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ABSTRACT. A wvertex dominating path in a graph is a path P such that every vertex outside P
has a neighbor on P. In 1988 H. Broersma [HB88| stated a result implying that every n-vertex
k-connected graph G such that o(42)(G) > n — 2k — 1 contains a vertex dominating path. We
provide a short, self-contained proof of this result and further show that every n-vertex k-connected

graph such that o2(G) > lf—_& + f(k) contains a vertex dominating path of length at most (20k)|T,

where T is a minimum dominating set of vertices. An immediate corollary of this result is that
every such graph contains a vertex dominating path with length bounded above by a logarithmic
function of the order of the graph. To derive this result, we prove that every n-vertex k-connected

graph with o2(G) > ,f—_fz + f(k) contains a path of length at most 20k|T’|, through any set of T

vertices where |T'| < n/900k%.

1. INTRODUCTION

Interest in dominating cycles and paths of various sorts began as a natural relaxation of hamil-
tonian cycle and path problems and moved in a number of directions: edge dominating cycles
(paths), vertex dominating cycles (paths), longest cycles (paths) that dominate in some manner
and so forth.

In particular, a paper by Bondy and Fan ([BF87]) proving a conjecture of Clark, Coburn and
Erdés [CCE], gave a condition for degree sums of sets of k+ 1 independent vertices in k-connected
graphs that imply the existence of a vertex dominating cycle. Shortly thereafter Broersma ([HB88])
produced a general result providing generalized degree sum conditions in k-connected graphs forc-
ing all vertices to be within a fixed distance of a cycle. Furthermore, at the end of the paper, an
analogue for paths was stated. There has continued to be investigation into vertex dominating
cycle structures, though it has tended to focus on long cycles. (See [MOS], [SY].)

On the other hand, a vertex dominating path may also be viewed as a spanning tree of a
particular type, sometimes called a caterpillar. There has been much recent work on conditions
implying particular structural properties in spanning trees. See for example [FKKLR], [CFHJL],
or the recent survey by Ozeki and Yamashita ([OY11]) on spanning trees.

A converging of these two streams of research occurred in a recent paper by Faudree, Gould,
Jacobson, and West ([FGJW]) which contains several theorems relating minimum degree and
vertex dominating paths (or spanning caterpillars). Motivated by [FGJW], this paper contains
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results relating degree sum conditions and dominating paths. Included is a short, self-contained
proof of a result originally stated in [HB88| as well as a theorem and corollary that answers a
question from [FGJW].

All graphs are finite and simple. Notation and terminology generally follows West [DW96]. A
set X C V(G) dominates the graph G if every vertex of G — X has a neighbor in X. Observe that
this definition means the set X dominates the vertex set but not necessarily the edge set of G. We
will often say a path P or a cycle C' dominates G if V(P) or V(C') dominates V (G).

Given a graph G and integer k > 2, we denote by o4 (G) the minimum degree-sum of independent
sets of k vertices. Observe that, by a natural extension of this definition, o,(G) = 0(G). Given a
set of vertices X = {z1, 22, -,z } C V(G), the notation N[X] =X U{v € V(G)|3x € X, vx €
E(G)}, often called the closed neighborhood of X.

The primary result in this paper is the theorem stated below. It gives sufficient connectivity
and oy conditions to ensure that there is a short path in G' containing any given subset of vertices
T such that |T| is a linear function of n. It requires G have sufficiently large order and “short” in
this case means a constant multiple of |T7|.

Theorem 1.1. Let & > 1 be an integer. Let G be a k-connected graph on n vertices such that
oo(G) > ;—1‘2 + f(k) where f(k) is a sufficiently large constant depending only on k, and let
T C V(G) such that |T| < n/900k*. Then there exists a path in G on at most (20k)|T| vertices

containing all the vertices of T'.

The proof of this theorem is given in Section 4, after several preliminary lemmas.

2. DEGREE SUM AND THE EXISTENCE OF A DOMINATING PATH

In 1985, Clark, Colbourn, and Erdds [CCE] conjectured that every k-connected graph with min-
imum degree at least ;25 + f(k) has a vertex dominating cycle. In [BF87], Bondy and Fan proved
the conjecture holds and made another similar conjecture replacing degree sum with distance m
neighborhoods and replacing dominating cycles with m-dominating cycles (where a cycle is m-
dominating if every vertex is at most distance m from the cycle.) In [HB88|, Broersma generalized
the classic Erdds-Chvatal condition for hamiltonicity and, as one part of one corollary, settled
the conjecture of Bondy and Fan. At the end of the paper by Broersma, several general results
concerning paths, all of which are analogues of the cycle results proved earlier, are stated. These
earlier proofs are intricate, nontrivial, and carefully linked. Below is one corollary. Note that a
Ay -traceable graph is one in which there exists a path such that all vertices are a distance less than
A from the path and a set of mutually r-distant vertices is a set S C V(@) such that for every
u,v € S, u # v, the distance from wu to v is at least r.

Corollary 2.1. [HB88] Let G be an n-vertex, k-connected graph (k > 1) and let X\ > 2. If the
degree sum of any k + 2 mutually (2X\ — 1)-distant vertices is at least n — 2k — 1 — (A — 2)k(k + 2),
then G is Ay-traceable.

We offer a self-contained proof of the special case of Corollary 2.1 when A = 2 and the path is
vertex-dominating. Note that when A = 2, the hypothesis in the corollary above concerns degree
sums of mutually 3-distant vertices and the hypothesis in the theorem below uses a o5 condition
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which applies to all nonadjacent pairs of vertices. Since any set of 3-distant vertices would certainly
be nonadjacent, the Theorem below appears to have stronger hypotheses than the corollary above.
In fact, the proof of the Theorem only requires the condition on 3-distant vertices, but we state
the stronger condition as it is more common in recent literature.

Theorem 2.1. Every n-vertex k-connected graph with o9 (G) > n — 2k — 1 contains a vertes-
dominating path.

Proof. Let G satisfy the hypothesis of the theorem and proceed by contradiction. Let P be a
path in G such that |N[P]| is maximized. That is, the total number of vertices on the path and
dominated by the path is maximized. Further, among all paths dominating a maximum number
of vertices, choose P to be as short as possible. Label the vertices of P as: © = x1, 29, -+ ,2; = ¥.
If all the neighbors of « (or y) were dominated by the vertices of P — x (or P — y), then a shorter
path dominating the same number of vertices is possible. Thus there exist vertices ' (and y')
such that N(2') N V(P) = {x} (and N(y') NV (P) = {y}). In this case, we will say 2’ is uniquely
dominated by x or that x uniquely dominates x’. Clearly this relationship depends upon the choice
of P, but we are assuming the choice of P is fixed.

Since G has no vertex dominating path, there exists a vertex, z, not dominated by P. Since G
is k-connected, there exist k paths from z to P that are vertex dlsJomt other than at initial vertex
z. Pick these k paths to be as short as possible and label the terminal vertices z;,, z;,, -+, z;, in
order as they appear on P from z to y.

FiGure 1. This figure illustrates the paths from vertex z to P, a shortest path
dominating a maximum number of vertices. Note the circled section denotes P,, the
section of the path P strictly between the endpoints of two consecutive paths from
2, x;, and x; .

Let P, = P(%;,,x;,,,) denote the subpath of P strictly between two consecutive endpoints of
paths from z. Note the index r ranges from r =1 to r = k — 1.(See Figure 1.)

A vertex in a subpath P, is called moveable if it and all of its neighbors in G — P have adjacencies
on P — P.. (That is, a vertex is moveable if it and all of its neighbors are dominated by vertices
of P outside P, and thus could be moved.) Note that for each r, the vertex that follows x; on
the path P, namely z; .1, would be moveable unless x; .1 is the unique neighbor on P for some
vertex in G — P.

If there exists a single subpath such that all vertices on it are moveable, then a path dominating
more vertices can be obtained by replacing this subpath with a path through z. Thus, for each
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of the k — 1 subpaths, there exists at least one vertex that is not moveable. Label as u, the first
vertex in P, that is not moveable as P, is traversed from x; to x; .

Let @, consist of all the vertices on P, between z; and w,. (That is, (), consists of moveable
vertices.) Observe that, for r; # 79, there can be no edges between vertices in ), and those in Q,.,.
Further, vertices in @,, and vertices in ),, can have no common neighbors in V' — V(P). If any
such edges or paths existed, choosing the “first” one (that is, the one with smallest index on P)
would produce a path that dominates all the vertices that P dominates and z. The importance of
this observation is the conclusion that all vertices of (),, are not only moveable, but are moveable
to regions of P other than @, as is the case for the vertices dominated by @,,. (See Figure 2.)

FIGURE 2. For each subpath of P, u; is the first nonmoveable vertex and, so, those
in ); are all moveable. Observe that any edges between vertices in distinct Q);’s
results in a path dominating more vertices by using the edge between vertices of
smallest indices (or, alternatively, left-most vertices). New path: x to z;, to z to x;,
to a to b to y. Note that all vertices of (), and ()5 not on the new path are dominated
elsewhere.

For each r, the fact that u, is not moveable implies either u, dominates a vertex, u}, that is not
dominated by any vertex outside P, (i.e. Np(u') C V(P,)), or u, itself is not dominated outside
of P, (i.e. Np(u,) € V(FP,).) Observe that the fact that u, is the first vertex that is not moveable,
implies that neither u, nor u; can have any adjacencies on any of the paths P, or the extremal
choice of P is contradicted.

Now define a set of vertices S to contain z’, 3/, and z. Furthermore, for every subpath, add
either ) or u, to S, using whichever one has no neighbors on P — P,.

By definition, |S| = k + 2, S is independent, and no pair of vertices in S can have a common
neighbor on P. Moreover, if any pair of vertices in S has any common neighbor outside of P a
path dominating more vertices can be found. Specifically, this path can be built to include z,
along with the two involved vertices of S and relies on the fact that vertices of ()., and @), can be
moved if needed. Thus, for every a,b € S such that a # b, N(a) N N(b) = (). Observe that none
of the vertices in S are adjacent to {z;,,z;,, - ,x; } since z is, by definition, a distance at least
2 from the path and the remaining vertices are chosen precisely such that their neighborhoods on
P are restricted to x, y, or P, for some r. Thus, we have 04,2(G) < > od(a) <n—2k—2, a
contradiction. 0

The following example shows that the preceding theorem is best possible.
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Example 2.1. Construct an n-vertexr k-connected graph G as follows. Begin with a complete
graph on k vertices, Ky, and k + 2 independent vertices, vi, vy, - -+ ,Ukyo. Partition the remaining
n — 2k — 2 wvertices into k + 2 complete graphs such that the orders of the graphs are as equal as
possible and label them By, By, - -+ , Byyo. For each i add all edges between B; and Ky U {v;}. This
graph has no dominating path and oy, 2(G) = n — 2k — 2. Note that n > k* + 4k + 2.

F1GURE 3. Example 2.1

The following corollary follows immediately from the statement of the theorem:

Corollary 2.2. Let 1 <r < k+ 2 be an integer. Every n-vertex k-connected graph with o.(G) >

r ("ﬁfg 1) contains a vertex-dominating path.

The following corollary follows immediately from the proof of the theorem:

Corollary 2.3. If o(G) < k(G) + 1, then G contains a vertex dominating path.

The graph from Example 2.1 without the vertices v; shows that this corollary is sharp.

3. PRELIMINARY LEMMAS

In order to streamline the proof of the main theorem in Section 4, several preliminary results
are presented. Note that in all of the lemmas below k € Z*. We begin with a well-known result
by Dirac:

Lemma 3.1. [GD52] If G is k-connected and X C V(G) such that | X| < k, then there exists a
cycle in G containing all the vertices of X.

The following lemma asserts the existence of small dominating sets relative to a minimum degree
condition. It is similar to some old, well known results (see eg. [AS, VA74, CP75]) and is used to
prove an analogous result for degree sum conditions, Lemma 3.3.

Lemma 3.2. Fvery n vertex graph G with minimum degree 0 > n where 0 < 8 < 1 contains a
dominating set X C V(G) such that |X| < [logy,q_g n].

Proof. Let G be an n vertex graph with minimum degree 6 > fn where 0 < 3 < 1. The proof will
proceed by iteratively constructing a dominating set of vertices using no more than [log, J(1-8) n]
vertices.
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Begin by choosing an arbitrary vertex z;. Let Xy = {z1} and let S; = V(G) — N[X4]. So S
consists of the set of vertices not dominated by x;. Given the iteratively constructed set X; =
{z1,29,--+ ,2;} and S; = V(G) — N[X;], we construct X;;; by adding any vertex x;;; such that
[N (zi41) N Si| = BSi].

We must first show such a vertex as z;41 exists. For a given ¢, let m = |N[X;]|. Thus,
|S;| = n —m. Proceeding by contradiction, we will assume that no vertex v of G' has the property
that |N(v) N S;| > B]S;]. Since all edges incident with vertices of S; either come from vertices in
S; or vertices of N[X;] — X;, we can count the degree sum of vertices in .S; as follows:

Bn-(n—m)ﬁZd(v)

vES;
<pn—m)-(n—m)+B(n—m)-(m—1i
= B(n—m)(n—1)
< B(n —m)n,

a contradiction.
We claim that in r = [log; ,;_g) 1] iterations, the set |S,| < 1 and so X dominates V' (G).

By construction [Si1] < (1 — B)[Si| < (1 — B)"*'n. For r > logy,;_gn, |Sy| < 1. Thus, the
dominating set X requires at most r = [log; ;;_gyn| vertices. O

The next lemma, an analogue of Lemma 3.2, uses the same proof technique.

Lemma 3.3. Every n vertex graph G with o5(G) > 2fn where 0 < < 1 contains a dominating
set X C V(G) such that | X| < [logy_g n].

Proof. Let G be an n vertex graph with o3(G) > 26n where 0 < 8 < 1. The proof will proceed by
iteratively constructing a dominating set of vertices using no more than [log; ;;_g, n| vertices.

If 6(G) > fBn, then apply Lemma 3.2. Otherwise, choose a pair of nonadjacent vertices, z; and
xg such that d(z1) < pn. Let Xy = {x1, 22} and define Sy = V(G) — N[X3], the set of vertices not
dominated by z; or xs. Observe that for every v € Sy, d(v) > [n because v and x; are nonadjacent.
Also, note that |Sy| < (1 —28)n < (1 — 8)?n. Now, noting that the minimum degree in S, is at
least fn, the sets X; = {x1, 29, ,2;} and S; = V(G) — N[X;] can be constructed as before.

The proof now follows precisely the same argument and the same arithmetic as Lemma 3.2. [

The next lemma provides conditions under which the existence of some cycle through a specified
set of vertices implies the existence of a small cycle through the specified set.
Lemma 3.4. Let G be an n-vertex graph with o5(G) > 2. Let X C V(G) such that |X| < n/10k>.
If there exists a cycle in G containing all vertices of X, then, for n sufficiently large, a smallest
cycle containing all vertices of X has at most (3k + 5)|X| vertices.
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Proof. Let G and X satisfy the hypothesis of the Lemma and let C' be a smallest cycle of G
containing X. Proceed by contradiction and assume |V (C)| > (3k + 5)|X|. Then there exists a
segment of C' between consecutive vertices of X with at least 3k + 5 vertices strictly between
them, say x1 = vo, v1, V2, -+ , Vg = Ta, Where ¢ > 3k + 6, x1,29 € X and vy, va, -+ ,v,-1 € X. Let
S = {UD>U3>U6a T 7U3k+6}-

Because C' was chosen to be as small as possible, the set S is independent and no two vertices
of S can have a common neighbor in G — C. Let b =n — [V(C)|.

Taking indices of v; modulo 3k + 6, the oo-condition implies
k42

> Do) + d(vsein)) 2 Skt (k%) .

Thus, the number of chords in C from vertices of S is at least (kkaQ —b—2(k+3). Observe that all

of these chords have their other endpoint outside the segment of C' containing S. Let ¢ count the
number of vertices at the other end of the chords from S. Now, b+c+3k+7 < n. After allowing one

chord to each of the ¢ vertices, the number of “excess” chords is at least (k]:f2 —b—2k—6—c >

k+2

Now, we establish an upper bound on the number excess chords from S. Let ¢t denote the number
of vertices in a particular segment of C' with at least one excess chord. Observe that no pair of
chords from S to this segment can cross due to the choice of C' as smallest possible. (See Figure
4.) Thus, consecutive pairs of the ¢ vertices, taken in the order they appear on C| can share at
most one neighbor in S. Thus, these ¢ vertices can accept at most k + 3 4 (¢ — 1) chords in total
and, therefore, at most k + 2 excess chords. Thus, the total number of excess chords is at most
(k+2)|X| < ((k+2)n)/(10k?).

V3k+3

—o——o\

xs—f—l

FIGURE 4. A single pair of crossing edges results in a smaller cycle. Follow x; = v
to vs;, down to z1, around to vs; via x5, down to 2z, and back to ;.

But now we have a contradiction since the lower bound on the excess chords, n/(k+2), is larger
than the upper bound (k + 2)n/(10k?) for all k € Z*. Thus, C can have at most (3k + 5)|X]|
vertices. 0

This next lemma gives conditions under which there exists a short path between two specified
vertices avoiding a given set of vertices.

Lemma 3.5. Let G be an n-vertex graph such that oo(G) > 2. Let Y C V(G) such that

Y| < n/10k* and u,v € V(G) — Y. If there exists a u,v-path in G —Y, then, for n sufficiently
large, there exists a Y -avoiding u,v-path using at most 3k + 6 vertices.
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Proof. Let G, Y, u, and v satisfy the hypotheses of the Lemma. Proceed by contradiction
and assume that the shortest Y-avoiding u,v-path contains at least 3k + 7 vertices, labeled
u = wy,ws, - ,w, = v, where ¢ > 3k + 6. Thus the set {wo, w3, - ,wsky6} is not only an
independent set of vertices, but has the property that any pair of vertices from this set have
disjoint neighborhoods in G — Y. It follows that,

. ("*%) = (k+3) (k:zfz) =2
(1) (n Y]+ (k+3)[Y])
oo r2)

where w39 = wp. Again, we have a contradiction since n/(k + 2) > (k + 2)n/(10k?). Thus, a
smallest Y-avoiding wu, v-path has at most 3k + 6 vertices. O

d(ws;) + d(ws(it1 ))

o
'M+
no

| /\

Lemma 3.6. Let G be an n-vertex graph such that o5(G) > 2%. Let T C V(G) such that
IT| < n/(10k?). If x(G) > (3k + 6)|T|, then, for n sufficiently large, there exists a cycle (or path)

in G on at most (3k + 6)|T| vertices containing all the vertices of T in any order.

Proof. Arbitrarily order the vertices of T xy, xo,--- ,x;. Since G — {x3, x4, -+ ,x;} is connected,
Lemma 3.5 implies there exists an xq, xo-path on at most 9k vertices avoiding T — {x1, z5}. Call
it P 5. Inductively, extend this path to include the first r vertices of 7" Call this path P, and
assume it contains at most (3k 4 6)(r — 1) vertices. Since k(G — P,) > (3k +6)(t —r + 1), there
will always exist an x,, z,41-path avoiding P, , provided r < ¢. Then, Lemma 3.5 implies a shortest
T, T,41-path adds at most (3k + 6) additional vertices. Since P;; uses at most 9k(¢ — 1) vertices,
G — Py, is still connected. Thus, it is possible to find an x,, z;1-path avoiding P; ; and Lemma 3.5
implies it adds at most (3k + 6) additional vertices. O

4. PROOF OF THE MAIN THEOREM

We restate the main theorem for ease of reference.

Theorem 1 1 Let k > 1 be an integer. Let G be a k-connected graph on n wvertices such that
oo(G) > k+2 + f(k) where f(k) is a sufficiently large constant depending only on k, and let
T C V(G) such that |T| < n/900k*. Then there exists a path in G on at most (20k)|T| vertices
containing all the vertices of T'.

Remark: The proof gives an explicit bound on f(k) as a recursively defined function of k.

Proof. Let G and T satisfy the hypotheses of the Theorem and let ¢ = |T|. Define a recursive
sequence: by = 10k? and, for i > 1, b; = 10k? (%)2 +Ej;% b;. Let f(k) = 2by,1. We remark that,
for now, the precise form of f(k) is unimportant — it suffices to think about it as simply a large
constant. The reason for the precise form will become clear when it is needed in Case 3 below.
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Assume G is t-connected. Lemma 3.1 implies there exists a cycle containing all the vertices of
T, and Lemma 3.4 implies the smallest such cycle contains at most (3k + 6)t vertices. Thus, there
exists a path containing all vertices of T using at most (3k + 6)t vertices, and the Theorem follows.
Thus, we can assume G is k-connected and k < t.

Now, we will iteratively find minimum cut sets, denoted by S5;’s. We will collect all the vertices
of these iteratively selected cut sets into a set denoted by S. The connected components of G — S
will be denoted by G;’s. The indices of the S;’s and the G,’s are not important except that we
will eventually argue that there are at most £ + 2 of the G;’s. Thus, we allow arbitrary reordering
of the indices as needed. (See Table 1 for an illustration of this algorithm.)

For iteration one, we let Sy be a minimum cut set of G; so |Sg| < t. Let S = Sp and Gy, Go, - - , G|
be the connected components of G — S. If each G, is complete or has connectivity at least 30kt,
we stop.

Otherwise, we proceed to iteration two where, for each component G, in G — § that is not
complete and has connectivity less than 30kt, we find a minimum cut set S;. We add all the
vertices from these new cut-sets to S. If each component of G — S is either complete or has
connectivity at least 30kt, we stop.

In general, on the ith iteration, we stop if all components of G — S are either complete or have
connectivity at least 30kt.

We claim the process stops with at most & + 2 connected components, ;. Observe that the
first iteration produces at least two components and each subsequent iteration produces at least
one additional component. Thus, the ith iteration must end in a collection of cut sets producing
at least 7 + 1 connected components.

Proceed by contradiction and find the first iteration, ig, such that G — S contains more than
k 4 2 connected components. From the previous observation, we know that ig < k + 2. In fact, we
know that at most k + 2 cut sets in total were deleted from G. Since, every cut set has order less
than 30kt, at the end of iteration ig, |S| < (k + 2)(30kt).

Let v; € G; for all j. Now, applying the degree sum condition to consecutive pairs of vertices v;
(which lie in different components and hence are non-adjacent), we have

(2) ZJ: G| > %Ej:(d(w) + d(vj41) — 2[S]) > % <k2f2 + f(k) — 2|S|) ,

(where indices of v; are taken modulo the number of components in G — S.) Thus, using (2), we
produce the contradiction:

(3) n= |8|+Z |G| > |S|+ (Z—ig) n+(kL2)f(k)—(k:+3)yS\ > Zign—(kjtz)?(:s()kt) > n,

for n sufficiently large and ¢ < g5p. Thus, we can assume that the iterative selection of cut sets
terminates in at most k£ + 1 iterations and with at most k + 2 connected components.
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TABLE 1. Cut-Set Selection Algorithm

complete k(G1) > 30kt
N

G4 Gl

Iteration 1: A minimum cut set Sy
results in four connected components,
G1, Go, G3, and G4. So § = Sy and
Gs Go k<s<t.

complete k(G;) > 30kt
N /

Iteration 2: Minimum cut sets S; and
G~ G, Sy are found in noncomplete compo-
nents of G — S with connectivity less
\ than 30kt. NOW, S = SU U Sl U SQ,

G s < t+ 2(30kt) and G — S results in
Gy Gs Gy Ga seven connected components.

Gy G Iteration 3: Minimum cut sets S5 and
S, are found in noncomplete compo-
nents of G — S with connectivity less
than 30kt. Now, S = UL ,S;, s < t +
e 4(30kt) and G—S results in 9 connected
Ge @ 4 components. The algorithm would ter-

G minate with all components either com-

e s plete or with connectivity at least 30kt.

Since § is well-defined, let s = |S| and note that s < 30kt - (the number of components — 1) <
30k(k + 1)t < &E0n,

Next, we establish the following claims which will allow the application of Lemmas 3.4, 3.5, and
3.6 to each component Gj.

V(G|

Claim 1: For every § and resulting collection of G;’s, 02(G;) > =55

Let L = {v € V(G)|d(v) < 302(G)} and H = V(G) — L (where L stands for low-degree vertices
and H for high-degree vertices). Observe that the graph induced by L is complete. Thus, at most
one component of G — & can contain any vertices from L and every non-complete component must
contain vertices from H.
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If G — S has at least three components, then for every non-complete component, say G, , there

exists a different component, say G;,, containing a vertex, v € G, N H. Since N(v) NG, = 0, we

know [V(Gy,)| < n—d(v) <n— 2 or, equivalently, 2% < n — [V(G},)|.

Now, for n sufficiently large,

2n 2[V(Gy)l +2(n — [V(Gj)I)
) > _ — _
UQ(GJI)_k+2+f(k) 2s 2 + f(k) — 2s
2|V(Gji)| | 2(02(G)/2) 2[V(Gj,)l 2n
_ > _
() ~ k42 k+2 25 2 k42 (k+2)? 28
2|V(Gj)l
k+2
. k+1)n
since s < (3&2 .

If G — S contains exactly two components, the argument and arithmetic above applies, unless
one of the components, say Gy, contains only vertices from L. Thus, |G:| < 25 + f(k)/2 and is
complete. Moreover, S = Sy where |Sy| = s < t. If G5 is complete, then the lemma holds.

If G5 is not complete, then let u € V(G1). Now, for n sufficiently large,

ou(Ga) > 2oa(G) () = 18] > 2 | 25 = V{Go)l - 213
V(G [ n V(G US|
) T k+2 2{k+2+ k+ 2 _|V(G1)|_2|S|]
- 2|V (Gs)| N 2n {1_ k+1 2k+1}
- k+2 k+2 kE+2  900k*
2IV(G)
k42

and Claim 1 follows. [J
Claim 2: Either a component G; of G — § is complete or n; = |[V(G;)| > 5.

If G; is not complete, pick a pair of nonadjacent vertices in G;. Then
1 k + 1) n

N > _ _
V(G| > 02(G) 28>2n(k+2 e >k+2’

for n sufficiently large. [J

Before explicitly constructing a path containing 7', some additional notation will be introduced.
Let Ts =T NS. Define Ty, Ty, Trns, and Tyns analogously.

Case 1: Assume G — S has exactly r connected components where 2 < r < k.
First observe that it is sufficient to construct a short cycle containing all of Ty because the

vertices in 17, form a clique and any shortest path from 77, to the cycle could trivially be extended
to a path through all of 7. Thus, we show how to construct such a cycle. Second, observe that
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any component of G — &S of order less than & must be contained in L and thus there is at most one
of these. Finally, note that since the number of components is at most k, the number of cut-sets
producing S is at most k — 1. Hence, s < 30k(k — 1)t.

Because the steps used in Case 1 will be essentially the same in Cases 2 and 3, the steps are

given names for ease of reference later. To aid the reader, pictures of the various steps are shown
in Table 2.

[Construct new graph G’ and cycle C’.] Construct a new graph G’ by adding a new vertex
u; adjacent to all the vertices of G;, for every component G; containing vertices from Ty. Since all
such G; have at least k vertices and at most k& new vertices were added, the new graph G’ is still
k-connected and therefore contains a cycle through all the w;’s. Choose a shortest such cycle. By
Lemma 3.4, this shortest cycle contains at most r(3k + 5) vertices and call this cycle C’. Note that
the cycle C” is useful as a way to ‘navigate’ S, whose structure we have little control over. Dirac’s
theorem gives a way to find a rough cycle through the components, which we will now modify by
routing it through the points of T" as desired.

For ease of reference, we will split the cycle, C" into 21" < 2r segments: P|, Q}, Py, Q4. -+ , P/, Q.
as follows. For each i, P/ will be the segment of the cycle between two consecutive vertices of S that
contains u;. That is, P/ = w;, Y1, Ui, , Y1, zi, where w;, z; € S and yy1,- -+ ,y € V(G;). The
segment between P/ and P ; will form @ (where indices are taken modulo 7’.) In particular, @} is
a path from z; to w;4q and, if z; = w;1 1, then Q)] is a single vertex. Clearly, |U; V(Q})| < r(3k+5).

[Identify T;’s.] For every x € Tsnp, there exists some ¢ such that x has at least %};25 >

2 (k:+r2 — 244 neighbors in G;. Thus, as t < n/(900k), for every such z, it is possible to associate
a pair of neighbors in some G; unique to z. If x € Tsny — V(U;Q}), identify such a pair and label

them v, and v, 5. In this case, we say the vertex x belongs to component G;.

For each component G;, we define T; to be the union of all vertices in (T NV(G;)) — (U;Q})
along with all associated pairs, v, 1 and v, 2, chosen in G;. Observe that |U; T;| < 2t, and that this
upper bound would be achieved only if T' = Tyns and T N (U; Q%) = 0. Trivially, |T;| < 2t.

[Replace each P! with new paths P, containing the vertices of 7; in a convenient
order and leaving U;Q’ intact.] Specifically, we want to construct new wj, z;-paths, P;, with
the following three properties: (1) all internal vertices are contained in GG; and vertices of T' that
belong to G, (2) all vertices of T; lie on the path, and (3) any associated pairs (v, and v, 2) occur

on P asa P3=v,1,7,0,2.

If G; is complete, then we trivially construct a w;, z;-path using y;, v;, and vertices of T; in any
convenient order and |V (P;)| < 4 + 3|T;|/2. If G; is not complete, then we would like to apply
Lemma 3.6.

From Claim 1 and Claim 2, we know o5(G;) > 2n;/(k+2) and n; > n/(k+ 2). Thus, |T;| +2 <
2t + 2 < n;/(10k?). Finally since x(G;) > 30kt, we know x(G; — U;V(Q%)) > 30kt — r(3k +5) >
(3k +6)(2t + 2).
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TABLE 2. Illustration of the Proof of Theorem 1.1

Uy
Gr Gr > | o —— | u’r
G, G/ /._Ef'/__>
' s Gi >
1o _

us P us

Gs Gs S G
B o D>
U9 __'.——\ U2

G G —=
2 2 > I .__2/ >
Ui — ] U1

G G G
1 P v D

This shows S and the This shows G’ with This shows C” (in red, green, and teal)

components of G — &  added vertices u;.

In the diagram above, black vertices are in
T, gray vertices are designated neighbors of
vertices of Ts not on any green path. For
each G;, the set T} is in a blue box. Observe
that vertices of T' on any Q' (in green) are
not included in any 7;.

in G'. Note that the the Qs are de-
picted in green (and teal) which is the
portion of C” left intact. The teal sec-
tion (Q%) illustrates how complicated
these connector sections may be. They
may include vertices from G outside S
and possibly vertices from 7.

2 Ui G;
™
/’O/
S \\O\D
o
U
wy; Y1

This diagram illustrates how the red portion
of C" is replaced with a path containing the
vertices of T;. As before, vertices of T are
black, associated neighbors of vertices that
belong to G; are in gray. Observe that y; and
y; may or may not be on this new path. It is
enough to know that z; and w; have distinct
neighbors in G;.

13
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Thus, Lemma 3.6 applies which means that a UQ;-avoiding path P; can be constructed in G;
through all the vertices of 7; in any order containing at most (3k 4+ 6)(|7;| 4+ 2) vertices. Because
the order is flexible, we can always include associated pairs consecutively on a 3-path of the form
Vg1, Ly Ug,2-

Observe that |V(P)| < (8k+6)(|T;| +2) + 2 and | U; (V(P))| < (3k +6)(2t + 2k) + 2k < 19kt.

[Form a new cycle C containing 7%.] Form a new cycle C' = P,Q| P,Q5 - - - Q... We know
V(O] < |U VI(P)| + | U V(QY)| < 19kt + 8k* < 20kt. Observe that Ty C V(C'), and thus, Case
1 is proved.

Case 2: Assume GG — S has k + 1 > 3 connected components. Note that in this case, Dirac’s
Theorem cannot guarantee a cycle through all of the GG; containing vertices of Ty. Instead we find
a cycle through k of the G; and link the last one at the end creating a dominating path.

We will begin as in Case 1. As before, construct G’, which may require adding k + 1 vertices.
Construct C’ through uy, us, - - - uy and define P! and Q) as in Case 1. As before, |V (C")] < 8k?
and hence | U; V(Q})| < 8k

In Case 2, we will show that 0(G) > 75, and therefore for every vertex in T there exists
some 4 such that the vertex could be assigned a unique pair of neighbors in G; (called vy 4, vo4).
Furthermore, our proof of this claim will also hold in Case 3 when there are k + 2 components.

Proceed by contradiction and assume that 0(G) < 5. Let D = {v € V(G) | d(v) = §}. Clearly
D C L and we know at most one component (G; of G — S can contain vertices of L. Thus, all but at
most one component must contain a vertex of degree at least 0,/2 and consequently must contain
at least 09/2 — s vertices.

Observe that at most  vertices can be adjacent to every vertex in D since otherwise the degree
of vertices in D would be too large. But, 2 (% — s) > which implies that it is not possible to
have two components of G — & such that every vertex is adjacent to every vertex of D. Thus, all
but at most one of the k+ 1 (or k + 2) components of G — S have at least one vertex of degree at
least 02(G) — §(G).

Choose vertex x such that d(z) > 09(G)—4d(G) and among all vertices with this property, choose
x to be a member of a component of G — S of smallest cardinality. Using the bound on the degree
of x and its location in G, we know 05(G) — §(G) < d(x) < “* + s. Hence, §(G) > % and the
claim holds.

So, unlike Case 1, for every z € Ts (not just those in Tsny), there exists some G; such that z
can be assigned a unique pair of neighbors in G; (called vy, v2,) and we say x belongs to G;.
Thus, in Case 2, if z € Ts — U;V(Q}), we associate such a pair.

Similar to Case 1, for every i € {1,2,--- ,k + 1}, a set T; will be identified, but in this case it
will not be restricted to T. Specifically, T; is the union of the vertices in (T'NV(G;)) — (U;Q%)
along with all associated pairs, v,; and v, 9, chosen in G;. Now every vertex in 7' either lies on
some (%, is contained in some T;, or has a pair of neighbors in some T;. Let t5,1 = |T)y1] and let
to = | U§:1 Ti.



DEGREE SUM AND VERTEX DOMINATING PATHS 15

By replacing each P/ with a P; as in Case 1, we form a cycle C' containing all vertices of T’

except those in Gy — U;V(Q)). As before, |[V(C)| < |U; V(B)| + | U; V(Q))] < 19kt + 8k2.

Observe that t;,; < 2t and, either Gy is complete or k(Gji1 — U;Q}) > 30kt — 8k* > 9k(2t).
Thus, by Lemma 3.6 Gj41 — U; Q) contains a cycle through all of Ty, in any order we choose. Let
Clr+1 be a smallest such cycle and observe that |V (Cyi1)| < 9ktyy1.

Since G is connected, there must exist a path from C' to Cj,;. Now these two cycles and a
shortest path between them contains at most 19ktq + 8k% + 9kt + 9k < 20kt vertices and
trivially contains a path through all of T. Thus, the theorem holds for Case 2.

Case 3: Assume G — S has k + 2 connected components. Again, Dirac’s Theorem is not
sufficient to guarantee a cycle through all of the G;’s. In this final case, we prove the existence of
a sufficiently “fat” cut set allowing a pair of components to be combined via a cycle and added at
the end.

As in Case 2, we are guaranteed that every vertex v € Ts can be assigned a unique pair of
neighbors in some G;. Furthermore, in this case, no component of G — S can have order less
than k since otherwise the oy condition would fail to be satisfied by vertices in the smallest two
components.

Claim 3: There exists some pair of the connected components, say G1 and Gy, and some
cut set, S;, such that there exist 10k? vertex disjoint Py’s from Gjyq to Gjyo through S;.

We will proceed by contradiction and let Sy, S, -, S, be the cut sets in the order in which
they were chosen and such that G — U;S; has connected components Gy, Ga, - -+, Giyo.

Recall, now, the definition of f(k) and the underlying recurrence relation: We let by = 10k?* and
bi = 10k* (££2)* 4 Y20 by, and f(k) = 2bys.

Given an iteratively selected cut set S; C S, we define the children of S; to be those connected
components of G — S with neighbors in S;. If |S,| > by = 10k?, any two children of S, will suffice,
and Claim 3 holds.

So, assume |S,| < 10k%. Furthermore, assume there exists an iy < 7, such that for all i > i,
19| < by but |Sig| > by, = 10k> (E22)* 4 32170 b

Observe that, in the matchings between S;, and its children, we can delete from S;, all vertices
on matching edges to {Si 41, -,S,} and still have 10k? (%)2 matching edges left. Now all
remaining matching edges must go to vertices in UG;. As there are less than (%)2 different pairs
of G;’s in all, at least one pair of children of S, has at least 10k? P3’s through S, .

On the other hand, if no such S;, exists (that is, if |S;| < b,_; for all i), then s < f(k)/2, by
definition of f(k). Yet, by considering two vertices v and w in the two smallest components of

G — {51,523, -+, 5.}, we observe that

2n n
k+2
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which implies s > f(k)/2. So Claim 3 holds.

Label the cut sets S; and components of G —US; such that G5 and Gy have at least 10k? Py’s
through a cut set S,. Now, we repeat the arguments from Cases 1 and 2. Specifically, construct
G' by adding as many as k + 2 new vertices. Construct cycle C’ through wuy, us, - - , uj using at
most 8k? vertices. Define subpaths P! and Q) as before.

Observe that since the cycle C uses at most 8k? vertices, there still exist at least 10k? — 8k? =
2k? > 2 paths on three vertices between G4, and Gy through S,. Label these two paths Q.1
and Q2 and call the middle vertices on these paths m; and ms.

For every x € (Ts) — (U;Q%) — {m1, ma}, associate a unique pair of neighbors in some G;, called
V1, and v . Foreachi € {1,2,--- , k+2}, identify 7; as in Case 2. Let tyyo = [Thyol, ter1 = |Tht1ls
and ty = | UY_| Tj|. Thus, to + tj11 + trro < 2t. Replace each P! with a P, as in previous cases to
form the cycle C' on at most 19kt + 8k? vertices.

Finally, construct path Py, from m; to ms in G, such that all internal vertices are contained
in V(Ggy1) and vertices of T' that belong to Gj, all vertices of T; lie on the path, and such that
any associated pairs (v, and v,2) occur on Py as a Py = v, 1, %, v, 2. Find the analogous path
P15 in Gp,o and vertices that belong to Gy, o. Together Py 1Qri1Pri2Qrio form a cycle, C; on
at most 9k (tgr1 + trto +4) + 2 vertices.

Any shortest path between C' and '} contains our desired path and uses at most:

V(O + |V(Cy)| + 9Kk < 19kto + 8k + 9k (tpyr + tryo +4) + 2+ 9k < 20kt
concluding Case 3.

Thus, in all three cases, a path on at most 20kt vertices can be found through the set T, and
the Theorem holds. O

Corollary 4.1. Let k > 1 be an integer. Let G be a k-connected graph on n vertices such that
09(G) > kQ—J’r"”Q + f(k) where f(k) is a sufficiently large constant depending only on k. Then there
exists a vertex dominating path in G on at most O(Inn) vertices.

Proof. Any G satisfying the hypotheses of the Corollary contains a dominating set of vertices of
order at most O(lnn) using Lemma 3.3. O

5. CONCLUDING REMARKS

Observe that Example 2.1 shows that Corollary 4.1 is close to sharp. That is, the example has
no dominating path and 02(G) = %féﬂ).

We conjecture that this is the extremal example.

Conjecture 5.1. Let k > 1 be an integer. Let G be a k-connected graph on n vertices such that

oo(G) > %.Then there ezists a vertex dominating path in G on at most O(Inn) vertices.
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In fact, using the same techniques as in Theorem 1.1, it is possible to prove the cycle analogues
of Theorem 1.1 and Corollary 4.1, stated below.

Theorem 5.1. If G is a k-connected graph on n vertices and oo(G) > ;—fl + f(k) and T C V(G)

such that |T'| = o(n), then there exists a cycle through T on at most O(|T|) vertices.

Corollary 5.1. Let k > 1 be an integer. Let G be a k-connected graph on n vertices such that

02(G) > 24 + f(k) where f(k) is a recursively defined function of k. Then there exists a vertex

dominating cycle in G on at most O(Inn) vertices.
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