφ(u) ∈ E(GR,φ). Further, 
we will always color R with as few colors as possible, so then it follows that GR,φ is 
a smaller graph than G, or possibly GR,φ = G if R is a clique. One can observe that 
GR,φ is not (k − 1)-colorable; a proof of this is in [7] (Claim 14). Therefore, there is 
a k-critical subgraph W ⊆ GR,φ. Because G is k-critical, W must contain at least one 
vertex in {x1, . . . , xk−1}. The fact that W is smaller than G when R is not a clique is 
used frequently in subsequent ε-potential calculations.

Definition 8. Given a graph GR,φ obtained via Definition 7 and a k-critical subgraph 
W , we define R′ := (R ∪ V (W )) − X to be a W -critical extension of R where X :=
V (W ) ∩{x1, . . . , xk−1} is called the core of the W -critical extension. If R′ = V (G), then 
we say that R′ is a spanning W -critical extension. Lastly, the W -critical extension R′ is 
complete if

|E(G[R′])| = |E(G[R])| + |E(W )| − |E(K|X|)|. (2)

For a general W -critical extension R′, it is possible that the left side of Equation (2) is 
larger. If we have |E(G[R′])| = |E(G[R])| + |E(W )| −|E(K|X|)| + i, then we say that the 
W -critical extension is i-incomplete.

Thus a W -critical extension is complete if the edges from R to V (W ) in G[R′] corre-
spond to the edges from X to V (W ) −X in W , and incompleteness comes from three 
sources. First, edges from R to V (W ) in G[R′] that are not needed in W get counted 
on the left but never on the right. Second, if NR(w) ∩ (color �) is larger than 1 for some 
w ∈ V (W ) −R and color �, then |E(G[R′])| counts all of these edges but |E(W )| counts 
at most one. Third, if an edge xixj is not used in W , then it is not counted by |E(W )|
but is subtracted by |E(K|X|)|.
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Lemma 4.1. Suppose that G is a k-critical graph. If R′ is a W -critical extension of 
R � V (G) with core X, then

ρG(R′) ≤ ρG(R) + ρ(W ) −
(
ρ(K|X|) + δT (K|X|) − δ|X|

)
. (3)

Proof. Suppose that G is a k-critical graph with proper vertex subset R and that G[R]
is properly (k− 1)-colored by φ. Let R′ be any W -critical extension. The three elements 
of a graph that contribute to ε-potential are the vertices, the edges, and T . We note that 
each side of the inequality in Equation (3) counts the same number of vertices. For the 
edges, each side of Equation (3) counts some edges that the other side does not. Note 
that only ρG(R′) includes edges in G from R to V (W ) −X, only the right side includes 
edges in GR,φ from X to V (W ) − X, and all other edges are accounted for by both 
sides. However, each edge from X to V (W ) −X corresponds to at least one distinct edge 
from R to V (W ) −X, so the negative contribution of edges to the ε-potential is always 
greater on the left side. In fact, if the W -critical extension is i-incomplete, then the left 
side counts exactly i edges more than the left.

Therefore, if Equation (3) is not satisfied, it can only be because of the contribution of 
the subgraph-measuring parameter T . We observe that T (G[R′]) ≥ T (G[R]) +T (W−X)
and that T (W−X) ≥ T (W ) −|X| because each xi ∈ X could be in at most one subgraph 
counted by T (W ). Therefore, the desired inequality holds. �

Corollary 4.2. Suppose G is a minimal counterexample to Theorem 1.7. If R′ is a W -
critical extension of R � V (G) and R is not a clique, then ρG(R′) ≤ ρG(R) −2(k−1) −δ.

Proof. Let G be a minimal counterexample to Theorem 1.7. We aim to maximize the 
right side of Equation (3). Because R is not a clique we may assume that W is smaller 
than G. Therefore ρ(W ) follows Theorems 1.7 and 1.8, depending on whether W is a 
k-Ore graph or not. It follows that the right side is maximized when W is a k-Ore graph 
and |X| = 1, so we make those two assumptions as well. If W = Kk, then because 
T (W ) = T (W − x) for x ∈ X we can ignore the contribution of δ|X| in Equation (3). It 
follows in this case that

ρG(R′) ≤ ρG(R) + (k2 − 3k + kε− 2δ) − (k2 − k − 2 + ε)

= ρG(R) − 2(k − 1) + (k − 1)ε− 2δ.

But recall that δ = (k − 1)ε, so the corollary holds when W = Kk.
If W is not Kk, then it follows from Theorem 1.8 that

ρG(R′) ≤ ρG(R) − 2(k − 1) − ε + δ + |V (G)|ε−
(

2 + |V (G)| − 1
k − 1

)
δ.

Again, because δ = (k − 1)ε the corollary is proven. �
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5. Edge-additions

The goal of this section is to establish Lemma 5.7 which says that a subgraph of a 
minimal counterexample to Theorem 1.7 cannot be within k−4

2 edges of being a smaller 
k-critical graph. This will be used to establish structural results in Section 6.

Definition 9. A proper vertex subset R � V (G) is i-collapsible in G if for all proper 
(k − 1)-colorings φ of G[R] using color set C

min
c∈C

∣∣{uv ∈ E(G) | u ∈ φ−1(C − c) ∩R and v ∈ V (G) −R
}∣∣ ≤ i. (4)

That is, a proper vertex subset R is i-collapsible if there is a “majority” color class 
in φ(∂GR) which covers all but at most i edges from R into V (G) − R. Note that the 
boundary vertices ∂GR of a 0-collapsible set receive the same color in every proper 
(k − 1)-coloring of R.

Definition 10. Let G be a k-critical graph. An (i + 1)-edge-addition in G is a set S of at 
most (i +1) edges such that there exists a k-critical graph H with S ⊆ E(H), H−S ⊆ G, 
and V (H) � V (G).

Thus, a 1-edge-addition is a single edge that, when added to G, forms a k-critical 
subgraph on fewer vertices than |V (G)|. For i-edge-additions with i > 1, the size of S is 
more flexible; this is important for making the subsequent arguments efficiently. In the 
proof of Lemma 5.7 we do specify the number of edges in S, but this will be controlled 
inductively rather than semantically.

Lemma 5.1. A minimal counterexample to Theorem 1.7 does not contain a 2-vertex cut-
set.

Proof. Let G be a minimal counterexample to Theorem 1.7 and suppose that there 
exists a 2-vertex cutset {x, y}. Because G is k-critical, by Dirac [1], deleting {x, y} leaves 
behind two components H1 and H2 such that G̃1 = G −H2 is (k−1)-colorable by φ where 
φ(x) = φ(y) and G̃2 = G −H1 is (k − 1)-colorable by ψ where ψ(x) �= ψ(y). Moreover, 
because G is k-critical there does not exist a proper (k − 1)-coloring of G̃1 where x and 
y receive different colors. This fact prevents x and y from having a common neighbor 
z in G̃2, as a proper (k − 1)-coloring of G − xz would be a contradiction. Therefore x
and y have no common neighbors in G̃2, which implies that G is an Ore composition of 
G̃1 + xy and G̃2/xy, which we rename G1 and G2 respectively.

Because G is not a k-Ore graph, at most one of G1 and G2 is a k-Ore graph. From 
the definition of an Ore composition, it follows that ρ(G) = ρ(G1) + ρ(G2) − k2 − 3k −
ε + δ (T (G1) + T (G2) − T (G)). Because the following argument does not rely on the 
distinction between edge-side or split-side, we may assume without loss of generality 
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that G1 is not a k-Ore graph. Using Lemma 3.2 and the fact that G1 is smaller than G, 
we have

ρ(G) ≤ ρ(G2) − 2(k − 1) − ε + 2δ.

Thus G2 has higher ε-potential than G. As G is a minimal counterexample to Theorem 1.7
and G2 is smaller than G, it follows that G2 must be a k-Ore graph.

If G2 �= Kk, then, it follows from Theorem 1.8 that ρ(G) ≤ k(k − 3) − 2(k − 1) +
(n − 1) 

(
ε− δ

k−1

)
where n = |V (G2)|. If G2 = Kk, then Lemma 3.2 gives T (G1) +

T (G2) − T (G) ≤ 1, so it follows that ρ(G) ≤ k(k − 3) + kε − 2δ − 2(k − 1) − ε + δ. 
Because δ = (k − 1)ε both of these inequalities show that ρ(G) ≤ k(k − 3) − 2(k − 1), 
contradicting that G is a minimal counterexample to Theorem 1.7. �

Proposition 5.2. Let G be a k-critical graph. If R � V (G) is a proper vertex subset 
where all W -critical extensions of R are spanning, have core size 1, and are at most 
i-incomplete, then R is i-collapsible in G.

Proof. Let G be a k-critical graph and suppose that we have a proper vertex subset R
such that all W -critical extensions of R are spanning, have core size 1, and are at most 
i-incomplete. Then let φ be an arbitrary proper coloring of R using color set [k− 1] and 
let R′ be a W -critical extension using φ. By hypothesis, R′ = V (G). If we permute the 
colors of φ so that the vertex in X corresponds to color class 1, then each edge from 
φ−1({2, 3, . . . , k−1}) ∩R to V (G) −R contributes to the incompleteness of the W -critical 
extension. There are at most i such edges so, by definition, R is i-collapsible. �

Lemma 5.3. If G is a minimal counterexample to Theorem 1.7 with an i-collapsible subset 
R � V (G) for i ≤ (k − 3)/2, then there is an (i + 1)-edge-addition in G.

Proof. Let G be a minimal counterexample to Theorem 1.7 and let R � V (G) be an 
i-collapsible subset for i ≤ (k − 3)/2. Suppose, for the sake of contradiction, that there 
is no (i + 1)-edge-addition in G. For each u ∈ ∂GR let w(u) = |{uv ∈ E(G) | v ∈
V (G) − R}|. Because G is a k-critical graph, G is (k − 1)-edge-connected and thus ∑

u∈∂GR w(u) ≥ k − 1. Let ∂GR = {u1, . . . , us} and, without loss of generality, assume 
that w(u1) ≥ w(u2) ≥ · · · ≥ w(us) ≥ 1. �

Case 1. Suppose w(u2) + · · · + w(us) ≥ i + 2.
This case is the same as Case 2 of Lemma 16 in [7], which shows that, for all proper 

(k − 1)-colorings φ of G[R] using color set C and for any color class � ∈ C

∑
u∈∂GR−φ−1(�)

w(u) ≥ i + 1.

However, R is i-collapsible so this is a contradiction.
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Case 2. Suppose w(u2) + · · · + w(us) ≤ i + 1.
For i = 0, this implies that {u1, u2} is a 2-vertex cutset in G so, by Lemma 5.1, we 

may assume that i ≥ 1. Let S = {u1uj | 2 ≤ j ≤ s}. Because we have assumed that 
there is no (i + 1)-edge-addition and because S is a set of at most i + 1 edges, there 
is a proper coloring φ of G[R] + S using color set [k − 1], and u1 is the unique vertex 
of ∂GR in its color class. Without loss of generality, let φ(u1) = 1. Because i ≤ k−3

2 it 
follows that w(u1) ≥ i + 1. Therefore Equation (4) in the definition of i-collapsible can 
only be witnessed by color 1. Because R is i-collapsible by hypothesis it follows that 
w(u2) + · · · + w(us) ≤ i.

Let ψ be a proper (k − 1)-coloring of G[(V (G) − R) ∪ {u1}] which uses the same 
colors as φ such that ψ(u1) = 1 and choose ψ so that the number of edges from ∂GR to 
V (G) −R which have endpoints colored the same by ψ := ψ|V (G)−R ∪φ|R is minimized. 
Since ψ is not a proper (k− 1)-coloring of G, we may assume that φ(up) = 2 and one of 
its neighbors x in V (G) −R also receives color 2.

We will reach a contradiction by relabeling the colors of ψ to interchange 2 with 
another color � in such a way that ψ now gives upx differently colored endpoints, and so 
that no edge from ∂GR to V (G) −R which previously had differently colored endpoints 
now has endpoints colored the same. By showing that such an � exists, we contradict 
our initial choice of ψ.

Initially, we consider k − 2 color candidates for �, obviously needing to remove color 
2 as an option. We also remove color 1 from consideration, so that ψ(u1) = φ(u1)
does not change. Finally, for each of the at most i edges ujv from ∂GR − {u1} to 
V (G) − R we remove φ(uj) if φ(uj) �= 2 and remove ψ(v) if φ(uj) = 2. This leaves 
at least (k− 2) − 1 − i ≥ k−3

2 ≥ i choices. Recall that i ≥ 1, so there does exist a color �
which contradicts our initial choice of ψ, and completes the proof.

Proposition 5.4. Let G be a minimal counterexample to Theorem 1.7. If R � V (G) is a 
proper vertex subset that is not a clique and ρG(R) < ρ(G) + k2 − 3k + 4 − ε, then every 
W -critical extension of R has core size 1.

Proof. Let G be a minimal counterexample to Theorem 1.7 and let R � V (G) be a 
proper vertex subset that is not a clique such that ρG(R) < ρ(G) + k2 − 3k + 4 − ε. 
Suppose that R′ is a W -critical extension with core X where |X| > 1. The computation 
in Corollary 4.2 maximized the right side of Equation (3) by assuming that |X| = 1. But 
if |X| > 1, then that computation is maximized by assuming |X| = k − 1 which yields

ρG(R′) ≤ ρG(R) + ρ(W ) − (2k2 − 6k + 4 + (k − 1)ε− 2δ).

Because ρ(G) ≤ ρG(R′) and using the hypothesis, we get

ρ(G) < ρ(G) + k2 − 3k + 4 − ε + ρ(W ) − (2k2 − 6k + 4 + (k − 1)ε− 2δ).
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This simplifies to ρ(W ) > k2−3k+kε −2δ. By Theorem 1.8, this ε-potential is too high 
for W to be a k-Ore graph. And because W is smaller than G, we reach a contradiction 
with the minimality of G. �

Lemma 5.5. Let G be a minimal counterexample to Theorem 1.7. There is no 1-edge-
addition in G.

Proof. Let G be a minimal counterexample to Theorem 1.7 and suppose that there is a 
1-edge-addition in G. Among all 1-edge-additions S, pick one that minimizes the order 
of the k-critical graph H ⊆ G + S. Let R = V (H) and let R′ be a W -critical extension 
of R. Now ρG(R) ≤ ρ(H) + 2(k − 1) + δ and, because R is not a clique, Corollary 4.2
implies that ρG(R′) ≤ ρ(H) It follows that H must be a k-Ore graph, as otherwise H is 
smaller than G and ρG(R′) < ρ(G) which is not possible.

The k-Ore graph with largest ε-potential is Kk so we have

ρG(R) ≤ [k(k − 3) + kε− 2δ] + 2(k − 1) + δ < ρ(G) + 2(k − 1) + kε− δ + 2(k − 1).

By Proposition 5.4, and because 4(k − 1) + kε − δ < k2 − 3k + 4 − ε for all k ≥ 6, the 
core of R′ has size 1. Corollary 4.2 implies that ρG(R′) < ρ(G) +2(k−1) +kε −2δ. Note 
that R′ must be complete because otherwise the right side of this inequality would be 
at least 2(k − 1) lower, and we would again have ρG(R′) < ρ(G). Further, R′ must be 
spanning because otherwise there exists a vertex subset R′′ such that ρG(R′′) < ρ(G). 
Therefore, R is 0-collapsible in G by Proposition 5.2.

By definition, in every proper (k−1)-coloring of G[R], each vertex in ∂GR receives the 
same color. If H is Kk, then R = {u1, u2, . . . , uk} and we can assume that {u1uk} = S. 
We properly (k−1)-color G[R] with φ so that φ(uj) = j for 1 ≤ j ≤ k−1 and φ(uk) = 1. 
Because each vertex in ∂GR receives the same color, this means that {u1, uk} is a 2-vertex 
cutset in G which contradicts Lemma 5.1.

Therefore H is an Ore composition of two k-Ore graphs H1 and H2 with overlap 
vertices {a, b}. Note that S must be on the edge-side of the composition—that is S ⊆
E(H1)—because otherwise {ab} is a 1-edge-addition that contradicts our choice of S. By 
Lemma 5.1 the set {a, b} cannot be a cutset in G so there must be u, v ∈ ∂GR − {a, b}
such that u ∈ V (H1) and v ∈ V (H2) ∩ G. If any proper (k − 1)-coloring φ of G[R] has 
φ(u) /∈ {φ(a), φ(b)}, then we can relabel the colors on H1 so that φ(u) �= φ(v). This 
contradicts the fact that R is 0-collapsible. So without loss of generality, we may assume 
that φ(u) = φ(a). Let P = (V (H2) ∩G) ∪{a, b}. Now either ψ(v) = ψ(a) in every proper 
(k− 1)-coloring ψ of G[P ] or we can produce a proper (k− 1)-coloring of R where u and 
v receive different colors. Thus av is a 1-edge-addition that yields a k-critical subgraph 
of order at most |V (H2)| + 1 which contradicts our choice of S. �

Corollary 5.6. Let G be a minimal counterexample to Theorem 1.7. For any subgraph 
H ⊆ G, there is no diamond of H. Further, if there is an emerald D of H, then there 
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exists a vertex z ∈ V (G) −V (D) such that xz ∈ E(G) for each x ∈ V (D) with degG(x) =
k − 1. Therefore, there is no emerald of G.

Proof. Let G be a minimal counterexample to Theorem 1.7, and let H be a subgraph 
of G. If D is a diamond of H with endpoints {u, v}, then {uv} is a 1-edge-addition in G
which contradicts Lemma 5.5. So we may assume that D is an emerald of H.

Note that degD(x) = k − 2 for each x ∈ V (D) so each such x is adjacent in G to at 
least one vertex V (G) − V (D). If there is at most one x ∈ V (D) with degG(x) = k − 1, 
then the corollary is trivially true. Suppose then, for the sake of contradiction, that x, y
are vertices in D with degG(x) = degG(y) = k − 1 and a, b are vertices in V (G) − V (D)
such that {ax, by} ⊆ E(G) and a �= b. For any proper (k − 1)-coloring φ of G − {x} it 
must be the case that the neighbors of x all receive distinct colors. If we could recolor 
y using φ(a), then φ would extend to all of G which is a contradiction. Therefore, φ(b)
must be the same color as φ(a). But now {ab} is a 1-edge-addition in G which contradicts 
Lemma 5.5.

Lastly, if D is an emerald of G, then the vertex z guaranteed by the above argu-
ment makes a Kk subgraph in G which is not possible in a minimal counterexample to 
Theorem 1.7. �

Lemma 5.7. In a minimal counterexample G to Theorem 1.7, there is no proper vertex 
subset R where R is not a clique and ρG(R) < ρ(G) +2(i +1)(k−1) +δ for 1 ≤ i ≤ k−4

2 . 
Further, G does not have an i-edge-addition for 1 ≤ i ≤ k−4

2 .

Proof. Let G be a minimal counterexample to Theorem 1.7. We will show first that 
a subset of the given ε-potential implies that there is an i-edge-addition in G, and 
then prove inductively that there are no k−4

2 -edge-additions in G. First note that, by 
Corollary 4.2, there is no proper subset that is not a clique and has ε-potential less than 
ρ(G) + 2(k − 1) + δ.

Claim 5.7.1. For each i with 1 ≤ i ≤ k−4
2 if G has no proper vertex subset that is not a 

clique with ε-potential less than ρ(G) + 2i(k− 1) + δ, R is a proper vertex subset that is 
not a clique, and ρG(R) < ρ(G) + 2(i + 1)(k − 1) + δ, then every W -critical extension 
of R is spanning, has core size 1, and is at most (i − 1)-incomplete. Further, there is an 
i-edge-addition in G.

Proof of Claim. Given i, where 1 ≤ i ≤ k−4
2 , suppose that G has no proper vertex subset 

that is not a clique with ε-potential less than ρ(G) + 2i(k− 1) + δ and let R be a proper 
vertex subset that is not a clique and ρG(R) < ρ(G) + 2(i + 1)(k − 1) + δ. For i ≤ k−4

2 , 
this implies that ρG(R) < ρ(G) + k2 − 3k + 2 + δ so every W -critical extension R′ has 
core size 1 by Proposition 5.4.

By Corollary 4.2 we also have ε-potential ρG(R′) ≤ ρG(R) − 2(k − 1) − δ < ρ(G) +
2i(k−1). By the hypothesis of the claim, R′ must be all of V (G). Also, R′ can be at most 
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(i −1)-incomplete as otherwise the right side of the inequality would be at least 2i(k−1)
lower and we would have ρG(R′) < ρ(G), which is not possible. By Proposition 5.2 and 
Lemma 5.3, R is (i − 1)-collapsible in G and hence there is an i-edge-addition in G. �

Suppose now that there is an i-edge-addition in G. We will prove inductively that 
any i with 1 ≤ i ≤ k−4

2 gives a contradiction. Lemma 5.5 shows that i �= 1. We may 
assume that there is no (i − 1)-edge-addition, so by Claim 5.7.1 there is no proper 
vertex subset R with ρG(R) < ρ(G) + 2i(k− 1) + δ. Note that this inductive hypothesis 
guarantees that |S| = i. Because each edge of S might contribute to T (H), we have 
ρG(R) ≤ ρ(H) + 2i(k − 1) + iδ. Among all i-edge-additions S, we will choose one that 
minimizes the order of the k-critical graph H ⊆ G + S. �

Case 1. H is not a k-Ore graph.
Because H is smaller than the minimal counterexample G, we have ρ(H) < ρ(G). 

Thus, we bound the ε-potential of R by ρG(R) < ρ(G) + 2i(k − 1) + iδ < ρ(G) +
2(i + 1)(k − 1) + δ. By Claim 5.7.1, every W -critical extension of R is spanning, has 
core size 1, and is at most (i − 1)-incomplete. Further, there must be some W -critical 
extension R′ that is exactly (i − 1)-incomplete. Otherwise, Proposition 5.2 implies that 
R is (i − 2)-collapsible and there is an (i − 1)-edge-addition in G by Lemma 5.3.

Choose such a (i − 1)-incomplete W -critical extension R′. Using Lemma 4.1 and the 
(i − 1)-incompleteness of R′ we bound the ε-potential as follows:

ρG(R′) < [ρ(G) + 2i(k − 1) + iδ] + ρ(W ) − 2(i− 1)(k − 1) − (k2 − k − 2 + ε− δ)

But R′ = V (G), so this implies that ρ(W ) > k2 −3k− (i +1)δ+ ε. Because W is smaller 
than G, this contradicts the minimality of G unless W is a k-Ore graph. By Lemma 3.4, 
there is a subgraph D ⊆ W −X ⊆ G which is an emerald of W . Corollary 5.6 gives a 
vertex z ∈ V (G) − V (D) such that xz ∈ E(G) for each x ∈ V (D) with degG(x) = k− 1. 
Because R′ is spanning, the only edges in G that can cause degG(x) > k−1 for x ∈ V (D)
are edges from x to R which do not correspond to an edge used in W . These edges 
contribute to the incompleteness of a W -critical extension, so z has at most (i − 1)
non-neighbors in D. Adding these edges yields a Kk, which contradicts the inductive 
hypothesis.

Case 2. H is a k-Ore graph but is not Kk.
If H is a k-Ore graph that is not Kk, then ρ(H) ≤ k(k − 3) + ε − 2δ, and because 

k(k− 3) < ρ(G) + 2(k− 1) we also have ρ(R) < ρ(G) + 2(i + 1)(k− 1) + (i − 2)δ+ ε. For 
i ≤ k−4

2 , this upper bound satisfies the hypothesis of Proposition 5.4 so every W -critical 
extension R′ has core size 1. Corollary 4.2 implies that ρG(R′) < ρ(G) + 2i(k− 1) + (i −
3)δ+ε. For i = 2, the W -critical extension R′ is at most 1-incomplete because otherwise 
the right side is lowered by at least 4(k − 1) and we get ρG(R′) < ρ(G) − δ + ε. This 
implies that ρG(R′) < ρ(G) which is not possible. Note that for i > 3 it is possible that 
R′ is i-incomplete according to this bound, but cannot be j-incomplete for j ≥ i + 1.
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First, suppose that H is an Ore composition of two k-Ore graphs H1 and H2 with 
overlap vertices {a, b}. Note that all edges of S must be on the edge-side of the compo-
sition H1 as otherwise adding ab to S ∩E(H1) is an i-edge-addition that contradicts our 
choice of S. Thus H2 − ab ⊆ G. By Lemma 3.4, there is a subgraph D ⊆ H2 − ab ⊆ G

which is an emerald of H2. Corollary 5.6 gives a vertex z ∈ V (G) − V (D) such that 
xz ∈ E(G) for each x ∈ V (D) with degG(x) = k − 1. For each x ∈ V (D), we have 
degH2

(x) = degH(x) = k − 1, so z ∈ V (H) and either x ∈ NG(z) or x ∈ ∂GR. But 
adding the edges {yz | y ∈ V (D) ∩ ∂GR} creates a Kk subgraph so by the inductive 
hypothesis and our choice of S it follows that |V (D) ∩ ∂GR| ≥ i + 1.

By Lemma 5.1, {a, b} is not a cutset so there is some u ∈ ∂GR − {a, b} such that 
u ∈ V (H1). Let φ be a proper (k− 1)-coloring of G[R], with the colors permuted so that 
the vertex in the core X of the W -critical extension corresponds to color class 1. Thus 
each edge from φ−1({2, 3, . . . , k−1}) ∩R to V (G) −R contributes to the incompleteness 
of the W -critical extension. In the case where i = 2, R′ is at most 1-incomplete so 
|V (D) ∩ ∂GR| ≤ 2. This contradicts our earlier bound on this set. Therefore we may 
assume i > 3 for the rest of this case. Because R′ is at most i-incomplete |V (D) ∩∂GR| ≤
i +1. This implies that |V (D) ∩∂GR| = i +1, R′ is exactly i-incomplete, and that φ(u) = 1.

If φ(u) /∈ {φ(a), φ(b)}, then we can relabel the colors on H1 only so that φ(u) is not 
given to any vertex in V (D) ∩ ∂GR. Because all W -critical extensions of R have a core 
of size 1, this new coloring would give a W -critical extension that is i + 1 incomplete 
which is a contradiction. Therefore it must be the case that, for every proper (k − 1)-
coloring of G[R], φ(u) ∈ {φ(a), φ(b)}. This means that {ua, ub} is a 2-edge-addition 
which contradicts the fact that i > 3.

Case 3. H is Kk.
For this case, we further refine our bound ρG(R) ≤ ρ(H) + 2i(k − 1) + tδ. We do 

not know how many edges of S contribute to T (H), but t ≤ 2. The ε-potential of H is 
ρ(H) = k(k−3) +kε −2δ and so ρ(R) < ρ(G) +2(i +1)(k−1) +(t −2)δ+kε. For i ≤ k−4

2 , 
this upper bound satisfies the hypothesis of Proposition 5.4 so every W -critical extension 
R′ has core size 1. Corollary 4.2 implies that ρG(R′) < ρ(G) + 2i(k − 1) + (t − 3)δ + kε. 
Note that R′ is at most i-incomplete, as otherwise ρG(R′) < ρ(G).

We label R = V (H) = {u1, . . . , uk} so that u1uk ∈ S and properly (k− 1)-color G[R]
with φ so that φ(uj) = j for 1 ≤ j ≤ k − 1 and φ(uk) = 1. Because degG(uj) ≥ k − 1
each vertex uj ∈ R has at least as many edges in G from uj to V (G) −R as the number 
of edges of S incident with uj . Any color class that not incident to an edge in S will 
miss at least i + 1 endpoints of S. So for R′ to be at most i-incomplete, the vertex in 
the core X corresponds to color class 1 and every edge in S must incident to at least 
one of u1 or uk. If u1u2 and uku3 are both in S, then switching the colors on u2 and 
uk give a proper (k − 1)-coloring of G[R] where every color class is not incident to at 
least one edge in S, which is a contradiction. Thus we may assume that, without loss of 
generality, either |S| = 3 and S forms a triangle subgraph or S forms a star subgraph 
with u1 as the center. In either case, t ≤ 1 because G[R] has a Kk−2 subgraph. Thus the 
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bound given by Corollary 4.2 is ρG(R′) < ρ(G) + 2i(k − 1) − 2δ + kε. With this bound, 
R′ cannot be i-incomplete because 2δ > kε.

If S is a triangle, let S = {u1uk, u1u2, uku2}. Because R′ is at most 2-incomplete, 
by changing which two vertices of {u1, u2, uk} have the same color in a proper (k − 1)-
coloring of G[R], it follows that ∂GR = {u1, u2, uk} and each of these vertices has exactly 
two edges to V (G) −R. Thus there are 6 edges from R to V (G) −R. However, i ≤ k−4

2
and i = 3 imply that k ≥ 10, which is a contradiction as k-critical graphs are (k − 1)-
edge-connected.

Suppose instead that S is a star with u1 as the center. Because R′ is at most (i − 1)-
incomplete, every leaf uj of the star has exactly one neighbor in V (G) − R, say yj . 
Consider the graph F = G − {u2, . . . , uk}. No proper (k − 1)-coloring ψ of F can be 
extended to all of G, so it follows that ψ(u1) = ψ(yj) for each j where uj is a leaf of S. 
Thus u1yj is a 1-edge-addition in G, which contradicts Lemma 5.5. �

6. Cloning

Cloning is a reduction operation that will help us understand the structures that exist 
near vertices of degree k − 1 in a minimal counterexample to Theorem 1.7.

Definition 11. Let G be a k-critical graph with xy ∈ E(G) such that degG(x) = k−1. We 
define cloning x with y to mean constructing a new graph Gy→x such that V (Gy→x) =
V (G) ∪ {x̃} − {y} and E(Gy→x) = E(G − y) ∪ {x̃v | v ∈ NG(x)} ∪ {x̃x}.

Thus the vertex y is replaced with the new vertex x̃, which is a copy of x. Below we 
define the notion of a cluster, which was introduced in [7].

Definition 12. A cluster is a maximal set R ⊆ V (G) such that degG(x) = k− 1 for every 
x ∈ R and NG[x] = NG[y] for every pair x, y ∈ R.

Note that if x ∈ V (G) is in a cluster Cx and xy ∈ E(G), then in Gy→x the new vertex 
x̃ is added to the cluster Cx. Further, if x′ is a second vertex in Cx, then Gy→x′ = Gy→x. 
If y is already in Cx, then Gy→x = G. If y is not in Cx, then Gy→x is smaller than G
except in the case where deg(y) = k − 1 and Gy→x is k-critical. In this case, we further 
need y to be in a cluster of size at most |Cx| for Gy→x to be smaller than G.

Lemma 6.1. If G is a k-critical graph where xy ∈ E(G), x is in a cluster of size s, and 
degG(y) ≤ k − 2 + s, then Gy→x is not (k − 1)-colorable.

Proof. Let G be a k-critical graph and let xy ∈ E(G) such that x is in a cluster Cx of 
size s and degG(y) ≤ k− 2 + s. Suppose, for the sake of contradiction, that φ is a proper 
(k− 1)-coloring of Gy→x. Let ψ be the partial proper coloring of G obtained by copying 
φ(u) for every u ∈ V (G) − {y}. Because y has at most k− 2 neighbors outside of Cx we 
can choose ψ(y) to be a color distinct from these neighbors. But now ψ(y) = ψ(z) for 
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some vertex z ∈ Cx because G is k-critical. Without loss of generality, we can assume 
that z = x. We recolor x so that ψ(x) := φ(x̃) and now ψ is a proper (k− 1)-coloring of 
G, which is a contradiction. �

Lemma 6.2. Suppose that G is a minimal counterexample to Theorem 1.7 and xy ∈ E(G)
such that (1) x is in a cluster Cx of size s, (2) degG(y) ≤ k− 2 + s, and (3) if y is in a 
cluster Cy, then Cy �= Cx and |Cy| = t ≤ s. Then for any k-critical subgraph H ⊆ Gy→x

either H is a k-Ore graph or H = Gy→x. Moreover, H = Gy→x is only possible if 
degG(y) = k − 1.

Proof. Let G be a minimal counterexample to Theorem 1.7 and let xy ∈ E(G) such that 
(1) x is in a cluster Cx of size s, (2) degG(y) ≤ k − 2 + s, and (3) if y is in a cluster 
Cy, then Cy �= Cx and |Cy| = t ≤ s. Let Gy→x be the graph obtained by cloning x with 
y. By Lemma 6.1 Gy→x is not (k − 1)-colorable, so there exists a k-critical subgraph 
H ⊆ Gy→x. Note that condition (3) ensures that H is smaller than G. Suppose that H
is not a k-Ore graph; we will see that this either leads to contradiction, or implies that 
degG(y) = k − 1 and H = Gy→x.

We let R = V (H) − {x̃} and note that R is not a clique because H is not a k-Ore 
graph. One can compute that ρG(R) ≤ ρ(H) +k2−3k+4 −ε + δ. Let R′ be a W -critical 
extension of R with core X. Because ρ(G) ≤ ρG(R′) and because H is smaller than G
but is not a k-Ore graph, Lemma 4.1 yields the inequality

[ρ(K|X|) + δT (K|X|) − δ|X|] − k2 + 3k − 4 + ε− δ < ρ(W ). (5)

For 1 < |X| < k − 1, this gives W an ε-potential that is too high for W to be a k-Ore 
graph by Theorem 1.8. Because W is smaller than G, this contradicts the minimality of 
G.

Suppose now that |X| = k−1. Then Observation 2.1 implies that k2 −3k+kε −kδ <

ρ(W ), which is a contradiction unless W is a k-Ore graph. When W is a k-Ore graph, 
Equation (5) is almost tight; more specifically, the difference between the two sides is 
less than 2(k − 1). Therefore, it follows that R′ is a spanning and complete W -critical 
extension, because otherwise the right side is lowered by at least 2(k − 1).

If W is not Kk, Lemma 3.5 implies that D ⊆ W is a diamond or emerald of W disjoint 
from X. Because W − X ⊆ G, Corollary 5.6 implies that D is an emerald of W . But 
R′ is a spanning and complete extension, so degG(x) = k − 1 for each x ∈ V (D). Thus 
D is an emerald of G, which contradicts Corollary 5.6. Therefore we may assume that 
W is Kk, and it follows that V (G) = R ∪ {y}. Thus T (H) and T (G) can differ by at 
most 1, and it must be that |E(H)| = |E(G)|. This implies that degG(y) = k − 1 and 
H = Gy→x.

Suppose instead that |X| = 1. We claim that R′ must be a spanning W -critical 
extension that is at most k−4

2 -incomplete. For an i-incomplete W -critical extension, we 
have
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ρ(G) ≤ ρG(R′) ≤ ρ(H) + ρ(W ) − 2k + 6 − 2i(k − 1) − 2ε + 2δ, (6)

which because H is smaller than G yields

2k − 6 + 2i(k − 1) + 2ε− 2δ < ρ(W ). (7)

Lemma 5.7 implies that any proper vertex subset that is not a clique must have ε-
potential at least ρ(G) +k2−3k+2 +δ. If R′ is not spanning, the left side of Equation (6), 
and subsequently Equation (7), can be increased by k2−3k+2 +δ. Thus k2−k−4 +2ε −δ >

ρ(W ), which contradicts either Theorem 1.8 or the minimality of G. So we may assume 
that R′ is spanning. If i ≥ k−3

2 , then we get k2 − 2k − 3 + 2ε − 2δ < ρ(W ) which also 
contradicts either Theorem 1.8 or the minimality of G. Therefore R′ is spanning and is 
at most k−4

2 -incomplete. In fact, there must be a particular W -critical extension R′ that 
is k−4

2 -incomplete or k−5
2 -incomplete, as otherwise R is k−6

2 -collapsible and then there 
exists a k−4

2 -edge-addition in G by Proposition 5.2 and Lemma 5.3, which contradicts 
Lemma 5.7.

We choose such an i-incomplete W -critical extension R′ for i ∈
{

k−4
2 , k−5

2
}
. Now 

Equation (7) becomes k2 − 4k − 1 + 2ε − 2δ < ρ(W ). This ε-potential does not match 
the conclusion of Theorem 1.7 so W must be a k-Ore graph by the minimality of G. As 
W is a k-Ore graph, Lemma 3.4 implies that D ⊆ W is a diamond or emerald of W
disjoint from X. Corollary implies that 5.6 D is an emerald of W and there must exist a 
vertex z in V (G) −V (D) such that xz ∈ E(G) for each x ∈ V (D) with degG(x) = k− 1. 
However, R′ is at most k−4

2 -incomplete, so there are at most k−4
2 vertices of D that are 

not adjacent to z. The set of edges from these vertices to z is a k−4
2 -edge-addition, which 

contradicts Lemma 5.7. �

To talk about the different outcomes of a cloning operation, we introduce the following 
terminology.

Definition 13. A gadget, H◦, is a graph obtained from a k-Ore graph H by deleting a 
vertex x of degree k−1 in a cluster of size at least 2. Note that the requirement of cluster 
size prevents x from being an overlap vertex of an Ore composition. A gadget of G is a 
subgraph of G that is a gadget.

Definition 14. A key vertex of a k-Ore graph H is a vertex x such that, whenever H is an 
Ore composition of two graphs H1 and H2 with overlap vertices {a, b}, x ∈ V (H1) −{a, b}. 
That is, x is on the edge-side of the composition and is not an overlap vertex. A key 
vertex of a gadget is a vertex which is a key vertex of the corresponding k-Ore graph.

Corollary 6.3. Suppose that G is a minimal counterexample to Theorem 1.7 and xy ∈
E(G) such that (1) x is in a cluster Cx of size s, (2) degG(y) ≤ k−2 + s, and (3) if y is 
in a cluster Cy, then Cy �= Cx and |Cy| = t ≤ s. Then x is a key vertex of a gadget of G, 
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or x is in a Kk−3 subgraph of G. Moreover, the latter is only possible if degG(y) = k− 1
and y is not in the Kk−3 subgraph.

Proof. By Lemma 6.2 there is a k-critical graph H ⊆ Gy→x. If H is a k-Ore graph, then 
H − x̃ is a gadget of G. Suppose that H is an Ore composition of two k-Ore graphs H1

and H2 with overlap vertices {a, b}. If x ∈ V (H2) or if x ∈ {a, b}, then ab is a 1-edge-
addition in G, which contradicts Lemma 5.5. Because every vertex of Kk is trivially a 
key vertex, it follows that x is a key vertex of H − x̃.

If H is not a k-Ore graph, then degG(y) = k − 1 by Lemma 6.2 and thus H and 
G have the same number of edges. However, H is smaller than G because s ≥ t. Thus 
ρ(H) < ρ(G) which is only possible if adding x̃ creates either a Kk−2 or Kk−1 subgraph 
of H that doesn’t exist in G. In either case, x is in a Kk−3 subgraph of G that does not 
contain y. �

To aid with discharging, it is useful to classify the vertices of degree k−1 in a minimal 
counterexample to Theorem 1.7 into three distinct groups.

Definition 15. Let G be a minimal counterexample to Theorem 1.7 and suppose that 
x ∈ V (G) is a vertex of degree k− 1. Let Cx be the cluster containing x; note that every 
vertex withing a given cluster is classified into the same group.

• If x is a key vertex of a gadget or is in a Kk−3 subgraph, then we call x a structure-
vertex.

• If x is not a structure-vertex and is adjacent to a vertex y which belongs to a distinct 
cluster Cy, then we call x a near-vertex. Note that Corollary 6.3 implies that y is 
necessarily a structure-vertex and that |Cx| < |Cy|.

• If x is not a structure-vertex and every neighbor of x with degree k−1 is in Cx, then 
we call x a lone-vertex. Note that |Cx| ≤ k − 4, or x would be a structure-vertex.

Lemma 6.4. Suppose that G is a minimal counterexample to Theorem 1.7 and that x is 
a structure-vertex in G. Then x cannot be adjacent to two near-vertices y and z with 
Cy �= Cz.

Proof. Let G be minimal counterexample to Theorem 1.7 and suppose that x is a 
structure-vertex with two near-vertex neighbors y and z such that Cy �= Cz. If yz ∈ E(G), 
then Corollary 6.3 implies that either y or z is a structure-vertex, which is a contradic-
tion. Therefore we conclude that yz /∈ E(G) and consider Gx→z. By Lemma 6.1 there 
is a k-critical subgraph H ⊆ Gx→z, and H cannot include the vertex y. Therefore 
|V (H)| < |V (Gx→z)| = |V (G)| and we know that H is smaller than G. This replaces 
the need for condition (3) of Lemma 6.2 and Corollary 6.3 and so it follows that z is a 
structure-vertex, which contradicts the fact that it is a near-vertex. �
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Lemma 6.5. In a minimal counterexample G to Theorem 1.7, let x and y be adjacent 
vertices such that degG(x) = k− 1 and NG[x] is not a subset of NG[y]. Then degG(y) ≥
|NG(x) ∩NG(y)| + 1 + k−3

2 .

Proof. Let G be a minimal counterexample to Theorem 1.7 and let x and y be adjacent 
vertices such that degG(x) = k − 1 and w ∈ NG[x] − NG[y]. In any proper (k − 1)-
coloring φ of G − x, the vertices of NG(x) all receive distinct colors. Therefore, some 
vertex of NG[y] − NG[x] must be in the same color class as w and adding the edge set 
S = {wui | ui ∈ NG[y] −NG[x]} to G −x creates a k-critical subgraph. Using Lemma 5.7
we get |S| ≥ k−3

2 , and this gives the desired bound on degG(y). �

Lemma 6.6. Let G be a minimal counterexample to Theorem 1.7 and suppose that x is a 
key vertex in a gadget of G such that degG(x) = k−1. Then x has at least k−3

2 neighbors 
of degree at least 3(k−3)

2 .

Proof. Let G be a minimal counterexample to Theorem 1.7 and let x be a vertex of 
degree k− 1 which is a key vertex of a gadget H◦ of G. Let H be the k-Ore graph where 
H◦ = H −w. If H is an Ore composition of two graphs H1 and H2 with overlap vertices 
{a, b}, then w /∈ {a, b} and degH(w) = k − 1 by the definition of gadget. Further, we 
must have w ∈ V (H1) because otherwise {ab} is a 1-edge-addition in G which contradicts 
Lemma 5.5. Therefore if H ′

2 is the split-side of the composition after separating the split 
vertex into a and b, then H ′

2 ⊆ G.
Proposition 3.1 gives a sequence of k-Ore graphs such that H can be viewed as a 

Kk graph with some edges replaced by suitable split k-Ore graphs. The same sequence 
of Ore compositions lets us view H◦ as a Kk−1 graph H ′ with some edges replaced 
by the same split k-Ore graphs. Because each step in the sequence is the edge-side of 
the subsequent Ore composition, V (H ′) ⊆ V (G). The key vertex x is not an overlap 
vertex for any Ore composition, so xu ∈ E(G) for each u ∈ V (H ′) − {x}. Therefore 
x has one neighbor z ∈ V (G) − V (H◦). We partition the vertices of H ′ into two sets 
A := {u ∈ V (H ′) | uz ∈ E(G)} and B := V (H ′) − A. Note that in any proper (k − 1)-
coloring of H◦, each vertex of H ′ gets a distinct color.

First, we show that V (G) = V (H◦) ∪ {z} is not possible. Suppose, for sake of con-
tradiction that V (G) = V (H◦) ∪ {z}. If H = Kk, then this implies that G is also Kk, 
which is a contradiction. Therefore H is an Ore composition of two k-Ore graphs H1 and 
H2 with overlap vertices {a, b}. Because ρ(G) > k(k − 3) − 2(k − 1) by hypothesis and 
ρ(H) ≤ k(k− 3) − 2δ + ε by Theorem 1.8, it follows that |E(G)| = |E(H)| and therefore 
degG(z) = k − 1. By Lemma 5.1, {a, b} is not a cutset, so there exists some zv with 
v ∈ V (H2).

Let φ be a proper (k − 1)-coloring of H◦. If φ(v) /∈ {φ(a), φ(b)}, then it is possible 
to relabel the colors on split-side vertices only so that φ(v) = φ(x). But this updated 
coloring would then extend to z, as two of z’s neighbors share a color. Therefore, where 
H is an Ore composition of two k-Ore graphs H1 and H2 with overlap vertices {a, b}, 
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any neighbor v of z with v ∈ V (H2) is colored the same as either a or b by any proper 
(k−1)-coloring of H◦. This implies that {za, zb, ab} is a 3-edge-addition which contradicts 
Lemma 5.7 because k ≥ 10.

Therefore V (H◦) ∪ {z} is a proper subset of V (G). But it follows from this that 
{zb | b ∈ B} is a |B|-edge-addition in G. By Lemma 5.7, we have |B| ≥ k−3

2 . By 
Lemma 6.5, degG(b) ≥ |NG(x) ∩NG(b)| +1 + k−3

2 for each b ∈ B. If b is adjacent to each 
vertex in V (H ′), then |NG(x) ∩ NG(b)| = k − 3 and we get one more than the desired 
bound. For any u ∈ V (H ′) that is not in NG(b), H is an Ore composition of two k-Ore 
graphs H1 and H2 with overlap vertices {u, b}. Let H ′

2 be the split side of the composition 
after separating the split vertex into u and b; note that H ′

2 ⊆ G. In any proper (k − 1)-
coloring of H ′

2, different colors are given to u and b and thus {uv | v ∈ NH′
2
(b)} is a 

|NH′
2
(b)|-edge-addition in G. By Lemma 5.7, it follows that |NH′

2
(b)| ≥ k−3

2 . However, 
the vertices in |NH′

2
(b)| may also include the k−3

2 vertices in NG(b) −NG(x) counted by 

Lemma 6.5. Therefore, we conclude that degG(b) ≥ 3(k−3)
2 . �

Lemma 6.7. If x is in a Kk−3 subgraph D ⊆ G, where G is a minimal counterexample to 
Theorem 1.7 and degG(x) = k − 1, then x has at least k−9

6 neighbors of degree at least 
3(k−3)

2 − 1. Furthermore, if x has a neighbor y ∈ V (G) − V (D) which is in a different 
cluster, then x has at least k−7

2 neighbors of degree at least 3(k−3)
2 − 1.

Proof. Let G be a minimal counterexample to Theorem 1.7 such that x is a vertex 
of degree k − 1 in a Kk−3 subgraph D. Let z1, z2, z3 be the three neighbors of x in 
V (G) − V (D). We partition the vertices of D into two sets A := {u ∈ V (D) | uzi ∈
E(G) for each i ∈ {1, 2, 3}}, and B := V (D) −A. By Lemma 6.5, each b ∈ B has degree 
at least (k− 5) + 1 + k−3

2 = 3(k−3)
2 − 1. It remains to show that B is a large enough set.

The edges {z1z2, z1z3, z2z3} and bzi for each pair b ∈ B, i ∈ {1, 2, 3} form a (3 +3|B|)-
edge-addition in G, so it follows from Lemma 5.7 that |B| ≥ k−9

6 . Now suppose without 
loss of generality that z1 = y is a vertex of degree k − 1 that is in a different cluster 
than x. Because there is at least one vertex in B, Lemma 6.5 implies that degG(z1) ≥
(|A| −1) +1 + k−3

2 . But degG(z1) = k−1, so it follows that |A| ≤ k+1
2 . As A ∪B = V (D), 

this implies that |B| ≥ k−7
2 . �

7. Discharging

We start by analyzing the local structure of a minimal counterexample to Theorem 1.7. 
Then we complete the discharging argument in two stages; in the first stage we send 
charge along edges according to established rules, and in the second stage we average 
charge across the graph. We define a charge function w : V (G) → R so that for all 
v ∈ V (G)

w(v) := (k − 2)(k + 1) + ε− degG(v)(k − 1).
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Note that the total initial charge across G is ρ(G) + δT (G), and that the charge of a 
vertex x with degree d is w(x) = (k − d)(k − 1) − 2 + ε.

We now define the four sets we need to address in the second stage of discharging.

L := {v ∈ V (G) | v is a lone-vertex in a cluster of size 1},

M := {v ∈ V (G) | v is a lone-vertex in a cluster of size 2},

P := {v ∈ V (G) | degG(v) = k},

Q := {v ∈ V (G) | degG(v) = k + 1}.

Let R be the set V (G) − (L ∪M ∪ P ∪Q) which contains the remaining vertices of G.
Discharging Rule #1 (R1): Every vertex of degree at least k + 2 reserves charge of 

−2 + ε and sends the remaining charge equally to all neighbors.
Discharging Rule #2 (R2): Every structure-vertex sends total charge −(k−1) spread 

equally among all neighbors that are near-vertices.
For each vertex v, define w′(v) to be the charge after applying (R1) and (R2) to G. 

Note that a vertex of degree d which follows (R1) sends out charge (kd −1)(k−1) to each 
of its neighbors. Also note that if a structure-vertex x sends charge to a near-vertex y, 
then |Cx| > |Cy|.

Lemma 7.1. Apply (R1) and (R2) to a minimal counterexample to Theorem 1.7 G with 
charge function w as above. For every vertex v ∈ V (G) − (L ∪ M ∪ P ∪ Q), the new 
charge w′(v) is at most −2 + ε.

Proof. Let G be a minimal counterexample to Theorem 1.7 with charge function w :
V (G) → R as above, and apply (R1) and (R2). If v is a vertex with degG(v) ≥ k + 2, 
then by (R1) it follows that w′(v) ≤ −2 + ε. The cases that we need to check are when v
has degree k− 1 and is either a structure-vertex, near-vertex, or lone-vertex in a cluster 
of size at least 3.

Case 1a. Suppose that v is a structure-vertex that is a key vertex of a gadget of G.
By Lemma 6.6, the vertex v has at least k−3

2 neighbors of degree at least 3(k−3)
2 ; we 

will call these high-degree neighbors. For k ≥ 27, high-degree neighbors have degree at 
least 4

3k. Therefore v receives charge of −1
4 (k−1) or less from each high-degree neighbor 

by (R1). The vertex v possibly sends charge −(k−1) by (R2) as well. Therefore it follows 
that

w′(v) ≤ k − 3 + ε−
(
k − 1

4

)(
k − 3

2

)
+ (k − 1) = −1

8 (k − 1)(k − 19) − 2 + ε.

Because k ≥ 19, we have w′(v) ≤ −2 + ε as desired.

Case 1b. Suppose that v is a structure-vertex that is in a Kk−3 subgraph of G.
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By Lemma 6.7, the vertex v has at least k−9
6 neighbors of degree at least 3(k−3)

2 − 1; 
we will call these high-degree neighbors. For k ≥ 33, high-degree neighbors have degree 
at least 4

3k. As long as v is not affected by (R2) we have

w′(v) ≤ k − 3 + ε−
(
k − 1

4

)(
k − 9

6

)
= −1

24 (k2 − 34k + 33) − 2 + ε.

Because k ≥ 33, we have w′(v) ≤ −2 + ε as desired.
If v is affected by (R2), then v has a neighbor outside of the Kk−3 which is in a 

different cluster, and by Lemma 6.7 there are at least k−7
2 high-degree neighbors. In this 

case we have

w′(v) ≤ k − 3 + ε−
(
k − 1

4

)(
k − 7

2

)
+ (k − 1) = −1

8 (k2 − 24k + 23) − 2 + ε.

Because k ≥ 23, we have w′(v) ≤ −2 + ε as desired.

Case 2. Suppose that v is a near-vertex.
Let v be in a cluster Cv of size t and let u be an adjacent structure-vertex in a cluster 

Cu of size s. By (R2) each vertex of Cv, including v, receives a charge of −(k−1)
r from 

each vertex of Cu. Because s > r, the final charge on v is

w′(v) ≤ k − 3 + ε− s(k − 1)
r

< −2 + ε.

Case 3. Suppose that v is a lone-vertex in a cluster Cv of size r, where r ≥ 3.
By definition of lone-vertex, v does not have any neighbors y in a cluster Cy with 

Cy �= Cv. Let y1, y2, . . . yk−r be the neighbors of v in V (G) −Cv. By Corollary 6.3 no yi
has degree less than k−1 +r, as this would imply that v is a structure-vertex. Therefore, 
by (R1), each yi sends charge at most 

(
k

k−1+r − 1
)

(k−1) to v. It follows that the upper 
bound on w′(v) is

ŵ′(v) ≤ k − 3 + ε +
(

1 − r

k − 1 + r

)
(k − 1)(k − r).

The second derivative of ŵ′(v) with respect to r is positive for all k > 1, so we only need 
to check that ŵ′(v) := −2 + ε for r = 3 and r = k − 4. For r = 3 we have

ŵ′(v) = k − 3 + ε + −2(k − 1)(k − 3)
k + 2 = −2 + ε + (k − 1)(8 − k)

k + 2

and for r = k − 4 we have

ŵ′(v) = k − 3 + ε + (5 − k)(k − 1)4
2k − 5 = −2 + ε + (k − 1)(15 − 2k)

2k − 5 .

Because k ≥ 8, we get w′(v) ≤ −2 + ε as desired. �



220 R.J. Gould et al. / Journal of Combinatorial Theory, Series B 156 (2022) 194–222
Lemma 7.1, specifically Case 1b, restricts our main result to k ≥ 33. Although there is 
approximation in the proof of this case, using a computer algebra system one can check 
that the result only holds for k ≥ 33; we paid no penalty in strength of argument by 
using simplified calculations. Now that we have verified the charge for vertices in R, we 
need to examine the charge on L, M, P, Q to calculate the total charge. This gives us a 
lower bound on the combined size of L and P .

Lemma 7.2. In a minimal counterexample G to Theorem 1.7, let L be the set of lone-
vertices in clusters of size 1 and let P be the set of vertices of degree k. Then |L| + |P | >
|V (G)| 

(
1 − ε

2
)
.

Proof. For each x ∈ L ∪ M , every vertex in NG(x) ∩ R has degree at least k + 2, so 
a charge of −2(k−1)

k+2 or less is sent along each edge from R to L ∪M . Let e(L ∪M, R)
denote the number of such edges. The total charge on G is bounded by

∑
v∈V (G)

w(v) =
∑

v∈V (G)

w′(v) ≤ ε|V (G)| − 2|R| + (k − 3)(|L| + |M |) − 2|P |

− (k + 1)|Q| − 2(k − 1)
k + 2 e(L ∪M,R). (8)

Note that no vertex in M is adjacent to any vertex in P by Corollary 6.3. Thus it follows 
that

e(L ∪M,R) = (k − 1)|L| − e(L,P ∪Q) + (k − 2)|M | − e(M,Q). (9)

It is clear that e(L, P ∪ Q) ≤ (k − 1)|L|, and Lemma 2.2 shows that e(L, P ∪ Q) ≤
2|L| + 2|P | + 3|Q| (calculations are simpler when we increase the contribution of the 
independent set L). Then it follows that

e(L,P ∪Q) ≤ k − 4
2(k − 1)(k − 1)|L| +

(
1 − k − 4

2(k − 1)

)
(2|L| + 2|P | + 3|Q|) . (10)

Using Lemma 2.2 we can also bound e(M, Q) ≤ |M | + 3|Q|. With this, Equation (9), 
and Equation (10) we can rewrite Equation (8) as

∑
v∈V (G)

w(v) ≤ ε|V (G)| − 2|R| + (k − 3)(|L| + |M |) − 2|P | − (k + 1)|Q|

− (k − 3)|L| + 2|P | − 2(k2 − 4k + 3)
k + 2 |M | + 9k

k + 2 |Q|

= ε|V (G)| − 2|R| − k2 − 7k + 12
k + 2 |M | − k2 − 6k − 2

k + 2 |Q|. (11)

As the coefficients of |M | and |Q| are both at most -2 for k > 8, we have
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ε|V (G)| − 2(|V (G)| − |L| − |P |) ≥
∑

v∈V (G)

w(v) = ρ(G) + δT (G) > 0.

From this, it follows that |L| + |P | > |V (G)| 
(
1 − ε

2
)
. �

We are now prepared to prove Theorem 1.7.

Proof of Theorem 1.7. We first get a bound on the set L. It is clear that 2|E(G)| ≥
k|P | + (k − 1)|L|, so by Lemma 7.2 it follows that

2|E(G)| > k|V (G)|
(
1 − ε

2

)
− |L|. (12)

By assumption ρ(G) > 0, so 2|E(G)| <
(
k + ε−2

k−1

)
|V (G)| by the definition of ε-

potential. Combining this with Equation (12), we have

|L| > |V (G)|
k − 1

(
2 − ε− ε(k2 − k)

2

)
.

Recall that mic(G) is the maximum of 
∑

v∈I degG(v) over all independent vertex 
subsets I, so mic(G) ≥ (k− 1)|L|. Kierstead and Rabern (Theorem 2.4 in [5]) show that 
2|E(G)| > (k − 2)|V (G)| + mic(G). Therefore we can improve Equation (12) to

2|E(G)| > |V (G)|
(

(k − 2) + 2 − ε− ε(k2 − k)
2

)
.

Again, because ρ(G) > 0 the definition of ε-potential shows that

(
k + ε− 2

k − 1

)
|V (G)| > |V (G)|

(
(k − 2) + 2 − ε− ε(k2 − k)

2

)

and hence

ε− 2
k − 1 > −ε− ε(k2 − k)

2 .

This is equivalent to

4
k3 − 2k2 + 3k < ε,

which is a contradiction to our choice of ε. �



222 R.J. Gould et al. / Journal of Combinatorial Theory, Series B 156 (2022) 194–222
References

[1] G.A. Dirac, The structure of k-chromatic graphs, Fundam. Math. 40 (1953) 42–50.
[2] G.A. Dirac, A theorem of R. L. Brooks and a conjecture of H. Hadwiger, Proc. Lond. Math. Soc. 3 

(1957) 161–195.
[3] T. Gallai, Kritische Graphen II, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963) 373–395.
[4] Wenbo Gao, Luke Postle, On the minimal edge density of k4-free 6-critical graphs, arXiv preprint, 

arXiv :1811 .02940, 2018.
[5] H.A. Kierstead, L. Rabern, Extracting list colorings from large independent sets, J. Graph Theory 

86 (2017) 315–328.
[6] A. Kostochka, M. Stiebitz, Excess in colour-critical graphs, Bolyai Soc. Math. Stud. 7 (1999) 87–99.
[7] A. Kostochka, M. Yancey, Ore’s conjecture on color-critical graphs is almost true, J. Comb. Theory, 

Ser. B 109 (2014) 73–101.
[8] A. Kostochka, M. Yancey, A Brooks-type result for sparse critical graphs, Combinatorica 38 (2018) 

887–934.
[9] M. Krivelevich, On the minimal number of edges in color-critical graphs, Combinatorica 17 (1997) 

401–426.
[10] O. Ore, The Four Color Problem, Academic Press, New York, 1967.
[11] L. Postle, Strengthening Ore’s conjecture for 4-critical graphs of girth at least five, Unpublished 

manuscript.
[12] L. Postle, On the minimum edge-density of 5-critical triangle-free graphs, Electron. Notes Discrete 

Math. 49 (2015) 667–673.
[13] R. Thomas, B. Walls, Three-coloring Klein bottle graphs of girth five, J. Comb. Theory, Ser. B 92 

(2004) 115–135.
[14] D. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, Inc., Upper Saddle River, NJ, 2001.

http://refhub.elsevier.com/S0095-8956(22)00040-5/bib3F516E2D3A5A2DC6E9937548030DDC85s1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bibF96B956EE25B5B9442055742B9F4ED43s1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bibF96B956EE25B5B9442055742B9F4ED43s1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib50CBB1145C4310B4CABA20F8C14C98E3s1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib15F6AEC07613FF13B0C79EFFCBD71373s1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib15F6AEC07613FF13B0C79EFFCBD71373s1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib7013B80893158E265DEED59C07DB7E51s1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib7013B80893158E265DEED59C07DB7E51s1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib9F40B451176176904E546A91CDB345B2s1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib0BC1321E1DEFDE0F172FD14EB21898D3s1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib0BC1321E1DEFDE0F172FD14EB21898D3s1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib79F151595AEB2A39EC846DAA0A542897s1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib79F151595AEB2A39EC846DAA0A542897s1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bibF0B3B8A0E3BAAC938EFB648061CBAC5As1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bibF0B3B8A0E3BAAC938EFB648061CBAC5As1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib51BC7CC58DD6A30839DBDA6DCEB56077s1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib2CBA2942CC5AFFE559D5B66A2EAAD37Fs1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib2CBA2942CC5AFFE559D5B66A2EAAD37Fs1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib3D9975706BE3087CA199F440B1589B9Es1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bib3D9975706BE3087CA199F440B1589B9Es1
http://refhub.elsevier.com/S0095-8956(22)00040-5/bibDA4F0053A5C13882268852AE2DA2E466s1

	Structure in sparse k-critical graphs
	1 Introduction
	1.1 Outline of paper and notation

	2 Preliminaries
	3 k-Ore graphs
	4 Critical extensions
	5 Edge-additions
	6 Cloning
	7 Discharging
	References


