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Abstract

Let G be a graph, and let σ3(G) be the minimum degree sum of three independent vertices
of G. We prove that if G is a graph of order at least 8k + 5 and σ3(G) ≥ 9k − 2 with k ≥ 1,
then G contains k vertex-disjoint chorded cycles. We also show that the degree sum condition
on σ3(G) is sharp.
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1 Introduction

The study of cycles in graphs is a rich and important area. One question of particular interest
is to find conditions that guarantee the existence of k vertex-disjoint cycles. In 1963, Corrádi
and Hajnal [3] proved that if |G| ≥ 3k and the minimum degree δ(G) ≥ 2k, then G contains k
vertex-disjoint cycles. For an integer t ≥ 1, let

σt(G) = min

{∑
v∈X

dG(v) |X is an independent vertex set of G with |X| = t.

}
,

and σt(G) = ∞ when the independence number α(G) < t. Enomoto [4] and Wang [11] indepen-
dently extended the Corrádi and Hajnal result showing, if |G| ≥ 3k and σ2(G) ≥ 4k − 1, then G
contains k vertex-disjoint cycles. Fujita et al. [6] proved that if |G| ≥ 3k + 2 and σ3(G) ≥ 6k − 2,
then G contains k vertex-disjoint cycles, and in [9], this result was extended to σ4(G) ≥ 8k − 3.

A chord of a cycle is an edge between two non-adjacent vertices of the cycle, and a chorded
cycle is a cycle with at least one chord. In 2008, Finkel improved Corrádi and Hajnal’s result for
chorded cycles.

Theorem 1.1. (Finkel [5]) Let k ≥ 1 be an integer. If G is a graph of order at least 4k and
δ(G) ≥ 3k, then G contains k vertex-disjoint chorded cycles.

In 2010, Chiba et al. proved Theorem 1.2 which is a stronger result than Theorem 1.1, since
σ2(G) ≥ 2δ(G).

Theorem 1.2. (Chiba, Fujita, Gao, Li [1]) Let k ≥ 1 be an integer. If G is a graph of order at
least 4k and σ2(G) ≥ 6k − 1, then G contains k vertex-disjoint chorded cycles.

In this paper, we consider a similar extension for chorded cycles, as Fujita et al. [6] proved the
existence of k vertex-disjoint cycles under the condition σ3(G). In particular, we first show the
following.
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Theorem 1.3. If G is a graph of order at least 7 and σ3(G) ≥ 7, then G contains a chorded cycle.

Remark 1. We define the following graphs: G1 = K2 ∪ K2, G2 = K2 ∪ K3, and G3 = K3 ∪ K3,
where H1 ∪H2 denotes the union of two disjoint graphs H1 and H2. Then for each 1 ≤ i ≤ 3, Gi

satisfies the σ3(G) condition of Theorem 1.3, since the independence number α(Gi) = 2. However,
Gi for each 1 ≤ i ≤ 3 does not contain a chorded cycle. Thus |G| ≥ 7 is necessary.

Our main result is the following theorem.

Theorem 1.4. Let k ≥ 1 be an integer. If G is a graph of order at least 8k+5 and σ3(G) ≥ 9k−2,
then G contains k vertex-disjoint chorded cycles.

Remark 2. Theorem 1.4 is sharp with respect to the degree sum condition. Consider the complete
bipartite graph G = K3k−1,n−3k+1, where large n = |G|. Then σ3(G) = 3(3k−1) = 9k−3. However,
G does not contain k vertex-disjoint chorded cycles, since any chorded cycle must contain at least
3 vertices from each partite set. Thus σ3(G) ≥ 9k − 2 is necessary. Also, since σ3(G) ≥ 3σ2(G)/2,
when the order of G is sufficiently large, Theorem 1.4 is a stronger result than Theorem 1.2.

For other related results on vertex-disjoint chorded cycles in graphs and bipartite graphs, we
refer the reader to see [2, 7, 10].

In this paper, all graphs are simple. Let G be a graph, H a subgraph of G and X ⊆ V (G). For
u ∈ V (G), the set of neighbors of u in G is denoted by NG(u), and we denote dG(u) = |NG(u)|.
For u ∈ V (G), we denote NH(u) = NG(u)∩V (H) and dH(u) = |NH(u)|. Also we denote dH(X) =∑

u∈X dH(u). If H = G, then dG(X) = dH(X). The subgraph of G induced by X is denoted by
⟨X⟩. Let G−X = ⟨V (G)−X⟩ and G−H = ⟨V (G)−V (H)⟩. If X = {x}, then we write G−x for
G−X. If there is no fear of confusion, then we use the same symbol for a graph and its vertex set.
For a graph G, comp(G) is the number of components of G. If G is one vertex, that is, V (G) = {x},
then we simply write x instead of G. For an integer r ≥ 1 and two vertex-disjoint subgraphs A,B
of G, we denote by (d1, d2, . . . , dr) a degree sequence from A to B such that dB(vi) ≥ di and
vi ∈ V (A) for each 1 ≤ i ≤ r. In this paper, since it is sufficient to consider the case of equality in
the above inequality, when we write (d1, d2, . . . , dr), we assume dB(vi) = di for each 1 ≤ i ≤ r. For
two disjoint X,Y ⊆ V (G), E(X,Y ) denotes the set of edges of G connecting a vertex in X and a
vertex in Y . Let Q be a path or a cycle with a given orientation and x ∈ V (Q). Then x+ denotes
the first successor of x on Q and x− denotes the first predecessor of x on Q. If x, y ∈ V (Q), then
Q[x, y] denotes the path of Q from x to y (including x and y) in the given direction. The reverse
sequence of Q[x, y] is denoted by Q−[y, x]. We also write Q(x, y] = Q[x+, y], Q[x, y) = Q[x, y−]
and Q(x, y) = Q[x+, y−]. If Q is a path (or a cycle), say Q = x1, x2, . . . , xt(, x1), then we assume
an orientation of Q is given from x1 to xt. If P is a path connecting x and y of V (G), then we
denote the path P as P [x, y]. A cycle of length ℓ is called a ℓ-cycle. For terminology and notation
not defined here, see [8].

2 Preliminaries

Definition 2.1. Suppose C1, . . . , Cr are r vertex-disjoint chorded cycles in a graph G. We say
{C1, . . . , Cr} is minimal if G does not contain r vertex-disjoint chorded cycles C ′

1, . . . , C
′
r such that

|∪r
i=1V (C ′

i)| < |∪r
i=1V (Ci)|.
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Definition 2.2. Let C = v1, . . . , vt, v1 be a cycle with chord vivj , i < j. We say a chord vv′ ̸= vivj
is parallel to vivj if either v, v′ ∈ C[vi, vj ] or v, v

′ ∈ C[vj , vi]. Note if two distinct chords share an
endpoint, then they are parallel. We say two distinct chords are crossing if they are not parallel.

Definition 2.3. Let uivj and uℓvm be two distinct edges between two vertex-disjoint paths P1 =
u1, . . . , us and P2 = v1, . . . , vt. We say uivj and uℓvm are parallel if either i ≤ ℓ and j ≤ m, or
ℓ ≤ i and m ≤ j. Note if two distinct edges between P1 and P2 share an endpoint, then they are
parallel. We say two distinct edges between two vertex-disjoint paths are crossing if they are not
parallel.

Definition 2.4. Let vivj and vℓvm be two distinct edges between vertices of a path P = v1, . . . , vt,
with j ≥ i + 2 and m ≥ ℓ + 2. We say vivj and vℓvm are nested if either i ≤ ℓ < m ≤ j or
ℓ ≤ i < j ≤ m.

Definition 2.5. Let P = v1, . . . , vt be a path. We say a vertex vi on P has a left edge if there
exists an edge vivj for some j < i − 1. We also say vi has a right edge if there exists an edge vivj
for some j > i+ 1.

3 Lemmas

Lemma 3.1. Let r ≥ 1 be an integer, and let C = {C1, . . . , Cr} be a minimal set of r vertex-disjoint
chorded cycles in a graph G. For any 1 ≤ i ≤ r, Ci cannot have two or more parallel chords.

Proof. This follows easily from the minimality of C .

Lemma 3.2. Let r ≥ 1 be an integer, and let C = {C1, . . . , Cr} be a minimal set of r vertex-
disjoint chorded cycles in a graph G. If |Ci| ≥ 7 for some 1 ≤ i ≤ r, then Ci has at most two
chords. Furthermore, if Ci has two chords, then these chords must be crossing.

Proof. Let |Ci| ≥ 7 for some 1 ≤ i ≤ r. Suppose Ci contains at least three chords. By Lemma
3.1, no two of them can be parallel. Thus they are all mutually crossing. Label the endpoints
of these three chords v1, v2, . . . , v6 in that order on Ci. Since the chords are mutually crossing,
the three chords are given by v1v4, v2v5, v3v6. These six endpoints partition Ci into six intervals
Ci[vj , vj+1), 1 ≤ j ≤ 6, where v7 = v1. Since |Ci| ≥ 7, some interval contains at least one vertex
of Ci which is not an endpoint of the three chords. Without loss of generality, we may assume
Ci[v1, v2) contains some vertex of Ci other than v1. Then Ci[v2, v4], v1, C

−
i [v1, v5], v2 is a shorter

cycle with chord v3v6. Thus Ci has at most two chords. If the Ci has two chords, then these chords
must be crossing by Lemma 3.1.

Lemma 3.3. Let r ≥ 1 be an integer, and let C = {C1, . . . , Cr} be a minimal set of r vertex-disjoint
chorded cycles in a graph G. Then dCi(x) ≤ 4 for any 1 ≤ i ≤ r and any x ∈ V (G)− ∪r

i=1V (Ci).
Furthermore, for some C ∈ C and some x ∈ V (G)−∪r

i=1V (Ci), if dC(x) = 4, then |C| = 4, and if
dC(x) = 3, then |C| ≤ 6.

Proof. Suppose dC(x) ≥ 5 for some C ∈ C and some x ∈ V (G) − ∪r
i=1V (Ci). Let vj ∈ NC(x)

with 1 ≤ j ≤ 5, and let v1, v2, . . . , v5 be in that order on C. Then x,C[v1, v3], x is a shorter cycle
with chord xv2, contradicting the minimality of C . Thus dCi(x) ≤ 4 for any 1 ≤ i ≤ r and any
x ∈ V (G)− ∪r

i=1V (Ci).
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Next suppose dC(x) = 4 for some C ∈ C and some x ∈ V (G)−∪r
i=1V (Ci). Let vi ∈ NC(x) with

1 ≤ i ≤ 4, and let v1, v2, v3, v4 be in that order on C. Let X = {v1, v2, v3, v4}. These neighbors
define four intervals C[vi, vi+1), 1 ≤ i ≤ 4, where v5 = v1. Assume |C| ≥ 5. Then a vertex of C−X
lies in one of the intervals. Without loss of generality, we may assume there exists a vertex of C−X
in C[v1, v2). Then x,C[v2, v4], x is a shorter cycle with chord xv3, contradicting the minimality of
C . Thus |C| = 4.

Finally, suppose dC(x) = 3 for some C ∈ C and some x ∈ V (G)− ∪r
i=1V (Ci). Let vi ∈ NC(x)

with 1 ≤ i ≤ 3, and let v1, v2, v3 be in that order on C. Let X = {v1, v2, v3}. These neighbors
define three intervals C[vi, vi+1), 1 ≤ i ≤ 3, where v4 = v1. If |C| ≥ 7, then some interval contains
at least two vertices of C −X. Without loss of generality, we may assume C[v1, v2) contains them.
Then x,C[v2, v1], x is a shorter cycle with chord xv3, contradicting the minimality of C . Thus
|C| ≤ 6.

Lemma 3.4. Suppose there exist at least five edges connecting two vertex-disjoint paths P1 and P2.
Then there exist at least three mutually parallel edges or at least three mutually crossing edges.

Proof. Let xiyi ∈ E(P1, P2) for each 1 ≤ i ≤ 5. Without loss of generality, let x1, x2, . . . , x5 appear
in that order on P1. Also we may assume that y1, y5 are in that order on P2, otherwise, we consider
the reverse orientation of P2. Let P2 = u1, u2, . . . , us (s ≥ 1). If s = 1, then all the edges connecting
P1 and P2 are mutually parallel. Thus we may assume that s ≥ 2. Now we claim that y1 ̸= u1.
Suppose not. Then there exist at least two parallel edges in {xiyi | 2 ≤ i ≤ 5}, otherwise, the
lemma holds. Let xi1yi1 , xi2yi2 for 2 ≤ i1 < i2 ≤ 5 be the parallel edges. Then x1y1, xi1yi1 , xi2yi2
are three mutually parallel edges. Thus the claim holds. By symmetry, y5 ̸= us. If yi ∈ P2[y1, y5]
for some 2 ≤ i ≤ 4, then x1y1, xiyi, x5y5 are three mutually parallel edges. Thus yi ̸∈ P2[y1, y5] for
each 2 ≤ i ≤ 4. Then |P2[u1, y1) ∩ {y2, y3, y4}| ≥ 2 or |P2(y5, us] ∩ {y2, y3, y4}| ≥ 2. By symmetry,
we may assume that |P2[u1, y1) ∩ {y2, y3, y4}| ≥ 2. Let i1, i2 be integers such that 2 ≤ i1 < i2 ≤ 4
and yi1 , yi2 ∈ P2[u1, y1). If yi1 , yi2 are in that order on P2, then xi1yi1 , xi2yi2 are parallel edges,
and xi1yi1 , xi2yi2 , x5y5 are three mutually parallel edges. On the other hand, if yi2 , yi1 are in that
order on P2, then xi1yi1 , xi2yi2 are crossing edges, and x1y1, xi1yi1 , xi2yi2 are three mutually crossing
edges. Thus the lemma holds.

Lemma 3.5. Suppose there exist at least three mutually parallel edges or at least three mutually
crossing edges connecting two vertex-disjoint paths P1 and P2. Then there exists a chorded cycle in
⟨P1 ∪ P2⟩.

Proof. If there exist at least three mutually crossing edges connecting the paths P1 and P2, then
we consider the reverse orientation of P2. Then the edges are all mutually parallel. Thus we have
only to consider the case where all the edges are mutually parallel. Now let x1y1, x2y2, x3y3 be
the edges. Without loss of generality, let x1, x2, x3 appear in that order on P1. Note that the
endpoints y1, y2, y3 appear in that order on P2. Then P1[x1, x3], y3, P

−
2 [y3, y1], x1 is a cycle with

chord x2y2.

Lemma 3.6. Suppose there exist at least five edges connecting two vertex-disjoint paths P1 and P2

with |P1∪P2| ≥ 7. Then there exists a chorded cycle in ⟨P1 ∪ P2⟩ not containing at least one vertex
of ⟨P1 ∪ P2⟩.

Proof. By Lemma 3.4, there must be at least three mutually parallel edges or at least three mutually
crossing edges. Then by Lemma 3.5, there exists a chorded cycle C in ⟨P1 ∪ P2⟩. If V (C) ̸=
V (P1 ∪ P2), then the lemma holds. Thus suppose V (C) = V (P1 ∪ P2). Let C

′ be a cycle obtained
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from C by removing all chords. Since |E(⟨P1 ∪ P2⟩)−E(C ′)| ≥ 3, C has at least three chords. By
|C| = |P1 ∪P2| ≥ 7, a shorter chorded cycle exists in ⟨P1 ∪ P2⟩ as in the proof of Lemma 3.2. Thus
the lemma holds.

Lemma 3.7. Let P1, P2 be two vertex-disjoint paths, and let u1, u2 (u1 ̸= u2) be in that order on
P1. Suppose dP2(ui) ≥ 2 for each i ∈ {1, 2}. Then there exists a chorded cycle in ⟨P1[u1, u2] ∪ P2⟩.

Proof. Let P2 = v1, . . . , vt, and let vi, vj ∈ NP2(u1) with i < j. If u2 has a neighbor that lies in
P2[v1, vi] or P2[vj , vt], then we can easily form a chorded cycle in ⟨P1[u1, u2] ∪ P2⟩. Thus both of u2’s
neighbors in P2 must lie in P2(vi, vj), call them vℓ, vℓ′ with ℓ < ℓ′. Then P1[u1, u2], vℓ′ , P

−
2 [vℓ′ , vi], u1

is a cycle with chord u2vℓ.

Lemma 3.8. Let H be a connected graph of order at least 4. Suppose H contains neither a
chorded cycle nor a Hamiltonian path. Let P1 = u1, . . . , us (s ≥ 3) be a longest path in H, and let
P2 = v1, . . . , vt (t ≥ 1) be a longest path in H − P1. Then the following statements hold.
(i) NH−P1(ui) = ∅ for each i ∈ {1, s}.
(ii) dH(ui) = dP1(ui) ≤ 2 for each i ∈ {1, s}.
(iii) NH−(P1∪P2)(vj) = ∅ for each j ∈ {1, t}.
(iv) dP2(vj) ≤ 2 for each j ∈ {1, t}.
(v) u1us /∈ E(H).
(vi) If dH(v1) ≤ dH(vt), then dH({u1, us, v1}) ≤ 6.

Proof. Since P1 is a longest path, clearly, (i) holds. By (i), dH(ui) = dP1(ui) for each i ∈ {1, s}.
Since H does not contain a chorded cycle, dP1(ui) ≤ 2 for each i ∈ {1, s}. Thus (ii) holds. Since
P2 is a longest path in H − P1, clearly, (iii) holds. Also, since H does not contain a chorded cycle,
(iv) holds. Furthermore, since H is connected and P1 is a longest path in H, u1us ̸∈ E(H). Thus
(v) holds.

Finally, we prove (vi). Let X = {u1, us, v1}. By (ii), dH(ui) ≤ 2 for each i ∈ {1, s}. If
dH(v1) ≤ 2, then dH(X) ≤ 6, and (vi) holds. Thus we may assume dH(v1) ≥ 3. Then dH(vt) ≥ 3
by the assumption. If t = 1, then dP1(v1) ≥ 3. Thus there exists a chorded cycle in ⟨v1 ∪ P1⟩, a
contradiction. If t = 2, then dP1(v1) ≥ 2 and dP1(v2) ≥ 2 by (iii), and so by Lemma 3.7, there
exists a chorded cycle in ⟨P1 ∪ P2⟩, a contradiction. Thus we may assume t ≥ 3. By Lemma 3.7,
dP1(vj) ≤ 1 for some j ∈ {1, t}. Suppose j = 1, that is, dP1(v1) ≤ 1. By (iii) and (iv), dP2(v1) = 2.
Since NP1(vℓ) ̸= ∅ for each ℓ ∈ {1, t} by (iii) and (iv), there exists a cycle with chord adjacent to
v1 in ⟨P1 ∪P2⟩, a contradiction. If j = t, that is, dP1(vt) ≤ 1, then we get a contradiction as in the
case where j = 1. Thus (vi) holds.

Lemma 3.9. Let H be a graph containing a path P . If there exist nested edges between vertices of
P , then H contains a chorded cycle.

Proof. Let v1, v2, v3, v4 be in that order on P . Suppose v1v4 and v2v3 are nested edges. Then
P [v1, v4], v1 is a cycle with chord v2v3.

Lemma 3.10. Let H be a graph containing a path P = v1, v2, . . . , vt (t ≥ 4). For any 2 ≤ i ≤ t−2,
if vi has a right edge and vi+1 has a left edge, then H contains a chorded cycle.

Proof. Let vivj ∈ E(H) with i + 2 ≤ j ≤ t and vi+1vℓ ∈ E(H) with 1 ≤ ℓ ≤ i − 1. Then
P [vℓ, vi], vj , P

−[vj , vi+1], vℓ is a cycle with chord vivi+1.
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Lemma 3.11. Let H be a graph containing a path P = v1, . . . , vt (t ≥ 3), and not containing a
chorded cycle. If v1vi ∈ E(H) for some i ≥ 3, then dP (vj) ≤ 3 for any j ≤ i− 1 and in particular,
dP (vi−1) = 2. And if vtvi ∈ E(H) for some i ≤ t − 2, then dP (vj) ≤ 3 for any j ≥ i + 1 and in
particular, dP (vi+1) = 2.

Proof. Suppose v1vi ∈ E(H) for some i ≥ 3. No vertex vj with j ≤ i− 1 has a left edge, otherwise
the edge nests with v1vi, and by Lemma 3.9, H contains a chorded cycle, a contradiction. Also,
no vertex vj with j ≤ i − 1 has two or more right edges, otherwise the edges nest, and again H
contains a chorded cycle, a contradiction. Thus dP (vj) ≤ 3 for any j ≤ i − 1. Furthermore, vi−1

cannot have a right edge by Lemma 3.10. Thus dP (vi−1) = 2. By symmetry, the same proof shows
that if vtvi ∈ E(H) for some i ≤ t− 2, then dP (vj) ≤ 3 for any j ≥ i+ 1 and dP (vi+1) = 2.

Lemma 3.12. Let H be a graph containing a path P = v1, . . . , vt (t ≥ 6), and not containing
a chorded cycle. If dP (v1) = 1, then dP (vi) = 2 for some 3 ≤ i ≤ 5, or if v1v3 ∈ E(H), then
dP (vi) = 2 for some 4 ≤ i ≤ 6.

Proof. Suppose either dP (v1) = 1 or v1v3 ∈ E(H). If dP (v1) = 1, then we let i = 3, and if
v1v3 ∈ E(H), then we let i = 4. Vertex vi cannot have a left edge, otherwise in the first case, we
have dP (v1) = 2, and in the second case, we get a chorded cycle by Lemmas 3.9 and 3.10. Thus we
have a contradiction in either case. If dP (vi) = 2, then the lemma holds. Thus suppose dP (vi) ≥ 3.
Then vi must have a right edge, say vivj with j ≥ i+ 2. If j = i+ 2, then dP (vi+1) = 2, otherwise
we get a contradiction by Lemma 3.10. Thus j > i + 2. By Lemma 3.10, vi+1 cannot have a left
edge. If dP (vi+1) = 2, then the lemma holds. Thus dP (vi+1) ≥ 3, and vi+1 has a right edge, say
vi+1vℓ for some ℓ ≥ i+ 3. If ℓ ≤ j, then we have nested edges and a chorded cycle by Lemma 3.9,
a contradiction. Thus ℓ > j. By the same arguments as for vi+1, either dP (vi+2) = 2, or vi+2 has
a right edge vi+2vℓ′ for some ℓ′ > ℓ. In the later case, P [vi, vi+2], vℓ′ , P

−[vℓ′ , vj ], vi is a cycle with
chord vi+1vℓ, a contradiction. Thus dP (vi+2) = 2, and the lemma holds.

Lemma 3.13. Let H be a graph containing a path P = v1, . . . , vt (t ≥ 6), and not containing a
chorded cycle. If dP (vt) = 1, then dP (vi) = 2 for some t− 4 ≤ i ≤ t− 2, or if vtvt−2 ∈ E(H), then
dP (vi) = 2 for some t− 5 ≤ i ≤ t− 3.

Proof. The lemma follows from the proof of Lemma 3.12 by symmetry.

Lemma 3.14. Let H be a graph of order at least 13. Suppose H does not contain a chorded cycle.
If H contains a Hamiltonian path, then there exists an independent set X of four vertices in H
such that dH(X) ≤ 8.

Remark 3. We consider the following graph H of order 12. (See Fig. 1.) Then H satisfies all the
conditions except for the order in Lemma 3.14. However, H does not contain an independent set
X of four vertices such that dH(X) ≤ 8. Thus |H| ≥ 13 is necessary.

Proof. Let P = v1, . . . , vt (t ≥ 13) be a Hamiltonian path in H. If v1vt ∈ E(H), then dH(v) = 2 for
any v ∈ V (H), otherwise, a chorded cycle exists in H, a contradiction. Then X = {v1, v3, v5, v7} is
an independent set of four vertices such that dH(X) = 8. Thus we may now assume v1vt ̸∈ E(H).
Since P is a Hamiltonian path in H, note dP (v) = dH(v) for any v ∈ V (P ). Also, dH(v1) ≤ 2 and
dH(vt) ≤ 2 by Lemma 3.9.

Case 1. Suppose dH(v1) = 1 and dH(vt) = 1.
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Fig. 1. The graph H of order 12. The white vertex (◦)
shows degree 2, and the black vertex (•) shows degree 3.

By Lemmas 3.12 and 3.13, dH(vi) = 2 for some 3 ≤ i ≤ 5 and dH(vj) = 2 for some t− 4 ≤ j ≤
t− 2. Since t ≥ 13, vivj ̸∈ E(H). Thus X = {v1, vi, vj , vt} is the desired set.

Case 2. Suppose dH(v1) = 1 and dH(vt) = 2, or dH(v1) = 2 and dH(vt) = 1.

In this case, we may assume dH(v1) = 1 and dH(vt) = 2, otherwise, we consider the reverse
orientation of P . Let vtvj ∈ E(H) for some 2 ≤ j ≤ t−2. Suppose 2 ≤ j ≤ t−5. Since dH(vt) = 2,
vj+1vt ̸∈ E(H) and vj+3vt ̸∈ E(H). By Lemma 3.11, dH(vj+1) = 2 and dH(vj+3) ≤ 3. Then
X = {v1, vj+1, vj+3, vt} is the desired set. Thus t − 4 ≤ j ≤ t − 2. By Lemma 3.12, dH(vi) = 2
for some 3 ≤ i ≤ 5. If j ∈ {t− 4, t− 3}, then vj+1 is still non-adjacent to vt and dH(vj+1) = 2 by
Lemma 3.11. Since t ≥ 13, vivj+1 ̸∈ E(H). Then X = {v1, vi, vj+1, vt} is the desired set. Thus
j = t− 2. By Lemma 3.13, dH(vℓ) = 2 for some t− 5 ≤ ℓ ≤ t− 3. Since t ≥ 13, vivℓ ̸∈ E(H). Then
X = {v1, vi, vℓ, vt} is the desired set.

Case 3. Suppose dH(v1) = 2 and dH(vt) = 2.

Suppose v1v3 ∈ E(H) or vtvt−2 ∈ E(H). Then we may assume v1v3 ∈ E(H), otherwise,
we consider the reverse orientation of P . By Lemma 3.12, dH(vi) = 2 for some 4 ≤ i ≤ 6.
If vtvt−2 ∈ E(H), then dH(vj) = 2 for some t − 5 ≤ j ≤ t − 3 by Lemma 3.13. As before,
since t ≥ 13, vivj ̸∈ E(H). Then X = {v1, vi, vj , vt} is the desired set. Thus vtvt−2 ̸∈ E(H).
Then vtvs ∈ E(H) for some s ≤ t − 3. By Lemma 3.11, dH(vs+1) = 2. Note s ≥ 3 since
v1v3 ∈ E(H). If vs+1 ̸∈ {vi−1, vi, vi+1}, then X = {v1, vi, vs+1, vt} is the desired set. Thus
vs+1 ∈ {vi−1, vi, vi+1}. This implies that vs ∈ {vi−2, vi−1, vi}. Note vs ̸= vi since vtvs ∈ E(H) and
dH(vi) = 2. Thus vs ∈ {vi−2, vi−1}. Since vi ∈ {v4, v5, v6} and s ≥ 3, vs ∈ {v3, v4, v5}. If dH(v) = 2
for some v ∈ {vs+4, vs+5}, then X = {v1, vi, v, vt} is the desired set. Thus dH(v) ≥ 3 for each
v ∈ {vs+4, vs+5}. Furthermore, neither vs+4 nor vs+5 has a right edge, otherwise, this edge nests
with vsvt, and H contains a chorded cycle by Lemma 3.9, a contradiction. Thus both vs+4 and
vs+5 have left edges. It follows that vs+4vℓ, vs+5vℓ′ ∈ E(H), and then ℓ < ℓ′ < s, otherwise, we have
nested edges and a chorded cycle by Lemma 3.9, a contradiction. Then P [vℓ, vs], vt, P

−[vt, vs+4], vℓ
is a cycle with chord vℓ′vs+5, a contradiction.

Suppose v1v3 ̸∈ E(H) and vtvt−2 ̸∈ E(H). Then v1vi ∈ E(H) for some 4 ≤ i ≤ t − 1 and
vtvj ∈ E(H) for some 2 ≤ j ≤ t − 3. Note i ̸= j + 1, otherwise, H contains a cycle with chord
vjvj+1, a contradiction. By Lemma 3.11, dH(vi−1) = 2 and dH(vj+1) = 2. If i ̸∈ {j+2, j+3}, then
X = {v1, vi−1, vj+1, vt} is the desired set. Thus i ∈ {j + 2, j + 3}. Now we claim that dH(vℓ1) = 2
for some ℓ1 ∈ {3, 4}. If j ∈ {2, 3}, then dH(vj+1) = 2 by Lemma 3.11. Suppose 4 ≤ j ≤ t − 3.
If dH(v3) ≥ 3, then v3vi′ ∈ E(H) for some i′ > i by Lemma 3.9. Then P [v1, vj ], vt, P

−[vt, vi], v1
is a cycle with chord v3vi′ , a contradiction. Thus dH(v3) = 2. In all cases, the claim holds. By
symmetry, dH(vℓ2) = 2 for some ℓ2 ∈ {t − 3, t − 2}. Then X = {v1, vℓ1 , vℓ2 , vt} is the desired set.
Thus Lemma 3.14 holds.
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Lemma 3.15. Let k ≥ 2 be an integer, and let G be a graph. Suppose G does not contain k
vertex-disjoint chorded cycles. Let {C1, . . . , Ck−1} be a minimal set of k− 1 vertex-disjoint chorded
cycles in G, H = G− C , where C = ∪k−1

i=1Ci, and X ⊆ V (H) with |X| = 4. Suppose H contains a
Hamiltonian path. Then dCi(X) ≤ 12 for each 1 ≤ i ≤ k − 1.

Proof. Suppose not, then dCi(X) ≥ 13 for some 1 ≤ i ≤ k − 1. Let X = {x1, x2, x3, x4}. By
Lemma 3.3, dCi(xj) ≤ 4 for each 1 ≤ j ≤ 4. Now we consider degree sequences defined in
Section 1 (Introduction) from four vertices of X to Ci. Recall that when we write (d1, d2, d3, d4),
we assume dCi(xj) = dj for each 1 ≤ j ≤ 4, since it is sufficient to consider the case of equality.
Without loss of generality, we may assume dCi(x1) ≥ dCi(x2) ≥ dCi(x3) ≥ dCi(x4). Then the
possible degree sequences from X to Ci are (4, 4, 4, 1), (4, 4, 3, 2) or (4, 3, 3, 3). Since dCi(x1) = 4,
|Ci| = 4 by Lemma 3.3. Let Ci = v1, v2, v3, v4, v1. We show the existence of two vertex-disjoint
chorded cycles in ⟨H ∪ Ci⟩, and then G contains k vertex-disjoint chorded cycles, a contradiction.
Now we consider the following three cases based on the degree sequences.

Case 1. The sequence is (4, 4, 4, 1).

Then dCi(xj) = 4 for each 1 ≤ j ≤ 3 and dCi(x4) = 1. Without loss of generality, we may
assume x4v1 ∈ E(G). Since H is connected, there exists a path from x4 to some other x ∈ X not
containing X − {x4, x}. Without loss of generality, we may assume there exists a path P in H
connecting x4 and x3. Since dCi(x3) = 4, v1, v2 ∈ NCi(x3). Then x4, v1, v2, x3, P [x3, x4] is a cycle
with chord x3v1. For each j ∈ {1, 2}, since dCi(xj) = 4, v3, v4 ∈ NCi(xj). Then x1, v3, x2, v4, x1 is
the other cycle with chord v3v4. Thus we have two vertex-disjoint chorded cycles in ⟨H ∪ Ci⟩, a
contradiction.

Case 2. The sequence is (4, 4, 3, 2).

Then dCi(x1) = dCi(x2) = 4, dCi(x3) = 3, and dCi(x4) = 2. Since H is connected, there exists
a path P from x4 to some other x ∈ X not containing X − {x4, x}.

First suppose x = x3, that is, the path P connects x4 and x3. Since dCi(x3) = 3, without
loss of generality, we may assume vj ∈ NCi(x3) for each 1 ≤ j ≤ 3. Assume v1 ∈ NCi(x4).
Then P [x3, x4], v1, v2, x3 is a cycle with chord x3v1. For each j ∈ {1, 2}, since dCi(xj) = 4,
v3, v4 ∈ NCi(xj). Then x1, v3, x2, v4, x1 is the other cycle with chord v3v4. Thus we have two vertex-
disjoint chorded cycles in ⟨H ∪ Ci⟩, a contradiction. Hence v1 ̸∈ NCi(x4). Similarly, v3 ̸∈ NCi(x4)
by symmetry. Since dCi(x4) = 2, v2 ∈ NCi(x4). Then P [x3, x4], v2, v1, x3 is a cycle with chord x3v2.
Since v3, v4 ∈ NCi(xj) for each j ∈ {1, 2}, x1, v3, x2, v4, x1 is the other cycle with chord v3v4. Thus
we have two vertex-disjoint chorded cycles in ⟨H ∪ Ci⟩, a contradiction.

Next suppose x = x1 (or x2), that is, the path P connects x4 and x1 (or x2). Without loss of
generality, we may assume P connects x4 and x1. Since dCi(x3) = 3, without loss of generality, we
may assume vj ∈ NCi(x3) for each 1 ≤ j ≤ 3. Assume v1 ∈ NCi(x4). Since dCi(x1) = 4, v1, v4 ∈
NCi(x1). Then P [x1, x4], v1, v4, x1 is a cycle with chord x1v1. Since dCi(x2) = 4, v2, v3 ∈ NCi(x2).
Then x2, v2, x3, v3, x2 is the other cycle with chord v2v3. Thus we have two vertex-disjoint chorded
cycles in ⟨H ∪ Ci⟩, a contradiction. Hence v1 ̸∈ NCi(x4). Similarly, v3 ̸∈ NCi(x4) by symmetry.
Since dCi(x4) = 2, v4 ∈ NCi(x4), and since dCi(x1) = 4, v3, v4 ∈ NCi(x1). Then P [x1, x4], v4, v3, x1
is a cycle with chord x1v4. Since dCi(x2) = 4, v1, v2 ∈ NCi(x2). Then x2, v1, x3, v2, x2 is the other
cycle with chord v1v2. Thus we have two vertex-disjoint chorded cycles in ⟨H∪Ci⟩, a contradiction.

Case 3. The sequence is (4, 3, 3, 3).

Then dCi(x1) = 4 and dCi(xj) = 3 for each 2 ≤ j ≤ 4. Since H contains a Hamiltonian path by
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the assumption, we let P be the Hamiltonian path. We may assume the order of x1, x2, x3, x4 on
P is either x1, x2, x3, x4 or x2, x1, x3, x4, otherwise we consider the reverse orientation of P . Since
dCi(x4) = 3, the vertex x4 is adjacent to at least two consecutive vertices on Ci. Without loss of
generality, we may assume v1, v2 ∈ NCi(x4). Since dCi(x3) = 3, without loss of generality, we may
assume v1 ∈ NCi(x3). Then P [x3, x4], v2, v1, x3 is a cycle with chord x4v1.

Next we prove that if x1, x2 (resp. x2, x1) are in that order on P , then there exists the other
chorded cycle in ⟨P [x1, x2] ∪ {v3, v4}⟩ (resp. ⟨P [x2, x1] ∪ {v3, v4}⟩). Suppose that x1, x2 are in that
order on P . (If x2, x1 are in that order on P , then we consider the reverse orientation of P [x2, x1].)
Since dCi(x1) = 4, v3, v4 ∈ NCi(x1), and since dCi(x2) = 3, vℓ ∈ NCi(x2) for some ℓ ∈ {3, 4}. If
v3 ∈ NCi(x2), then P [x1, x2], v3, v4, x1 is the other cycle with chord x1v3. If v4 ∈ NCi(x2), then
P [x1, x2], v4, v3, x1 is the other cycle with chord x1v4. Thus we have two vertex-disjoint chorded
cycles in ⟨H ∪ Ci⟩, a contradiction.

4 Proof of Theorem 1.3

Suppose G does not contain a chorded cycle.

Claim 4.1. G is connected.

Proof. Suppose not, then comp(G) ≥ 2. Let G1, G2, . . . , Gcomp(G) be the components of G. First
suppose comp(G) ≥ 3. By Theorem 1.1, there exists xi ∈ V (Gi) for each 1 ≤ i ≤ 3 such that
dGi(xi) ≤ 2. Then X = {x1, x2, x3} is an independent set and dG(X) ≤ 6. This contradicts
the σ3(G) condition. Next suppose comp(G) = 2. Without loss of generality, we may assume
|G1| ≥ |G2|. Since |G| ≥ 7, |G1| ≥ 4. If G1 is complete, then G1 contains a chorded cycle.
Thus G1 is not complete. By Theorem 1.2, there exist non-adjacent x0, x1 ∈ V (G1) such that
dG1({x0, x1}) ≤ 4. On the other hand, by Theorem 1.1, there exists x2 ∈ V (G2) such that
dG2(x2) ≤ 2. Then X = {x0, x1, x2} is an independent set and dG(X) ≤ 6. This contradicts the
σ3(G) condition. Thus Claim 4.1 holds.

Let P1 = u1, . . . , us be a longest path in G. Note s ≥ 3 since |G| ≥ 7 and G is connected by
Claim 4.1.

Claim 4.2. G contains a Hamiltonian path.

Proof. Suppose not, then P1 is not a Hamiltonian path in G. Thus V (G − P1) ̸= ∅. Let P2 =
v1, . . . , vt (t ≥ 1) be a longest path in G−P1. Without loss of generality, we may assume dG(v1) ≤
dG(vt). Let X = {u1, us, v1}. By Lemma 3.8 (i), (v), and (vi), X is an independent set and
dG(X) ≤ 6. This contradicts the σ3(G) condition. Thus Claim 4.2 holds.

By Claim 4.2, P1 is a Hamiltonian path in G. Note s = |G| ≥ 7. If u1us ∈ E(G), then dG(u) = 2
for any u ∈ V (G), otherwise a chorded cycle exists in G, a contradiction. Then X = {u1, u3, u5}
is an independent set and dG(X) = 6. This contradicts the σ3(G) condition. Thus u1us ̸∈ E(G).
Since P1 is a Hamiltonian path in G, note dP1(u) = dG(u) for any u ∈ V (P1). We also note
dP1(ui) ≤ 2 for each i ∈ {1, s}. Suppose dP1(u1) = 1. By Lemma 3.12, dG(ui) = 2 for some
3 ≤ i ≤ 5. Since s ≥ 7, X = {u1, ui, us} is an independent set and dG(X) ≤ 6, a contradiction.
Thus dP1(u1) = 2. Now suppose u1u3 ∈ E(G). By Lemma 3.12, dG(ui) = 2 for some 4 ≤ i ≤ 6. If
s ≥ 8, then X = {u1, ui, us} is an independent set and dG(X) ≤ 6, a contradiction. Thus s = 7.
Then dG(uj) ≥ 3 for each j ∈ {4, 5}, otherwise we get a contradiction, since X = {u1, uj , u7} for
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some j ∈ {4, 5} would be an independent set with dG(X) ≤ 6. Thus dG(u6) = 2 by Lemma 3.12.
Since u4 does not have a left edge by Lemmas 3.9 and 3.10, u4 must have a right edge. Since
dG(u6) = 2, u4u7 ∈ E(G). By Lemma 3.11, dG(u5) = 2, a contradiction. Thus u1u3 ̸∈ E(G), that
is, u1ui ∈ E(G) for some 4 ≤ i ≤ s− 1. By Lemma 3.11, dG(ui−1) = 2. Then X = {u1, ui−1, us} is
an independent set and dG(X) ≤ 6, a contradiction. This completes the proof of Theorem 1.3.

5 Proof of Theorem 1.4

By Theorem 1.3, we may assume k ≥ 2. Suppose Theorem 1.4 does not hold. Let G be an edge-
maximal counter-example. If G is complete, then G contains k vertex-disjoint chorded cycles. Thus
we may assume G is not complete. Let xy ̸∈ E(G) for some x, y ∈ V (G), and define G′ = G+ xy,
the graph obtained from G by adding the edge xy. Since G′ is not a counter-example by the edge-
maximality of G, G′ contains k vertex-disjoint chorded cycles C1, . . . , Ck. Without loss of generality,
we may assume xy ̸∈ ∪k−1

i=1E(Ci), that is, G contains k − 1 vertex-disjoint chorded cycles. Over all
sets of k−1 vertex-disjoint chorded cycles in G, choose C1, . . . , Ck−1 with C = ∪k−1

i=1Ci, H = G−C ,
and with P1 be a longest path in H, such that

(A1) |C | is as small as possible,

(A2) subject to (A1), comp(H) is as small as possible, and,

(A3) subject to (A1) and (A2), |P1| is as large as possible.

We may assume H does not contain a chorded cycle, otherwise G contains k vertex-disjoint
chorded cycles, a contradiction.

Claim 5.1. H has order at least 13.

Proof. Suppose |H| ≤ 12. First suppose |Ci| ≤ 8 for each 1 ≤ i ≤ k − 1. Since by assumption,
|G| ≥ 8k + 5, it follows that |H| ≥ (8k + 5) − 8(k − 1) = 13, a contradiction. Thus |Ci| ≥ 9 for
some 1 ≤ i ≤ k − 1. Without loss of generality, we may assume C1 is a longest cycle in C . Then
|C1| ≥ 9. By Lemma 3.2, C1 has at most two chords, and if C1 has two chords, then these chords
must be crossing. For integers t and r, let |C1| = 3t+ r, where t ≥ 3 and 0 ≤ r ≤ 2.

Subclaim 5.1.1. The cycle C1 contains t (≥ 3) vertex-disjoint sets X1, . . . , Xt of three independent
vertices each in G such that dC1(∪t

i=1Xi) ≤ 6t+ 4.

Proof. For any 3t vertices of C1, their degree sum in C1 is at most 3t× 2+4 = 6t+4, since C1 has
at most two chords. Thus it only remains to show that C1 contains t vertex-disjoint sets of three
independent vertices each. Start anywhere on C1 and label the first 3t vertices of C1 with labels 1
through t in order, starting over again with 1 after using label t. If r ≥ 1, label the remaining r
vertices of C1 with the labels t+1, . . . , t+r. (See Fig. 2.) The labeling above yields t vertex-disjoint
sets of three vertices each, where all the vertices labeled with 1 are one set, all the vertices labeled
with 2 are another set, and so on. Given this labeling, since t ≥ 3, any vertex x in C1 has a different
label than x− and x+. Let C0 be the cycle obtained from C1 by removing all chords. Then the
vertices in each of the t sets are independent in C0. Thus the only way vertices in the same set
are not independent in C1 is if the endpoints of a chord of C1 were given the same label. Note
any vertex labeled i is distance at least 3 in C0 from any other vertex labeled i. Thus even if we
exchange the label of x in C0 for the one of x− (or x+), the vertices in each of the resulting t sets
are still independent in C0.
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Fig. 2. An example when t = 4 and r = 2.

Case 1. No chord of C1 has both endpoints with the same label.

Then there exist t vertex-disjoint sets of three independent vertices each in C1.

Case 2. Exactly one chord of C1 has both endpoints with the same label.

Recall that C1 has at most two chords, and if C1 has two chords, then these chords must be
crossing. Since |C1| ≥ 9, even if C1 has two chords, each chord has an endpoint x such that there
exists some vertex x′ ∈ {x−, x+} which is equal to no endpoint of the other chord. Choose such
an endpoint x of the chord whose endpoints were assigned the same label, and exchange the label
of x for the one of x′. Then no chord of C1 has endpoints with the same label, and the vertices in
each of the resulting t sets are independent in C1. Thus there exist t vertex-disjoint sets of three
independent vertices each in C1.

Case 3. Two chords of C1 each have both endpoints with the same label.

Then the two chords are crossing. Since endpoints of a chord have the same label in this case,
recall that these endpoints have distance at least 3. Suppose there is an endpoint x of one chord
of C1 which is adjacent to an endpoint y (= x+) of the other chord on C1. (See Fig. 3 (a).) Now
we exchange the label of x for the one of y. Then no chord of C1 has endpoints with the same
label, and the vertices in each of the resulting t sets are independent in C1. Thus there exist t
vertex-disjoint sets of three independent vertices each in C1.

Suppose no endpoint of one chord of C1 is adjacent to an endpoint of the other chord on C1.
(See Fig. 3 (b).) Let x1x2, y1y2 be the two distinct chords of C1. Since the two chords are crossing,
without loss of generality, we may assume x1, y1, x2, y2 are in that order on C1. Now we exchange
the labels of x1 and x+1 , and next the ones of y2 and y−2 . Then no chord of C1 has endpoints with
the same label, and the vertices in each of the resulting t sets are independent in C1. Thus there
exist t vertex-disjoint sets of three independent vertices each in C1.

Since |C1| ≥ 9, dC1(v) ≤ 2 for any v ∈ V (H) by (A1) and Lemma 3.3. Thus, since |H| ≤ 12 by
our assumption, it follows that |E(H,C1)| ≤ 24. Let X1, . . . , Xt be as in Subclaim 5.1.1, and let
X = X1 ∪ · · · ∪Xt. By the σ3(G) condition, dG(X ) ≥ t(9k− 2). Suppose k = 2. Then C has only
one cycle C1. Since k = 2 and t ≥ 3, |E(C1,H)| ≥ dH(X ) ≥ t(9k− 2)− (6t+ 4) = 10t− 4 ≥ 26, a
contradiction.
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Fig. 3. Examples: (a) – the labels of x and y are 1 and 2, (b) – the labels of x1

and y2 are 1 and 3. ([i] means i is a new label for a vertex after the exchange.)

Now suppose k ≥ 3. Then we have

|E(X ,C − C1)| = dG(X )− dC1(X )− dH(X )

≥ t(9k − 2)− (6t+ 4)− 24

= 9kt− 8t− 28,

and since t ≥ 3,

9kt− 8t− 28 = 9t(k − 1) + t− 28 ≥ 9t(k − 1)− 25

> 9t(k − 1)− 9t

= 9t(k − 2).

Thus |E(X , C ′)| > 9t for some C ′ in C − C1, since C − C1 contains k − 2 vertex-disjoint chorded
cycles. Let h = max{dC′(v) | v ∈ X }. Let v∗ be a vertex of X such that dC′(v∗) = h. If
h ≤ 3, then |E(X , C ′)| ≤ 3 × 3t = 9t, a contradiction. Thus h ≥ 4. By the maximality of C1,
|C ′| ≤ |C1| = 3t+ r. It follows that h = dC′(v∗) ≤ |C ′| ≤ 3t+ r. Recall t ≥ 3 and 0 ≤ r ≤ 2. Then

|E(X − {v∗}, C ′)| ≥ (9t+ 1)− dC′(v∗) ≥ (9t+ 1)− (3t+ r)

= 6t− r + 1 ≥ 17. (1)

Since h = dC′(v∗) ≥ 4, let v1, v2, v3, v4 be neighbors of v∗ in that order on C ′. Note v1, v2, v3, v4
partition C ′ into four intervals C ′[vi, vi+1) for all 1 ≤ i ≤ 4, where v5 = v1. By (1), there exist
at least 17 edges from C1 − v∗ to C ′. Thus C ′[vi, vi+1) for some 1 ≤ i ≤ 4 contains at least five
of these edges. Without loss of generality, we may assume i = 4, that is, C ′[v4, v1). Then by
Lemma 3.6, ⟨(C1 − v∗) ∪ C ′[v4, v1)⟩ contains a chorded cycle not containing at least one vertex of
⟨(C1 − v∗) ∪ C ′[v4, v1)⟩. Note v∗, C ′[v1, v3], v

∗ is a cycle with chord v∗v2, and it uses no vertices
from C ′[v4, v1). Thus we have two shorter vertex-disjoint chorded cycles in ⟨C1 ∪ C ′⟩, contradicting
(A1). Hence Claim 5.1 holds.

Claim 5.2. H is connected.

Proof. Suppose not. First we prove the following subclaim.

Subclaim 5.2.1. Let X be an independent set of three vertices in H such that dH(X) ≤ 6. Then
there exists some C in C such that the degree sequences from the vertices of X to C are (4, 4, 2) or
(4, 3, 3). Furthermore, then |C| = 4.
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Proof. By the σ3(G) condition, dC (X) ≥ (9k− 2)− 6 = 9k− 8 > 9(k− 1). Thus there exists some
C in C such that dC(X) ≥ 10. By Lemma 3.3, dC(x) ≤ 4 for any x ∈ X. It follows that the degree
sequences from three vertices of X to C are (4, 4, 2) or (4, 3, 3). Then by Lemma 3.3, |C| = 4.

Now we consider the following two cases based on comp(H).

Case 1. Suppose comp(H) ≥ 3.

Let H1,H2,H3 be three distinct components of H. For each 1 ≤ i ≤ 3, let xi be an endpoint
of a longest path in Hi. Since H does not contain a chorded cycle, dHi(xi) ≤ 2 for each 1 ≤ i ≤ 3.
Note xi for each 1 ≤ i ≤ 3 is not a cutvertex of Hi, since xi is an endpoint of a longest path. Then
X = {x1, x2, x3} is an independent set and dH(X) ≤ 6. By Subclaim 5.2.1, the degree sequences
from three vertices of X to some C in C are (4, 4, 2) or (4, 3, 3), and |C| = 4. Without loss of
generality, we may assume dC(x1) ≥ dC(x2) ≥ dC(x3). Let C = v1, v2, v3, v4, v1. By the degree
sequences, x2 and x3 have a common neighbor in C. Without loss of generality, we may assume
v4 ∈ NC(x2) ∩NC(x3). Then ⟨H2 ∪H3 ∪ v4⟩ is connected. Since dC(x1) = 4, vi ∈ NC(x1) for each
1 ≤ i ≤ 3. Then C ′ = x1, v1, v2, v3, x1 is a 4-cycle with chord x1v2. Replacing C in C by C ′, we
consider the new H ′. Since H1−x1 is connected, comp(H ′) ≤ comp(H)−1. This contradicts (A2).

Case 2. Suppose comp(H) = 2.

Let H1,H2 be two distinct components of H. Recall P1 is a longest path in H. Without loss
of generality, we may assume H1 contains P1. Let P1 = u1, . . . , us. Then |H1| ≥ |P1| = s. By
Claim 5.1, |H| ≥ 13. Thus |Hi| ≥ 7 for some i ∈ {1, 2}. Since Hi is connected, there exists
a path of order at least 3 in Hi. Thus s ≥ 3, since P1 is a longest path in H. Also, we let
P2 = v1, . . . , vt (t ≥ 1) be a longest path in H2. Since Pi for each i ∈ {1, 2} is a longest path in
Hi, dH1(uj) = dP1(uj) ≤ 2 for each j ∈ {1, s} and dH2(vℓ) = dP2(vℓ) ≤ 2 for each ℓ ∈ {1, t}. Let
X = {u1, us, v1}. Then dH(X) ≤ 6.

First suppose u1us ̸∈ E(H1). Then X is an independent set. By Subclaim 5.2.1, the degree
sequences from three vertices of X to some C in C are (4, 4, 2) or (4, 3, 3), and |C| = 4. Without
loss of generality, we may assume dC(u1) ≥ dC(us). Let C = x1, x2, x3, x4, x1.

Suppose the degree sequence is (4, 4, 2). By the degree sequence, since us and v1 have a common
neighbor in C, without loss of generality, we may assume x4 ∈ NC(us) ∩ NC(v1). Note u1 is not
a cutvertex of H1, since u1 is an endpoint of a longest path. Thus H1 − u1 is connected, and
⟨(H1 − u1) ∪H2 ∪ x4⟩ is also connected. Since dC(u1) = 4, xj ∈ NC(u1) for each 1 ≤ j ≤ 3. Then
C ′ = u1, x1, x2, x3, u1 is a 4-cycle with chord u1x2. Replacing C in C by C ′, we consider the new
H ′. Then comp(H ′) ≤ comp(H)− 1 = 2− 1 = 1. This contradicts (A2).

Suppose the degree sequence is (4, 3, 3). If dC(u1) = 4 and dC(us) = dC(v1) = 3, then we get
a contradiction similar to the case where (4, 4, 2). Thus dC(u1) = dC(us) = 3 and dC(v1) = 4.
Without loss of generality, we may assume x1 ∈ NC(u1). Since dC(v1) = 4, xi ∈ NC(v1) for each
2 ≤ i ≤ 4. Then C ′ = v1, x2, x3, x4, v1 is a 4-cycle with chord v1x3. Replacing C in C by C ′, we
consider the new H ′. Assume |H2| = 1. Then comp(H ′) = 1, a contradiction. Thus |H2| ≥ 2. Note
H2 − v1 is connected. By (A2), comp(H ′) = comp(H). Then x1, P1[u1, us] is a longer path than
P1 in H ′. This contradicts (A3).

Next suppose u1us ∈ E(H1). Since H1 is connected and P1 is a longest path, C1 = P1[u1, us], u1
is a Hamiltonian cycle. Assume s ≥ 4. Let X = {u1, u3, v1}. Since H1 does not contain a chorded
cycle, u1u3 ̸∈ E(H1) and dH1(ui) = 2 for each i ∈ {1, 3}. Thus X is an independent set and
dH(X) ≤ 6. Now, letting u3 play the role of us in the case where u1us ̸∈ E(H1), we get a
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contradiction, similarly. Hence, s = 3. Since C1 is a Hamiltonian cycle in H1, |H1| = 3. Note
|H2| ≥ 10 by Claim 5.1, and H2 does not contain a longer path than P1. Thus H2 = K1,p, where
p ≥ 9. Let V (K1,p) = {a1} ∪ {b1, b2, . . . , bp}, and let X = {b1, b2, b3}. Since dH2(bi) = 1 for each
1 ≤ i ≤ 3, dH2(X) = 3. Also,X is an independent set. By Subclaim 5.2.1, the degree sequences from
three vertices of X to some C in C are (4, 4, 2) or (4, 3, 3), and |C| = 4. Let C = x1, x2, x3, x4, x1.
Without loss of generality, we may assume dC(b1) ≥ dC(b2) ≥ dC(b3). Since dC(b2) ≥ 3 by the
degree sequences, without loss of generality, we may assume xi ∈ NC(b2) for each 2 ≤ i ≤ 4. Then
C ′ = b2, x2, x3, x4, b2 is a 4-cycle with chord b2x3. Since dC(b1) = 4, x1 ∈ NC(b1). Replacing C in
C by C ′, we consider the new H ′. Note H2 − b2 is connected. By (A2), comp(H ′) = comp(H).
Then x1, b1, a1, b3 is a longer path than P1. This contradicts (A3).

Claim 5.3. H contains a Hamiltonian path.

Proof. Suppose not, then by Claims 5.1 and 5.2, |H| ≥ 13 andH is connected. Recall P1 is a longest
path in H. Then V (H − P1) ̸= ∅. Let P1 = u1, . . . , us (s ≥ 3), and let P2 = v1, . . . , vt (t ≥ 1)
be a longest path in H − P1. Without loss of generality, we may assume dH(v1) ≤ dH(vt). Let
X = {u1, us, v1}. Then by Lemma 3.8 (i), (v), and (vi), X is an independent set and dH(X) ≤ 6.
Noting σ3(G) ≥ 9k − 2 and Lemma 3.3, as in Subclaim 5.2.1 in the proof of Theorem 1.4, there
exists some C in C such that the degree sequences from three vertices of X to C are (4, 4, 2) or
(4, 3, 3), and |C| = 4. Let C = x1, x2, x3, x4, x1 be a 4-cycle with chord x1x3. Without loss of
generality, we may assume dC(u1) ≥ dC(us).

Suppose dC(u1) = 4. By the degree sequence, us and v1 have a common neighbor in C, say xℓ
for some 1 ≤ ℓ ≤ 4. Note u1 is not a cutvertex of H, since u1 is an endpoint of a longest path. Thus
H−u1 is connected. Since dC(u1) = 4, ⟨u1∪(C−xℓ)⟩ contains a chorded 4-cycle, say C ′. Replacing
C in C by C ′, we consider the new H ′. Note H ′ is connected. Then P1[u2, us], xℓ, P2[v1, vt] is a
longer path than P1 in H ′. This contradicts (A3). Thus dC(u1) ≤ 3, that is, dC(u1) = dC(us) = 3
and dC(v1) = 4. Since dC(u1) = 3, x1, x3 ∈ NC(u1) or x2, x4 ∈ NC(u1).

First suppose x1, x3 ∈ NC(u1). Recall x1x3 is a chord of C. Since dC(us) = 3, without loss of
generality, we may assume x4 ∈ NC(us). Then C ′ = u1, x1, x2, x3, u1 is a 4-cycle with chord x1x3.
Since dC(v1) = 4, x4 ∈ NC(v1). Note H − u1 is connected. Replacing C in C by C ′, we consider
the new H ′. Then P1[u2, us], x4, P2[v1, vt] is a longer path than P1 in H ′. This contradicts (A3).

Next suppose x2, x4 ∈ NC(u1). Since dC(u1) = 3, without loss of generality, we may assume
x3 ∈ NC(u1). Since dC(us) = 3, without loss of generality, we may assume x4 ∈ NC(us). Then
C ′ = u1, x2, x1, x3, u1 is a 4-cycle with chord x2x3. Since dC(v1) = 4, x4 ∈ NC(v1). Note H − u1
is connected. Replacing C in C by C ′, we consider the new H ′. Then P1[u2, us], x4, P2[v1, vt] is a
longer path than P1 in H ′. This contradicts (A3).

By Claims 5.1, 5.3, and Lemma 3.14, there exists an independent set X of four vertices in H
such that dH(X) ≤ 8. Let X = {x1, x2, x3, x4}, and let X1 = {x1, x2, x3}, X2 = {x1, x2, x4}, X3 =
{x1, x3, x4}, and X4 = {x2, x3, x4}. Then 3|X| =

∑4
i=1 |Xi|. Note Xi for each 1 ≤ i ≤ 4 is an

independent set. By the σ3(G) condition,

3 · dG(X) =
4∑

i=1

dG(Xi) ≥ 4σ3(G) ≥ 4(9k − 2) = 36k − 8.

On the other hand, by Claim 5.3 and Lemma 3.15,

3 · dG(X) = 3(dC (X) + dH(X)) ≤ 3(12(k − 1) + 8) = 36k − 12,
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a contradiction. This completes the proof of Theorem 1.4.
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