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Abstract
In this paper, we consider a general degree sum condition sufficient to imply the

existence of k vertex-disjoint chorded cycles in a graph G. Let rtðGÞ be the mini-

mum degree sum of t independent vertices of G. We prove that if G is a graph of

sufficiently large order and rtðGÞ� 3kt � t þ 1 with k� 1, then G contains k vertex-
disjoint chorded cycles. We also show that the degree sum condition on rtðGÞ is

sharp. To do this, we also investigate graphs without chorded cycles.

Keywords Vertex-disjoint chorded cycles � Minimum degree sum � Degree
sequence � Biconnected components � Blocks

1 Introduction

The study of cycles in graphs is a rich and an important area. One question of

particular interest is to find conditions that guarantee the existence of k vertex-

disjoint cycles. Let G be a graph. Corrádi and Hajnal [2] first considered a minimum

degree condition to imply a graph must contain k vertex-disjoint cycles, proving that
if jGj � 3k and the minimum degree dðGÞ� 2k, then G contains k vertex-disjoint

cycles. For an integer t� 1, let
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rtðGÞ ¼ min
X

v2X
degGðvÞ :

X is an independent vertex

set of G with jXj ¼ t:

( )
;

and rtðGÞ ¼ 1 when the independence number is t � 1 or less. Enomoto [3] and

Wang [11] independently extended the Corrádi and Hajnal result, requiring a

weaker condition on the minimum degree sum of any two non-adjacent vertices.

They proved that if jGj � 3k and r2ðGÞ� 4k � 1, then G contains k vertex-disjoint

cycles. In 2006, Fujita et al. [5] proved that if jGj � 3k þ 2 and r3ðGÞ� 6k � 2, then

G contains k vertex-disjoint cycles, and in [7], this result was extended to

r4ðGÞ� 8k � 3. Recently, Ma and Yan [10] proved a conjecture from [7] by

showing that if G has sufficiently large order and rtðGÞ� 2kt � t þ 1, then G con-

tains k vertex-disjoint cycles.

A chord of a cycle is an edge between two non-consecutive vertices of the cycle.

An extension of the study of vertex-disjoint cycles is that of vertex-disjoint chorded

cycles. We say a cycle is chorded if it contains at least one chord. In 2008, Finkel

[4] proved the following result on the existence of k vertex-disjoint chorded cycles

which can be viewed as an extension of the Corrádi and Hajnal result.

Theorem 1 (Finkel [4]) Let k� 1 be an integer. If G is a graph of order at least 4k
and dðGÞ� 3k, then G contains k vertex-disjoint chorded cycles.

In 2010, Chiba et al. [1] extended the above result by using the r2ðGÞ condition.

Theorem 2 (Chiba, Fujita, Gao, Li [1]) Let k� 1 be an integer. If G is a graph of
order at least 4k and r2ðGÞ� 6k � 1, then G contains k vertex-disjoint chorded
cycles.

Recently, Theorem 2 was extended as follows.

Theorem 3 [8] Let k� 1 be an integer. If G is a graph of order at least 8k þ 5 and
r3ðGÞ� 9k � 2, then G contains k vertex-disjoint chorded cycles.

The last result was further extended to r4ðGÞ in a submitted paper by Gould,

Hirohata, and Keller.

Theorem 4 Let k� 1 be an integer. If G is a graph of order at least 11k þ 7 and
r4ðGÞ� 12k � 3, then G contains k vertex-disjoint chorded cycles.

In this paper, we prove the following result in Sect. 4.

Theorem 5 For k� 1 and t� 1, if G is a graph of order n�ð10t � 1Þðk � 1Þ þ
12t þ 13 and rtðGÞ� 3kt � t þ 1, then G contains k vertex-disjoint chorded cycles.
Further, this degree condition is sharp.

Remark To see the sharpness of the degree condition of Theorem 5, for n
sufficiently large order, consider the complete bipartite graph B ¼ K3k�1;n�3kþ1.

Then rtðBÞ ¼ tð3k � 1Þ. Further, it is not possible to construct k vertex-disjoint

chorded cycles in B, as any chorded cycle must use three vertices from the partite

set of order 3k � 1.
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All graphs considered here are simple, undirected, and finite. For terminology

and notation not defined here, see [6]. Let G be a graph, H a subgraph of G, and
S � VðGÞ. For u 2 VðGÞ, we denote the set of neighbors of u in G by NGðuÞ,
degGðuÞ ¼ jNGðuÞj, NHðuÞ ¼ NGðuÞ \ VðHÞ, and degHðuÞ ¼ jNHðuÞj. Also we

denote degHðSÞ ¼
P

u2S degHðuÞ. If H ¼ G, then degGðSÞ ¼ degHðSÞ. The subgraph
of G induced by S is denoted by hSi. Let G� S ¼ hVðGÞ � Si and

G� H ¼ hVðGÞ � VðHÞi. If S ¼ fug, then we write G� u for G� S. If there is

no fear of confusion, then we use the same symbol for a graph and its vertex set. If

G is one vertex, that is, VðGÞ ¼ fug, then we simply write u instead of G. For two
disjoint graphs G1 and G2, G1 [ G2 denotes the disjoint union of G1 and G2. Let Q
be a path or a cycle with a given orientation and x 2 VðQÞ. Then xþ denotes the first

successor of x on Q and x� denotes the first predecessor of x on Q. If x; y 2 VðQÞ,
then Q[x, y] denotes the path of Q from x to y (including x and y) in the given

direction. The reverse sequence of Q[x, y] is denoted by Q�½y; x�. We also write

Qðx; y� ¼ Q½xþ; y�, Q½x; yÞ ¼ Q½x; y�� and Qðx; yÞ ¼ Q½xþ; y��. If Q is a path (or a

cycle), say Q ¼ x1; x2; . . .; xtð; x1Þ, then we assume that an orientation of Q is given

from x1 to xt. If P is a path connecting x and y, then we denote the path P with an

orientation from x to y as P[x, y]. The reverse sequence of P[x, y] is denoted by

P�½y; x�. For an integer r� 1 and two vertex-disjoint subgraphs A, B of G, we
denote by ðd1; d2; . . .; drÞ a degree sequence from A to B such that degBðviÞ� di and
vi 2 VðAÞ for each 1� i� r. In this paper, since it is sufficient to consider the case

of equality in the above inequality, when we write ðd1; d2; . . .; drÞ, we assume

degBðviÞ ¼ di for each 1� i� r. For two disjoint X; Y � VðGÞ, E(X, Y) denotes the
set of edges of G connecting a vertex in X and a vertex in Y. A cycle of length ‘ is
called a ‘-cycle. For a graph G, comp(G) is the number of components of G. Let
R be a graph. If G has no induced subgraph isomorphic to R, then G is called R-free.

2 Graphs with No Chorded Cycles

In this section, we examine some useful properties of graphs that contain no chorded

cycles. Our ultimate goal is to show they contain large independent sets of small

degree sum. This will be important in our proof later.

Lemma 1 Let T be a tree of order n� 2. Then the following statements hold.

(i) T has at least n=2þ 1 vertices of degree at most 2.
(ii) T contains an independent set I of order at least n/4 with each vertex of

I having degree at most 2 in T.

Proof Let fv1; . . .; vbg be the set of branch vertices in T. Let ‘ be the number of

leaves in T and s be the number of stem vertices. Clearly ‘þ sþ b ¼ n. Since T has

n� 1 edges, the degree sum of T is

123

Graphs and Combinatorics (2020) 36:1927–1945 1929



2ðn� 1Þ ¼ ‘þ 2sþ
Xb

i¼1

degTðviÞ� ‘þ 2ðn� ‘� bÞ þ 3b;

which implies ‘� bþ 2. Consequently,

‘þ s�ðbþ 2Þ þ s ¼ ðbþ sÞ þ 2 ¼ ðn� ‘Þ þ 2

2‘þ s� nþ 2

‘þ s

2
� n

2
þ 1:

If L is the set of all leaves and stems in T, then

jLj ¼ ‘þ s� ‘þ s

2
� n

2
þ 1:

Thus (i) holds.

Since T is bipartite, one of the partite sets contains at least half the vertices of L.
Thus T contains an independent subset I � L with jIj � jLj=2� n=4, and (ii) holds.

h

Definitions A biconnected graph is a non-separable graph. Note that any two

vertices (two edges) of a biconnected graph lie on a common cycle. A non-chorded
graph is a graph not containing any chorded cycles. A leaf is a vertex of degree 1. A

stem is a vertex of degree 2. A branch is a vertex of degree at least 3.

Lemma 2 If H is a non-chorded graph of order n, then H contains an independent
set I of order at least n/12 with each vertex of I having degree at most 2 in H.

Before proving Lemma 2, we state and prove some helpful propositions.

Proposition 1 Every non-chorded biconnected graph H of order at least four is
triangle-free.

Proof Suppose H contains a triangle on vertices a, b, c. Since H is connected,

without loss of generality, we can say a has some neighbor d 2 VðHÞ � fb; cg.
Since H is biconnected, edges ab and ad must lie on a common cycle in H. Let C be

such a cycle. If C contains edge bc, then ac is a chord on the cycle, a contradiction.

If C does not contain bc, then hC [ ci contains a cycle with chord ab, a

contradiction. h

Proposition 2 Let k� 1 be an integer. If H is a non-chorded biconnected graph of
order at least four, then E(H) can be decomposed into

• a cycle C ¼ F0, and
• if C is not a hamiltonian cycle in H, then a sequence of paths P1; . . .;Pk

ðeach with at least two edgesÞ where the endpoints of Pi are ai, bi ðai 6¼ biÞ,

such that there exists a sequence of subgraphs F1; . . .;Fk of H, where for all
1� i� k,
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(i) Fi ¼ Pi [ Fi�1,

(ii) VðPiÞ \ VðFi�1Þ ¼ fai; big,
(iii) Fi is a non-chorded biconnected graph, and
(iv) Fk ¼ H (see Fig. 1).

Proof Let C be a cycle in H. Note that H is triangle-free by Proposition 1, and in

particular, C is not a triangle. Let F0 ¼ C and let E1 ¼ EðHÞnEðF0Þ. If C is a

hamiltonian cycle in H, then since H is non-chorded, E1 ¼ ;. For each i� 1, if

Ei 6¼ ;, do the following: Select any f 2 EðFi�1Þ and any ei 2 Ei. Since H is

biconnected, there exists a cycle Ci in H containing f and ei. Let Pi be a path in Ci

containing ei so that the endpoints of Pi are in VðFi�1Þ. Note that jEðPiÞj � 2. Call

these endpoints ai; bi, and assume that VðPiÞ \ VðFi�1Þ ¼ fai; big. Let

Fi ¼ Pi [ Fi�1. Since H is non-chorded biconnected, the graph Fi is also non-

chorded biconnected. Let Eiþ1 ¼ EinEðPiÞ. Let k þ 1 be the minimum index so that

Ekþ1 is empty. Then Fk ¼ H. h

Proposition 3 Let k� 1 be an integer. Let C ¼ F0 be any cycle of order at least
four, let P1; . . .;Pk be a sequence of paths (each with at least two edges) such that
for each 1� i� k, Pi is a path from ai to bi (ai 6¼ bi), and let F1; . . .;Fk be a
sequence of graphs such that for each 1� i� k,

(i) Fi ¼ Pi [ Fi�1,

(ii) VðPiÞ \ VðFi�1Þ ¼ fai; big, and
(iii) Fi is a non-chorded biconnected graph.

Then for each 1� i� k, there exists some vertex v 2 Piðai; biÞ such that

degFk
ðvÞ ¼ 2. Further, there exist distinct vertices x; x0 2

VðCÞn
Sk

i¼1 VðPiÞ such that degFk
ðxÞ ¼ degFk

ðx0Þ ¼ 2.

Proof Suppose for a contradiction that for some 1� ‘� k, degFk
ðvÞ� 3 for all

v 2 P‘ða‘; b‘Þ. Let P‘ : v0 ¼ a‘; v1; . . .; vt�1; vt ¼ b‘, and let F ¼ F‘�1nfv0; vtg. Note

Fi−1

Pi

C

P1

P2

Fi

Fk

a1

b1

a2 b2

ai

bi

Pk

ak

bk

Fig. 1 The graph H
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that since Fk is non-chorded biconnected graph of order at least four, Fk is triangle-

free by Proposition 1.

Claim 1 For each 1� i� t � 2, there exists a path Si in Fk from vi to vj for some

iþ 2� j� t such that Siðvi; vjÞ \ VðP‘Þ ¼ ; and VðSiÞ \ VðFÞ ¼ ;.

Proof We prove Claim 1 by induction. Since degFk
ðvÞ� 3 for all v 2 P‘ða‘; b‘Þ,

there exists a neighbor ui of vi with ui 62 fvi�1; viþ1g for each 1� i� t � 2. Since Fk

is biconnected, there exists a path Si in Fk starting with vi; ui; . . .; terminating at vj
with i 6¼ j such that Siðvi; vjÞ \ VðP‘Þ ¼ ;.

First we prove the case where i ¼ 1. Suppose VðS1Þ \ VðFÞ 6¼ ;. Then there

exists a vertex w 2 VðS1Þ \ VðFÞ such that S1ðv1;wÞ \ VðFÞ ¼ ;. Since F‘�1 is

biconnected, there exists a cycle C1 in F‘�1 containing v0 and w. We assume that an

orientation of C1 is given from v0 to w clockwise. Suppose vt 2 VðC1Þ, so vt 2
C1ðv0;wÞ or vt 2 C1ðw; v0Þ. Without loss of generality, we may assume that

vt 2 C1ðv0;wÞ. Then

P‘½v1; vt�;C�
1 ½vt; v0�;C�

1 ½v0;w�; S�1 ½w; v1�

is a cycle with chord v0v1, a contradiction (see Fig. 2a). Thus vt 62 C1ðv0;wÞ.
Similarly vt 62 C1ðw; v0Þ, hence vt 62 VðC1Þ. Since F‘�1 is biconnected, there exists a

cycle C2 in F‘�1 containing v0 and vt. We assume that an orientation of C2 is given

from v0 to vt clockwise. Without loss of generality, we may assume that

w 62 C�
2 ðvt; v0Þ. If C�

2 ðvt; v0Þ \ VðC1Þ ¼ ;, then

P‘½v1; vt�;C�
2 ½vt; v0�;C�

1 ½v0;w�; S�1 ½w; v1�

is a cycle with chord v0v1, a contradiction (see Fig. 2b). Thus we may assume that

C�
2 ðvt; v0Þ \ VðC1Þ 6¼ ;.
Let z be a vertex such that z 2 C�

2 ðvt; v0Þ \ VðC1Þ and C�
2 ðvt; zÞ \ VðC1Þ ¼ ;. By

assumption, z 6¼ w. If z 2 C1ðv0;wÞ, then

v0

vt

v1
w

S1

PC1

F −1

v0

vt

v1
w

S1

PC1

F −1

C2

)b()a( vt ∈ C1(v0, w) C−
2 (vt, v0) ∩ V (C1) = ∅

Fig. 2 The construction of chorded cycles

123

1932 Graphs and Combinatorics (2020) 36:1927–1945



P‘½v1; vt�;C�
2 ½vt; z�;C�

1 ½z; v0�;C�
1 ½v0;w�; S�1 ½w; v1�

is a cycle with chord v0v1, a contradiction. Otherwise, z 2 C�
1 ðv0;wÞ, and similarly

P‘½v1; vt�;C�
2 ½vt; z�;C1½z; v0�;C1½v0;w�; S�1 ½w; v1�

is a cycle with chord v0v1, a contradiction. Thus VðS1Þ \ VðFÞ ¼ ;. Next suppose
j 2 f0; 2g, that is, vj 2 fv0; v2g. If j ¼ 0, then

P‘½v1; vt�;C2½vt; v0�; S�1 ½v0; v1�

is a cycle with chord v0v1, a contradiction. If j ¼ 2, then similarly, we can find a

cycle with chord v1v2, a contradiction.

For induction, assume that Claim 1 is true for i� 1. Thus there exists a path Si�1

in Fk from vi�1 to vj0 for some iþ 1� j0 � t satisfying the conditions of Claim 1.

Suppose that every path Si starting at vertex vi, proceeding to ui, and continuing in

that direction passes through some vertex x 2 VðFÞ [ Si�1ðvi�1; vj0 Þ before reaching
any vj with i 6¼ j. Then select a vertex x such that

Siðvi; xÞ \ ðVðFÞ [ Si�1ðvi�1; vj0 ÞÞ ¼ ;. First suppose x 2 VðFÞ. Since F‘�1 is con-

nected, there exists a path Q1 in F‘�1 from x to v0. Then

P‘½v0; vi�1�; Si�1½vi�1; vj0 �;P�
‘ ½vj0 ; vi�; Si½vi; x�;Q1½x; v0�

is a cycle with chord vi�1vi, a contradiction. Next suppose x 2 Si�1ðvi�1; vj0 Þ. Since
F‘�1 is connected, there exists a path Q2 in F‘�1 from vt to v0. Then

P‘½v0; vi�1�; Si�1½vi�1; x�; S�i ½x; vi�;P‘½vi; vt�;Q2½vt; v0�

is a cycle with chord vi�1vi, a contradiction. Thus Si is a path from vi to vj not
containing any vertex in VðFÞ [ Si�1ðvi�1; vj0 Þ. If j� iþ 2, then Claim 1 holds.

Thus we may assume that j� iþ 1. Suppose j� i� 2. Then

P‘½vj; vi�1�; Si�1½vi�1; vj0 �;P�
‘ ½vj0 ; vi�; Si½vi; vj�

is a cycle with chord vi�1vi, a contradiction. If j ¼ i� 1, then using the above path

Q2,

P‘½v0; vi�1�; S�i ½vi�1; vi�;P‘½vi; vt�;Q2½vt; v0�

is a cycle with chord vi�1vi, a contradiction. If j ¼ iþ 1, then similarly, we can find

a cycle with chord viviþ1, a contradiction. Thus for each 1� i� t � 2, there exists a

path Si in Fk from vi to vj for some iþ 2� j� t satisfying the conditions of Claim 1.

h

By Claim 1, there exists a path St�2 from vt�2 to vt such that St�2ðvt�2; vtÞ \
VðP‘Þ ¼ ; and VðSt�2Þ \ VðFÞ ¼ ;. Since degFk

ðvt�1Þ� 3 by our assumption, there

exists a neighbor ut�1 of vt�1 with ut�1 62 fvt�2; vtg. Since Fk is biconnected, there

exists a path St�1 in Fk starting with vt�1; ut�1; . . .; terminating at vj with j 6¼ t � 1

such that St�1ðvt�1; vjÞ \ VðP‘Þ ¼ ;. Since F‘�1 is biconnected, there exists a cycle

C1 containing v0 and vt. We assume that an orientation of C1 is given from v0 to vt
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clockwise. Suppose that every path St�1 starting at vt�1 passes through some vertex

x 2 VðFÞ [ St�2ðvt�2; vtÞ before reaching vj with j 6¼ t � 1. Then we take a vertex x

such that St�1ðvt�1; xÞ \ ðVðFÞ [ St�2ðvt�2; vtÞÞ ¼ ;. First suppose x 2 VðFÞ. Since
F‘�1 is biconnected, two vertices v0 and x must lie on a common cycle C2 in F‘�1.

We assume that an orientation of C2 is given from v0 to x clockwise. Then we may

assume that vt 62 C2ðx; v0Þ. Thus

P‘½v0; vt�2�; St�2½vt�2; vt�;P�
‘ ½vt; vt�1�; St�1½vt�1; x�;C2½x; v0�

is a cycle with chord vt�2vt�1, a contradiction. Next suppose x 2 St�2ðvt�2; vtÞ. Then

P‘½v0; vt�2�; St�2½vt�2; x�; S�t�1½x; vt�1�;P‘½vt�1; vt�;C1½vt; v0�

is a cycle with chord vt�2vt�1, a contradiction. Thus St�1 is a path from vt�1 to vj not

containing any vertex in VðFÞ [ St�2ðvt�2; vtÞ. If j� t � 2, then

P‘½vj; vt�2�; St�2½vt�2; vt�;P�
‘ ½vt; vt�1�; St�1½vt�1; vj�

is a cycle with chord vt�2vt�1, a contradiction. If j ¼ t, then

P‘½v0; vt�1�; St�1½vt�1; vt�;C1½vt; v0�

is a cycle with chord vt�1vt, a contradiction. Thus, for each 1� i� k, there exists

some vertex v 2 Piðai; biÞ such that degFk
ðvÞ ¼ 2.

Next consider F1 ¼ P1 [ C. We assume that an orientation of C is given from a1
to b1 clockwise. Then C½a1; b1�;P�

1 ½b1; a1� is a cycle in Fk. By the above result, there

exists some vertex x 2 Cðb1; a1Þ with degFk
ðxÞ ¼ 2. Similarly, since

P1½a1; b1�;C½b1; a1� is a cycle in Fk, there exists some vertex x0 2 Cða1; b1Þ with

degFk
ðx0Þ ¼ 2. This completes the proof of Proposition 3. h

Proposition 4 Every non-chorded biconnected graph H of order n has at least
ðn� 2Þ=3þ 2 stem vertices.

Proof Let C and P1; . . .;Pk be a cycle and paths satisfying the conclusions of

Proposition 2. Then by Proposition 3, there exist at least k þ 2 stem vertices in H.
Also, since H is biconnected, every vertex in H is either a stem vertex or a branch

vertex. Now consider the endpoints of Pi for each 1� i� k. By Proposition 2, there

exist at most 2k branch vertices in H. Thus there exist at least n� 2k stem vertices

in H. Consequently, the number of stem vertices in H is at least maxfk þ 2; n� 2kg,
which is always at least ðn� 2Þ=3þ 2. h

Definition A biconnected component in a graph is a maximal biconnected

subgraph. In this paper, we do not consider a single edge to be a biconnected

component, and we handle these edges separately. Every cycle in a graph is

contained in exactly one biconnected component. The following intuitive propo-

sition is shown in [9].

Proposition 5 (Harary, Prins [9]) If B1;B2 are distinct biconnected components in a
graph, then EðB1Þ \ EðB2Þ ¼ ;.
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Proposition 6 Let k� 1 be an integer, and let H be a non-chorded connected graph
containing k biconnected components. Then E(H) can be decomposed into

• a sequence of non-chorded biconnected components B1; . . .;Bk, and
• a sequence of edge-disjoint paths P2; . . .;P‘ (some of which might be just a

single vertex) with ‘� k, where the endpoints of Pi are ai; bi for each 2� i� ‘,

so that there exists a sequence of induced subgraphs F1;F2; . . .;F‘ of H with the
following properties:

(i) F1 ¼ B1,

(ii) for each 2� i� k, Fi ¼ Fi�1 [ Pi [ Bi, VðPiÞ \ VðFi�1Þ ¼ faig,
VðPiÞ \ VðBiÞ ¼ fbig, and VðFi�1Þ \ VðBiÞ ¼ ; unless ai ¼ bi, in which
case VðFi�1Þ \ VðBiÞ ¼ faig,

(iii) for each k þ 1� i� ‘, Fi ¼ Fi�1 [ Pi, VðPiÞ \ VðFi�1Þ ¼ faig,
degHðbiÞ ¼ 1, jPij � 2, and

(iv) F‘ ¼ H.

Proof Since H is non-chorded, every biconnected component in H must be non-

chorded. Choose any biconnected component in H to be F1 ¼ B1 (satisfying (i)). We

claim that jVðBÞ \ VðFi�1Þj� 1 for any biconnected component B in HnEðFi�1Þ
and for each 2� i� k. For some 2� i� k, suppose that there exists a biconnected

component B in HnEðFi�1Þ with jVðBÞ \ VðFi�1Þj � 2. Then for some

u; v 2 VðBÞ \ VðFi�1Þ, there exists a path Q1 from u to v in Fi�1 and a path Q2

from u to v in B such that Q1 [ Q2 forms a cycle Q. This cycle Q is in H. Thus Q is

contained in some biconnected component B0. Since Q1 is in Fi�1, it is edge-disjoint

from B, Q is not in B and B0 6¼ B. But B and B0 share some edge of Q2, contradicting

Proposition 5. Thus the claim holds.

First suppose that there exists a biconnected component B in HnEðFi�1Þ with

VðBÞ \ VðFi�1Þ ¼ fvg for some vertex v. In this case, let Bi ¼ B, Pi ¼ v, and

Fi ¼ Fi�1 [ Pi [ Bi, with ai ¼ bi ¼ v. Next suppose that all biconnected compo-

nents in HnEðFi�1Þ are vertex-disjoint from Fi�1. Let Bi be a biconnected

component in HnEðFi�1Þ such that a path from Bi to Fi�1 in H is edge-disjoint from

every other biconnected component in HnEðFi�1Þ, and let this path be Pi. Since H is

connected, such a Bi;Pi exist. Let Fi ¼ Fi�1 [ Pi [ Bi, VðPiÞ \ VðFi�1Þ ¼ faig, and
VðPiÞ \ VðBiÞ ¼ fbig. Thus (ii) is satisfied.

Clearly Fk is a connected graph containing all the cycles in H, and HnEðFkÞ is a
forest. Then there exists no path P in HnEðFkÞ with both endpoints in VðFkÞ,
otherwise Fk [ P would contain a cycle not in Fk. If EðHÞnEðFi�1Þ 6¼ ;, then do the

following: Select some edge e 2 EðHÞnEðFi�1Þ that is incident to a leaf vertex v in
H. Let Pi be a path from v ¼ bi to VðFi�1Þ with VðPiÞ \ VðFi�1Þ ¼ faig. Let
Fi ¼ Fi�1 [ Pi. Since Pi contains edge e, jPij � 2, and since v ¼ bi is a leaf in H,
degHðbiÞ ¼ 1, satisfying (iii).

Since H is finite, there exists some ‘� k for which EðHÞnEðF‘Þ ¼ ;, satisfying
(iv). h

Now we finally prove Lemma 2.
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Proof of Lemma 2 If H is acyclic, then applying Lemma 1 (ii) to each connected

component of H gives the result. Thus we may assume that H has at least one cycle.

Hence H contains a biconnected component. Let B1; . . .;Bk and P2; . . .;P‘ be a

decomposition of E(H) into biconnected components and paths as described by the

conclusion of Proposition 6 with the corresponding subgraphs F1; . . .;F‘ in H. For
each Bi, 1� i� k, let Li ¼ fv 2 VðBiÞ : degBi

ðvÞ� 2g. By Proposition 4, each Li has

order at least ðjBij � 2Þ=3þ 2. Let S ¼ fv 2 VðHÞ : degHðvÞ� 2g. We will show

that jSj � jHj=6. First, let Si ¼ fv 2 VðFiÞ : degFi
ðvÞ� 2g for each 1� i� k, and we

claim the following.

Claim 1 For each 1� i� k, jSij � jFij=5þ 2.

Proof First suppose i ¼ 1. Then recall F1 ¼ B1. If jB1j � 5, then

jS1j ¼ jL1j � ðjB1j � 2Þ=3þ 2� jF1j=5þ 2. If jB1j � 4, then B1 is a 3-cycle or a

4-cycle, since these are the only biconnected components on at most 4 vertices.

Then clearly jS1j � jF1j=5þ 2.

Next suppose 2� i� k. Then recall Fi ¼ Fi�1 [ Pi [ Bi, and assume by inductive

assumption that Fi�1 contains a set Si�1 of vertices of degree at most 2, where

jSi�1j � jFi�1j=5þ 2. We have the following two cases.

Case 1 For some 2� i� k, jPij ¼ 1.

Then ai ¼ bi. By Proposition 6 (ii), VðFi�1Þ \ VðBiÞ ¼ faig. Thus

jFij ¼ jFi�1j þ jBij � 1. While ai may have degree 2 in each of Fi�1, Bi separately,

it has degree greater than 2 in Fi. Thus

jSij � ðjSi�1j � jfaigjÞ þ ðjLij � jfaigjÞ

� jFi�1j
5

þ 2

� �
þ jBij � 2

3
þ 2

� �
� 2

¼ jFi�1j þ jBij � 1

5
þ 2jBij þ 23

15

¼ jFij
5

þ 2jBij þ 23

15
:

ð1Þ

If jBij � 4, then, by (1), we have jSij � jFij=5þ 2. Thus we may assume that jBij � 3.

Then Bi is a 3-cycle and jLij ¼ 3, in which case the inequality is easily shown.

Case 2 For some 2� i� k, jPij � 2.

Then ai 6¼ bi. By Proposition 6 (ii), VðFi�1Þ \ VðBiÞ ¼ ;. Thus

jFij ¼ jFi�1j þ jBij þ jPij � jfai; bigj
¼ jFi�1j þ jBij þ jPij � 2:

Note that degPi
ðvÞ� 2 for each 1� i� ‘ and every vertex v 2 VðPiÞ. While ai; bi

may have degree 2 in each of Fi�1, Bi or Pi separately, they have degree greater than

2 in Fi. Thus
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jSij � ðjSi�1j � jfaigjÞ þ ðjLij � jfbigjÞ þ ðjPij � jfai; bigjÞ

� jFi�1j
5

þ 2

� �
þ jBij � 2

3
þ 2

� �
þ jPij � 4

¼ jFi�1j þ jBij þ jPij � 2

5
þ 2jBij þ 12jPij � 4

15

¼ jFij
5

þ 2jBij þ 12jPij � 4

15
:

ð2Þ

Note that jPij � 2. If jBij � 5, then, by (2), we have jSij � jFij=5þ 2. Thus we may

assume that jBij � 4. Then Bi is a 3-cycle or a 4-cycle, and jLij ¼ 3 or 4. In either

case, the inequality is again easily shown. h

In particular, Claim 1 shows

jSkj � jFkj=5þ 2: ð3Þ

Let t ¼ jSk \
S‘

i¼kþ1 aij. Enumerate the components T1; T2; . . .; Tw of
S‘

i¼kþ1hVðPiÞi, and note that w� t. Clearly

t� jSkj: ð4Þ

Claim 2 We have jSj � jHj=6.

Proof Each component Ti, 1� i�w, is a tree, so by Lemma 1 (i), it has at least

jTij=2þ 1 vertices of degree at most 2. Each component contains exactly one vertex

v 2 VðFkÞ, while the rest are in H � Fk, and this one vertex v may have degree at

least 2 in Fk, so the number of vertices of degree at most 2 in H � Fk is

jS \ ðH � FkÞj �
Xw

i¼1

jTij
2

¼
Xw

i¼1

jTij � 1

2
þ 1

2

� �
¼ jHj � jFkj

2
þ w

2

� jHj � jFkj þ t

2
:

Also jS \ Fkj ¼ jSkj � t. Then

jSj ¼ jS \ Fkj þ jS \ ðH � FkÞj

� jSkj � t þ jHj � jFkj þ t

2
¼ jHj � jFkj � t

2
þ jSkj:

ð5Þ

Combining (3), (4) and (5) gives

jSj � jHj � jFkj þ jSkj
2

� jHj
2

� 2jFkj
5

þ 1:

Since jSj � jSkj, by (3),
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jSj � jFkj
5

þ 2:

Thus jSj � max
�
jHj=2� 2jFkj=5þ 1; jFkj=5þ 2

�
, which is at least |H|/6 for all

values of jFkj. h

We claim that hSi is a forest or H is a cycle. Suppose hSi is not a forest. Then hSi
contains a cycle C. If H ¼ C, then the claim holds. Thus H 6¼ C, that is,

VðHÞnVðCÞ 6¼ ;. Note that degHðvÞ� 2 for each v 2 S. Since H is connected by the

assumption, we get a contradiction. Thus the claim holds. If hSi is a forest, then it is

bipartite. Since jSj � jHj=6 by Claim 2, there exists an independent subset I � S of

order at least ðjHj=6Þ=2 ¼ n=12. If H is a cycle, then clearly Lemma 2 also is true.

This completes the proof of Lemma 2. h

3 Other Lemmas

In this section, we state several known lemmas that will be used in the proof of our

main result. Note that a minimal set of r vertex-disjoint cycles C1; . . .;Cr is a set

with j
Sr

i¼1 Cij as small as possible.

Lemma 3 [8] Let r� 1 be an integer, and let C ¼ fC1; . . .;Crg be a minimal set of
r vertex-disjoint chorded cycles in a graph G. If jCij � 7 for some 1� i� r, then Ci

has at most two chords. Furthermore, if Ci has two chords, then these chords must
be crossing.

Lemma 4 [8] Let r� 1 be an integer, and let C ¼ fC1; . . .;Crg be a minimal set of
r vertex-disjoint chorded cycles in a graph G. Then degCi

ðxÞ� 4 for any 1� i� r

and any x 2 VðGÞ �
Sr

i¼1 VðCiÞ. Furthermore, for some C 2 C and some

x 2 VðGÞ �
Sr

i¼1 VðCiÞ, if degCðxÞ ¼ 4, then jCj ¼ 4, and if degCðxÞ ¼ 3, then
jCj � 6.

Lemma 5 [8] Suppose there exist at least five edges connecting two vertex-disjoint
paths P1 and P2 with jP1 [ P2j � 7. Then there exists a chorded cycle in hP1 [ P2i
not containing at least one vertex of hP1 [ P2i.

4 Proof of Theorem 5

Suppose Theorem 5 does not hold. We first consider the case where k ¼ 1. Then

n� 12t þ 13 and rtðGÞ� 2t þ 1. Noting dn=12e� t þ 2, by Lemma 2, G contains

an independent set I of order t with each vertex of I having degree at most 2 in G.
Then degGðIÞ� 2t, a contradiction. Thus we assume k� 2. Let G be an edge-

maximal counter-example. If G is complete, then G contains k vertex-disjoint

chorded cycles. Thus we may assume G is not complete. Let xy 62 EðGÞ for some

x; y 2 VðGÞ, and define G0 ¼ Gþ xy, the graph obtained from G by adding the edge

xy. By the edge-maximality of G, G0 is not a counter-example. Thus G0 contains k
vertex-disjoint chorded cycles C1; . . .;Ck. Without loss of generality, we may
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assume xy 62
Sk�1

i¼1 EðCiÞ, that is, G contains k � 1 vertex-disjoint chorded cycles.

Over all sets of k � 1 vertex-disjoint chorded cycles, choose C1; . . .;Ck�1, where

C ¼
Sk�1

i¼1 Ci and H ¼ G� C, such that:

(A1) jCj is as small as possible,

(A2) subject to (A1), compðHÞ is as small as possible, and

(A3) subject to (A1) and (A2), the number of K4’s in C is as large as possible.

We may also assume H does not contain a chorded cycle, otherwise, G contains k
vertex-disjoint chorded cycles, a contradiction. Theorem 5 holds by Theorems 1-4

for all t� 4. Thus we also assume t� 5.

Claim 1 H has order at least 12t þ 13.

Proof Suppose this claim fails to hold, that is, suppose jHj � 12t þ 12. First we

prove the following subclaim.

Subclaim 1 For each 1� i� k � 1, jCij � 10t � 1.

Proof Suppose Subclaim 1 fails to hold, that is, jCij � 10t for some 1� i� k � 1.

Without loss of generality, let jC1j � jC2j � � � � � jCk�1j. In fact, let

jC1j ¼ st þ r� 10t� 50, with s� 10 and 0� r� t � 1.

Subclaim 1.1. For s� 10, the cycle C1 contains s vertex-disjoint sets X1; . . .;Xs

each with t independent vertices such that degC1
ð
Ss

i¼1 XiÞ� 2st þ 4.

Proof For any st vertices of C1, their degree sum in C1 is at most 2st þ 4, since by

Lemma 3, C1 has at most two chords. Thus, it only remains to show that C1 contains

s vertex-disjoint sets of t independent vertices each. Recall jC1j ¼ st þ r� 10t. Start
anywhere on C1 and label the first st vertices of C1 with labels 1 through s in order,

starting over again with 1 after using label s. If r� 1, then label the remaining r
vertices of C1 with the labels sþ 1; . . .; sþ r. The labeling above yields s vertex-
disjoint sets of t vertices each, where all the vertices labeled with 1 are one set, all

the vertices labeled with 2 are another set, and so on. Given this labeling, any vertex

in C1 has a different label than the vertex that precedes it on C1 and the vertex that

succeeds it on C1. Let C0 be the cycle obtained from C1 by removing all chords.

Then the vertices in each of the sets are independent in C0. Thus, the only way

vertices in the same set are not independent in C1 is if the endpoints of a chord of C1

were given the same label. Note any vertex labeled i is distance at least s� 10 in C0

from any other vertex labeled i. Thus, if a vertex and the neighbor preceding it on C0

or the neighbor succeeding it on C0 have their labels exchanged, then the vertices in

each of the classes are independent in C0.

Case 1 No chord of C1 has endpoints with the same label.

Then there exist s vertex-disjoint sets of t independent vertices each in C1.

Case 2 Exactly one chord of C1 has endpoints with the same label.

Recall C1 contains at most two chords, and if C1 contains two chords, then these

chords must be crossing. Since jC1j � 50, even if C1 contains two chords, each

chord has an endpoint such that one of the endpoint’s neighbors in C1 is not an
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endpoint of the other chord. Choose such an endpoint of the chord whose endpoints

were assigned the same label, and exchange the label of this vertex for its non-

endpoint neighbor. The vertices in each of the resulting classes are still independent

in C1, and now no chord of C1 has endpoints with the same label. Thus there exist s
vertex-disjoint sets of t independent vertices each in C1.

Case 3 Two chords of C1 each have endpoints with the same label.

In this case, note two chords are crossing. Suppose an endpoint of one chord of

C1 is adjacent to an endpoint of the other chord on C1. Now exchange the labels of

these adjacent endpoints. Then the vertices in each of the resulting classes are still

independent in C1, and now no chord of C1 has endpoints with the same label. Thus

there exist s vertex-disjoint sets of t independent vertices each in C1.

Next suppose no endpoint of one chord of C1 is adjacent to an endpoint of the

other chord on C1. Let x1x2, y1y2 be the two distinct chords of C1. Since the two

chords are crossing, without loss of generality, we may assume x1; y1; x2; y2 are in

that order on C1, and the label of x1 is 1. Then the label of x
þ
1 is 2. Now we exchange

the labels of x1 for x
þ
1 , that is, the label of x1 is 2 and the label of xþ1 is 1. Next we

exchange the labels of y2 for y
�
2 . Note y2 6¼ x�1 by our assumption that no endpoint

of one chord of C1 is adjacent to an endpoint of the other chord on C1. Thus, the

vertices in each of the resulting classes are independent in C1, and no chord of C1

has endpoints with the same label. Hence there exist s vertex-disjoint sets of t
independent vertices each in C1, completing the proof of Subclaim 1.1.

h

Recall that, by assumption, jHj � 12t þ 12 and jC1j � 50. Let X1;X2; . . .;Xs be as

in Subclaim 1.1, and let X ¼
Ss

i¼1 Xi. Further, note that degC1
ðvÞ� 2 for every

v 2 VðHÞ or a shorter chorded cycle would exist by Lemma 4, contradicting (A1).

Thus

jEðH;C1Þj� 2ð12t þ 12Þ: ð1Þ

First suppose that k ¼ 2. Then C1 is the only cycle in C. By Subclaim 1.1,

jEðC1;HÞj � degGðXÞ � degC1
ðXÞ

� sð3kt � t þ 1Þ � ð2st þ 4Þ
¼ sð6t � t þ 1Þ � ð2st þ 4Þ
¼ 3st þ s� 4;

but since s� 10 and t� 5, we see that 3st þ s� 4� 30t þ 6[ 2ð12t þ 12Þ, con-
tradicting (1). Thus we may assume that k� 3. Then, by Subclaim 1.1 and (1),

jEðX ;C� C1Þj ¼ degGðXÞ � degC1
ðXÞ � degHðXÞ

� sð3kt � t þ 1Þ � ð2st þ 4Þ � 2ð12t þ 12Þ
¼ 3kst � 3st þ s� 24t � 28:

ð2Þ

Since s� 10, we have 3st� 30t ¼ 24t þ 6t. Thus
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24t� 3st � 6t: ð3Þ

By (2) and (3), we have

3kst � 3st þ s� 24t � 28� 3kst � 3st þ s� ð3st � 6tÞ � 28

¼ 3stðk � 2Þ þ sþ 6t � 28

� 3stðk � 2Þ þ 12:

Thus jEðX ;C0Þj[ 3st for some C0 in C� C1. Let h ¼ maxfdegC0 ðvÞ : v 2 Xg. Let
v	 2 X with degC0 ðv	Þ ¼ h. Since jXj ¼ st, if h� 3, then jEðX ;C0Þj � 3st, a con-

tradiction. Thus we may assume that h� 4. By the maximality of C1,

jC0j � jC1j ¼ st þ r. It follows that h ¼ degC0 ðv	Þ� jC0j � st þ r. Recall s� 10,

t� 5 and 0� r� t � 1. Then

jEðX � fv	g;C0Þj � ð3st þ 1Þ � degC0 ðv	Þ� ð3st þ 1Þ � ðst þ rÞ
¼ 2st þ 1� r� 2st þ 1� ðt � 1Þ
¼ 2st � t þ 2

� 97:

ð4Þ

Since h ¼ degC0 ðv	Þ� 4, let v1; v2; v3; v4 be neighbors of v	 in that order on C0.
These vertices partition C0 into four intervals C0½vi; viþ1Þ for each 1� i� 4, where

v5 ¼ v1. By (4), there exist at least 97 edges from C1 � v	 to C0. Thus some interval

clearly receives at least 25 of these edges. Without loss of generality, say C0½v4; v1Þ
is such an interval. Then, by Lemma 5, hðC1 � v	Þ [ C0½v4; v1Þi contains a chorded

cycle not containing at least one vertex of hðC1 � v	Þ [ C0½v4; v1Þi. Also,

v	;C0½v1; v3�; v	 is a cycle with chord v	v2, and it uses no vertices from C0½v4; v1Þ.
Thus we have two shorter vertex-disjoint chorded cycles in hC1 [ C0i, contradicting
(A1). Hence Subclaim 1 holds. h

Now as n�ð10t � 1Þðk � 1Þ þ 12t þ 13 and jCj � ð10t � 1Þðk � 1Þ by Sub-

claim 1, we have jHj � 12t þ 13, a contradiction. This completes the proof of

Claim 1. h

By Claim 1, jHj � 12t þ 13. Noting djHj=12e� t þ 2, by Lemma 2, there exists

an independent set I	 of order t þ 2 in H such that the degree in H of each vertex of

I	 is at most 2. We now select an independent set I of order t from I	 as follows.

If H is connected, we select any subset I of order t. If H is not connected, then each

component has a longest path with endpoints of degree at most 2 in H (or else the

component contains a chorded cycle). If two of these endpoints are in I	, we select

at least two of them, say s1 and s2, from different components of H to be in I. Note
that each of s1 and s2 is not a cut-vertex for its component. If s1 and s2 (one or both)
are not in I	, then they might have adjacencies in I	. We can remove the at most two

adjacencies of say s1 from I	, and place s1 in I	. We can do the same for s2 if

necessary. Then I	 still contains at least t independent vertices with degree at most 2

in H. We select a subset I of order t in I	 that contains both s1 and s2. Note that
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degCðIÞ ¼ degGðIÞ � degHðIÞ
� ð3kt � t þ 1Þ � 2t

¼ 3kt � 3t þ 1

¼ 3tðk � 1Þ þ 1:

Therefore, there exists a cycle C in C such that I sends at least 3t þ 1 edges to C.
Thus, by Lemma 4, since no vertex of H sends more than four edges to a cycle of C,
we see that the degree sequence D of edges from I to C is of the form ð4; 4; 4; 4; . . .Þ,
ð4; 4; 4; . . .Þ, ð4; 4; 3; . . .; 3; 2Þ or ð4; 3; . . .; 3Þ. Note that if D ¼ ð4; 4; 4; . . .Þ, then
D ¼ ð4; 4; 4; 3; . . .Þ, that is, D contains at least one 3, or D ¼ ð4; 4; 4; 2; 2Þ for t ¼ 5.

Further, since any of these degree sequences contains at least one 4, by Lemma 4 we

see that jCj ¼ 4. In fact, C induces a K4, otherwise, the vertex of degree 4 along

with a triangle in C would produce a K4, contradicting (A3). Let

C ¼ w1;w2;w3;w4;w1.

If D has at least two 4’s and at least two 3’s, then it is simple to construct two

vertex-disjoint chorded 4-cycles from C and these vertices of I, as the two vertices

of degree 3 are adjacent to the ends of an edge of C and the two vertices of degree 4

are adjacent to the ends of a different independent edge of C. This produces two

vertex-disjoint chorded cycles, implying G contains k vertex-disjoint chorded

cycles, a contradiction. Thus we have only to consider the two cases where D ¼
ð4; 4; 4; 2; 2Þ and D ¼ ð4; 3; . . .; 3Þ.

First consider D ¼ ð4; 4; 4; 2; 2Þ. Let z1 be a vertex of I with degree 2 to C and

z2; z3; z4 be the vertices of I with degree 4. Without loss of generality, we may

assume that w1;w2 2 NCðz1Þ. Then z1;w2; z2;w1; z1 is a cycle with chord w1w2.

Also, z3;w3; z4;w4; z3 is a second cycle with chord w3w4, implying G contains

k vertex-disjoint chorded cycles, a contradiction.

Next consider D ¼ ð4; 3; . . .; 3Þ. Let degCðz0Þ ¼ 4 and degCðziÞ ¼ 3 for each

1� i� 4. First we prove that

H has no component with one vertex of degree 4

and at least three vertices of degree 3.
ð5Þ

Suppose not, that is, H has a component H0 containing zi for each 0� i� 3. Since

H0 is connected, there exists a path P from z0 to zi for some 1� i� 3. Without loss

of generality, we may assume that i ¼ 1 and P contains neither z2 nor z3. Since
degCðziÞ ¼ 3 for each i 2 f2; 3g, we may assume that w1;w2 2 NCðziÞ. Then

z2;w2; z3;w1; z2 is a cycle with chord w1w2. Since degCðz1Þ ¼ 3, without loss of

generality, we may assume that w3 2 NCðz1Þ. Then P½z0; z1�;w3;w4; z0 is a second

cycle with chord z0w3, a contradiction. Thus (5) holds.

Therefore, we assume that H is not connected, that is, compðHÞ� 2. Let

H1;H2; . . .;HcompðHÞ be the components of H. Note that it is sufficient to consider the

case where each component of H has at least one vertex contained in the degree

sequence D ¼ ð4; 3; . . .; 3Þ. Without loss of generality, for each i 2 f1; 2g, we may

assume that si 2 VðHiÞ and degCðs1Þ� degCðs2Þ. Recall, for each i 2 f1; 2g, si is not
a cut-vertex for Hi.
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Case 1 For each i 2 f1; 2g, degCðsiÞ ¼ 3.

In this case, without loss of generality, we may assume that si ¼ zi for each

i 2 f1; 2g.
Subcase 1 Suppose compðHÞ ¼ 2.

Without loss of generality, we may assume that z0 2 VðH1Þ. By (5), we may

assume that z4 2 VðH2Þ. For each i 2 f1; 2g, since degCðsiÞ ¼ 3, we may assume

that w1;w2 2 NCðsiÞ. Then C0 ¼ s1;w2; s2;w1; s1 is a 4-cycle with chord w1w2. Since

degCðz4Þ ¼ 3, without loss of generality, we may assume that w3 2 NCðz4Þ. Since
degCðz0Þ ¼ 4, w4 2 NCðz0Þ. Then there exists a path z0;w4;w3; z4 connecting H1 and

H2. Replacing C in C by C0, we consider the new H0. Note that Hi � si is connected
for each i 2 f1; 2g. Then compðH0Þ � compðHÞ � 1. This contradicts (A2).

Subcase 2 Suppose compðHÞ� 3.

Subcase 2.1 For some i 2 f1; 2g, z0 2 VðHiÞ.
Without loss of generality, we may assume that z0 2 VðH1Þ, and z4 2 VðH3Þ by

our assumption that each component of H has at least one vertex contained in the

degree sequence D ¼ ð4; 3; . . .; 3Þ. By the same arguments as Subcase 1, we can

reduce the number of components of H, a contradiction.

Subcase 2.2 For some i 2 f1; 2; . . .; compðHÞg � f1; 2g, z0 2 VðHiÞ.
Without loss of generality, we may assume that z0 2 VðH3Þ. Now consider the

cycle C0 as in Subcase 1. If z3 2 VðHiÞ for some i 2 f1; 2; . . .; compðHÞg � f3g,
then we apply the same arguments as Subcase 1. Thus we may assume that

z3 2 VðH3Þ. Since degCðz3Þ ¼ 3, without loss of generality, we may assume that

w3 2 NCðz3Þ. Since H3 is connected, there exists a path P from z0 to z3. Then
P½z0; z3�;w3;w4; z0 is a second cycle with chord z0w3, a contradiction.

Case 2 Suppose degCðs1Þ ¼ 4 and degCðs2Þ ¼ 3.

In this case, note that s1 ¼ z0. Without loss of generality, we may assume that

s2 ¼ z1.
Subcase 1 Suppose compðHÞ ¼ 2.

Subcase 1.1 For some 2� i� 4, zi 2 VðH1Þ.
Without loss of generality, we may assume that z2 2 VðH1Þ. Since degCðz2Þ ¼ 3

and degCðs2Þ ¼ 3, NCðz2Þ \ NCðs2Þ 6¼ ;. Without loss of generality, we may assume

that w1 2 NCðz2Þ \ NCðs2Þ. Since degCðs1Þ ¼ 4, C0 ¼ s1;w2;w3;w4; s1 is a 4-cycle

with chord s1w3. Replacing C in C by C0, we consider the new H0. Note that H1 � s1
is connected. Then compðH0Þ � compðHÞ � 1. This contradicts (A2).

Subcase 1.2 For each 2� i� 4, zi 2 VðH2Þ.
Since degCðs2Þ ¼ 3, without loss of generality, we may assume that wi 2 NCðs2Þ

for each 1� i� 3. If w4 2 NCðziÞ for some 2� i� 4, then we apply the same

arguments as Subcase 1.1. Thus we may assume that NCðs2Þ ¼ NCðziÞ for each

2� i� 4. Then C0 ¼ s2;w1;w4;w2; s2 is a 4-cycle with chord w1w2. Replacing C in

C by C0, we consider the new H0. Note that H2 � s2 is connected. Since

w3 2 NCðs1Þ \ NCðz2Þ, compðH0Þ � compðHÞ � 1. This contradicts (A2).

Subcase 2 Suppose compðHÞ� 3.

Without loss of generality, we may assume that z2 2 VðH3Þ by our assumption

that each component of H has at least one vertex contained in the degree sequence
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D. By the same arguments as Subcase 1.1, we can reduce the number of components

of H, a contradiction.

This completes the proof of Theorem 5. h

5 Conclusion

We believe that Lemma 2 may be improved to guarantee a larger independent set of

low-degree vertices in every non-chorded connected graph. In particular, we

conjecture the following.

Conjecture 1 If H is a non-chorded connected graph of order n, then H contains an
independent set I of order at least n/6 with each vertex of I having degree at most 2
in H.

This 1/6 proportion of vertices would be best possible, as we demonstrate with

two examples G1 and G2.

First, define the graph H with 6 vertices to be the graph containing a 5-cycle

x1; x2; x3; x4; x5; x1 and where the sixth vertex x6 is adjacent to x2 and x5. To form

G1, take k copies of H called H1;H2; . . .;Hk. Let xji 2 VðHjÞ with 1� i� 6 and

1� j� k, and let xj6x
jþ1
1 2 EðG1Þ for each 1� j� k � 1. Aside from H1 and Hk, each

copy of H has exactly two vertices of degree 2, and only one of these can be

included in the independent set I. Each of H1 and Hk have two independent vertices

of degree 2, so jIj ¼ n=6þ 2.

Second, construct G2 by starting with a triangle, and for each of its vertices,

connect it by an edge to a new triangle. Then for each vertex of degree 2 in this

graph, connect it by an edge to a new triangle. Repeat this process k times. In G2,

every vertex of degree 2 is adjacent to another vertex of degree 2, so only one of

each pair can be in I. By adding a triangle adjacent to each vertex of degree 2 in the

pair, we can increase the size of I by 1, and we have added 6 vertices. That means

the limit

lim
k!1

jIj
n
¼ 1

6
;

so no larger proportion than 1/6 of the vertices of G2 can be in I.
We also note the following easy-to-prove facts about graphs with no chorded

cycles. We did not use these facts in our proof of Theorem 5 but they may be of

interest to the reader.

Fact 1 If G is a graph of order n with no chorded cycles, then there exists an

ordering of the vertices of G such that each vertex has at most two neighbors

preceding it in this ordering. Further G is a tripartite graph.

Fact 2 If G is a graph of order n containing no chorded cycles, then

jEðGÞj � 2n� 4.
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