On Fan Saturated Graphs

Jessica Fuller* Ronald J. Gould ${ }^{\dagger}$

January 24, 2021

Abstract

Given a graph H, we say that a graph G is H-saturated if it does not contain H as a subgraph, but the addition of any edge $e \notin E(G)$ results in at least one copy of H as a subgraph. Let F_{t} be the graph consisting of t edge-disjoint triangles that intersect at a single vertex v. We investigate the set of all m such that there exists an n vertex, m edge F_{t}-saturated graph, for $t \geq 2$. This set is called the saturation spectrum of F_{t}.

1 Introduction

A graph G is H-saturated if, given a graph H, G does not contain a copy of H as a subgraph, but the addition of any edge $e \notin E(G)$ creates at least one copy of H within G. The study of saturated graphs has seen a recent surge in popularity. The question of the minimum number of edges in an H-saturated graph on n vertices, known as the saturation number and denoted sat (n, H), has been addressed for many different types of graphs. The saturation number contrasts the popular question of the maximum number of edges possible in a graph G on n vertices that does not contain a copy of H, known as the extremal number (or Turán number) and denoted ex (n, H). In one sense, determining the extremal number and determining the saturation number are dual problems. The saturation spectrum of the family of H-saturated graphs on n vertices is the set of all possible sizes $(|E(G)|)$ of an H-saturated graph G.

We use the common notation $V(G)$ and $E(G)$ for the vertex and edges sets of G, K_{n} for the complete graph of order n, and \bar{G} for the complement of G. We also use C_{n} for a cycle on n vertices, $\delta(G)$ for the minimum degree of $G, \operatorname{diam}(G)$ for the diameter of the graph G, and $\operatorname{dist}(u, v)$ for the distance between vertices u and v in G. We use $N(x)$ for the set of neighbors of the vertex x. For a set of vertices $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ we denote the graph induced by these vertices as either $\langle S\rangle$ or $\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$. We use $G+H$ for the join of graphs G and H. Given consecutive integers $x, x+1, \ldots, x+k$, we call this collection of integers an interval, and denote it $[x, x+k]$. For terms not defined here see [5].

The idea of saturation spectrum has been explored for a few graphs. The saturation spectrum for K_{3}-saturated graphs was found in 1995 by Barefoot, Casey, Fisher, Fraughnaugh, and Harary [4]. In [2], Amin, Faudree, and Gould found the spectrum for K_{4}-saturated graphs and in [3] Amin, Faudree, Gould and Sidorowicz found the spectrum for $K_{t}, t \geq 4$. Continuing this idea, Gould, Tang, Wei, and Zhang

[^0]addressed the saturation spectrum of small paths [9], while in [8], the spectrum for complete graphs minus an edge was studied.

The t-fan (sometimes called the friendship graph), $F_{t}(t \geq 2)$, is the graph consisting of t edge-disjoint triangles that intersect at a single vertex v. P. Erdős (personal communication) suggested the problem of determining the extremal number of F_{t} (see [6]), while the saturation number was determined in [7]. These results are presented in Section 2, where we also develop several lemmas. In Section 3 we study F_{2}-saturated graphs. In Sections 4 and 5 we study the saturation spectrums of F_{3} and F_{4}, respectively. In Section 6 we generalize two constructions for F_{4}-saturated graphs to F_{t}-saturated graphs $(t \geq 5)$.

2 Saturation and extremal numbers for F_{t}

In this Section we establish boundaries on the saturation spectrum for F_{t} and several useful lemmas.
Remark 1: Before we begin, note that in the constructions done in the following sections, we rely heavily on a result due to Abbott, Hanson, and Sauer [1]. Let $\beta(G)$ denote the edge independence number of G and $\Delta(G)$ the maximum degree of G. They defined

$$
f(\beta, \Delta)=\max \{|E(G)|: \beta(G) \leq \beta, \Delta(G) \leq \Delta\}
$$

In particular, they showed that

$$
f(t-1, t-1)= \begin{cases}t^{2}-t & \text { if } t \text { is odd } \\ t^{2}-\frac{3}{2} t & \text { if } t \text { is even }\end{cases}
$$

In the constructions to come, the special graphs inserted in our constructions usually have $f(t-1, t-1)$ edges and are $(t-1)$-regular or nearly regular depending on the parities of n and t. Further, these graphs have edge independence number $t-1$. This is useful because upon inserting any other edge, either t independent edges are produced, or a vertex of degree t is produced. Either situation allows the construction of the desired F_{t}, using one or more vertices from a neighboring set or sets.

Note that the extremal number for F_{t}-saturated graphs is given in the following theorem from [6]. This result also uses the Abbott, Hanson, and Sauer [1] result.

Theorem 1. [6] For every $t \geq 1$, and for every $n \geq 50 t^{2}$, if a graph G on n vertices has more than

$$
\left\lfloor\frac{n^{2}}{4}\right\rfloor+ \begin{cases}t^{2}-t & \text { if } t \text { is odd } \\ t^{2}-\frac{3}{2} t & \text { if } t \text { is even }\end{cases}
$$

edges, then G contains a copy of the t-fan, F_{t}. Furthermore, the number of edges is best possible.
Now for $p \geq 3$, let $F_{t, p, s}$ denote the graph comprised of t copies of K_{p} intersecting on a common K_{s}. Clearly, $F_{t, 3,1}=F_{t}$. The saturation number for $F_{t, p, s}$ was determined in [7].
Theorem 2. [7] Let $p \geq 3$ and $t \geq 2$ and $p-2 \geq s \geq 1$. Then for n sufficiently large,

$$
\operatorname{sat}\left(n, F_{t, p, s}\right)=(p-2)(n-p+2)+\binom{p-2}{2}+(t-1)\binom{p-s+1}{2}
$$

In particular, the graph $K_{p-2}+\left((t-1) K_{p-s+1} \cup \bar{K}_{n-(p-2)-(t-1)(p-s+1)}\right)$ is $F_{t, p, s^{-}}$saturated with the minimum number of edges.

Clearly, for $t \geq 2$ and $n \geq 3 t-2, \operatorname{sat}\left(n, F_{t}\right)=n+3 t-4$.
Having established the boundaries for the saturation spectrum of F_{t}, we begin our exploration of the saturation spectrum with a few useful lemmas. We can see that an F_{t}-saturated graph with a cut vertex achieves the minimum number of edges (called a saturation graph). A graph achieving the maximum number of edges is called an extremal graph.

Lemma 1. If G is an F_{t}-saturated $(t \geq 2)$ graph with $n \geq 5$ vertices, then $\operatorname{diam}(G)=2$.

Proof. First suppose that an F_{t}-saturated graph G is not connected. Then inserting an edge between two components of G cannot create a copy of F_{t}, a contradiction. Hence, G cannot be F_{t}-saturated. Thus, we may suppose that G is a connected F_{t}-saturated graph.

Suppose that $\operatorname{diam}(G) \geq 3$. Then for some $u, v \in V(G)$, there is no path from u to v of length at most two. Since G is F_{t}-saturated, adding the edge $u v$ must create a copy of F_{t}, so it creates the triangle $\{u, v, w\}$ for some $w \in V(G)$. Then $u w \in E(G)$ and $v w \in E(G)$ and there is a path of length two from u to v through w, which is a contradiction. Thus, $\operatorname{diam}(G)=2$ if G is an F_{t}-saturated graph.

The following lemma is from [4].
Lemma 2. If G is a 2-connected graph of order n with $\operatorname{diam}(G)=2$, then $|E(G)| \geq 2 n-5$.

The next Lemma is easily seen from Theorem 2.
Lemma 3. For $t \geq 2$ and $n \geq 3 t-2$, the graph

$$
G_{t}^{*}=K_{1}+\left((t-1) K_{3} \cup \bar{K}_{n-1-3(t-1)}\right)
$$

is a 1-connected saturation graph for F_{t}.
See Figure 1 for a saturation graph for F_{4}.

Figure 1: A saturation graph for F_{4}.

3 Saturation graphs for F_{2}

From Theorem 2, $\operatorname{sat}\left(n, F_{2}\right)=n+2$ and is realized as the size $\left(\left|E\left(G^{*}{ }_{2}\right)\right|\right)$ of the graph $G^{*}{ }_{2}$ consisting of a K_{4} with $n-4$ pendant edges on one vertex u of the K_{4} (see Figure 2(a)). Now consider G, a 1-connected
F_{2} saturated graph with cut vertex x. As $\operatorname{diam}(G)=2$, every other vertex of G is adjacent to x. The only way to insert four or more edges into $N(x)$ without creating two or more independent edges is as a star. But if this star does not span $N(x)$, yet another edge could be inserted without creating a copy of F_{2}. Thus, the star must span $N(x)$. In this case, G is 2-connected, a contradiction. Hence, there are no 1-connected F_{2}-saturated graphs with more than $\operatorname{sat}\left(n, F_{2}\right)$ edges.

At the high end of the spectrum, from Theorem 1, the extremal number for F_{2} is given by $\operatorname{ex}\left(n, F_{2}\right)=$ $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil+1$ for $n \geq 5$ and is realized as the size of the complete bipartite graph $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$ with any additional edge $e=u v$ for $u, v \in V(G)$ (see Figure 2(b)). The graph $B_{p}^{+}=K_{p, n-p}+e(2 \leq p \leq n / 2)$ is F_{2}-saturated as vertices u and v are contained in at least two triangles that intersect only at e. Hence, adding any other edge creates an additional triangle intersecting with one of the triangles containing e at exactly one vertex, thus forming a copy of F_{2}.

(a)

(b)

Figure 2: (a) $G^{*}{ }_{2}$ with size $n-1+3=n+2$; (b) $B^{+}{ }_{p}=K_{\left\lceil\frac{n}{2}\right\rceil,\left\lfloor\frac{n}{2}\right\rfloor}+u v$.
The following lemmas establish the lower bound on the saturation spectrum for 2-connected F_{2}-saturated graphs.

Lemma 4. Let G be an F_{2}-saturated graph with $\delta(G) \geq 3$ on $n \geq 10$ vertices. Then $|E(G)| \geq 2 n-4$.
Proof: Let G be an F_{2}-saturated graph with $\delta(G) \geq 3$. Then, by Lemma 1, $\operatorname{diam}(G)=2$. Note that if $\delta(G) \geq 4$, then $|E(G)| \geq 2 n>2 n-4$ and we are done. Hence, assume there is a vertex u in G adjacent to exactly three other vertices of G, say x, y and z. Let $X=\{x, y, z\}$ and let $A=V(G)-\{u, x, y, z\}$. Since $\operatorname{diam}(G)=2$, every vertex in A is adjacent to at least one of the vertices in X. Let A_{1} be the set of vertices in A that are adjacent to exactly one vertex of X, let A_{2} be the vertices in A adjacent to exactly two vertices of X and let A_{3} be the vertices in A adjacent to all vertices of X. The minimum degree condition implies that each $v \in A_{1}$ must be adjacent to at least two other vertices in A and each $w \in A_{2}$ must be adjacent to at least one other vertex in A. Hence, we have a minimum size as follows:

$$
\begin{aligned}
|E(G)| & \geq 3+\left|A_{1}\right|+2\left|A_{2}\right|+3\left|A_{3}\right|+\left\lceil\frac{2\left|A_{1}\right|+\left|A_{2}\right|}{2}\right\rceil \\
& =3+2\left|A_{1}\right|+2\left|A_{2}\right|+\left\lceil\frac{\left|A_{2}\right|}{2}\right\rceil+3\left|A_{3}\right| \\
& =3+2\left(n-\left|A_{3}\right|-4\right)+\left\lceil\frac{\left|A_{2}\right|}{2}\right\rceil+3\left|A_{3}\right| \\
& =2 n-5+\left\lceil\frac{\left|A_{2}\right|}{2}\right\rceil+\left|A_{3}\right| .
\end{aligned}
$$

If either A_{2} or A_{3} is non-empty, we are done. Thus, assume that $\left|A_{2}\right|=\left|A_{3}\right|=0$. Then $|E(G)| \geq 2 n-5$ and it remains to show that there is at least one additional edge in G.

If at least one of the edges $x y, y z, x z$ is in $E(G)$, we are done. Assume that $x y, y z$, and $x z$ are not edges of G. Since $\delta(G)=3$, there must be at least two vertices of A_{1} adjacent to x, two vertices of A_{1} adjacent
to y and two vertices of A_{1} adjacent to z. Also, to maintain $\operatorname{diam}(G)=2$, each vertex of A_{1} adjacent to x must be adjacent to at least one vertex adjacent to y and at least one vertex adjacent to z. Similarly, each vertex adjacent to y must be adjacent to at least one vertex adjacent to x and one vertex adjacent to z and each vertex adjacent to z must be adjacent to at least one vertex adjacent to x and one vertex adjacent to y. This requirement allows the minimum possible size to remain at $|E(G)| \geq 2 n-5$ as it requires at least $\left|A_{1}\right|$ edges amongst the vertices of A_{1}. However, this graph is not F_{2}-saturated, as it is possible to add $x y$ without creating a copy of F_{2}, so there must be at least one additional edge. This completes the proof of the lemma.

Lemma 5. Let G be a 2-connected F_{2}-saturated graph on $n \geq 10$ vertices. Then $|E(G)| \geq 2 n-4$.
Proof. Let G be a 2-connected F_{2}-saturated graph with m edges and $n \geq 10$ vertices. Since G is F_{2} saturated, $\operatorname{diam}(G)=2$ by Lemma 1. It follows from Lemma 4, that if $\delta(G) \geq 3$, then $m \geq 2 n-4$. Clearly, $\delta(G) \geq 2$, so suppose $\delta(G)=2$ and let $\operatorname{deg}(z)=2$ for some $z \in V(G)$. Let z be adjacent to $x, y \in V(G)$ and partition the remaining vertices of G into three sets A, B, C with every $u \in A$ adjacent only to x, every $v \in B$ adjacent to x and y, and every $w \in C$ adjacent only to y as in Figure 3. For convenience suppose that $V(A)=\left\{a_{1}, a_{2}, \ldots, a_{|A|}\right\}, V(B)=\left\{b_{1}, b_{2}, \ldots, b_{|B|}\right\}$, and $V(C)=\left\{c_{1}, c_{2}, \ldots, c_{|C|}\right\}$. Since G is 2-connected, A and B cannot both be empty, as this would make y a cut vertex. Similarly, both C and B cannot be empty.

Figure 3: Basic structure of 2-connected F_{2}-saturated graphs with $\delta(G)=2$.
Case 1: Suppose that $x y \in E(G)$.
First supppose that $B=\emptyset$. Then both A and C must be nonempty, or a cut vertex would result, a contradiction to 2-connectivity. Also note that $E(A)=E(C)=\emptyset$ or an F_{2} would exist in G, a contradiction. Note that for two positive integers r and s with $r+s=w, r s \geq w-1$.

Now, $n=3+|A|+|C|$. Since $\operatorname{diam}(G)=2$, each vertex of A must be adjacent to each vertex of C. Thus, since $|A|||C| \geq n-4$ we see that

$$
m \geq 3+|A|+|C|+|A||C| \geq n+n-4=2 n-4
$$

Next suppose that $B \neq \emptyset$. Note that there can be no edges from A to B or from C to B or a copy of F_{2} would exist in G. Now A and C must also be nonempty for otherwise G would be 1-connected, a contradiction. Again, $E(G)=E(C)=\emptyset$ or an F_{2} exists in G. Thus, again, all edges from A to C must exist or G would not have diameter two. Note that $n=3+|A|+|B|+|C|$, and $|A|$ and $|C|$ are both positive integers. Thus,

$$
\begin{aligned}
m & =3+|A|+2|B|+|C|+|A||C| \\
& \geq n+|B|+(n-|B|-4)=2 n-4 .
\end{aligned}
$$

Case 2: Suppose $x y \notin E(G)$

In this case the sets A and C may not contain two or more independent edges. Thus, there are only three possibilities for edges in A or C : no edges, edges that form a single triangle, or edges that form a single star. We now consider subcases based on these possibilities.
Subcase 2.1: Suppose that $B=\emptyset, A \neq \emptyset, C \neq \emptyset$.
First suppose that A and C contain no edges. If $a_{1} \in A$, then $\left.<z, x, a_{1}\right\rangle=P_{3}$, but none of the these three vertices lie on a triangle. Thus, no matter what edges lie between the sets A and C, inserting the edge $z a_{1}$ into G cannot form a copy of F_{2}. Hence, G is not F_{2}-saturated. We conclude that at least one of A and C must contain edges.

Note that a similar argument applies if A (or C) contain vertices not in a triangle or star, say $a_{1} \in A$ and suppose $C(A)$ contains no edges. Then a_{1}, x and z lie on no triangles, hence inserting the edge $z a_{1}$ would not produce a copy of F_{2}, a contradiction. Thus, we may assume that if one of A or C contains no edges, then the other set is spanned by either a triangle or star.

Suppose, without loss of generality, that A is spanned by a triangle with vertices a_{1}, a_{2}, a_{3}, and C contains no edges. If $c \in C$, for the edge $z c$ to produce a copy of F_{2} when inserted, c must be adjacent to two adjacent vertices of A, say a_{1}, a_{2}. But then $\left\langle x, a_{1}, a_{2}, a_{3}, c\right\rangle=F_{2}$, a contradiction. A similar argument holds if A is spanned by a star. Thus, we conclude that A and C must both contain either a triangle or star.

Suppose A contains either a triangle or a star and also contains vertices not in the triangle or star. Say $a \in A$ is such a vertex. Then for the addition of the edge $z a$ to produce a copy of F_{2}, a must be adjacent to both end vertices of an edge in C. Say a is adjacent to both c_{1} and c_{2}. If c_{1} and c_{2} are in a triangle, then F_{2} exists in G using y, c and the triangle, a contradiction. If c_{1} and c_{2} are in a star of order at least three, a copy of F_{2} also exists. If the star in C has order two, then the only way inserting the edge $z a$ produces a copy of F_{2} is if a is adjacent to both end vertices of the one edge in C. A similar argument applies to any vertex of C not incident to the edge. But now, as $n=3+|A|+|C|$ we have

$$
\begin{aligned}
m & \geq 2+|A|+|C|+2+2(|C|-2)+2(|A|-2) \\
& =(2+|A|+|C|)+2(|A|+|C|)-6 \\
& =(n-1)+2(n-3)-6=3 n-13 .
\end{aligned}
$$

But, $3 n-13 \geq 2 n-4$ when $n \geq 9$. Hence, we conclude that the triangle or star must span the set they are in.

Subcase 2.1.1: Suppose $B=\emptyset$ and both A and C are spanned by a triangle.
Then G woud only contain nine vertices and $n \geq 10$. Hence, this Subcase cannot happen.
Subcase 2.1.2: Suppose $B=\emptyset$ and both A and C are spanned by a star.
Let the star in A be centered at a_{1} with edges to $a_{2}, a_{3}, \ldots, a_{|A|}$ and the star in C be centered at c_{1} with edges to $c_{2}, c_{3}, \ldots, c_{|C|}$. Since $\delta(G) \geq 2$, and $\operatorname{diam}(G)=2$, there must be edges between A and C.

First suppose that $a_{1} c_{1} \in E(G)$. Then each of $a_{2}, a_{3}, \ldots, a_{|A|}$ must be nonadjacent to c_{1} or a copy of F_{2} would exist in G. By a similar argument, $c_{2}, c_{3}, \ldots, c_{|C|}$ are nonadjacent to a_{1}. Now each $a_{i}, i \geq 2$, must be adjacent to each $c_{j}, j \geq 2$. Now suppose that $a_{1} c_{1} \notin E(G)$. Then a_{1} must be adjacent to $c_{2}, c_{3}, \ldots, c_{|C|}$ and c_{1} must be adjacent to $a_{2}, a_{3}, \ldots, a_{|A|}$ or the diameter of G would exceed two. This is clearly the minimum number of edges that achieves both the minimum degree and diameter conditions. Now as $n=3+|A|+|C|$,
we see that

$$
\begin{aligned}
m & =2+|A|+|C|+2(|A|-1)+2(|C|-1) \\
& =(n-1)+2(|A|+|C|)-4 \\
& =(n-1)+2(n-3)-4=3 n-11 .
\end{aligned}
$$

But $3 n-11 \geq 2 n-4$ when $n \geq 7$.
Subcase 2.1.3: Suppose $B=\emptyset$ and A is spanned by a triangle and C is spanned by a star
As $n \geq 10$, we see that $|C| \geq 4$. Since $\operatorname{diam}(G)=2$, there must be edges from A to C. In fact, each vertex of the triangle in A must have at least one edge to C, or the distance to y would exceed two. Note that the center of the star in C, say c_{1}, cannot be adjacent to two of the vertices of A or an F_{2} would exist in G. Also, no vertex of A is adjacent to both c_{1} and another vertex of C, say c_{2}, or a copy of F_{2} would exist in G. If say $a_{1} c_{1} \in E(G)$, then both a_{2} and a_{3} must be adjacent to each of $c_{2}, c_{3}, \ldots, c_{|C|}$ in order to have the $\operatorname{diam}(G)=2$. If none of the vertices of A are adjacent to c_{1}, then each must be adjacent to all the other vertices of C. Thus, the edge count is minimized when c_{1} has a single adjacency to A. Now we see that $n=3+3+|C|$ hence,

$$
\begin{aligned}
m & \geq 2+3+|C|+3+(|C|-1)+1+2(|C|-1) \\
& =2+n+3|C|-2=n+3(n-6)=4 n-18 .
\end{aligned}
$$

Further, $4 n-18 \geq 2 n-4$ when $n \geq 7$. Clearly, a similar argument holds if A is spanned by a star and C is spanned by a triangle.
Subcase 2.2: Suppose $B \neq \emptyset$ and A and C are spanned by stars.
Now $E(B)=\emptyset$ or an F_{2} would exist in G. Suppose the star in A is centered at a_{1} with edges to $a_{2}, a_{3}, \ldots, a_{|A|}$ and the star in C is centered at c_{1} with edges to $c_{2}, \ldots, c_{|C|}$. As in Subcase 2.1.2, the minimum edge count is realized when a_{1} is adjacent to $c_{2}, c_{3}, \ldots, c_{|C|}$ and c_{1} is adjacent to $a_{2}, a_{3}, \ldots, a_{|A|}$. As $n=3+|A|+|B|+|C|$ we have

$$
\begin{aligned}
m & \geq 2+|A|+2|B|+|C|+2(|A|-1)+2(|C|-1) \\
& =(2+|A|+|B|+|C|)+(|B|+|A|+|C|)+|A|+|C|-4 . \\
& =(n-1)+(n-3)+|A|+|C|-4=2 n-4+|A|+|C|-4 .
\end{aligned}
$$

If $|A|+|C| \geq 4$ we are done. So assume, without loss of generality, that $|A|=1$ and $|C|=2$. In this case, a_{1} can send an edge to say c_{1} and the diameter and minimum degree conditons are satisfied. But a_{1} can also send edges to every vertex of B and no copy of F_{2} is formed. In fact, a vertex of C could also send edges to B as long as no vertex of B has an adjacent in both A and C. Now $n=6+|B|$. Then

$$
\begin{aligned}
m & \geq 2+1+2|B|+2+|B|+1+1 \\
& =(5+|B|)+2|B|+2 \\
& =(n-1)+2|B|+2=(n-1)+2(n-6)+2=3 n-11 .
\end{aligned}
$$

But $3 n-11 \geq 2 n-4$ when $n \geq 7$. A similar argument holds if $|A|=2$ and $|C|=1$ or if $|A|=|C|=1$.
Subcase 2.2.1: Suppose $B \neq \emptyset$ and A and C are each spanned by a triangle.
Now $n=9+|B|$. There can be no edges from A or C to B or a copy of F_{2} would exist. By 2-connectivity there are edges from A to C. But no vertex of A (or C) can have two or more edges to $C(A)$ or again a copy of F_{2} would exist. But $\operatorname{diam}(G)=2$ implies each of a_{1}, a_{2}, a_{3} has an edge to C. Hence, there is a matching between A and C. Thus,

$$
m \geq 2+3++2|B|+3+3+3+3=2|B|+17=2 n-1 .
$$

Subcase 2.2.2: Suppose $B \neq \emptyset, A$ is spanned by a triangle, C is spanned by a star.
There are no edges from A to B or a copy of F_{2} would exist. Hence, the fact that $\operatorname{diam}(G)=2$ implies there are edges between A and C. Each of a_{1}, a_{2}, a_{3} must have edges to C or the distance to y would be greater than two. Note that c_{1} cannot be be adjacent to two or more vertices of A or an F_{2} would exist in G. Also, no a_{i} is adjacent to both c_{1} and some other $c_{i}, i \geq 2$ or again, a copy of F_{2} would exist in G. If c_{1} is adjacent to no vertices of A, then each of a_{1}, a_{2}, a_{3} is adjacent to each of $c_{2}, c_{3}, \ldots, c_{|C|}$. If say $a_{1} c_{1} \in E(G)$, then a_{2} and a_{3} must each be adjacent to each of $c_{2}, c_{3}, \ldots, c_{|C|}$. This minimizes the edge count. Here $n=6+|B|+|C|$. Thus,

$$
\begin{aligned}
m & \geq 2+3+2|B|+|C|+3+(|C|-1)+1+2(|C|-1) \\
& =(5+|B|+|C|)++|B|+4+3|C|-3 \\
& =(n-1)+(|B|+|C|+4)+2|C|-3 \\
& =(n-1)+(n-2)+2|C|-3=2 n-3+2|C|-3 .
\end{aligned}
$$

But as $|C| \geq 1$ we see that $2 n-3+2|C|-3 \geq 2 n-4$. Clearly a similar argument holds if the roles of A and C are reversed.

Subcase 2.2.3: Suppose $B \neq \emptyset, E(A)=E(C)=\emptyset$.
There are no paths of the form a, b, c with $a \in A, b \in B$, and $C \in C$ or a copy of F_{2} would exist in G. Thus, all edges must be present between A and C. In addition, there can be an edge from A (or C) to B. As $n=3+|A|+|B|+|C|$, we have

$$
\begin{aligned}
m & \geq 2+|A|+2|B|+|C|+|A||C|+1 \\
& =(2+|A|+|B|+|C|)+|B|+(n-|B|-4)+1 \\
& =(n-1)+(n-3)=2 n-4 .
\end{aligned}
$$

Subcase 2.2.4: Suppose $B \neq \emptyset, E(A)=\emptyset$, and C is spanned by a triangle.
Again there are no edges from C to B. As before, no vertex of A has two edges to C or a copy of F_{2} would exist. But, since $\operatorname{diam}(G)=2$, each vertex of A must have an edge to C or the distance to y would exceed two. As $n=6+|A|+|B|$ we have that

$$
\begin{aligned}
m & \geq 2+|A|+|2| B|+3+3+|A| \\
& =(|A|+|B|+5)+(|B|+|A|+3) \\
& =(n-1)+(n-3)=2 n-4 .
\end{aligned}
$$

By symmetry, the result also holds if A is spanned by a triangle and $E(C)=\emptyset$.
Subcase 2.2.5: Suppose $B \neq \emptyset, E(A)=\emptyset$, and C is spanned by a star.
Now there are no paths from A to C through B or an F_{2} would exist in G. By the diameter and degree conditions, each vertex of A has at least one edge to C. If each vertex of A is adjacent to c_{1}, the center of the star, that conditon is satisfied with a minimum number of edges. Further, each vertex of A can be adjacent to the same vertex of B without creating a copy of F_{2}. Now $n=3+|A|+|B|+|C|$, so that

$$
\begin{aligned}
m & \geq 2+|A|+2|B|+|C|+(|C|-1)+|A|+|A| \\
& =(2+|A|+|B|+|C|)+(|B|+|C|+|A|)+|A|-1 \\
& \geq(n-1)+(n-3)=2 n-4 .
\end{aligned}
$$

Subcase 2.3: Suppose $B \neq \emptyset, C \neq \emptyset$ and $A=\emptyset$.

As G is 2 -connected, there must be edges from C to B. If the edge $c_{1} b_{1} \in E(G)$, then there can be no edges in C that are not incident with c_{1} or a copy of F_{2} would exist in G. Thus, C must contain a triangle or a star. But if say c_{1}, c_{2}, c_{3} induce a traingle in C, then a copy of F_{2} exists in G using b_{1}, y, c_{1}, c_{2}, and c_{3}. Thus we may assume C contains a star and as before, this star spans C.

But $\operatorname{dist}\left(x, c_{i}\right)>2$ for all $i \geq 2$. Thus, each of $c_{2}, c_{3}, \ldots, c_{|C|}$ has an edge to B. Each such edge must also be to b_{1}. Now $n=3+|B|+|C|$ and so

$$
\begin{aligned}
m & \geq 2+2|B|+|C|+(|C|-1)+|C| \\
& =(2+|B|+|C|)+(|B|+|C|)+|C|-1 \\
& =(n-1)+(n-3)+|C|-1 \geq 2 n-4 .
\end{aligned}
$$

Clearly, a similar arguement holds if $C=\emptyset$ and $A \neq \emptyset$.. This completes the proof of the Lemma.
We are now ready to consider the spectrum of F_{2}. We have already established the saturation number and Turán number for F_{2} and the fact $K_{p, n-p}$ with one extra edge is also F_{2}-saturated and has size $p(n-p)+1$. Lemma 3 establishes $\operatorname{sat}\left(n, F_{2}\right)=n+2$. Lemma 5 and our observation on 1-connected $F_{2^{-}}$ saturated graphs establishes the fact there are no F_{2}-saturated graphs with sizes in the interval $[n+3,2 n-5]$.

Next, expand the graph C_{5} such that each vertex of C_{5} becomes a set of independent vertices with adjacencies according to the original C_{5}, that is, where an edge $x y$ becomes a $K_{s, t}$, when $x \in V\left(C_{5}\right)$ expands to a set of s vertices and $y \in V\left(C_{5}\right)$ expands to a set of t vertices. We say that the graph $C_{5}[A, B, C, D, E]$ is an expanded C_{5} with each vertex set A, B, C, D, E an independent set. Let $|A|=a,|B|=b,|C|=c$, $|D|=d$, and fix $|E|=1$.

Figure 4: (a) The expanded C_{5}.; (b) F_{2}-saturated graph G_{2}.
The graph in Figure $4(\mathrm{~b})$, which we denote as G_{2}, is a copy of $C_{5}[A, B, C, D, E]$, with $|E|=1$ and exactly one additional edge $e=u v$ for some $u, v \in V(C)$. The graph G_{2} has order n and is F_{2}-saturated with $a=n-b-c-d-1 \geq 1$ provided $b \geq 1, c \geq 2, d \geq 2$, and $|E|=1$. To see that this graph is saturated, we note that since one edge $e=u v$ is added in C, each vertex $b_{i} \in B$ is in a triangle $<u, v, b_{i}>$, each triangle sharing the edge e. Then an additional edge $a_{1} a_{2}$ within A would create a copy of F_{2} with the triangle $<a_{1}, a_{2}, b_{i}>$ and $<u, v, b_{i}>$ for some $b_{i} \in B$. An additional edge $b_{1} b_{2}$ in B would create a copy of F_{2} with the triangle $<b_{1}, b_{2}, u>$ and $<u, v, d_{1}>$ for $d_{1} \in D$. Also, adding an edge $d_{1} d_{2}$ in D would create a copy of F_{2} with the triangle $\left\langle d_{1}, d_{2}, u\right\rangle$ and $\left\langle u, v, b_{i}\right\rangle$ for $b_{i} \in B$. Adding an independent edge in C clearly creates an F_{2}, while adding an edge incident to $u v$ also creates an F_{2} using a vertex from B and a vertex from D. Adding an edge from B to D, say $b_{1} d_{1}$, creates an F_{2} with triangles $<b_{1}, d_{1}, u>$ and
$<d_{2}, u, v>$. Finally, adding an edge between sets A and D or B and E or A and C is easily seen to create an F_{2}. Thus, G is F_{2}-saturated with size $|E(G)|=m$ given by the products of the orders of consecutive vertex sets such that:

$$
\begin{aligned}
m & =(n-b-c-d-1) b+b c+c d+d+(n-b-c-d-1)+1 \\
& =b n-b^{2}-b d-2 b+c d+n-c \\
& =(n-b)(b+1)-b(d+1)+c(d-1) .
\end{aligned}
$$

Then for $d=2, m=(n-b)(b+1)-3 b+c$. Hence, for fixed values of b, when c increases by 1 , as vertices are moved from A to C, m increases by 1 . Initially, since $a \geq 1,|E|=1$, and $d=2$, to maintain the required number of vertices in each set of G, we must have $c \in[2, n-b-4]$. Thus, for a fixed value of b, and letting c take on each value in $[2, n-b-4]$, we can create an F_{2}-saturated graph having size m for each m in the interval

$$
[(n-b)(b+1)-3 b+2,(n-b)(b+2)-3 b-4] .
$$

If we let $c=n-b-4$, and fix n, we have $m=b n+2 n-b^{2}-5 b-4$, which, as a function of b, is maximized when $b=\left\lfloor\frac{n-5}{2}\right\rfloor$. The function calculating the size increases until $|B|$ and $|C|$ are approximately the same before decreasing, hence the construction only produces unique sizes for $b \in\left[1,\left\lfloor\frac{n-5}{2}\right\rfloor\right]$. Now, for $b=1$, we obtain the interval of m values $[2 n-3,3 n-10]$. For $b=2$ we obtain the interval $[3 n-10,4 n-18]$ and continuing to increase b in this manner to its maximum value, we obtain the set of intervals

$$
\begin{gathered}
{[2 n-3,3 n-10],[3 n-10,4 n-18],[4 n-19,5 n-28],[5 n-30,6 n-40], \cdots} \\
{\left[\left\lceil\frac{n+5}{2}\right\rceil\left(\left\lfloor\frac{n-5}{2}\right\rfloor+1\right)-3\left\lfloor\frac{n-5}{2}\right\rfloor+2,\left\lceil\frac{n+5}{2}\right\rfloor\left\lfloor\frac{n-5}{2}\right\rfloor+3\left\lfloor\frac{n-5}{2}\right\rfloor+4\right]}
\end{gathered}
$$

Figure 6. E_{2}, a 4-partite F_{2}-saturated family of graphs.
The upper endpoint of the interval evaluated at b minus the lower endpoint at $b+1$ plus one equals the number of values common to the consecutive intervals at b and at $(b+1)$. Here we have

$$
[(n-b)(b+2)-3 b-4]-[(n-b-1)(b+2)-3(b+1)+2]+1=b .
$$

As $b \geq 1$, the intervals overlap, so their union produces one interval of sizes for F_{2}-saturated graphs.

We now provide another class of graphs that provide some additional values of the spectrum. Consider the graph obtained by taking a copy of $K_{t+x, t-x}(x \geq 1)$ with partite sets consisting of $a_{1}, a_{2}, \ldots, a_{t+x}$ and $b_{1}, b_{2}, \ldots, b_{t-x}$ along with two additional vertices r and s. Let vertex r be adjacent to $b_{1}, b_{2}, \ldots, b_{t-x-1}$ and a_{1}. Let vertex s be adjacent to $a_{t+x}, a_{t+x-1}, \ldots, a_{2}$ and b_{t-x}. Further, add the edge $r s$ (See Figure 5). Then this graph E_{2} is F_{2}-saturated and has order $2(t+1)$ and size $t^{2}-x^{2}+2 t-1$. Thus, $t=(n-2) / 2$ and so E_{2} has size $\frac{n^{2}}{4}-n-x^{2}+1$.

We summarize the results of this section in the following Theorem.
Theorem 3. There exists an F_{2}-saturated graph G on $n \geq 10$ vertices and m edges for $m=n+2$, or $2 n-3 \leq m \leq\left\lceil\frac{n+5}{2}\right\rceil\left\lfloor\frac{n-5}{2}\right\rfloor+3\left\lfloor\frac{n-5}{2}\right\rfloor+4$, or $m=p(n-p)+1$, the size of the complete bipartite graph $B_{p}{ }^{+}$, or $m=\frac{n^{2}}{4}-n-x^{2}+1,(x \geq 1)$ the size of the graph E_{2}. Further, there are no F_{2}-saturated graphs with size in $[n+3,2 n-5]$.
Question 1. Does Theorem 3 include all the values of the saturation spectrum for F_{2} ?

4 Constructing F_{3}-saturated Graphs

We know that $\operatorname{sat}\left(n, F_{3}\right)=n+5$ and in [6] it was shown that $\operatorname{ex}\left(n, F_{3}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor+6$. Complete bipartie graphs $K_{p, n-p}(1 \leq p \leq n-1)$ with two edge disjoint triangles added (either to one partite set or one triangle in each set) will also be F_{3}-saturated. The extremal graph occurs when this graph is a balanced complete bipartite graph. Lemmas 4,5 show that there are no 2-connected F_{3}-saturated graphs with size m for $n+6 \leq m \leq 2 n-5$. However, if we insert the edges of a K_{5} in the neighborhood of a star $K_{1, n-1}$ we obtain a new 1-connected F_{3}-saturated graph with size $n-1+10=n+9$.

We can construct F_{3}-saturated graphs in a manner similar to our construction of F_{2}-saturated graphs, with a modified $C_{5}[A, B, C, D, E]$ denoted G_{3}. However, in place of the edge $u v \in E(C)$ from the $G_{2^{-}}$ construction, we need a C_{4}, as it is 2-regular and has two vertex disjoint edges inducing a copy of F_{2} (see Remark 1). The graph G_{3} is F_{3}-saturated when $a \geq 1, b \geq 2, d \geq 2$, (so that $b+d \geq 4=t+1$ when $t=3$, needed when looking for F_{t}) and $c \geq 4$. We again fix $|E|=1$ and $d=2$ in G_{3}.

Figure 6: Construction of G_{3} for F_{3}-saturated graphs.
Note that each vertex $b_{i} \in B$ is in two edge disjoint triangles for example, triangles $<c_{1}, c_{2}, b_{i}>$ and $<c_{3}, c_{4}, b_{i}>$. Then an additional edge $a_{1} a_{2}$ within A would create a copy of F_{3} with the third triangle
$<a_{1}, a_{2}, b>$. Since each vertex in the C_{4} is the shared vertex of an induced copy of F_{2}, an additional edge in B, say $b_{1} b_{2}$, would create a copy of F_{3} with triangles $\left\langle b_{1}, b_{2}, c_{1}\right\rangle,\left\langle c_{1}, c_{2}, d_{1}\right\rangle$ and $\left\langle c_{1}, c_{4}, d_{2}\right\rangle$ for $d_{1}, d_{2} \in D$. As $b \geq 2$, adding an edge in D similarly creates a copy of F_{3}. Adding an independent edge in C clearly creates an F_{3} with center $b_{i} \in B$, while adding an edge incident to the C_{4}, say $c_{1} c_{5}$, also creates a copy of F_{3} using vertices from both B and D. Adding a chord to the cycle in C, say $c_{1} c_{3}$, creates an F_{3} with triangles $\left\langle d_{1}, c_{1}, c_{2}\right\rangle,\left\langle d_{2}, c_{1}, c_{4}\right\rangle$ and $\left\langle b_{i}, c_{1}, c_{3}\right\rangle$ for any $b_{i} \in B$. Adding an edge from C to A, say $c_{k} a_{i}$, creates a triangle $<a_{i}, b_{j}, c_{k}>$ for $a_{i} \in A, b_{j} \in B$ and $c_{k} \in C$, and if $c_{k} \notin\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$, we have a copy of F_{3} with three edge disjoint triangles sharing b_{j} while $c_{k} \in\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$ creates a copy of F_{3} with triangles sharing c_{k}. Similarly, adding an edge from C to E produces a copy of F_{3}. Adding an edge from B to D, say $b_{1} d_{1}$ produces an F_{3} with triangles $\left\langle b_{1}, c_{1}, d_{1}\right\rangle,\left\langle d_{2}, c_{1}, c_{4}\right\rangle$, and $\left\langle b_{2}, c_{1}, c_{2}\right\rangle$. Adding an edge between B and E or A and D is easily seen to create a copy of F_{3}. Thus, the graph G_{3} is F_{3}-saturated with size m given by the products of the orders of consecutive vertex sets as follows:

$$
\begin{aligned}
m & =(n-b-c-3) b+b c+2 c+2+(n-b-c-3)+4 \\
& =b n-b^{2}-4 b+n+c+3 \\
& =(n-b)(b+1)-3 b+c+3 .
\end{aligned}
$$

Hence, using G_{3}, for fixed values of $b \geq 2$, when c increases by 1 , as vertices are moved from A to C, m increases by 1 . To maintain the required number of vertices in each set of G_{3}, we must have $c \in[4, n-b-4]$. For a fixed value of b and letting c range over all values in $[4, n-b-4]$, we can create F_{3}-saturated graphs with sizes for all possible integers in the interval

$$
[(n-b)(b+1)-3 b+7,(n-b)(b+2)-3 b-1] .
$$

If we let $c=n-b-4$ for fixed n, then we have $m=b n+2 n-b^{2}-5 b-2$, which, as a function of b, is maximized when $b=\left\lfloor\frac{n-5}{2}\right\rfloor$.

Fix $|E|=1$ with $a=n-9, b \geq 2, d=2$ and move vertices from A to C such that $|C|$ increases by 1. Then, in a manner similar to that of the previous section, for each fixed value of $b \geq 2$ we have an F_{3}-saturated graph with size for each value in the interval below corresponding to that value of b. These intervals are

$$
\begin{gathered}
{[3 n-5,4 n-15],[4 n-14,5 n-25],[5 n-25,6 n-37],} \\
{[6 n-38,7 n-51],[7 n-53,8 n-67],[8 n-70,9 n-85], \cdots} \\
\cdots,\left[\left\lceil\frac{n+5}{2}\right\rceil\left\lfloor\frac{n-5}{2}\right\rfloor+\left\lceil\frac{n+5}{2}\right\rceil-3\lfloor n-52\rfloor+7,\left\lceil\frac{n+5}{2}\right\rceil\left\lfloor\frac{n-5}{2}\right\rfloor+2\left\lceil\frac{n+5}{2}\right\rceil-3\left\lfloor\frac{n-5}{2}\right\rfloor-1\right] .
\end{gathered}
$$

Now $[(n-b)(b+2)-3 b-1]-[(n-b-1)(b+2)-3(b+1)+7]+1=b-2$ counts the number of terms that overlap between intervals evaluated at b and $b+1$. Since the first two interval do not overlap, but have consecutive ending and starting values, and the remaining consecutive pairs of intervals have a positive number of terms that overlap, the union of the above intervals is itself and interval.

Alternately, modifying G_{3} slightly with $b=1$ and $d=3$, (so that $b+d=4$), then adding an edge from B to D, say $b_{1} d_{1}$, also creates a copy of F_{3} with triangles $\left.<b_{1}, c_{1}, d_{1}\right\rangle,\left\langle d_{2}, c_{1}, c_{4}\right\rangle$, and $\left\langle d_{3}, c_{1}, c_{2}\right\rangle$. This modified graph is F_{3}-saturated. Further, when $b=1$ and $d=3$, then $m=2 n+2 c-3$. Thus, transfering one vertex from A to C (with $c \geq 4$), increases m by 2 . Thus, as c increases from 4 to $n-6$, we obtain the sizes $2 n+5,2 n+7, \ldots, 4 n-15$.

The graph in Figure 6 has size $3 n-6$ and is clearly F_{3}-saturated for $n \geq 7$, as adding any edge will create a triangle that is edge disjoint from the two edge disjoint triangles sharing v. The graph C_{4} with
two adjacent vertices of the C_{4} joined to all vertices of the graph $\left[K_{3} \cup \bar{K}_{n-7}\right]$ is also F_{3}-saturated and has size $2 n-1$. Similarly, the graph $K_{2}+\left[K_{3} \cup \bar{K}_{n-5}\right]$ is F_{3}-saturated with size $2 n$. Also, the graph P_{4} with two end vertices joined to all vertices of the graph $\left(K_{4} \cup \bar{K}_{n-8}\right)$ is F_{3}-saturated and has size $2 n+1$.

For possible values near the extremal number of F_{3}, consider the family E_{3}, constructed by adding to the graph E_{2} from the previous section the edges $r a_{2}, s b_{t-x-1}, a_{1} a_{2}, b_{1} b_{2}, a_{t+x} a_{t+x-1}$, and $b_{t-x} b_{t-x-1}$ and then removing the edges $r b_{t-x-1}$ and $s a_{2}$. For $t \geq x+2 \geq 6$, the graph E_{3} is F_{3}-saturated and has size $m=t^{2}-x^{2}+2 t+5$ and order $n=2(t+1)$, hence, $m=\frac{n^{2}}{4}-x^{2}+4$. We now summarize what we know about the existence of m edge, n vertex F_{3}-saturated graphs in the following theorem.

Figure 7: An F_{3}-saturated graph with $m=3 n-6$.

Theorem 4. There exists an F_{3}-saturated graph G of order n with m edges for $m=n+5, n+9$, $2 n-1,2 n, 2 n+1$ and $2 n+5,2 n+7, \ldots, 4 n-15$. Also, for each m where $\left.3 n-6 \leq m \leq\left\lceil\frac{n+5}{2}\right\rceil(\rfloor\left\lceil\frac{n-5}{2}\right\rceil+2\right)-$ $3\left\lfloor\frac{n-5}{2}\right\rfloor-1$. Further, $m=x n-x^{2}+6$, the size of a complete bipartite graph $K_{x, n-x}(0 \leq x \leq n / 2)$ with two edge disjoint triangles added, or $m=\frac{n^{2}}{4}-x^{2}+4$, for $x=0,1, \ldots, \frac{n}{4}$, the size of E_{3}. Further, there are no 2-connected F_{3}-saturated graphs with size in $[n+6,2 n-5]$.

Question 2: Do F_{3}-saturated graphs on n vertices with m edges exist for other m in the interval $[n+6,2 n-5]$? Also, are there F_{3}-saturated graphs with sizes $2 n+6,2 n+8, \ldots, 3 n-8$?

5 Constructing F_{4}-saturated Graphs

We know from Lemma 3 that $\operatorname{sat}\left(n, F_{4}\right)=n+8$ and if we insert the edges of a K_{7} into a $K_{1, n-1}$ we obtain a 1-connected F_{4}-saturated graph with $n+20$ edges. From Theorem 1 we have that $\operatorname{ex}\left(n, F_{4}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor+10$. Lemma 5 implies that there are no 2 -connected F_{4}-saturated graphs of size m for $n+9 \leq m \leq 2 n-5$. Also, complete bipartie graphs with the proper 10 additional edges (for example, a C_{7} with three independent chords) are also F_{4}-saturated.

We can again construct F_{4}-saturated graphs with a modified $C_{5}[A, B, C, D, E]$ denoted G_{4}. In place of the edge $u v$ added to get G_{2}, we add in C, a chorded C_{6} with chords such that the degree of each vertex within the cycle is three. This chorded cycle has three independent edges inducing a copy of F_{3} with sets B and D and each vertex of the cycle has degree three. This graph is F_{4}-saturated when $a \geq 1, b \geq 3$, $d \geq 2$ (so that $b+d \geq 5$) and $c \geq 6$.

Figure 8: Construction of G_{4}, for F_{4}-saturated graphs.

For $d=2$ and $|E|=1$, an argument similar to that of the previous section shows that G_{4} is F_{4}-saturated, with size m given by the products of the orders of consecutive vertex sets as follows:

$$
m=(n-b-c-3) b+b c+2 c+2+(n-b-c-3)+9=(n-b)(b+1)-3 b+c+8 .
$$

Hence, for fixed values of b, when c increases by 1 , as vertices are moved from A to C, the size increases by 1 . To maintain the required number of vertices in each set of G_{4}, we must have $c \in[6, n-b-4]$. In a manner similar to that in the previous section, for a fixed value of b, we can construct an F_{4}-saturated graph having size in the interval

$$
[(n-b)(b+1)-3 b+14,(n-b)(b+2)-3 b+4] .
$$

If we let $c=n-b-4$ for fixed n, then we have $m=b n+2 n-b^{2}-5 b+4$, which, as a function of b, is maximized when $b=\left\lfloor\frac{n-5}{2}\right\rfloor$. The maximum size is achieved when the orders of B and C are as balanced as possible.

If we let $|A|=n-b-9$ and move vertices from A to C such that $|C|$ increases by 1 , we have F_{4}-saturated graphs with sizes in the intervals

$$
\begin{gathered}
{[4 n-7,5 n-20],[5 n-18,6 n-32],[6 n-31,7 n-46],} \\
{[7 n-46,8 n-62],[8 n-63,9 n-80],[9 n-82,10 n-100], \cdots} \\
\cdots,\left[\left\lceil\frac{n+5}{2}\right\rceil\left\lfloor\frac{n-5}{2}\right\rfloor+\left\lceil\frac{n+5}{2}\right\rceil-3\left\lfloor\frac{n-5}{2}\right\rfloor+14,\left\lceil\frac{n+5}{2}\right\rceil\left\lfloor\frac{n-5}{2}\right\rfloor+2\left\lfloor\frac{n+5}{2}\right\rceil-3\left\lfloor\frac{n-5}{2}\right\rfloor+4\right] .
\end{gathered}
$$

We can partially extend the possible sizes using a similar construction for F_{4}-saturated graphs by altering the chorded cycle in G_{4} as seen in Figure 9.

In the construction of G_{4}^{\prime} for F_{4}-saturated graphs shown in Figure 9 in place of the the chorded C_{6}, we have a chorded C_{7} with chords such that the degree of a vertex within the cycle is three for each vertex in $V\left(C_{7}\right)-v$. This chorded cycle has three independent edges inducing a copy of F_{3} with sets B and D and each vertex of the cycle except v is the shared vertex of an induced copy of F_{3}. This graph is F_{4}-saturated when $a \geq 1, b \geq 2, d=3$ and $c \geq 7$ with size:

Figure 9: The graph G_{4}^{\prime}, an altered G_{4} construction for F_{4}-saturated graphs.

$$
\begin{aligned}
m & =(n-b-c-4) b+b c+3 c+3+(n-b-c-4)+10 \\
& =(n-b)(b+1)-4 b+2 c+9 .
\end{aligned}
$$

So when $b=2, d=3$ and $c=7, m=3 n-9$. Increasing c repeatedly by one up to $n-7$ produces the values: $3 n-7,3 n-5,3 n-3, \ldots, 5 n-19$.

Finally, consider the graph $2 K_{2}+\left[K_{4} \cup \bar{K}_{n-8}\right]$. This graph is F_{4}-saturated with $4 n-8$ edges. We summarize the results of this section in the following theorem.

Theorem 5. There exists an F_{4}-saturated graph G on n vertices and m edges if $m=n+8$, or $n+20$, or $3 n-9,3 n-7,3 n-5, \ldots, 5 n-19$, or for each m where $4 n-8 \leq m \leq\left\lceil\frac{n+5}{2}\right\rceil\left\lfloor\frac{n-5}{2}\right\rfloor+2\left\lceil\frac{n+5}{2}\right\rceil-3\left\lfloor\frac{n-5}{2}\right\rfloor+4$, or $m=x n-x^{2}+10$, the size of a complete bipartite graph $K_{x, n-x}$ with the proper 10 additional edges. There are no 2-connected F_{4}-saturated graphs with size in the interval $[n+9,2 n-5]$.

6 Constructing F_{t}-saturated Graphs, $t \geq 5$

In this section we determine some sizes for F_{t}-saturated graphs where $t \geq 5$. We know that for $t \geq 2$, $\operatorname{sat}\left(n, F_{t}\right)=n+3 t-4$. If we insert the edges of a $K_{2 t-1}$ into a copy of $K_{1, n-1}$ we obtain a F_{t}-saturated graph with size $n-1+(2 t-1)(t-1)$.

We generalize the two constructions for F_{4}-saturated graphs to construct F_{t}-saturated graphs. The graph G_{2} that is F_{2}-saturated can be made into an F_{t}-saturated $G_{t}(t \geq 5)$ by replacing the edge $u v \in E(C)$ with a chorded cycle \hat{C} on $2 t-2$ vertices. The chords of the cycle \hat{C} must be distributed amongst the vertices such that each vertex in \hat{C} has degree $t-1$ in \hat{C}. Since $2 t-2$ is even, this can always be done. One way to distribute the chords when t is odd is seen in Figure $10(\mathrm{~b})$ for $t=5$. In the cycle \hat{C} we label the vertices clockwise $v_{1}, v_{2}, \ldots, v_{2 t-2}$. When t is odd, we add the edge $v_{i} v_{j}$, if the distance between v_{i} and v_{j} is exactly k where $k=3,5, \ldots, t-2$ and, when t is even, $k=3,5, \ldots, t-1$. In this way, each vertex in \hat{C} is adjacent to $t-1$ other vertices of \hat{C} so each $u \in \hat{C}$ is in exactly $t-1$ edge disjoint triangles $\{u v, u w, v w\}$ where $v \in \hat{C}$ and w is a vertex in B or D.

Figure 10: (a) The graph G_{t}; (b) Example of \hat{C} for $t=5$.

The graph G_{t} is F_{t}-saturated for $a \geq 1, b \geq t-1, d=2$ (hence $b+d \geq t+1$), $|E|=1$ and $c \geq 2 t-2$. The argument that G_{t} is F_{t}-saturated follows exactly those of the previous sections.

In general, G_{t} will have $m=(n-b)(b+1)-3 b+c+(t-1)^{2}-1$ edges. For fixed values of b, when c increases by 1 , as vertices are moved from A to C, the size increases by 1 . To maintain the required number of vertices in each set of G_{t}, we must have $c \in[2 t-2, n-b-4]$. For a fixed value of b and n large enough, we can create an F_{t}-saturated graph having size in

$$
\left[(n-b)(b+1)-3 b+t^{2}-2,(n-b)(b+1)+n-4 b+(t-1)^{2}-5\right] .
$$

If we let $c=n-b-4$ for fixed n, then we have $m=b n+2 n-b^{2}-5 b+t^{2}-2 t-4$, which, as a function of b, is maximized when $b=\left\lfloor\frac{n-5}{2}\right\rfloor$. Thus, the graphs from the construction have distinct sizes for each $b \in\left[t-1,\left\lfloor\frac{n-5}{2}\right\rfloor\right]$. Then the smallest size for an F_{t}-saturated G_{t} on $n \geq 3 t$ vertices is given when $b=t-1$ and $c=2 t-2$ and is $m=(n-t+1)(t)-3(t-1)+2 t-2+(t-1)^{2}-1=t(n-2)+1$.

If we let $|A|=n-b-c-3$, fix b, and move vertices from A to C such that $|C|$ increases by 1 , we have F_{t}-saturated graphs with sizes in the following set of intervals which we denote as $I_{n, t}$:

$$
\begin{gathered}
{[n t-2 t+1, n t-5 t+n],[n t+n-4 t-2, n t+2 n-7 t-4], \cdots} \\
{\left[2 n t-3 n-3 t^{2}+8 t-2,2 n t-2 n-3 t^{2}+4 t\right],\left[2 n t-2 n-3 t^{2}+4 t+1,2 n t-n-3 t^{2}+2\right],} \\
{\left[2 n t-n-3 t^{2}+2,2 n t-3 t^{2}-4 t+2\right], \cdots,} \\
{\left[\left\lceil\frac{n+5}{2}\right\rceil\left\lfloor\frac{n-5}{2}\right\rfloor+\left\lceil\frac{n+5}{2}\right\rceil-3\left\lfloor\frac{n-5}{2}\right\rfloor+t^{2}-2,\left\lceil\frac{n+5}{2}\right\rceil\left\lfloor\frac{n-5}{2}\right\rfloor+\left\lceil\frac{n+5}{2}\right\rceil+n-4\left\lfloor\frac{n-5}{2}\right\rfloor+(t-1)^{2}-5\right] .}
\end{gathered}
$$

Note that there is a gap between the intial intervals of length $2 t-b-3$, which is the distance between the end of an interval and the beginning of the next consecutive interval. However, once $b \geq 2 t-3$ the intervals begin to overlap. To partially fill this gap we use a modification of the previous construction.

Figure 11: (a) Construction;(b) Example C^{\prime} for $t=5$; (c) Example C^{\prime} for $t=6$.
We form a new graph $G^{\prime}{ }_{t}$ from G_{t} by replacing \hat{C} with a new cycle C^{\prime}. The chorded cycle C^{\prime} has order $2 t-1$. If t is even, we distribute the chords of the cycle C^{\prime} amongst the vertices such that all but one vertex, say v, in C^{\prime} is adjacent to exactly $t-1$ other vertices in C^{\prime} and v is adjacent to exactly $t-2$ vertices in C^{\prime}. If t is odd, we distribute the chords of the cycle C^{\prime} amongst the vertices so that all vertices are adjacent to exactly $t-1$ other vertices in C^{\prime}. To do this we make $v_{i} v_{j}$ and edge for v_{j} at distance $3,5, \ldots, t-2$ from v_{i}. In this case, C^{\prime} is $(t-1)$-regular.

That this graph is F_{t}-saturated is shown in the same way as has been done in the previous sections.
In general $G^{\prime}{ }_{t}$ has size m^{\prime} where

$$
m^{\prime}=(n-b)(b+1)-3 b+c-1+ \begin{cases}\frac{\left(2 t^{2}-3 t+1\right)}{2} & \mathrm{t} \text { odd } \\ \frac{\left(2 t^{2}-3 t\right)}{2} & \mathrm{t} \text { even. }\end{cases}
$$

We summarize the F_{t} case in the following Theorem.
Theorem 6. There us an F_{t}-saturated graph $(t \geq 5)$ of size m if $m=n+3 t-4$ or $m=n-1+(2 t-1)(t-1)$, or m lies in one of the intervals in $I_{n, t}$ or $m=m^{\prime}$.

Acknowledgements: The authors would like to thank the referees for their careful reading and very useful comments.

References

[1] Abbott, H.L.; Hanson, D.; Sauer, N. Intersection theorems for systems of sets. J. Combin. Theory Ser. A, 12(1972), 381-389.
[2] Amin, K.; Faudree, J.R.; Gould, R. J. The edge spectrum of K_{4}-saturated graphs. J. Combin.Math. Combin. Comput. 81(2012), 233-242.
[3] Amin, K.; Faudree, J.R.; Gould, R. J.; Sidorowicz, E. On the non- $(p-1)$-partite K_{p}-free graphs. Discuss. Math. Graph Theory 33(2013), no. 1, 9-23.
[4] Barefoot, C.; Casey, K.; Fisher, D.; Fraughnaugh, K.; Harary, F. Size in maximal triangle-free graphs and minimal graphs of diameter 2. Discrete Math. 138(1995), no. 1-3, 93-99.
[5] Chartrand, G.; Lesniak, L. Graphs \& Digraphs 4th Ed., Chapman Hall/CRC, Boca Raton, FL, 2005.
[6] Erdős, P.; Furedi, Z.; Gould, R. J.; Gunderson, D. S. Extremal graphs for intersecting triangles. J Combin. Theory Ser. B 64(1995), no. 1, 89-100.
[7] Faudree, R., Ferrara, M., Gould, R., and Jacobson, M. $t K_{p}$-saturated graphs of minimum size. Discrete Math. 309(2009), no. 19, 5870-5876.
[8] Fuller, J; Gould, R. J. On $\left(K_{t}-e\right)$-saturated graphs. Graphs \& Combin. 34(2018), no. 1, 85-95.
[9] Gould, R. J.; Tang, W.; Wei, E.; Zhang, C-Q. The edge spectrum of the saturation number for small paths. Discrete Math. 312(2012), no. 17, 2682-2689.

[^0]: *Department of Mathematics, University of Connecticut Stamford, Stamford, CT, 06901 . Email: Jessica.Fuller@uconn.edu
 ${ }^{\dagger}$ Department of Mathematics, Emory University, Atlanta, GA, 30322. Email: rg@emory. edu

