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Abstract

In this paper, we consider a general degree sum condition sufficient to imply the
existence of k vertex-disjoint chorded cycles in a graph G. Let ¢,(G) be the mini-
mum degree sum of ¢ independent vertices of G. We prove that if G is a graph of
sufficiently large order and ¢,(G) > 3kt — ¢ + 1 with k > 1, then G contains k vertex-
disjoint chorded cycles. We also show that the degree sum condition on ¢,(G) is
sharp. To do this, we also investigate graphs without chorded cycles.

Keywords Vertex-disjoint chorded cycles - Minimum degree sum - Degree
sequence - Biconnected components - Blocks

1 Introduction

The study of cycles in graphs is a rich and an important area. One question of
particular interest is to find conditions that guarantee the existence of k vertex-
disjoint cycles. Let G be a graph. Corradi and Hajnal [2] first considered a minimum
degree condition to imply a graph must contain k vertex-disjoint cycles, proving that
if |G| > 3k and the minimum degree 6(G) > 2k, then G contains k vertex-disjoint
cycles. For an integer ¢t > 1, let
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0,(G) = min {Z degs(v) :

X is an independent vertex
)
veX

set of G with |X| =1.

and 0,(G) = oo when the independence number is ¢ — 1 or less. Enomoto [3] and
Wang [11] independently extended the Corradi and Hajnal result, requiring a
weaker condition on the minimum degree sum of any two non-adjacent vertices.
They proved that if |G| > 3k and 0,(G) >4k — 1, then G contains k vertex-disjoint
cycles. In 2006, Fujita et al. [5] proved that if |G| > 3k + 2 and 03(G) > 6k — 2, then
G contains k vertex-disjoint cycles, and in [7], this result was extended to
04(G) > 8k — 3. Recently, Ma and Yan [10] proved a conjecture from [7] by
showing that if G has sufficiently large order and o,(G) > 2kt — ¢t + 1, then G con-
tains k vertex-disjoint cycles.

A chord of a cycle is an edge between two non-consecutive vertices of the cycle.
An extension of the study of vertex-disjoint cycles is that of vertex-disjoint chorded
cycles. We say a cycle is chorded if it contains at least one chord. In 2008, Finkel
[4] proved the following result on the existence of k vertex-disjoint chorded cycles
which can be viewed as an extension of the Corradi and Hajnal result.

Theorem 1 (Finkel [4]) Let k > 1 be an integer. If G is a graph of order at least 4k
and 6(G) >3k, then G contains k vertex-disjoint chorded cycles.

In 2010, Chiba et al. [1] extended the above result by using the a,(G) condition.

Theorem 2 (Chiba, Fujita, Gao, Li [1]) Let k > 1 be an integer. If G is a graph of
order at least 4k and 6,(G) > 6k — 1, then G contains k vertex-disjoint chorded
cycles.

Recently, Theorem 2 was extended as follows.

Theorem 3 [8] Let k > 1 be an integer. If G is a graph of order at least 8k + 5 and
03(G) > 9k — 2, then G contains k vertex-disjoint chorded cycles.

The last result was further extended to ¢4(G) in a submitted paper by Gould,
Hirohata, and Keller.

Theorem 4 Let k> 1 be an integer. If G is a graph of order at least 11k + 7 and
04(G) > 12k — 3, then G contains k vertex-disjoint chorded cycles.

In this paper, we prove the following result in Sect. 4.

Theorem 5 For k>1 and t> 1, if G is a graph of order n> (10t — 1)(k — 1) +
12t 4 13 and 6,(G) > 3kt — t + 1, then G contains k vertex-disjoint chorded cycles.
Further, this degree condition is sharp.

Remark To see the sharpness of the degree condition of Theorem 5, for n
sufficiently large order, consider the complete bipartite graph B = K3;_ p—3k+1-
Then o,(B) = #(3k — 1). Further, it is not possible to construct k vertex-disjoint
chorded cycles in B, as any chorded cycle must use three vertices from the partite
set of order 3k — 1.

@ Springer



Graphs and Combinatorics (2020) 36:1927-1945 1929

All graphs considered here are simple, undirected, and finite. For terminology
and notation not defined here, see [6]. Let G be a graph, H a subgraph of G, and
S C V(G). For u € V(G), we denote the set of neighbors of u in G by Ng(u),
degi;(u) = |Ng(u)|, Ny(u) =Ng(u)NV(H), and degy(u) = |Ny(u)|. Also we
denote degy (S) = >, csdegy(u). If H = G, then deg;(S) = degy(S). The subgraph
of G induced by S is denoted by (S). Let G—S=(V(G)—S) and
G—H=(V(G) — V(H)). If S = {u}, then we write G — u for G — S. If there is
no fear of confusion, then we use the same symbol for a graph and its vertex set. If
G is one vertex, that is, V(G) = {u}, then we simply write u instead of G. For two
disjoint graphs G| and G,, G| U G; denotes the disjoint union of G| and G,. Let Q
be a path or a cycle with a given orientation and x € V(Q). Then x* denotes the first
successor of x on Q and x~ denotes the first predecessor of x on Q. If x,y € V(Q),
then Q[x, y] denotes the path of Q from x to y (including x and y) in the given
direction. The reverse sequence of Q[x, y] is denoted by Q~[y,x]. We also write
O(x,y] = Qlx*,yl, Qlx,y) = Qlx,y"] and Q(x,y) = Qlx*,y~]. If Q is a path (or a
cycle), say Q = x1,x2,...,%(,x]), then we assume that an orientation of Q is given
from x; to x,. If P is a path connecting x and y, then we denote the path P with an
orientation from x to y as P[x, y]. The reverse sequence of P[x, y] is denoted by
P~ [y,x]. For an integer r>1 and two vertex-disjoint subgraphs A, B of G, we
denote by (di,da, . . .,d,) a degree sequence from A to B such that degg(v;) > d; and
v; € V(A) for each 1 <i<r. In this paper, since it is sufficient to consider the case
of equality in the above inequality, when we write (di,da,...,d;), we assume
degg(v;) = d; for each 1 <i<r. For two disjoint X, Y C V(G), E(X, Y) denotes the
set of edges of G connecting a vertex in X and a vertex in Y. A cycle of length ¢ is
called a ¢-cycle. For a graph G, comp(G) is the number of components of G. Let
R be a graph. If G has no induced subgraph isomorphic to R, then G is called R-free.

2 Graphs with No Chorded Cycles

In this section, we examine some useful properties of graphs that contain no chorded
cycles. Our ultimate goal is to show they contain large independent sets of small
degree sum. This will be important in our proof later.

Lemma 1 Let T be a tree of order n > 2. Then the following statements hold.

(1) T has at least n/2 + 1 vertices of degree at most 2.
(1) T contains an independent set I of order at least n/4 with each vertex of
I having degree at most 2 in T.

Proof Let {vi,...,v;} be the set of branch vertices in T. Let £ be the number of
leaves in T and s be the number of stem vertices. Clearly ¢ 4 s 4+ b = n. Since T has
n — 1 edges, the degree sum of T is
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b
2n—1)=0+2s+ Y degy(vi)>L+2(n—{—b)+3b,

i=1

which implies £ > b + 2. Consequently,

l4+s>b+2)+s=0b+s)+2=(n—-4)+2
20+s5>n+2
s_n
0+=>—+1.
+2_2+
If L is the set of all leaves and stems in 7, then

|L|:€+s2£+%> +1.

n
-2
Thus (i) holds.

Since T is bipartite, one of the partite sets contains at least half the vertices of L.
Thus T contains an independent subset / C L with |I| >|L|/2 >n/4, and (ii) holds.
O

Definitions A biconnected graph is a non-separable graph. Note that any two
vertices (two edges) of a biconnected graph lie on a common cycle. A non-chorded
graph is a graph not containing any chorded cycles. A leafis a vertex of degree 1. A
stem is a vertex of degree 2. A branch is a vertex of degree at least 3.

Lemma 2 If H is a non-chorded graph of order n, then H contains an independent
set I of order at least n/12 with each vertex of I having degree at most 2 in H.

Before proving Lemma 2, we state and prove some helpful propositions.

Proposition 1 Every non-chorded biconnected graph H of order at least four is
triangle-free.

Proof Suppose H contains a triangle on vertices a, b, c. Since H is connected,
without loss of generality, we can say a has some neighbor d € V(H) — {b,c}.
Since H is biconnected, edges ab and ad must lie on a common cycle in H. Let C be
such a cycle. If C contains edge bc, then ac is a chord on the cycle, a contradiction.
If C does not contain bc, then (CUc) contains a cycle with chord ab, a
contradiction. O

Proposition 2 Let k > 1 be an integer. If H is a non-chorded biconnected graph of
order at least four, then E(H) can be decomposed into

e acycle C=Fy and
e if C is not a hamiltonian cycle in H, then a sequence of paths Pi,..., Py

(each with at least two edges) where the endpoints of P; are a;, b; (a; # b;),

such that there exists a sequence of subgraphs Fy,...,F; of H, where for all
1<i<k,
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(i) F,=PUF_,

(ll) V(P,) N V(F,;]) = {Cl,’, b,‘},
(iii))  F; is a non-chorded biconnected graph, and
(iv) Fp = H (see Fig. 1).

Proof Let C be a cycle in H. Note that H is triangle-free by Proposition 1, and in
particular, C is not a triangle. Let Fy = C and let E; = E(H)\E(F,). If C is a
hamiltonian cycle in H, then since H is non-chorded, E; = (). For each i>1, if
E; # 0, do the following: Select any f € E(F;_|) and any e; € E;. Since H is
biconnected, there exists a cycle C; in H containing f and e;. Let P; be a path in C;
containing e; so that the endpoints of P; are in V(F,;_;). Note that |[E(P;)| >2. Call
these endpoints a;,b;, and assume that V(P;)NV(F;_;) = {a;b;}. Let
F; =P;UF,_;. Since H is non-chorded biconnected, the graph F; is also non-
chorded biconnected. Let E;; = E;\E(P;). Let k + 1 be the minimum index so that
Ejy is empty. Then F, = H. O

Proposition 3 Let k> 1 be an integer. Let C = Fy be any cycle of order at least
four, let Py, ..., Py be a sequence of paths (each with at least two edges) such that
for each 1 <i<k, P; is a path from a; to b; (a; # b;), and let Fy,...,F}; be a
sequence of graphs such that for each 1 <i <k,
(i) Fi=PiUFiy,
(ll) V(P,) N V(Fifl) = {Cli, bi}, and
(iii))  F; is a non-chorded biconnected graph.
Then for each 1 <i<k, there exists some vertex v € P;(a;,b;) such that

degy, (v) =2.  Further, there exist distinct vertices x,xX €
V(O\Ui, V(P:) such that degg, (x) = degp, (x') = 2.

Proof Suppose for a contradiction that for some 1</¢<k, deg; (v)>3 for all
v € Py(ag, by). Let Py i vo = ag,vi,...,vi—1,v: = by, and let F = Fy_1\{vo, v, }. Note

Fig. 1 The graph H
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that since F} is non-chorded biconnected graph of order at least four, Fy is triangle-
free by Proposition 1.

Claim 1 For each 1 <i<t — 2, there exists a path S; in Fy from v; to v; for some
i +2<j<t such that S;(v;,v;) N V(P¢) =0 and V(S;) N V(F) = 0.

Proof We prove Claim 1 by induction. Since degy, (v) >3 for all v € Py(ay, by),
there exists a neighbor u; of v; with u; & {v;_1,v;;1} for each 1 <i <t — 2. Since Fy
is biconnected, there exists a path S; in Fy starting with v;, u;, ..., terminating at v;
with i # j such that S;(v;,v;) N V(Py) = 0.

First we prove the case where i = 1. Suppose V(S;) N V(F) # (. Then there
exists a vertex w € V(S;) N V(F) such that S;(vi,w) N V(F) =0. Since F,_; is
biconnected, there exists a cycle C; in F,_; containing vy and w. We assume that an
orientation of C; is given from vy to w clockwise. Suppose v, € V(Cy), so v; €
Ci(vo,w) or v, € Ci(w,vp). Without loss of generality, we may assume that
v, € Cy(vp,w). Then

Pyvi, v, Cy [vi, vo], Cy [vo, w], S| [w, vi]

is a cycle with chord vgv;, a contradiction (see Fig. 2a). Thus v, & Ci(vy,w).
Similarly v, & Ci(w,vy), hence v, € V(C)). Since Fy_; is biconnected, there exists a
cycle C; in Fy_; containing vy and v,. We assume that an orientation of C, is given
from vy to v; clockwise. Without loss of generality, we may assume that
w & C5 (v, vo). If C5 (v, v0) NV(Cy) = 0, then

P[{[V],Vt}, C;[vtvv()]z C; [V07W]7S; [Wa Vl]

is a cycle with chord vgv;, a contradiction (see Fig. 2b). Thus we may assume that
C{(V;,VO) N V(Cl) 75 0.

Let z be a vertex such that z € C; (v,,v9) N V(Cy) and C; (v, z) N V(Cy) = 0. By
assumption, z # w. If z € C;(vy,w), then

51 Sl
e Q
V1 v1
Ch Py Py
J
Fy_1
(@) v € Ci(vo, w) (b) C5 (vi,v0) NV (C1) =0

Fig. 2 The construction of chorded cycles
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PZ[VI 5 Vl‘]a C; [Vn Z]7 C; [Z7 Vo], C; [V07 W]a Sr [W; Vl}
is a cycle with chord vgv;, a contradiction. Otherwise, z € C; (vo, w), and similarly
P([Vl 3 VfL C; [Vl‘7 Z]a Cl [Zv V0]7 Cl [V07 W]7 S; [W; Vl]

is a cycle with chord vvy, a contradiction. Thus V(S;) N V(F) = (). Next suppose
7 €{0,2}, that is, v; € {vp, v }. If j = 0, then

P/[VlvvlL CZ[VU VO]7S; [V07 Vl}

is a cycle with chord vyv;, a contradiction. If j = 2, then similarly, we can find a
cycle with chord v;v;, a contradiction.

For induction, assume that Claim 1 is true for i — 1. Thus there exists a path S;_;
in Fj from v;_; to vy for some i+ 1< J <t satisfying the conditions of Claim 1.
Suppose that every path S; starting at vertex v;, proceeding to u;, and continuing in
that direction passes through some vertex x € V(F) U S;_(v;_1,v;) before reaching
any v; with i#j  Then select a vertex x such that
Si(vi,x) N (V(F) USi—i(vi—1,vy)) = 0. First suppose x € V(F). Since Fy_; is con-
nected, there exists a path Q; in Fy_; from x to vy. Then

Py[vo,vici], Sici[vier, vil, Py vy, vil, Silvi, ], Q1 [x, vo)

is a cycle with chord v;_,v;, a contradiction. Next suppose x € S;_; (vi—1, vy). Since
Fy_, is connected, there exists a path O, in Fy_; from v, to vo. Then

Py[vo,vie1], Sic1[vie1, x], S [x, vi], Pelvi, vil, Qa2 [ve, vo]

is a cycle with chord v;_;v;, a contradiction. Thus S; is a path from v; to v; not
containing any vertex in V(F)US;_;(vi—i,vy). If j>i+2, then Claim 1 holds.
Thus we may assume that j <i+ 1. Suppose j <i — 2. Then

Povj,vie1], Sic1vier, vy), Py vy, vil, Si[vi, vil

is a cycle with chord v;_v;, a contradiction. If j = i — 1, then using the above path

0>,
Py[vo, vi-1],S; [Vi—1,vi], Pe[vi, vi], Q2 [ve, vo)

is a cycle with chord v;_v;, a contradiction. If j = i + 1, then similarly, we can find
a cycle with chord v;v;,, a contradiction. Thus for each 1 <i <t — 2, there exists a
path S; in F from v; to v; for some i + 2 <j <t satisfying the conditions of Claim 1.

O

By Claim 1, there exists a path S,_, from v, to v, such that S,_»(v,—2,v,) N
V(P¢) = 0 and V(S,—,) N V(F) = (. Since degy, (v;—1) >3 by our assumption, there
exists a neighbor u,_; of v,y with u,_; & {v,_,v,}. Since Fy is biconnected, there
exists a path S,_; in F starting with v, u,_y, ..., terminating at v; with j # ¢ — 1
such that S, (v,—1,v;) N V(P;) = 0. Since F,_ is biconnected, there exists a cycle
C, containing vy and v;. We assume that an orientation of C; is given from vy to v,
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clockwise. Suppose that every path S;_; starting at v,_; passes through some vertex
x € V(F)USi—2(vi—2, v;) before reaching v; with j # ¢t — 1. Then we take a vertex x
such that S, (v,—1,x) N (V(F) U S;—2(v;—2, v;)) = 0. First suppose x € V(F). Since
Fy_, is biconnected, two vertices vy and x must lie on a common cycle C; in Fy_;.
We assume that an orientation of C, is given from vy to x clockwise. Then we may
assume that v, € Cy(x,vp). Thus

PZ [VO, Vt72]7 Sz—z [Vt72a vt]a P[_ [vta thl]a Stfl [V[,I 7-x]7 C2 [—xa VO]
is a cycle with chord v,_,v,_1, a contradiction. Next suppose x € S;_5(v;—2, ;). Then
PI[VOa Vz—2]7 Sz—2[Vz—2axLS;:1 [xa Vr—l]a PZ[Vz—l ) V,}, C [Vm VO}

is a cycle with chord v,_,v,_;, a contradiction. Thus S,_; is a path from v,_; to v; not
containing any vertex in V(F) U S;_o(vi_2,v;). If j <t — 2, then

Pé[vjaVz—2]7Sr—2[V1727Vt];P14_ [szvt—l};stfl [Vr—hvj}
is a cycle with chord v, ,v, 1, a contradiction. If j = ¢, then
Py[vo, vi—1], Si—1[Vi—1, vi], Ci [ve, vo]

is a cycle with chord v;_;v;, a contradiction. Thus, for each 1 <i <k, there exists
some vertex v € P;(a;, b;) such that degp, (v) = 2.

Next consider F; = P; U C. We assume that an orientation of C is given from a,
to by clockwise. Then Clay, b1], Py [b1,a1] is a cycle in Fy. By the above result, there
exists some vertex x € C(b;,a;) with degp (x)=2. Similarly, since
Pylay, b1],Clby,ay] is a cycle in Fy, there exists some vertex X' € C(ay,b;) with
degy, (x') = 2. This completes the proof of Proposition 3. O

Proposition 4 Every non-chorded biconnected graph H of order n has at least
(n—2)/3 4 2 stem vertices.

Proof Let C and Py,...,P; be a cycle and paths satisfying the conclusions of
Proposition 2. Then by Proposition 3, there exist at least k + 2 stem vertices in H.
Also, since H is biconnected, every vertex in H is either a stem vertex or a branch
vertex. Now consider the endpoints of P; for each 1 <i <k. By Proposition 2, there
exist at most 2k branch vertices in H. Thus there exist at least n — 2k stem vertices
in H. Consequently, the number of stem vertices in H is at least max{k + 2, n — 2k},
which is always at least (n — 2)/3 4 2. O

Definition A biconnected component in a graph is a maximal biconnected
subgraph. In this paper, we do not consider a single edge to be a biconnected
component, and we handle these edges separately. Every cycle in a graph is
contained in exactly one biconnected component. The following intuitive propo-
sition is shown in [9].

Proposition 5 (Harary, Prins [9]) If By, B, are distinct biconnected components in a
graph, then E(B1) N E(B;) = ().
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Proposition 6 Let k > 1 be an integer, and let H be a non-chorded connected graph
containing k biconnected components. Then E(H) can be decomposed into

e a sequence of non-chorded biconnected components By, ..., By, and
e a sequence of edge-disjoint paths P, ..., P, (some of which might be just a
single vertex) with { >k, where the endpoints of P; are a;, b; for each 2 <i</,

so that there exists a sequence of induced subgraphs Fi,F,,...,F; of H with the
following properties:

(i) F1=B8B,
(ll) fOV each 2§l§k, F,' = F,;l UP,’ UB,', V(P,) N V(F,;]) = {ai},
V(P))NV(B;) = {b;}, and V(Fi_1) N V(B;) = 0 unless a; = b;, in which
case V(Fi_1) N V(B;) = {a;},
(111) fOV each k + 1 Slgﬁ, F[ = F,;l UP,‘, V(P,) N V(F,;]) = {a;},
degy (bi) =1, |P;| > 2, and
Gv) F,=H.

Proof Since H is non-chorded, every biconnected component in A must be non-
chorded. Choose any biconnected component in H to be F; = B; (satisfying (i)). We
claim that |V(B) N V(F;_1)| <1 for any biconnected component B in H\E(F;_;)
and for each 2 <i<k. For some 2 <i <k, suppose that there exists a biconnected
component B in H\E(F;,_;) with |V(B)NV(F;_1)|>2. Then for some
u,v € V(B)NV(F;_), there exists a path Q; from u to v in F;_; and a path Q,
from u to v in B such that Q; U O, forms a cycle Q. This cycle Q is in H. Thus Q is
contained in some biconnected component B'. Since Q; is in F;_y, it is edge-disjoint
from B, Q is not in B and B’ # B. But B and B’ share some edge of Q,, contradicting
Proposition 5. Thus the claim holds.

First suppose that there exists a biconnected component B in H\E(F;_;) with
V(B)NV(F;_y) = {v} for some vertex v. In this case, let B; =B, P; = v, and
F; = F;_1 UP; UB;, with a; = b; = v. Next suppose that all biconnected compo-
nents in H\E(F;,_;) are vertex-disjoint from F; ;. Let B; be a biconnected
component in H\E(F;_;) such that a path from B; to F;_; in H is edge-disjoint from
every other biconnected component in H\E(F;_1), and let this path be P;. Since H is
connected, such a B;, P; exist. Let F; = F;_y UP; UB;, V(P;) N V(F;_) = {a;}, and
V(P;) N V(B;) = {b;}. Thus (ii) is satisfied.

Clearly Fy is a connected graph containing all the cycles in H, and H\E(F}) is a
forest. Then there exists no path P in H\E(F}) with both endpoints in V(Fy),
otherwise Fy U P would contain a cycle not in Fy. If E(H)\E(F;_;) # 0, then do the
following: Select some edge e € E(H)\E(F;-) that is incident to a leaf vertex v in
H. Let P; be a path from v=5; to V(F;_y) with V(P;) N V(Fi_1) = {a;}. Let
F; = F;_y UP;. Since P; contains edge e, |P;| >2, and since v = b; is a leaf in H,
degy (b;) = 1, satisfying (iii).

Since H is finite, there exists some ¢ > k for which E(H)\E(F,) = (}, satisfying
@iv). O

Now we finally prove Lemma 2.
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Proof of Lemma 2 1If H is acyclic, then applying Lemma 1 (ii) to each connected
component of H gives the result. Thus we may assume that H has at least one cycle.
Hence H contains a biconnected component. Let By,...,B; and P,,...,P, be a
decomposition of E(H) into biconnected components and paths as described by the
conclusion of Proposition 6 with the corresponding subgraphs Fy, ..., F,; in H. For
each B;, 1 <i<k,letL; = {v € V(B;) : degg (v) <2}. By Proposition 4, each L; has
order at least (|B;] —2)/3 +2. Let S={v € V(H) : degy(v) <2}. We will show
that |S| > |H|/6. First, let S; = {v € V(F;) : degy (v) <2} for each 1 <i <k, and we
claim the following.

Claim 1 For each 1 <i<k, |S;| >|Fi|/5+ 2.

Proof First suppose i=1. Then recall F;=B;. If |Bj|>5, then
[Si] = |Li| > (|B1] —2)/3+2>|Fi|/5 +2. If |B;| <4, then B is a 3-cycle or a
4-cycle, since these are the only biconnected components on at most 4 vertices.
Then clearly |S;|> |F|/5 + 2.

Next suppose 2 <i < k. Thenrecall F; = F;_; U P; U B;, and assume by inductive
assumption that F;_; contains a set S;_; of vertices of degree at most 2, where
[Si—1] > |Fi-1|/5 + 2. We have the following two cases.

Case 1 For some 2<i<k, |P;| = 1.

Then a; =b;. By Proposition 6 (ii), V(Fi_1)NV(B;) ={a;}. Thus
|Fi| = |Fi—1]| + |Bi] — 1. While a; may have degree 2 in each of F;_;, B; separately,
it has degree greater than 2 in F;. Thus

1Sil = (1Si-1| = Hai}]) + (ILi| = {ai}])

(e (B 2)

il 1Bl -1, 2|8 +23 (m)
5 15
Ry +2|B,<| +23
5 5

If |B;| > 4, then, by (1), we have |S;| > |F;|/5 + 2. Thus we may assume that |B;| <3.
Then B; is a 3-cycle and |L;| = 3, in which case the inequality is easily shown.

Then a; # b;. By Prgpogition 6 (i), V(Fi-1) N V(B;) = (. Thus
|Fil = [Fica| + |Bil + |Pi| = Hai, bi}|
= |Fi1| + |Bi| + |Pi| — 2
Note that degp, (v) <2 for each 1 <i</ and every vertex v € V(P;). While a;, b;

may have degree 2 in each of F;_;, B; or P; separately, they have degree greater than
2 in F;. Thus
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1> (181 — [{ai}]) + (L] — [{bi}) + (1P| — [{as, bi}])

Fi_ B;)| —2

> (' 5‘|+2> + (' |3 +2> +|Pi| — 4
Fio |+ |Bi| + |Pi| =2 2|Bi| + 12|Pi| — 4 (2)
= +
5 15

_@+2|Bi| + 12|P;| — 4
5 15 ’

Note that |P;| > 2. If |B;| > 5, then, by (2), we have |S;| > |F;|/5 + 2. Thus we may
assume that |B;| <4. Then B, is a 3-cycle or a 4-cycle, and |L;| = 3 or 4. In either
case, the inequality is again easily shown. O

In particular, Claim 1 shows

Skl > [Fl/5 + 2. (3)

Let r=15N Uf:kﬂ a;|. Enumerate the components Ty,7,,...,T, of
Uf:k +1(V(P;)), and note that w > t. Clearly

1< Skl 4)

Claim 2 We have |S| > |H|/6.

Proof Each component 7;, 1 <i<w, is a tree, so by Lemma 1 (i), it has at least
|T;|/2 + 1 vertices of degree at most 2. Each component contains exactly one vertex
v € V(Fy), while the rest are in H — Fy, and this one vertex v may have degree at
least 2 in Fy, so the number of vertices of degree at most 2 in H — Fy is

SIS (1T = T H[ =R
SNH-Fy|>S Zl oy (Hl =, ) M, W
IS0 ")|—;2 27 2 2

i=1
lH Rl
- 2
Also |S N Fy| = |Sk| — #. Then

IS| =[SO Fi + SN (H — Fy)|

H| — |Fi| +1  |H|— |Fi| —t (5)

> S| — ¢ Skl.
> | Sk + 5 > + S|

Combining (3), (4) and (5) gives

H| — |F S H| 2|F
HI = P+ I8 2R,

S| >
512 2 -2 5

Since |S| > |Sk

, by (3),
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F
|S|z|5—k‘+z.

Thus |S| > max {|H|/2 — 2|F|/5 + 1,|Fi|/5 4+ 2}, which is at least |HI/6 for all
values of |Fy|. O

We claim that (S) is a forest or H is a cycle. Suppose (S) is not a forest. Then (S)
contains a cycle C. If H= C, then the claim holds. Thus H # C, that is,
V(H)\V(C) # 0. Note that deg;(v) <2 for each v € S. Since H is connected by the
assumption, we get a contradiction. Thus the claim holds. If (S) is a forest, then it is
bipartite. Since |S| > |H|/6 by Claim 2, there exists an independent subset I C S of
order at least (|H|/6)/2 = n/12.If H is a cycle, then clearly Lemma 2 also is true.
This completes the proof of Lemma 2. O

3 Other Lemmas

In this section, we state several known lemmas that will be used in the proof of our
main result. Note that a minimal set of r vertex-disjoint cycles Cy,...,C, is a set
with | J;_, Ci| as small as possible.

Lemma 3 [8] Let r > 1| be an integer, and let € = {Cy, ..., C,} be a minimal set of
r vertex-disjoint chorded cycles in a graph G. If |C;| > 7 for some 1 <i<r, then C;
has at most two chords. Furthermore, if C; has two chords, then these chords must
be crossing.

Lemma 4 [8] Let r > 1 be an integer, and let € = {Cy, ..., C,} be a minimal set of
r vertex-disjoint chorded cycles in a graph G. Then deg, (x) <4 forany 1<i<r
and any x € V(G)— i, V(Ci). Furthermore, for some C €% and some
x € V(G) — UL, V(G), if degp(x) =4, then |C| =4, and if deg-(x) =3, then
IC|<6.

Lemma 5 [8] Suppose there exist at least five edges connecting two vertex-disjoint
paths Py and P, with |Py U P,| >7. Then there exists a chorded cycle in (P U P;)
not containing at least one vertex of (P U P,).

4 Proof of Theorem 5

Suppose Theorem 5 does not hold. We first consider the case where &k = 1. Then
n>12t+ 13 and 6,(G) >2¢ + 1. Noting [n/12] > ¢+ 2, by Lemma 2, G contains
an independent set [ of order r with each vertex of I having degree at most 2 in G.
Then deg;(7) <2t, a contradiction. Thus we assume k>2. Let G be an edge-
maximal counter-example. If G is complete, then G contains k vertex-disjoint
chorded cycles. Thus we may assume G is not complete. Let xy ¢ E(G) for some
x,y € V(G), and define G’ = G + xy, the graph obtained from G by adding the edge
xy. By the edge-maximality of G, G’ is not a counter-example. Thus G’ contains k
vertex-disjoint chorded cycles Ci,...,Cy. Without loss of generality, we may

@ Springer



Graphs and Combinatorics (2020) 36:1927-1945 1939

assume xy ¢ Uf;ll E(C;), that is, G contains k — 1 vertex-disjoint chorded cycles.
Over all sets of k — 1 vertex-disjoint chorded cycles, choose Ci, ..., Cy_;, where

t = Uf;ll C; and H = G — %, such that:

(A1) |%] is as small as possible,
(A2) subject to (Al), comp(H) is as small as possible, and
(A3) subject to (Al) and (A2), the number of K;’s in 4 is as large as possible.

We may also assume H does not contain a chorded cycle, otherwise, G contains k
vertex-disjoint chorded cycles, a contradiction. Theorem 5 holds by Theorems 1-4
for all t <4. Thus we also assume ¢ > 5.

Claim 1 H has order at least 12t + 13.

Proof Suppose this claim fails to hold, that is, suppose |H| < 12f + 12. First we
prove the following subclaim.

Subclaim 1 Foreach 1 <i<k—1,

Ci|<10r— 1.

Proof Suppose Subclaim 1 fails to hold, that is, |C;| > 10z for some 1 <i<k — 1.
Without loss of generality, let |Ci|>|Cy|> -+ >|Ci—y|. In fact, let
|C1| = st+r>10t>50, with s>10 and 0< r <7 — 1.

Subclaim 1.1. For s > 10, the cycle Cy contains s vertex-disjoint sets X1, ..., X
each with t independent vertices such that dege (U;_, X;) <2st + 4.

Proof For any st vertices of Cj, their degree sum in C; is at most 2st + 4, since by
Lemma 3, C has at most two chords. Thus, it only remains to show that C; contains
s vertex-disjoint sets of # independent vertices each. Recall |C;| = st + r > 10z. Start
anywhere on C; and label the first st vertices of C; with labels 1 through s in order,
starting over again with 1 after using label s. If r > 1, then label the remaining r
vertices of C; with the labels s+ 1,...,s + r. The labeling above yields s vertex-
disjoint sets of ¢ vertices each, where all the vertices labeled with 1 are one set, all
the vertices labeled with 2 are another set, and so on. Given this labeling, any vertex
in C; has a different label than the vertex that precedes it on C; and the vertex that
succeeds it on Cj. Let Cy be the cycle obtained from C; by removing all chords.
Then the vertices in each of the sets are independent in Cy. Thus, the only way
vertices in the same set are not independent in Cj is if the endpoints of a chord of C;
were given the same label. Note any vertex labeled i is distance at least s > 10 in C
from any other vertex labeled i. Thus, if a vertex and the neighbor preceding it on Cy
or the neighbor succeeding it on Cy have their labels exchanged, then the vertices in
each of the classes are independent in Cj.

Case 1 No chord of C; has endpoints with the same label.

Then there exist s vertex-disjoint sets of ¢ independent vertices each in Cj.

Case 2 Exactly one chord of C; has endpoints with the same label.

Recall C; contains at most two chords, and if C; contains two chords, then these
chords must be crossing. Since |C{|> 50, even if C; contains two chords, each
chord has an endpoint such that one of the endpoint’s neighbors in C; is not an
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endpoint of the other chord. Choose such an endpoint of the chord whose endpoints
were assigned the same label, and exchange the label of this vertex for its non-
endpoint neighbor. The vertices in each of the resulting classes are still independent
in Cy, and now no chord of C; has endpoints with the same label. Thus there exist s
vertex-disjoint sets of ¢ independent vertices each in C.

Case 3 Two chords of C; each have endpoints with the same label.

In this case, note two chords are crossing. Suppose an endpoint of one chord of
C is adjacent to an endpoint of the other chord on C;. Now exchange the labels of
these adjacent endpoints. Then the vertices in each of the resulting classes are still
independent in C;, and now no chord of C; has endpoints with the same label. Thus
there exist s vertex-disjoint sets of ¢ independent vertices each in Cj.

Next suppose no endpoint of one chord of C; is adjacent to an endpoint of the
other chord on C;. Let x;x;, y;y, be the two distinct chords of C;. Since the two
chords are crossing, without loss of generality, we may assume xj,y;,Xs,y, are in
that order on C;, and the label of x; is 1. Then the label of x?’ is 2. Now we exchange
the labels of x; for x|, that is, the label of x; is 2 and the label of x| is 1. Next we
exchange the labels of y, for y;. Note y, # x; by our assumption that no endpoint
of one chord of C; is adjacent to an endpoint of the other chord on C,. Thus, the
vertices in each of the resulting classes are independent in C;, and no chord of C,
has endpoints with the same label. Hence there exist s vertex-disjoint sets of ¢

independent vertices each in C;, completing the proof of Subclaim 1.1.
O

Recall that, by assumption, |H| < 12¢ 4 12 and |Cy| > 50. Let X1, X5, . . ., X, be as
in Subclaim 1.1, and let X = |J;_, X;. Further, note that deg., (v) <2 for every
v € V(H) or a shorter chorded cycle would exist by Lemma 4, contradicting (Al).
Thus

|E(H,Cy)| <2(12t + 12). (1)
First suppose that k = 2. Then C) is the only cycle in %. By Subclaim 1.1,
[E(C1, H)| > degg(X) — deg, (X)
>s(3kt —t+1) — (25t +4)
=s(6t—t+4+1) — (25t +4)
=3st+s5—4,

but since s> 10 and 7> 5, we see that 3st + s — 4 >30¢ + 6 > 2(12¢ + 12), con-
tradicting (1). Thus we may assume that k > 3. Then, by Subclaim 1.1 and (1),

[E(X, % — C1)| = degg(X) — degc, (X) — degy (&)
>s(3kt —t+ 1) — (2st +4) — 2(12¢ + 12) (2)
= 3kst — 3st + s — 24t — 28.

Since s > 10, we have 3st > 30t = 24¢ + 6¢. Thus
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241 < 3st — 61. (3)
By (2) and (3), we have

3kst — 3st + s — 24t — 28 > 3kst — 3st + s — (3st — 61) — 28
=3st(k —2) + s+ 61 — 28
>3st(k—2)+ 12.
Thus |[E(X, C')| > 3st for some C' in ¥ — C;. Let h = max{deg (v) : v € X'}. Let
v € X with deg (v¥) = h. Since |X| = st, if <3, then |[E(X, C’)| <3st, a con-
tradiction. Thus we may assume that A>4. By the maximality of Cj,

|C'| <|Cy| =st+r. Tt follows that h = deg.(v*) <|C’| <st+ r. Recall s> 10,
t>5and 0<r<t—1. Then

[E(X —{v'},C)|>(Bst+1) —deg (v) > (Bst + 1) — (st +7)
=2st+1—r>2st+1—(t—1)
=2st—t+2
>97.

4)

Since h = deg. (v*) >4, let vi,vp,v3,v4 be neighbors of v* in that order on C'.
These vertices partition C’ into four intervals C'[v;,v;1;) for each 1 <i<4, where
vs = vi. By (4), there exist at least 97 edges from C; — v* to C'. Thus some interval
clearly receives at least 25 of these edges. Without loss of generality, say C'[vs, v1)
is such an interval. Then, by Lemma 5, ((C; — v*) U C'[v4, 1)) contains a chorded
cycle not containing at least one vertex of ((C; —v*)UC'[vg,v)). Also,
v*, C'[vy,v3],v* is a cycle with chord v*v,, and it uses no vertices from C'[vs4, vy).
Thus we have two shorter vertex-disjoint chorded cycles in (C; U C’), contradicting
(Al). Hence Subclaim 1 holds. O
Now as n> (10t —1)(k— 1)+ 12t + 13 and |€|<(10r — 1)(k— 1) by Sub-
claim 1, we have |H|>12¢t+ 13, a contradiction. This completes the proof of
Claim 1. ([
By Claim 1, |[H| > 12¢ + 13. Noting [|H|/12] >t + 2, by Lemma 2, there exists
an independent set I* of order ¢ + 2 in H such that the degree in H of each vertex of
I* is at most 2. We now select an independent set / of order ¢ from /* as follows.
If H is connected, we select any subset / of order ¢. If H is not connected, then each
component has a longest path with endpoints of degree at most 2 in H (or else the
component contains a chorded cycle). If two of these endpoints are in I*, we select
at least two of them, say s; and s;, from different components of H to be in I. Note
that each of s, and s, is not a cut-vertex for its component. If s; and s, (one or both)
are not in /*, then they might have adjacencies in I*. We can remove the at most two
adjacencies of say s; from I*, and place s; in I*. We can do the same for s, if
necessary. Then I* still contains at least # independent vertices with degree at most 2
in H. We select a subset I of order ¢ in I* that contains both s; and s,. Note that
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degy (1) = degg(1) — degy (1)
>3kt —t+1) =2t
=3kt —3t+1
=3tk—1)+1.

Therefore, there exists a cycle C in % such that / sends at least 3¢ + 1 edges to C.
Thus, by Lemma 4, since no vertex of H sends more than four edges to a cycle of %,
we see that the degree sequence D of edges from [ to C is of the form (4,4,4,4,...),
(4,4,4,...), (4,4,3,...,3,2) or (4,3,...,3). Note that if D = (4,4,4,...), then
D = (4,4,4,3,...), that is, D contains at least one 3, or D = (4,4,4,2,2) fort = 5.
Further, since any of these degree sequences contains at least one 4, by Lemma 4 we
see that |C| = 4. In fact, C induces a K4, otherwise, the vertex of degree 4 along
with a triangle in C would produce a K4, contradicting (A3). Let
C = Wi, Wa, W3, Wyq, Wy.

If D has at least two 4’s and at least two 3’s, then it is simple to construct two
vertex-disjoint chorded 4-cycles from C and these vertices of I, as the two vertices
of degree 3 are adjacent to the ends of an edge of C and the two vertices of degree 4
are adjacent to the ends of a different independent edge of C. This produces two
vertex-disjoint chorded cycles, implying G contains k vertex-disjoint chorded
cycles, a contradiction. Thus we have only to consider the two cases where D =
(4,4,4,2,2) and D = (4,3,...,3).

First consider D = (4,4,4,2,2). Let z; be a vertex of / with degree 2 to C and
22,73,24 be the vertices of I with degree 4. Without loss of generality, we may
assume that wy,wy € Nc(z1). Then z;,wa,z2,wy,21 is a cycle with chord wyw,.
Also, z3,ws,24,Ws4,23 1s a second cycle with chord wiwy, implying G contains
k vertex-disjoint chorded cycles, a contradiction.

Next consider D = (4,3,...,3). Let deg-(z0) =4 and deg.(z;) = 3 for each
1 <i<4. First we prove that

H has no component with one vertex of degree 4 5

and at least three vertices of degree 3. )
Suppose not, that is, H has a component H, containing z; for each 0 <i < 3. Since
Hj is connected, there exists a path P from zj to z; for some 1 <i<3. Without loss
of generality, we may assume that i = 1 and P contains neither z; nor z3. Since
dego(z;) =3 for each i€ {2,3}, we may assume that wy,w, € Nc(z;). Then
22, W2,23, W1, 22 is a cycle with chord wyw,. Since deg.(z;) = 3, without loss of
generality, we may assume that ws € N¢(z;). Then P[zo,z1], w3, wa, 20 is a second
cycle with chord zgws3, a contradiction. Thus (5) holds.

Therefore, we assume that H is not connected, that is, comp(H)>2. Let
Hy,Hy, ..., Heomp) be the components of H. Note that it is sufficient to consider the
case where each component of H has at least one vertex contained in the degree
sequence D = (4,3,...,3). Without loss of generality, for each i € {1,2}, we may
assume that s; € V(H;) and deg(s1) > deg(s). Recall, for each i € {1,2}, s; is not
a cut-vertex for H;.
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Case 1 For each i € {1,2}, degq(s;) = 3.

In this case, without loss of generality, we may assume that s; = z; for each
ie{l,2}.

Subcase 1 Suppose comp(H) = 2.

Without loss of generality, we may assume that zo € V(H;). By (5), we may
assume that z4 € V(H,). For each i € {1,2}, since deg.(s;) = 3, we may assume
that wy, wy € N¢(s;). Then C' = s1,wy, 52, w1, 51 is a 4-cycle with chord wywy. Since
deg.(z4) = 3, without loss of generality, we may assume that w3 € N¢(z4). Since
deg(z0) = 4, wq € Nc(z0). Then there exists a path zg, wy, w3, 74 connecting H; and
H,. Replacing C in € by C’, we consider the new H'. Note that H; — s; is connected
for each i € {1,2}. Then comp(H’) < comp(H) — 1. This contradicts (A2).

Subcase 2 Suppose comp(H) > 3.

Subcase 2.1 For some i € {1,2}, z0 € V(H;).

Without loss of generality, we may assume that zo € V(H,), and z4 € V(H3) by
our assumption that each component of H has at least one vertex contained in the
degree sequence D = (4,3,...,3). By the same arguments as Subcase 1, we can
reduce the number of components of H, a contradiction.

Subcase 2.2 For some i € {1,2,...,comp(H)} —{1,2}, z0 € V(H,).

Without loss of generality, we may assume that zo € V(H3). Now consider the
cycle C' as in Subcase 1. If z3 € V(H;) for some i € {1,2,...,comp(H)} — {3},
then we apply the same arguments as Subcase 1. Thus we may assume that
73 € V(H3). Since deg.(z3) = 3, without loss of generality, we may assume that
w3 € Nc(z3). Since Hj is connected, there exists a path P from zy to zz. Then
Plz0, 73], w3, ws, 20 18 a second cycle with chord zows, a contradiction.

Case 2 Suppose deg.(s;) = 4 and deg.(s2) = 3.

In this case, note that s; = zo. Without loss of generality, we may assume that
2 =21-

Subcase 1 Suppose comp(H) = 2.

Subcase 1.1 For some 2<i<4, z; € V(H)).

Without loss of generality, we may assume that z, € V(H;). Since degq(z2) = 3
and deg(s2) = 3, Nc(z2) N Ne(s2) # (0. Without loss of generality, we may assume
that wy € N¢(z2) N Ne(sz). Since deg(sy) =4, C' = 51, wa, w3, wy, sy is a 4-cycle
with chord s;ws. Replacing C in € by C’, we consider the new H'. Note that H; — s,
is connected. Then comp(H’) <comp(H) — 1. This contradicts (A2).

Subcase 1.2 For each 2<i<4, z; € V(H,).

Since deg(s2) = 3, without loss of generality, we may assume that w; € N¢(s2)
for each 1<i<3. If wy € Nc(z;) for some 2 <i<4, then we apply the same
arguments as Subcase 1.1. Thus we may assume that N¢(sy) = Nc(z;) for each
2<i<4.Then C' = 55, wy, wq, w2, s> is a 4-cycle with chord wiw,. Replacing C in
% by C', we consider the new H'. Note that H, —s, is connected. Since
w3 € Nc(s1) NNe(z2), comp(H') <comp(H) — 1. This contradicts (A2).

Subcase 2 Suppose comp(H) > 3.

Without loss of generality, we may assume that z; € V(H3) by our assumption
that each component of H has at least one vertex contained in the degree sequence
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D. By the same arguments as Subcase 1.1, we can reduce the number of components
of H, a contradiction.
This completes the proof of Theorem 5. O

5 Conclusion

We believe that Lemma 2 may be improved to guarantee a larger independent set of
low-degree vertices in every non-chorded connected graph. In particular, we
conjecture the following.

Conjecture 1 If H is a non-chorded connected graph of order n, then H contains an
independent set I of order at least n/6 with each vertex of I having degree at most 2
in H.

This 1/6 proportion of vertices would be best possible, as we demonstrate with
two examples G and Gy.

First, define the graph H with 6 vertices to be the graph containing a 5-cycle
X1,%2,X3,X4,Xs5,x; and where the sixth vertex xg is adjacent to x, and xs5. To form
G,, take k copies of H called H',H?,...,H*. Let x’l € V(H’) with 1 <i<6 and
1 <j <k, and let xéx’;“ € E(G,) foreach 1 <j <k — 1. Aside from H' and H*, each
copy of H has exactly two vertices of degree 2, and only one of these can be
included in the independent set 1. Each of H' and H* have two independent vertices
of degree 2, so |I| =n/6+ 2.

Second, construct G, by starting with a triangle, and for each of its vertices,
connect it by an edge to a new triangle. Then for each vertex of degree 2 in this
graph, connect it by an edge to a new triangle. Repeat this process k times. In G,
every vertex of degree 2 is adjacent to another vertex of degree 2, so only one of
each pair can be in /. By adding a triangle adjacent to each vertex of degree 2 in the
pair, we can increase the size of / by 1, and we have added 6 vertices. That means
the limit

1
lim = =
kggc 6’

||
n
so no larger proportion than 1/6 of the vertices of G, can be in /.

We also note the following easy-to-prove facts about graphs with no chorded
cycles. We did not use these facts in our proof of Theorem 5 but they may be of

interest to the reader.

Fact 1 If G is a graph of order n with no chorded cycles, then there exists an
ordering of the vertices of G such that each vertex has at most two neighbors
preceding it in this ordering. Further G is a tripartite graph.

Fact 2 If G is a graph of order n containing no chorded cycles, then
|E(G)|<2n —4.
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