DEGREE SUM AND VERTEX DOMINATING PATHS

JILL FAUDREE, RALPH J. FAUDREE, RONALD J. GOULD*, PAUL HORN**, AND MICHAEL S. JACOBSON

Abstract

A vertex dominating path in a graph is a path P such that every vertex outside P has a neighbor on P. In 1988 H. Broersma [HB88] stated a result implying that every n-vertex k-connected graph G such that $\sigma_{(k+2)}(G) \geq n-2 k-1$ contains a vertex dominating path. We provide a short, self-contained proof of this result and further show that every n-vertex k-connected graph such that $\sigma_{2}(G) \geq \frac{2 n}{k+2}+f(k)$ contains a vertex dominating path of length at most $(20 k)|T|$, where T is a minimum dominating set of vertices. An immediate corollary of this result is that every such graph contains a vertex dominating path with length bounded above by a logarithmic function of the order of the graph. To derive this result, we prove that every n-vertex k-connected graph with $\sigma_{2}(G) \geq \frac{2 n}{k+2}+f(k)$ contains a path of length at most $20 k|T|$, through any set of T vertices where $|T| \leq n / 900 k^{4}$.

1. Introduction

Interest in dominating cycles and paths of various sorts began as a natural relaxation of hamiltonian cycle and path problems and moved in a number of directions: edge dominating cycles (paths), vertex dominating cycles (paths), longest cycles (paths) that dominate in some manner and so forth.

In particular, a paper by Bondy and Fan ([BF87]) proving a conjecture of Clark, Coburn and Erdős [CCE], gave a condition for degree sums of sets of $k+1$ independent vertices in k-connected graphs that imply the existence of a vertex dominating cycle. Shortly thereafter Broersma ([HB88]) produced a general result providing generalized degree sum conditions in k-connected graphs forcing all vertices to be within a fixed distance of a cycle. Furthermore, at the end of the paper, an analogue for paths was stated. There has continued to be investigation into vertex dominating cycle structures, though it has tended to focus on long cycles. (See [MOS], [SY].)

On the other hand, a vertex dominating path may also be viewed as a spanning tree of a particular type, sometimes called a caterpillar. There has been much recent work on conditions implying particular structural properties in spanning trees. See for example [FKKLR], [CFHJL], or the recent survey by Ozeki and Yamashita ([OY11]) on spanning trees.

A converging of these two streams of research occurred in a recent paper by Faudree, Gould, Jacobson, and West ([FGJW]) which contains several theorems relating minimum degree and vertex dominating paths (or spanning caterpillars). Motivated by [FGJW], this paper contains

Date: January 12, 2018.
*This work was supported by the Heilbrun Distinguished Emeritus Fellowship from the Emeritus College of Emory University.
**This work was partially funded by NSA Young Investigator Grant H98230-15-1-0258.
results relating degree sum conditions and dominating paths. Included is a short, self-contained proof of a result originally stated in [HB88] as well as a theorem and corollary that answers a question from [FGJW].

All graphs are finite and simple. Notation and terminology generally follows West [DW96]. A set $X \subset V(G)$ dominates the graph G if every vertex of $G-X$ has a neighbor in X. Observe that this definition means the set X dominates the vertex set but not necessarily the edge set of G. We will often say a path P or a cycle C dominates G if $V(P)$ or $V(C)$ dominates $V(G)$.

Given a graph G and integer $k \geq 2$, we denote by $\sigma_{k}(G)$ the minimum degree-sum of independent sets of k vertices. Observe that, by a natural extension of this definition, $\sigma_{1}(G)=\delta(G)$. Given a set of vertices $X=\left\{x_{1}, x_{2}, \cdots, x_{m}\right\} \subseteq V(G)$, the notation $N[X]=X \cup\{v \in V(G) \mid \exists x \in X$, vx \in $E(G)\}$, often called the closed neighborhood of X.

The primary result in this paper is the theorem stated below. It gives sufficient connectivity and σ_{2} conditions to ensure that there is a short path in G containing any given subset of vertices T such that $|T|$ is a linear function of n. It requires G have sufficiently large order and "short" in this case means a constant multiple of $|T|$.

Theorem 1.1. Let $k \geq 1$ be an integer. Let G be a k-connected graph on n vertices such that $\sigma_{2}(G) \geq \frac{2 n}{k+2}+f(k)$ where $f(k)$ is a sufficiently large constant depending only on k, and let $T \subseteq V(G)$ such that $|T| \leq n / 900 k^{4}$. Then there exists a path in G on at most $(20 k)|T|$ vertices containing all the vertices of T.

The proof of this theorem is given in Section 4, after several preliminary lemmas.

2. Degree Sum and the Existence of a Dominating Path

In 1985, Clark, Colbourn, and Erdős [CCE] conjectured that every k-connected graph with minimum degree at least $\frac{n}{k+1}+f(k)$ has a vertex dominating cycle. In [BF87], Bondy and Fan proved the conjecture holds and made another similar conjecture replacing degree sum with distance m neighborhoods and replacing dominating cycles with m-dominating cycles (where a cycle is m dominating if every vertex is at most distance m from the cycle.) In [HB88], Broersma generalized the classic Erdős-Chvátal condition for hamiltonicity and, as one part of one corollary, settled the conjecture of Bondy and Fan. At the end of the paper by Broersma, several general results concerning paths, all of which are analogues of the cycle results proved earlier, are stated. These earlier proofs are intricate, nontrivial, and carefully linked. Below is one corollary. Note that a Δ_{λ}-traceable graph is one in which there exists a path such that all vertices are a distance less than λ from the path and a set of mutually r-distant vertices is a set $S \subseteq V(G)$ such that for every $u, v \in S, u \neq v$, the distance from u to v is at least r.

Corollary 2.1. [HB88] Let G be an n-vertex, k-connected graph ($k \geq 1$) and let $\lambda \geq 2$. If the degree sum of any $k+2$ mutually $(2 \lambda-1)$-distant vertices is at least $n-2 k-1-(\lambda-2) k(k+2)$, then G is Δ_{λ}-traceable.

We offer a self-contained proof of the special case of Corollary 2.1 when $\lambda=2$ and the path is vertex-dominating. Note that when $\lambda=2$, the hypothesis in the corollary above concerns degree sums of mutually 3 -distant vertices and the hypothesis in the theorem below uses a σ_{k+2} condition
which applies to all nonadjacent pairs of vertices. Since any set of 3-distant vertices would certainly be nonadjacent, the Theorem below appears to have stronger hypotheses than the corollary above. In fact, the proof of the Theorem only requires the condition on 3-distant vertices, but we state the stronger condition as it is more common in recent literature.

Theorem 2.1. Every n-vertex k-connected graph with $\sigma_{(k+2)}(G) \geq n-2 k-1$ contains a vertexdominating path.

Proof. Let G satisfy the hypothesis of the theorem and proceed by contradiction. Let P be a path in G such that $|N[P]|$ is maximized. That is, the total number of vertices on the path and dominated by the path is maximized. Further, among all paths dominating a maximum number of vertices, choose P to be as short as possible. Label the vertices of P as: $x=x_{1}, x_{2}, \cdots, x_{t}=y$. If all the neighbors of x (or y) were dominated by the vertices of $P-x$ (or $P-y$), then a shorter path dominating the same number of vertices is possible. Thus there exist vertices x^{\prime} (and y^{\prime}) such that $N\left(x^{\prime}\right) \cap V(P)=\{x\}$ (and $N\left(y^{\prime}\right) \cap V(P)=\{y\}$). In this case, we will say x^{\prime} is uniquely dominated by x or that x uniquely dominates x^{\prime}. Clearly this relationship depends upon the choice of P, but we are assuming the choice of P is fixed.

Since G has no vertex dominating path, there exists a vertex, z, not dominated by P. Since G is k-connected, there exist k paths from z to P that are vertex disjoint other than at initial vertex z. Pick these k paths to be as short as possible and label the terminal vertices $x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{k}}$ in order as they appear on P from x to y.

Figure 1. This figure illustrates the paths from vertex z to P, a shortest path dominating a maximum number of vertices. Note the circled section denotes P_{r}, the section of the path P strictly between the endpoints of two consecutive paths from $z, x_{i_{r}}$ and $x_{i_{r+1}}$.

Let $P_{r}=P\left(x_{i_{r}}, x_{i_{r+1}}\right)$ denote the subpath of P strictly between two consecutive endpoints of paths from z. Note the index r ranges from $r=1$ to $r=k-1$.(See Figure 1.)

A vertex in a subpath P_{r} is called moveable if it and all of its neighbors in $G-P$ have adjacencies on $P-P_{r}$. (That is, a vertex is moveable if it and all of its neighbors are dominated by vertices of P outside P_{r} and thus could be moved.) Note that for each r, the vertex that follows $x_{i_{r}}$ on the path P, namely $x_{i_{r}+1}$, would be moveable unless $x_{i_{r}+1}$ is the unique neighbor on P for some vertex in $G-P$.

If there exists a single subpath such that all vertices on it are moveable, then a path dominating more vertices can be obtained by replacing this subpath with a path through z. Thus, for each
of the $k-1$ subpaths, there exists at least one vertex that is not moveable. Label as u_{r} the first vertex in P_{r} that is not moveable as P_{r} is traversed from $x_{i_{r}}$ to $x_{i_{r+1}}$.

Let Q_{r} consist of all the vertices on P_{r} between $x_{i_{r}}$ and u_{r}. (That is, Q_{r} consists of moveable vertices.) Observe that, for $r_{1} \neq r_{2}$, there can be no edges between vertices in $Q_{r_{1}}$ and those in $Q_{r_{2}}$. Further, vertices in $Q_{r_{1}}$ and vertices in $Q_{r_{2}}$ can have no common neighbors in $V-V(P)$. If any such edges or paths existed, choosing the "first" one (that is, the one with smallest index on P) would produce a path that dominates all the vertices that P dominates and z. The importance of this observation is the conclusion that all vertices of $Q_{r_{1}}$ are not only moveable, but are moveable to regions of P other than $Q_{r_{2}}$ as is the case for the vertices dominated by $Q_{r_{1}}$. (See Figure 2.)

Figure 2. For each subpath of P, u_{i} is the first nonmoveable vertex and, so, those in Q_{i} are all moveable. Observe that any edges between vertices in distinct Q_{i} 's results in a path dominating more vertices by using the edge between vertices of smallest indices (or, alternatively, left-most vertices). New path: x to $x_{i_{r}}$ to z to $x_{i_{s}}$ to a to b to y. Note that all vertices of Q_{r} and Q_{s} not on the new path are dominated elsewhere.

For each r, the fact that u_{r} is not moveable implies either u_{r} dominates a vertex, u_{r}^{*}, that is not dominated by any vertex outside P_{r} (i.e. $N_{P}\left(u_{r}^{*}\right) \subseteq V\left(P_{r}\right)$), or u_{r} itself is not dominated outside of P_{r} (i.e. $N_{P}\left(u_{r}\right) \subseteq V\left(P_{r}\right)$.) Observe that the fact that u_{r} is the first vertex that is not moveable, implies that neither u_{r} nor u_{r}^{*} can have any adjacencies on any of the paths P_{i} or the extremal choice of P is contradicted.

Now define a set of vertices S to contain x^{\prime}, y^{\prime}, and z. Furthermore, for every subpath, add either u_{r}^{*} or u_{r} to S, using whichever one has no neighbors on $P-P_{r}$.

By definition, $|S|=k+2, S$ is independent, and no pair of vertices in S can have a common neighbor on P. Moreover, if any pair of vertices in S has any common neighbor outside of P a path dominating more vertices can be found. Specifically, this path can be built to include z, along with the two involved vertices of S and relies on the fact that vertices of $Q_{r_{1}}$ and $Q_{r_{2}}$ can be moved if needed. Thus, for every $a, b \in S$ such that $a \neq b, N(a) \cap N(b)=\emptyset$. Observe that none of the vertices in S are adjacent to $\left\{x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{k}}\right\}$ since z is, by definition, a distance at least 2 from the path and the remaining vertices are chosen precisely such that their neighborhoods on P are restricted to x, y, or P_{r} for some r. Thus, we have $\sigma_{k+2}(G) \leq \sum_{a \in S} d(a) \leq n-2 k-2$, a contradiction.

The following example shows that the preceding theorem is best possible.

Example 2.1. Construct an n-vertex k-connected graph G as follows. Begin with a complete graph on k vertices, K_{k}, and $k+2$ independent vertices, $v_{1}, v_{2}, \cdots, v_{k+2}$. Partition the remaining $n-2 k-2$ vertices into $k+2$ complete graphs such that the orders of the graphs are as equal as possible and label them $B_{1}, B_{2}, \cdots, B_{k+2}$. For each i add all edges between B_{i} and $K_{k} \cup\left\{v_{i}\right\}$. This graph has no dominating path and $\sigma_{k+2}(G)=n-2 k-2$. Note that $n \geq k^{2}+4 k+2$.

Figure 3. Example 2.1
The following corollary follows immediately from the statement of the theorem:
Corollary 2.2. Let $1 \leq r \leq k+2$ be an integer. Every n-vertex k-connected graph with $\sigma_{r}(G) \geq$ $r\left(\frac{n-2 k-1}{k+2}\right)$ contains a vertex-dominating path.

The following corollary follows immediately from the proof of the theorem:
Corollary 2.3. If $\alpha(G) \leq \kappa(G)+1$, then G contains a vertex dominating path.
The graph from Example 2.1 without the vertices v_{i} shows that this corollary is sharp.

3. Preliminary Lemmas

In order to streamline the proof of the main theorem in Section 4, several preliminary results are presented. Note that in all of the lemmas below $k \in \mathbb{Z}^{+}$. We begin with a well-known result by Dirac:

Lemma 3.1. [GD52] If G is k-connected and $X \subseteq V(G)$ such that $|X| \leq k$, then there exists a cycle in G containing all the vertices of X.

The following lemma asserts the existence of small dominating sets relative to a minimum degree condition. It is similar to some old, well known results (see eg. [AS, VA74, CP75]) and is used to prove an analogous result for degree sum conditions, Lemma 3.3.

Lemma 3.2. Every n vertex graph G with minimum degree $\delta \geq \beta$ n where $0<\beta<1$ contains a dominating set $X \subseteq V(G)$ such that $|X| \leq\left\lceil\log _{1 /(1-\beta)} n\right\rceil$.

Proof. Let G be an n vertex graph with minimum degree $\delta \geq \beta n$ where $0<\beta<1$. The proof will proceed by iteratively constructing a dominating set of vertices using no more than $\left\lceil\log _{1 /(1-\beta)} n\right\rceil$ vertices.

Begin by choosing an arbitrary vertex x_{1}. Let $X_{1}=\left\{x_{1}\right\}$ and let $S_{1}=V(G)-N\left[X_{1}\right]$. So S_{1} consists of the set of vertices not dominated by x_{1}. Given the iteratively constructed set $X_{i}=$ $\left\{x_{1}, x_{2}, \cdots, x_{i}\right\}$ and $S_{i}=V(G)-N\left[X_{i}\right]$, we construct X_{i+1} by adding any vertex x_{i+1} such that $\left|N\left(x_{i+1}\right) \cap S_{i}\right| \geq \beta\left|S_{i}\right|$.

We must first show such a vertex as x_{i+1} exists. For a given i, let $m=\left|N\left[X_{i}\right]\right|$. Thus, $\left|S_{i}\right|=n-m$. Proceeding by contradiction, we will assume that no vertex v of G has the property that $\left|N(v) \cap S_{i}\right| \geq \beta\left|S_{i}\right|$. Since all edges incident with vertices of S_{i} either come from vertices in S_{i} or vertices of $N\left[X_{i}\right]-X_{i}$, we can count the degree sum of vertices in S_{i} as follows:

$$
\begin{aligned}
\beta n \cdot(n-m) & \leq \sum_{v \in S_{i}} d(v) \\
& <\beta(n-m) \cdot(n-m)+\beta(n-m) \cdot(m-i) \\
& =\beta(n-m)(n-i) \\
& <\beta(n-m) n,
\end{aligned}
$$

a contradiction.
We claim that in $r=\left\lceil\log _{1 /(1-\beta)} n\right\rceil$ iterations, the set $\left|S_{r}\right|<1$ and so X dominates $V(G)$.
By construction $\left|S_{i+1}\right|<(1-\beta)\left|S_{i}\right|<(1-\beta)^{i+1} n$. For $r>\log _{1 /(1-\beta)} n,\left|S_{r}\right|<1$. Thus, the dominating set X requires at most $r=\left\lceil\log _{1 /(1-\beta)} n\right\rceil$ vertices.

The next lemma, an analogue of Lemma 3.2, uses the same proof technique.
Lemma 3.3. Every n vertex graph G with $\sigma_{2}(G) \geq 2 \beta n$ where $0<\beta<1$ contains a dominating set $X \subseteq V(G)$ such that $|X| \leq\left\lceil\log _{1 /(1-\beta)} n\right\rceil$.

Proof. Let G be an n vertex graph with $\sigma_{2}(G) \geq 2 \beta n$ where $0<\beta<1$. The proof will proceed by iteratively constructing a dominating set of vertices using no more than $\left\lceil\log _{1 /(1-\beta)} n\right\rceil$ vertices.

If $\delta(G) \geq \beta n$, then apply Lemma 3.2. Otherwise, choose a pair of nonadjacent vertices, x_{1} and x_{2} such that $d\left(x_{1}\right)<\beta n$. Let $X_{2}=\left\{x_{1}, x_{2}\right\}$ and define $S_{2}=V(G)-N\left[X_{2}\right]$, the set of vertices not dominated by x_{1} or x_{2}. Observe that for every $v \in S_{2}, d(v)>\beta n$ because v and x_{1} are nonadjacent. Also, note that $\left|S_{2}\right|<(1-2 \beta) n<(1-\beta)^{2} n$. Now, noting that the minimum degree in S_{2} is at least βn, the sets $X_{i}=\left\{x_{1}, x_{2}, \cdots, x_{i}\right\}$ and $S_{i}=V(G)-N\left[X_{i}\right]$ can be constructed as before.

The proof now follows precisely the same argument and the same arithmetic as Lemma 3.2.

The next lemma provides conditions under which the existence of some cycle through a specified set of vertices implies the existence of a small cycle through the specified set.

Lemma 3.4. Let G be an n-vertex graph with $\sigma_{2}(G) \geq \frac{2 n}{k+2}$. Let $X \subseteq V(G)$ such that $|X| \leq n / 10 k^{2}$. If there exists a cycle in G containing all vertices of X, then, for n sufficiently large, a smallest cycle containing all vertices of X has at most $(3 k+5)|X|$ vertices.

Proof. Let G and X satisfy the hypothesis of the Lemma and let C be a smallest cycle of G containing X. Proceed by contradiction and assume $|V(C)|>(3 k+5)|X|$. Then there exists a segment of C between consecutive vertices of X with at least $3 k+5$ vertices strictly between them, say $x_{1}=v_{0}, v_{1}, v_{2}, \cdots, v_{q}=x_{2}$, where $q \geq 3 k+6, x_{1}, x_{2} \in X$ and $v_{1}, v_{2}, \cdots, v_{q-1} \notin X$. Let $S=\left\{v_{0}, v_{3}, v_{6}, \cdots, v_{3 k+6}\right\}$.

Because C was chosen to be as small as possible, the set S is independent and no two vertices of S can have a common neighbor in $G-C$. Let $b=n-|V(C)|$.

Taking indices of v_{i} modulo $3 k+6$, the σ_{2}-condition implies

$$
\frac{1}{2} \sum_{i=0}^{k+2}\left(d\left(v_{3 i}\right)+d\left(v_{3(i+1)}\right)\right) \geq \frac{1}{2}(k+3)\left(\frac{2 n}{k+2}\right)>n
$$

Thus, the number of chords in C from vertices of S is at least $\frac{(k+3) n}{k+2}-b-2(k+3)$. Observe that all of these chords have their other endpoint outside the segment of C containing S. Let c count the number of vertices at the other end of the chords from S. Now, $b+c+3 k+7 \leq n$. After allowing one chord to each of the c vertices, the number of "excess" chords is at least $\frac{(k+3) n}{k+2}-b-2 k-6-c>\frac{n}{k+2}$.

Now, we establish an upper bound on the number excess chords from S. Let t denote the number of vertices in a particular segment of C with at least one excess chord. Observe that no pair of chords from S to this segment can cross due to the choice of C as smallest possible. (See Figure 4.) Thus, consecutive pairs of the t vertices, taken in the order they appear on C, can share at most one neighbor in S. Thus, these t vertices can accept at most $k+3+(t-1)$ chords in total and, therefore, at most $k+2$ excess chords. Thus, the total number of excess chords is at most $(k+2)|X|<((k+2) n) /\left(10 k^{2}\right)$.

Figure 4. A single pair of crossing edges results in a smaller cycle. Follow $x_{1}=v_{0}$ to $v_{3 i}$, down to z_{1}, around to $v_{3 j}$ via x_{s}, down to z_{2} and back to x_{1}.

But now we have a contradiction since the lower bound on the excess chords, $n /(k+2)$, is larger than the upper bound $(k+2) n /\left(10 k^{2}\right)$ for all $k \in \mathbb{Z}^{+}$. Thus, C can have at most $(3 k+5)|X|$ vertices.

This next lemma gives conditions under which there exists a short path between two specified vertices avoiding a given set of vertices.
Lemma 3.5. Let G be an n-vertex graph such that $\sigma_{2}(G) \geq \frac{2 n}{k+2}$. Let $Y \subseteq V(G)$ such that $|Y| \leq n / 10 k^{2}$ and $u, v \in V(G)-Y$. If there exists a u, v-path in $G-Y$, then, for n sufficiently large, there exists a Y-avoiding u, v-path using at most $3 k+6$ vertices.

Proof. Let G, Y, u, and v satisfy the hypotheses of the Lemma. Proceed by contradiction and assume that the shortest Y-avoiding u, v-path contains at least $3 k+7$ vertices, labeled $u=w_{0}, w_{1}, \cdots, w_{q}=v$, where $q \geq 3 k+6$. Thus the set $\left\{w_{0}, w_{3}, \cdots, w_{3 k+6}\right\}$ is not only an independent set of vertices, but has the property that any pair of vertices from this set have disjoint neighborhoods in $G-Y$. It follows that,

$$
\begin{align*}
2\left(n+\frac{n}{k+2}\right)=(k+3)\left(\frac{2 n}{k+2}\right) & \leq \sum_{i=0}^{k+2}\left(d\left(w_{3 i}\right)+d\left(w_{3(i+1)}\right)\right) \\
& \leq 2(n-|Y|+(k+3)|Y|) \tag{1}\\
& \leq 2\left(n+\frac{(k+2) n}{10 k^{2}}\right)
\end{align*}
$$

where $w_{3 k+9}=w_{0}$. Again, we have a contradiction since $n /(k+2)>(k+2) n /\left(10 k^{2}\right)$. Thus, a smallest Y-avoiding u, v-path has at most $3 k+6$ vertices.
Lemma 3.6. Let G be an n-vertex graph such that $\sigma_{2}(G) \geq \frac{2 n}{k+2}$. Let $T \subseteq V(G)$ such that $|T| \leq n /\left(10 k^{2}\right)$. If $\kappa(G) \geq(3 k+6)|T|$, then, for n sufficiently large, there exists a cycle (or path) in G on at most $(3 k+6)|T|$ vertices containing all the vertices of T in any order.

Proof. Arbitrarily order the vertices of $T: x_{1}, x_{2}, \cdots, x_{t}$. Since $G-\left\{x_{3}, x_{4}, \cdots, x_{t}\right\}$ is connected, Lemma 3.5 implies there exists an x_{1}, x_{2}-path on at most $9 k$ vertices avoiding $T-\left\{x_{1}, x_{2}\right\}$. Call it $P_{1,2}$. Inductively, extend this path to include the first r vertices of T. Call this path $P_{1, r}$ and assume it contains at most $(3 k+6)(r-1)$ vertices. Since $\kappa\left(G-P_{1, r}\right) \geq(3 k+6)(t-r+1)$, there will always exist an x_{r}, x_{r+1}-path avoiding $P_{1, r}$ provided $r \leq t$. Then, Lemma 3.5 implies a shortest x_{r}, x_{r+1}-path adds at most $(3 k+6)$ additional vertices. Since $P_{1, t}$ uses at most $9 k(t-1)$ vertices, $G-P_{1, t}$ is still connected. Thus, it is possible to find an x_{r}, x_{1}-path avoiding $P_{1, t}$ and Lemma 3.5 implies it adds at most $(3 k+6)$ additional vertices.

4. Proof of the Main Theorem

We restate the main theorem for ease of reference.
Theorem 1.1 Let $k \geq 1$ be an integer. Let G be a k-connected graph on n vertices such that $\sigma_{2}(G) \geq \frac{2 n}{k+2}+f(k)$ where $f(k)$ is a sufficiently large constant depending only on k, and let $T \subseteq V(G)$ such that $|T| \leq n / 900 k^{4}$. Then there exists a path in G on at most $(20 k)|T|$ vertices containing all the vertices of T.

Remark: The proof gives an explicit bound on $f(k)$ as a recursively defined function of k.

Proof. Let G and T satisfy the hypotheses of the Theorem and let $t=|T|$. Define a recursive sequence: $b_{0}=10 k^{2}$ and, for $i \geq 1, b_{i}=10 k^{2}\left(\frac{k+2}{2}\right)^{2}+\sum_{j=0}^{i-1} b_{j}$. Let $f(k)=2 b_{k+1}$. We remark that, for now, the precise form of $f(k)$ is unimportant - it suffices to think about it as simply a large constant. The reason for the precise form will become clear when it is needed in Case 3 below.

Assume G is t-connected. Lemma 3.1 implies there exists a cycle containing all the vertices of T, and Lemma 3.4 implies the smallest such cycle contains at most $(3 k+6) t$ vertices. Thus, there exists a path containing all vertices of T using at most $(3 k+6) t$ vertices, and the Theorem follows. Thus, we can assume G is k-connected and $k<t$.

Now, we will iteratively find minimum cut sets, denoted by S_{i} 's. We will collect all the vertices of these iteratively selected cut sets into a set denoted by \mathcal{S}. The connected components of $G-\mathcal{S}$ will be denoted by G_{j} 's. The indices of the S_{i} 's and the G_{j} 's are not important except that we will eventually argue that there are at most $k+2$ of the G_{j} 's. Thus, we allow arbitrary reordering of the indices as needed. (See Table 1 for an illustration of this algorithm.)

For iteration one, we let S_{0} be a minimum cut set of G; so $\left|S_{0}\right|<t$. Let $\mathcal{S}=S_{0}$ and $G_{1}, G_{2}, \cdots, G_{l}$ be the connected components of $G-\mathcal{S}$. If each G_{j} is complete or has connectivity at least $30 k t$, we stop.

Otherwise, we proceed to iteration two where, for each component G_{j} in $G-\mathcal{S}$ that is not complete and has connectivity less than $30 k t$, we find a minimum cut set S_{i}. We add all the vertices from these new cut-sets to \mathcal{S}. If each component of $G-\mathcal{S}$ is either complete or has connectivity at least 30 kt , we stop.

In general, on the i th iteration, we stop if all components of $G-\mathcal{S}$ are either complete or have connectivity at least 30 kt .

We claim the process stops with at most $k+2$ connected components, G_{j}. Observe that the first iteration produces at least two components and each subsequent iteration produces at least one additional component. Thus, the i th iteration must end in a collection of cut sets producing at least $i+1$ connected components.

Proceed by contradiction and find the first iteration, i_{0}, such that $G-\mathcal{S}$ contains more than $k+2$ connected components. From the previous observation, we know that $i_{0} \leq k+2$. In fact, we know that at most $k+2$ cut sets in total were deleted from G. Since, every cut set has order less than $30 k t$, at the end of iteration $i_{0},|\mathcal{S}|<(k+2)(30 k t)$.

Let $v_{j} \in G_{j}$ for all j. Now, applying the degree sum condition to consecutive pairs of vertices v_{j} (which lie in different components and hence are non-adjacent), we have

$$
\begin{equation*}
\sum_{j}\left|G_{j}\right|>\frac{1}{2} \sum_{j}\left(d\left(v_{j}\right)+d\left(v_{j+1}\right)-2|\mathcal{S}|\right) \geq \frac{k+3}{2}\left(\frac{2 n}{k+2}+f(k)-2|\mathcal{S}|\right) \tag{2}
\end{equation*}
$$

(where indices of v_{j} are taken modulo the number of components in $G-\mathcal{S}$.) Thus, using (2), we produce the contradiction:

$$
\begin{equation*}
\text { 3) } n=|\mathcal{S}|+\sum\left|G_{i}\right|>|\mathcal{S}|+\left(\frac{k+3}{k+2}\right) n+\frac{(k+3) f(k)}{2}-(k+3)|\mathcal{S}|>\frac{k+3}{k+2} n-(k+2)^{2}(30 k t)>n \text {, } \tag{3}
\end{equation*}
$$

for n sufficiently large and $t<\frac{n}{900 k^{4}}$. Thus, we can assume that the iterative selection of cut sets terminates in at most $k+1$ iterations and with at most $k+2$ connected components.

Table 1. Cut-Set Selection Algorithm

Iteration 1: A minimum cut set S_{0} results in four connected components, G_{1}, G_{2}, G_{3}, and G_{4}. So $\mathcal{S}=S_{0}$ and $k \leq s<t$.

Iteration 2: Minimum cut sets S_{1} and S_{2} are found in noncomplete components of $G-\mathcal{S}$ with connectivity less than 30 kt . Now, $\mathcal{S}=S_{0} \cup S_{1} \cup S_{2}$, $s<t+2(30 k t)$ and $G-\mathcal{S}$ results in seven connected components.

Iteration 3: Minimum cut sets S_{3} and S_{4} are found in noncomplete components of $G-\mathcal{S}$ with connectivity less than 30 kt . Now, $\mathcal{S}=\cup_{i=0}^{4} S_{i}, s<t+$ $4(30 k t)$ and $G-\mathcal{S}$ results in 9 connected components. The algorithm would terminate with all components either complete or with connectivity at least 30 kt .

Since \mathcal{S} is well-defined, let $s=|\mathcal{S}|$ and note that $s<30 k t \cdot$ (the number of components -1) \leq $30 k(k+1) t \leq \frac{(k+1) n}{30 k^{3}}$.

Next, we establish the following claims which will allow the application of Lemmas 3.4, 3.5, and 3.6 to each component G_{j}.

Claim 1: For every \mathcal{S} and resulting collection of G_{j} 's, $\sigma_{2}\left(G_{j}\right)>\frac{2\left|V\left(G_{j}\right)\right|}{k+2}$.
Let $L=\left\{v \in V(G) \left\lvert\, d(v)<\frac{1}{2} \sigma_{2}(G)\right.\right\}$ and $H=V(G)-L$ (where L stands for low-degree vertices and H for high-degree vertices). Observe that the graph induced by L is complete. Thus, at most one component of $G-\mathcal{S}$ can contain any vertices from L and every non-complete component must contain vertices from H.

If $G-\mathcal{S}$ has at least three components, then for every non-complete component, say $G_{j_{1}}$, there exists a different component, say $G_{j_{2}}$, containing a vertex, $v \in G_{j_{2}} \cap H$. Since $N(v) \cap G_{j_{1}}=\emptyset$, we know $\left|V\left(G_{j_{1}}\right)\right| \leq n-d(v) \leq n-\frac{\sigma_{2}(G)}{2}$, or, equivalently, $\frac{\sigma_{2}(G)}{2} \leq n-\left|V\left(G_{j_{1}}\right)\right|$.

Now, for n sufficiently large,

$$
\begin{align*}
\sigma_{2}\left(G_{j_{1}}\right) & \geq \frac{2 n}{k+2}+f(k)-2 s=\frac{2\left|V\left(G_{j_{1}}\right)\right|+2\left(n-\left|V\left(G_{j_{1}}\right)\right|\right)}{k+2}+f(k)-2 s \\
& >\frac{2\left|V\left(G_{j_{1}}\right)\right|}{k+2}+\frac{2\left(\sigma_{2}(G) / 2\right)}{k+2}-2 s \geq \frac{2\left|V\left(G_{j_{1}}\right)\right|}{k+2}+\frac{2 n}{(k+2)^{2}}-2 s \tag{4}\\
& >\frac{2\left|V\left(G_{j_{1}}\right)\right|}{k+2}
\end{align*}
$$

since $s \leq \frac{(k+1) n}{30 k^{3}}$.
If $G-\mathcal{S}$ contains exactly two components, the argument and arithmetic above applies, unless one of the components, say G_{1}, contains only vertices from L. Thus, $\left|G_{1}\right|<\frac{n}{k+1}+f(k) / 2$ and is complete. Moreover, $\mathcal{S}=S_{0}$ where $\left|S_{0}\right|=s<t$. If G_{2} is complete, then the lemma holds.

If G_{2} is not complete, then let $u \in V\left(G_{1}\right)$. Now, for n sufficiently large,

$$
\begin{align*}
\sigma_{2}\left(G_{2}\right) & >2\left[\sigma_{2}(G)-d(u)-|S|\right]>2\left[\frac{2 n}{k+2}-\left|V\left(G_{1}\right)\right|-2|S|\right] \\
& =\frac{2\left|V\left(G_{2}\right)\right|}{k+2}+2\left[\frac{n}{k+2}+\frac{\left|V\left(G_{1}\right) \cup S\right|}{k+2}-\left|V\left(G_{1}\right)\right|-2|S|\right] \tag{5}\\
& \geq \frac{2\left|V\left(G_{2}\right)\right|}{k+2}+\frac{2 n}{k+2}\left[1-\frac{k+1}{k+2}-\frac{2 k+1}{900 k^{4}}\right] \\
& >\frac{2\left|V\left(G_{2}\right)\right|}{k+2}
\end{align*}
$$

and Claim 1 follows.
Claim 2: Either a component G_{i} of $G-\mathcal{S}$ is complete or $n_{i}=\left|V\left(G_{i}\right)\right| \geq \frac{n}{k+2}$.
If G_{i} is not complete, pick a pair of nonadjacent vertices in G_{i}. Then

$$
\left|V\left(G_{i}\right)\right| \geq \sigma_{2}(G)-2 s>2 n\left(\frac{1}{k+2}-\frac{k+1}{30 k^{3}}\right)>\frac{n}{k+2}
$$

for n sufficiently large.
Before explicitly constructing a path containing T, some additional notation will be introduced. Let $T_{\mathcal{S}}=T \cap \mathcal{S}$. Define $T_{L}, T_{H}, T_{L \cap \mathcal{S}}$, and $T_{H \cap \mathcal{S}}$ analogously.

Case 1: Assume $G-\mathcal{S}$ has exactly r connected components where $2 \leq r \leq k$.
First observe that it is sufficient to construct a short cycle containing all of T_{H} because the vertices in T_{L} form a clique and any shortest path from T_{L} to the cycle could trivially be extended to a path through all of T. Thus, we show how to construct such a cycle. Second, observe that
any component of $G-\mathcal{S}$ of order less than k must be contained in L and thus there is at most one of these. Finally, note that since the number of components is at most k, the number of cut-sets producing \mathcal{S} is at most $k-1$. Hence, $s \leq 30 k(k-1) t$.

Because the steps used in Case 1 will be essentially the same in Cases 2 and 3, the steps are given names for ease of reference later. To aid the reader, pictures of the various steps are shown in Table 2.
[Construct new graph G^{\prime} and cycle C^{\prime}.] Construct a new graph G^{\prime} by adding a new vertex u_{i} adjacent to all the vertices of G_{i}, for every component G_{i} containing vertices from T_{H}. Since all such G_{i} have at least k vertices and at most k new vertices were added, the new graph G^{\prime} is still k-connected and therefore contains a cycle through all the u_{i} 's. Choose a shortest such cycle. By Lemma 3.4, this shortest cycle contains at most $r(3 k+5)$ vertices and call this cycle C^{\prime}. Note that the cycle C^{\prime} is useful as a way to 'navigate' \mathcal{S}, whose structure we have little control over. Dirac's theorem gives a way to find a rough cycle through the components, which we will now modify by routing it through the points of T as desired.

For ease of reference, we will split the cycle, C^{\prime} into $2 r^{\prime} \leq 2 r$ segments: $P_{1}^{\prime}, Q_{1}^{\prime}, P_{2}^{\prime}, Q_{2}^{\prime}, \cdots, P_{r^{\prime}}^{\prime}, Q_{r^{\prime}}^{\prime}$ as follows. For each i, P_{i}^{\prime} will be the segment of the cycle between two consecutive vertices of \mathcal{S} that contains u_{i}. That is, $P_{i}^{\prime}=w_{i}, y_{1}, \cdots, u_{i}, \cdots, y_{l}, z_{i}$, where $w_{i}, z_{i} \in \mathcal{S}$ and $y_{1}, \cdots, y_{l} \in V\left(G_{i}\right)$. The segment between P_{i}^{\prime} and P_{i+1}^{\prime} will form Q_{i}^{\prime} (where indices are taken modulo r^{\prime}.) In particular, Q_{i}^{\prime} is a path from z_{i} to w_{i+1} and, if $z_{i}=w_{i+1}$, then Q_{i}^{\prime} is a single vertex. Clearly, $\left|\cup_{i} V\left(Q_{i}^{\prime}\right)\right|<r(3 k+5)$.
[Identify T_{i} 's.] For every $x \in T_{\mathcal{S} \cap H}$, there exists some i such that x has at least $\frac{\sigma_{2}(G)-2 s}{2 k} \geq$ $\frac{n}{k}\left(\frac{1}{k+2}-\frac{k+1}{30 k^{3}}\right)$ neighbors in G_{i}. Thus, as $t \leq n /\left(900 k^{4}\right)$, for every such x, it is possible to associate a pair of neighbors in some G_{i} unique to x. If $x \in T_{\mathcal{S} \cap H}-V\left(\cup_{i} Q_{i}^{\prime}\right)$, identify such a pair and label them $v_{x, 1}$ and $v_{x, 2}$. In this case, we say the vertex x belongs to component G_{i}.

For each component G_{i}, we define T_{i} to be the union of all vertices in $\left(T_{H} \cap V\left(G_{i}\right)\right)-\left(\cup_{i} Q_{i}^{\prime}\right)$ along with all associated pairs, $v_{x, 1}$ and $v_{x, 2}$, chosen in G_{i}. Observe that $\left|\cup_{i} T_{i}\right| \leq 2 t$, and that this upper bound would be achieved only if $T=T_{H \cap \mathcal{S}}$ and $T \cap\left(\cup_{i} Q_{i}^{\prime}\right)=\emptyset$. Trivially, $\left|T_{i}\right| \leq 2 t$.
[Replace each P_{i}^{\prime} with new paths P_{i} containing the vertices of T_{i} in a convenient order and leaving $\cup_{i} Q_{i}^{\prime}$ intact.] Specifically, we want to construct new w_{i}, z_{i}-paths, P_{i}, with the following three properties: (1) all internal vertices are contained in G_{i} and vertices of T that belong to $G_{i},(2)$ all vertices of T_{i} lie on the path, and (3) any associated pairs ($v_{x, 1}$ and $v_{x, 2}$) occur on P_{i} as a $P_{3}=v_{x, 1}, x, v_{x, 2}$.

If G_{i} is complete, then we trivially construct a w_{i}, z_{i}-path using y_{i}, y_{l}, and vertices of T_{i} in any convenient order and $\left|V\left(P_{i}\right)\right| \leq 4+3\left|T_{i}\right| / 2$. If G_{i} is not complete, then we would like to apply Lemma 3.6.

From Claim 1 and Claim 2, we know $\sigma_{2}\left(G_{i}\right) \geq 2 n_{i} /(k+2)$ and $n_{i} \geq n /(k+2)$. Thus, $\left|T_{i}\right|+2 \leq$ $2 t+2 \leq n_{i} /\left(10 k^{2}\right)$. Finally since $\kappa\left(G_{i}\right) \geq 30 k t$, we know $\kappa\left(G_{i}-\cup_{i} V\left(Q_{i}^{\prime}\right)\right)>30 k t-r(3 k+5) \geq$ $(3 k+6)(2 t+2)$.

Table 2. Illustration of the Proof of Theorem 1.1

This shows \mathcal{S} and the components of $G-\mathcal{S}$

This shows G^{\prime} added vertices u_{i}.

This shows C^{\prime} (in red, green, and teal) in G^{\prime}. Note that the the Q_{i}^{\prime} s are depicted in green (and teal) which is the portion of C^{\prime} left intact. The teal section $\left(Q_{2}^{\prime}\right)$ illustrates how complicated these connector sections may be. They may include vertices from G outside \mathcal{S} and possibly vertices from T.

In the diagram above, black vertices are in T, gray vertices are designated neighbors of vertices of $T_{\mathcal{S}}$ not on any green path. For each G_{i}, the set T_{i} is in a blue box. Observe that vertices of T on any Q_{j}^{\prime} (in green) are not included in any T_{i}.

This diagram illustrates how the red portion of C^{\prime} is replaced with a path containing the vertices of T_{i}. As before, vertices of T are black, associated neighbors of vertices that belong to G_{i} are in gray. Observe that y_{1} and y_{l} may or may not be on this new path. It is enough to know that z_{i} and w_{i} have distinct neighbors in G_{i}.

Thus, Lemma 3.6 applies which means that a $\cup Q_{i}$-avoiding path P_{i} can be constructed in G_{i} through all the vertices of T_{i} in any order containing at most $(3 k+6)\left(\left|T_{i}\right|+2\right)$ vertices. Because the order is flexible, we can always include associated pairs consecutively on a 3-path of the form $v_{x, 1}, x, v_{x, 2}$.

Observe that $\left|V\left(P_{i}\right)\right| \leq(3 k+6)\left(\left|T_{i}\right|+2\right)+2$ and $\left|\cup_{i}\left(V\left(P_{i}\right)\right)\right| \leq(3 k+6)(2 t+2 k)+2 k<19 k t$.
[Form a new cycle C containing T_{H}.] Form a new cycle $C=P_{1} Q_{1}^{\prime} P_{2} Q_{2}^{\prime} \cdots P_{r} Q_{r}^{\prime}$. We know $|V(C)| \leq\left|\cup_{i} V\left(P_{i}\right)\right|+\left|\cup_{i} V\left(Q_{i}^{\prime}\right)\right|<19 k t+8 k^{2}<20 k t$. Observe that $T_{H} \subseteq V(C)$, and thus, Case 1 is proved.

Case 2: Assume $G-\mathcal{S}$ has $k+1 \geq 3$ connected components. Note that in this case, Dirac's Theorem cannot guarantee a cycle through all of the G_{i} containing vertices of T_{H}. Instead we find a cycle through k of the G_{i} and link the last one at the end creating a dominating path.

We will begin as in Case 1. As before, construct G^{\prime}, which may require adding $k+1$ vertices. Construct C^{\prime} through $u_{1}, u_{2}, \cdots u_{k}$ and define P_{i}^{\prime} and Q_{i}^{\prime} as in Case 1. As before, $\left|V\left(C^{\prime}\right)\right| \leq 8 k^{2}$ and hence $\left|\cup_{i} V\left(Q_{i}^{\prime}\right)\right|<8 k^{2}$.

In Case 2, we will show that $\delta(G) \geq \frac{n}{k^{2}}$, and therefore for every vertex in $T_{\mathcal{S}}$ there exists some i such that the vertex could be assigned a unique pair of neighbors in G_{i} (called $v_{1, x}, v_{2, x}$). Furthermore, our proof of this claim will also hold in Case 3 when there are $k+2$ components.

Proceed by contradiction and assume that $\delta(G)<\frac{n}{k^{2}}$. Let $D=\{v \in V(G) \mid d(v)=\delta\}$. Clearly $D \subseteq L$ and we know at most one component G_{i} of $G-\mathcal{S}$ can contain vertices of L. Thus, all but at most one component must contain a vertex of degree at least $\sigma_{2} / 2$ and consequently must contain at least $\sigma_{2} / 2-s$ vertices.

Observe that at most δ vertices can be adjacent to every vertex in D since otherwise the degree of vertices in D would be too large. But, $2\left(\frac{\sigma_{2}}{2}-s\right)>\delta$ which implies that it is not possible to have two components of $G-\mathcal{S}$ such that every vertex is adjacent to every vertex of D. Thus, all but at most one of the $k+1$ (or $k+2$) components of $G-\mathcal{S}$ have at least one vertex of degree at least $\sigma_{2}(G)-\delta(G)$.

Choose vertex x such that $d(x) \geq \sigma_{2}(G)-\delta(G)$ and among all vertices with this property, choose x to be a member of a component of $G-\mathcal{S}$ of smallest cardinality. Using the bound on the degree of x and its location in G, we know $\sigma_{2}(G)-\delta(G) \leq d(x)<\frac{n-s}{k}+s$. Hence, $\delta(G)>\frac{n}{k^{2}}$ and the claim holds.

So, unlike Case 1, for every $x \in T_{\mathcal{S}}$ (not just those in $T_{\mathcal{S} \cap H}$), there exists some G_{i} such that x can be assigned a unique pair of neighbors in G_{i} (called $v_{1, x}, v_{2, x}$) and we say x belongs to G_{i}. Thus, in Case 2, if $x \in T_{\mathcal{S}}-\cup_{i} V\left(Q_{i}^{\prime}\right)$, we associate such a pair.

Similar to Case 1, for every $i \in\{1,2, \cdots, k+1\}$, a set T_{i} will be identified, but in this case it will not be restricted to T_{H}. Specifically, T_{i} is the union of the vertices in $\left(T \cap V\left(G_{i}\right)\right)-\left(\cup_{i} Q_{i}^{\prime}\right)$ along with all associated pairs, $v_{x, 1}$ and $v_{x, 2}$, chosen in G_{i}. Now every vertex in T either lies on some Q_{i}^{\prime}, is contained in some T_{i}, or has a pair of neighbors in some T_{i}. Let $t_{k+1}=\left|T_{k+1}\right|$ and let $t_{0}=\left|\cup_{i=1}^{k} T_{i}\right|$.

By replacing each P_{i}^{\prime} with a P_{i} as in Case 1, we form a cycle C containing all vertices of T except those in $G_{k+1}-\cup_{i} V\left(Q_{i}^{\prime}\right)$. As before, $|V(C)| \leq\left|\cup_{i} V\left(P_{i}\right)\right|+\left|\cup_{i} V\left(Q_{i}^{\prime}\right)\right|<19 k t_{0}+8 k^{2}$.

Observe that $t_{k+1} \leq 2 t$ and, either G_{k+1} is complete or $\kappa\left(G_{k+1}-\cup_{i} Q_{i}^{\prime}\right)>30 k t-8 k^{2}>9 k(2 t)$. Thus, by Lemma $3.6 G_{k+1}-\cup_{i} Q_{i}^{\prime}$ contains a cycle through all of T_{k+1} in any order we choose. Let C_{k+1} be a smallest such cycle and observe that $\left|V\left(C_{k+1}\right)\right| \leq 9 k t_{k+1}$.

Since G is connected, there must exist a path from C to C_{k+1}. Now these two cycles and a shortest path between them contains at most $19 k t_{0}+8 k^{2}+9 k t_{k+1}+9 k \leq 20 k t$ vertices and trivially contains a path through all of T. Thus, the theorem holds for Case 2.

Case 3: Assume $G-\mathcal{S}$ has $k+2$ connected components. Again, Dirac's Theorem is not sufficient to guarantee a cycle through all of the G_{i} 's. In this final case, we prove the existence of a sufficiently "fat" cut set allowing a pair of components to be combined via a cycle and added at the end.

As in Case 2, we are guaranteed that every vertex $v \in T_{\mathcal{S}}$ can be assigned a unique pair of neighbors in some G_{i}. Furthermore, in this case, no component of $G-\mathcal{S}$ can have order less than k since otherwise the σ_{2} condition would fail to be satisfied by vertices in the smallest two components.

Claim 3: There exists some pair of the connected components, say G_{k+1} and G_{k+2}, and some cut set, S_{i}, such that there exist $10 k^{2}$ vertex disjoint P_{3} 's from G_{k+1} to G_{k+2} through S_{i}.

We will proceed by contradiction and let $S_{0}, S_{1}, \cdots, S_{r}$ be the cut sets in the order in which they were chosen and such that $G-\cup_{i} S_{i}$ has connected components $G_{1}, G_{2}, \cdots, G_{k+2}$.

Recall, now, the definition of $f(k)$ and the underlying recurrence relation: We let $b_{0}=10 k^{2}$ and $b_{i}=10 k^{2}\left(\frac{k+2}{2}\right)^{2}+\sum_{j=0}^{i-1} b_{j}$, and $f(k)=2 b_{k+1}$.

Given an iteratively selected cut set $S_{i} \subset \mathcal{S}$, we define the children of S_{i} to be those connected components of $G-\mathcal{S}$ with neighbors in S_{i}. If $\left|S_{r}\right| \geq b_{0}=10 k^{2}$, any two children of S_{r} will suffice, and Claim 3 holds.

So, assume $\left|S_{r}\right|<10 k^{2}$. Furthermore, assume there exists an $i_{0}<r$, such that for all $i>i_{0}$, $\left|S_{i}\right|<b_{r-i}$ but $\left|S_{i_{0}}\right| \geq b_{r-i_{0}}=10 k^{2}\left(\frac{k+2}{2}\right)^{2}+\sum_{j=0}^{r-i_{0}} b_{j}$.

Observe that, in the matchings between $S_{i_{0}}$ and its children, we can delete from $S_{i_{0}}$ all vertices on matching edges to $\left\{S_{i_{0}+1}, \cdots, S_{r}\right\}$ and still have $10 k^{2}\left(\frac{k+2}{2}\right)^{2}$ matching edges left. Now all remaining matching edges must go to vertices in $\cup G_{j}$. As there are less than $\left(\frac{k+2}{2}\right)^{2}$ different pairs of G_{j} 's in all, at least one pair of children of $S_{i_{0}}$ has at least $10 k^{2} P_{3}$'s through $S_{i_{0}}$.

On the other hand, if no such $S_{i_{0}}$ exists (that is, if $\left|S_{i}\right|<b_{r-i}$ for all i), then $s<f(k) / 2$, by definition of $f(k)$. Yet, by considering two vertices v and w in the two smallest components of $G-\left\{S_{1}, S_{2}, \cdots, S_{r}\right\}$, we observe that

$$
\frac{2 n}{k+2}+f(k) \leq d(v)+d(w) \leq 2\left(\frac{n-s}{k+2}+s-1\right)<\frac{2 n}{k+2}+2 s
$$

which implies $s>f(k) / 2$. So Claim 3 holds.
Label the cut sets S_{i} and components of $G-\cup S_{i}$ such that G_{k+2} and G_{k+1} have at least $10 k^{2} P_{3}$'s through a cut set S_{r}. Now, we repeat the arguments from Cases 1 and 2. Specifically, construct G^{\prime} by adding as many as $k+2$ new vertices. Construct cycle C^{\prime} through $u_{1}, u_{2}, \cdots, u_{k}$ using at most $8 k^{2}$ vertices. Define subpaths P_{i}^{\prime} and Q_{i}^{\prime} as before.

Observe that since the cycle C uses at most $8 k^{2}$ vertices, there still exist at least $10 k^{2}-8 k^{2}=$ $2 k^{2} \geq 2$ paths on three vertices between G_{k+1} and G_{k+2} through S_{r}. Label these two paths Q_{k+1} and Q_{k+2} and call the middle vertices on these paths m_{1} and m_{2}.

For every $x \in\left(T_{\mathcal{S}}\right)-\left(\cup_{i} Q_{i}^{\prime}\right)-\left\{m_{1}, m_{2}\right\}$, associate a unique pair of neighbors in some G_{i}, called $v_{1, x}$ and $v_{2, x}$. For each $i \in\{1,2, \cdots, k+2\}$, identify T_{i} as in Case 2. Let $t_{k+2}=\left|T_{k+2}\right|, t_{k+1}=\left|T_{k+1}\right|$, and $t_{0}=\left|\cup_{i=1}^{k} T_{i}\right|$. Thus, $t_{0}+t_{k+1}+t_{k+2} \leq 2 t$. Replace each P_{i}^{\prime} with a P_{i} as in previous cases to form the cycle C on at most $19 k t_{0}+8 k^{2}$ vertices.

Finally, construct path P_{k+1} from m_{1} to m_{2} in G_{k+1} such that all internal vertices are contained in $V\left(G_{k+1}\right)$ and vertices of T that belong to G_{i}, all vertices of T_{i} lie on the path, and such that any associated pairs ($v_{x, 1}$ and $v_{x, 2}$) occur on P_{k+1} as a $P_{3}=v_{x, 1}, x, v_{x, 2}$. Find the analogous path P_{k+2} in G_{k+2} and vertices that belong to G_{k+2}. Together $P_{k+1} Q_{k+1} P_{k+2} Q_{k+2}$ form a cycle, C_{1} on at most $9 k\left(t_{k+1}+t_{k+2}+4\right)+2$ vertices.

Any shortest path between C and C_{1} contains our desired path and uses at most:

$$
|V(C)|+\left|V\left(C_{1}\right)\right|+9 k \leq 19 k t_{0}+8 k^{2}+9 k\left(t_{k+1}+t_{k+2}+4\right)+2+9 k<20 k t
$$

concluding Case 3.
Thus, in all three cases, a path on at most $20 k t$ vertices can be found through the set T, and the Theorem holds.

Corollary 4.1. Let $k \geq 1$ be an integer. Let G be a k-connected graph on n vertices such that $\sigma_{2}(G) \geq \frac{2 n}{k+2}+f(k)$ where $f(k)$ is a sufficiently large constant depending only on k. Then there exists a vertex dominating path in G on at most $O(\ln n)$ vertices.

Proof. Any G satisfying the hypotheses of the Corollary contains a dominating set of vertices of order at most $O(\ln n)$ using Lemma 3.3.

5. Concluding Remarks

Observe that Example 2.1 shows that Corollary 4.1 is close to sharp. That is, the example has no dominating path and $\sigma_{2}(G)=\frac{2 n-4(k+1)}{k+2}$.

We conjecture that this is the extremal example.
Conjecture 5.1. Let $k \geq 1$ be an integer. Let G be a k-connected graph on n vertices such that $\sigma_{2}(G)>\frac{2 n-4(k+1)}{k+2}$. Then there exists a vertex dominating path in G on at most $O(\ln n)$ vertices.

In fact, using the same techniques as in Theorem 1.1, it is possible to prove the cycle analogues of Theorem 1.1 and Corollary 4.1, stated below.

Theorem 5.1. If G is a k-connected graph on n vertices and $\sigma_{2}(G) \geq \frac{2 n}{k+1}+f(k)$ and $T \subseteq V(G)$ such that $|T|=o(n)$, then there exists a cycle through T on at most $O(|T|)$ vertices.

Corollary 5.1. Let $k \geq 1$ be an integer. Let G be a k-connected graph on n vertices such that $\sigma_{2}(G) \geq \frac{2 n}{k+1}+f(k)$ where $f(k)$ is a recursively defined function of k. Then there exists a vertex dominating cycle in G on at most $O(\ln n)$ vertices.

6. Acknowledgement

This work is dedicated to RJF and was started before his untimely death. The memory of his tireless energy and generosity is motivation to all who knew him.

References

[AS] N. Alon, J. Spencer, The probabilistic method Third edition. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley \& Sons, Inc., Hoboken, NJ, 2008. xviii+352 pp. ISBN: 978-0-470-17020-5
[VA74] V. Arnautov, Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices (Russian), Prikl. Mat. I Programmirovanie 11 (1974), 3-8, 126.
[JB80] J. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR 80-16, Univ. of Waterloo, Waterloo, Ontario (1980).
[BF87] J. Bondy, G. Fan, A sufficient condition for dominating cycles Discrete Math. 67 (1987), no. 2, 205-208.
[HB88] H. Broersma, Existence of Δ_{γ}-cycles and Δ_{γ}-paths, J. Graph Theory 12 (1988), 499-507.
[CFHJL] G. Chen, M. Ferrara, Z. Hu, M. Jacoboson, H. Liu, Degree conditions for spanning brooms, J. Graph Theory, 77 (2014), no. 3, 237-250.
[CCE] B. Clark, C. Colbourn, P. Erdős, A conjecture on dominating cycles, Comb. graph theory and computing, Proc. 16th Southeast Conf., Boca Raton/Fla. 1985, Cong. Numerantium 47, 189-197 (1985).
[GD52] G. Dirac, Some theorems on abstract graphs. Proc. London Math. Soc. 2, (1952), 69-81.
[FGJW] R. Faudree, R. Gould, M. Jacobson, D. West, Minimum Degree and Dominating Paths, J. Graph Theory 84 (2017), no. 2, 202-213.
[FKKLR] E. Flandrin, T. Kaiser, R. Kužel, H. Li, Z. Ryjáček, Neighborhood unions and extremal spanning trees, Discrete Math. 308 (2008), no. 23, 43-50. (double check this)
[L76] N. Linial, A lower bound for circumference of a graph, Discrete Math., 15 (1976), no. 3, 297-300.
[MOS] H. Matsumura, K. Ozeki, T. Sugiyama, Note on a longest cycle which is vertex dominating, AKCE Int. J. Graphs. Combin., 4, (2007) no. 3, 233-243.
[OY11] K. Ozeki, T. Yamashita, Spanning trees: a survey, Graphs Combin. 27 (2011), no. 1, 1-26.
[CP75] C. Payan, Sur le Nombre d'Absorbtion d'un Graphe Simple, Proc. Colloque sur la Theorie des Graphes (Paris, 1974) Cahiers Centre Etudes Recherche Oper. 17 (1975), 307-317.
[SY] A. Saito, T. Yamashita, Cycles within specified distance from each vertex, Discrete Math. 278 (2004) 219-226.
[DW96] D.B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.
[TY07] T. Yamashita, Vertex-dominating cycles in 2-connected bipartite graphs. (English summary) Discuss. Math. Graph Theory 27 (2007), no. 2, 323-332.

Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK 99775-6660

E-mail address: jrfaudree@alaska.edu

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322

E-mail address: rg@mathcs.emory.edu

Department of Mathematics, University of Denver, Denver, CO 80208

E-mail address: paul.horn@du.edu

Department of Mathematics, University of Colorado Denver, Denver, CO 80217

E-mail address: Michael.Jacobson@ucdenver.edu

