Chorded Cycles

Ron Gould Emory University

Supported by the Heilbrun Distinguished Emeritus Fellowship

March 17, 2021

< 17 > <

Many types of cycle problems have been studied.

- Hamiltonian (spanning) cycles
- Existence of long cycles
- Pancyclic graphs
- Vertex disjoint cycles
- Cycles containing certain elements

One property that was greatly ignored

Question Posa, 1960

What conditions imply a graph contains a cycle with a chord?

Here a **chord** is an edge between two vertices on the cycle that is not an edge of the cycle.

One property that was greatly ignored

Question Posa, 1960

What conditions imply a graph contains a cycle with a chord?

Here a **chord** is an edge between two vertices on the cycle that is not an edge of the cycle.

Theorem

If G has minimum degree $\delta(G) \ge 3$, then G contains a chorded cycle.

< A ≥ < B

First answer by J. Czipzer, 1963

Theorem

If G has minimum degree $\delta(G) \ge 3$, then G contains a chorded cycle.

longest path in G

First answer by J. Czipzer, 1963

Theorem

If G has minimum degree $\delta(G) \ge 3$, then G contains a chorded cycle.

longest path in G

Minimum degree 2 is not enough! Simply take any cycle.

For $k \ge 2$ let

$$\sigma_k(G) = \min\{\deg x_1 + \ldots + \deg x_k\}$$

Image: A matched block of the second seco

where this minimum is taken over all sets of k independent vertices.

Everyone jumped on chorded cycle problems (45 years later)

Theorem (Finkel, 2008)

If G is a graph on $n \ge 4k$ vertices with minimum degree $\delta(G) \ge 3k$, then G contains at least k vertex disjoint chorded cycles.

Everyone jumped on chorded cycle problems (45 years later)

Theorem (Finkel, 2008)

If G is a graph on $n \ge 4k$ vertices with minimum degree $\delta(G) \ge 3k$, then G contains at least k vertex disjoint chorded cycles.

Theorem (Corradi and Hajnal, 1963)

Let G be a graph of order $n \ge 3k$ with minimum degree $\delta(G) \ge 2k$, then G contains k vertex disjoint cycles.

イロト イヨト イヨト イヨト

Everyone jumped on chorded cycle problems (45 years later)

Theorem (Finkel, 2008)

If G is a graph on $n \ge 4k$ vertices with minimum degree $\delta(G) \ge 3k$, then G contains at least k vertex disjoint chorded cycles.

$\delta(G) \geq 3$ implies chorded cycle.

Theorem (Corradi and Hajnal, 1963)

Let G be a graph of order $n \ge 3k$ with minimum degree $\delta(G) \ge 2k$, then G contains k vertex disjoint cycles.

・ロト ・回ト ・ヨト

$\delta(G) \geq 2$ implies cycle.

Sharpness

Clearly, $n \ge 4k$ is needed as each of the k cycles need at least 4 vertices to have a chord.

For $n \ge 6k$, the graph $K_{3k-1,n-3k+1}$ has $\delta = 3k - 1$ and no collection of k vertex disjoint chorded cycles exists, as chorded cycles here require 3 vertices from each partite set.

Let f(n)(g(n)) be the minimum number of edges in a graph of order *n* that ensures the graph contains two vertex disjoint cycles, at least one (both) of them chorded.

Theorem

For
$$n \ge 10$$
, $f(n) = 4n - 5$ and for $n \ge 12$, $g(n) = 5n - 24$.

It remains open to determine the minimum number of edges in a graph on *n* vertices ensuring $k \ge 3$ vertex disjoint chorded cycles.

Chiba, Fujita and Gao, 2010

Answering a conjecture of Bialostocki, Finkel and Gyarfas

Theorem

Let r and s be integers with $r + s \ge 1$. Let G be a graph of order at least 3r + 4s. If

$$\sigma_2(G) \geq 4r + 6s - 1,$$

then G contains a collection of r + s vertex disjoint cycles, such that s of them are chorded.

Sharpness example

・ロト ・回ト ・ヨト ・ヨト

æ

Chiba, Fujita, Gao, Li, 2010 and Gao and Guojun - 2012

Theorem

Let k be a positive integer and G a graph of order $n \ge 4k$ with $\sigma_2(G) \ge 6k - 1$. Then G contains k vertex disjoint chorded cycles.

Theorem with K. Hirohata, A. Keller Rorabaugh, 2020

Let $k \ge 1$ be an integer. If G is a graph of order at least 8k + 5 and

 $\sigma_3(G) \geq 9k-2,$

then G contains k vertex-disjoint chorded cycles.

. . .

 $\delta \geq 3k - 0$ implies k disjoint chorded cycles. $\sigma_2 \geq 6k - 1$ $\sigma_3 \geq 9k - 2$ $\sigma_4 \geq 12k - 3$

Ron Gould Emory University Supported by the Heilbrun Disting Chorded Cycles

イロン イヨン イヨン イヨン

臣

Theorem with B. Elliott and K. Hirohata, 2020

For $k \ge 2$ and $t \ge 1$, if G is a graph of order $n \ge 8k^2 - 9k + 12t + 1$ with

$$\sigma_t(G) \geq 3kt - t + 1,$$

then G contains k vertex-disjoint chorded cycles. Further, this degree condition is sharp.

Theorem

If G is a graph with at least 4k vertices and minimum degree at least $\lceil \frac{7k}{2} \rceil$, then G contains k vertex disjoint cycles, each with at least 2 chords.

Call such cycles *doubly chorded cycles*.

with Horn and Hirohata, 2015

Theorem

If G is a graph of order $n \ge 6k$ with $\sigma_2(G) \ge 6k - 1$, then G contains k vertex disjoint **doubly chorded cycles**.

In 1971, Bondy noted a relation between the conditions of a number of edge density results on hamiltonian graphs and those of pancyclic graphs.

Meta-Conjecture

Almost any nontrivial condition on a graph which implies that the graph is Hamiltonian also implies that the graph is pancyclic. There may be some simple family of exceptional graphs.

Theorem (Ore, 1962)

If G is a graph of order $n \ge 3$ with $\sigma_2(G) \ge n$, then G is hamiltonian.

Theorem (Bondy, 1971)

If G is a graph of order $n \ge 3$ with $\sigma_2(G) \ge n$, then G is pancyclic or $G = K_{n/2,n/2}$.

< ロ > < 回 > < 回 > < 回 > <</p>

크

Meta-Conjecture (Cream, RG, Hirohata, 2017)

Almost any condition that implies a graph is hamiltonian, also implies it is chorded pancyclic (contains chorded cycles of lengths 4 to |V(G)|). There may be some simple families of exceptional graphs or some small order exceptional graphs.

Theorem

If G is a graph of order $n \ge 4$ with $\sigma_2(G) \ge n$, then G is chorded pancyclic or $G = K_{n/2,n/2}$, or $G = G_6 = K_3 \square K_2$.

< A > < B

Cream, RG, Hirohata, 2017

Theorem

If G is a graph of order $n \ge 4$ with $\sigma_2(G) \ge n$, then G is chorded pancyclic or $G = K_{n/2,n/2}$, or $G = G_6 = K_3 \square K_2$.

The graph $2K_{\frac{n-1}{2}} + K_1$ shows the degree conditon is sharp, as this graph is not hamiltonian.

Note that the graph obtained by adding one edge to either partite set of $K_{n/2,n/2}$ is chorded pancyclic, but not doubly chorded pancyclic as no 4-cycle contains 2 chords.

Theorem (Bondy, 1971)

Every hamiltonian graph G of order n with at least $\frac{n^2}{4}$ edges is pancyclic unless n is even and $G = K_{n/2,n/2}$. In particular, if $E(G)| > \frac{n^2}{4}$, then G is pancyclic.

Theorem Chen, RG, Gu, Saito, 2018

Let G be a graph of order n with $|E(G)| \ge \frac{n^2}{4}$, and let k be a positive integer. If G contains a k-cycle, then it contains a chorded k-cycle, unless k = 4 and G is either $K_{n/2,n/2}$ or $G = K_3 \square K_2$.

Extending Bondy's Theorem, we get the following.

Corollary

A hamiltonian graph of order $n \ge 4$ with $|E(G)| \ge \frac{n^2}{4}$ is chorded pancyclic, unless $G = K_{n/2,n/2}$ or $G = K_3 \square K_2$.

・ロト ・同ト ・ヨト ・ヨ

Bipartite setting - Gao, Lin, Wang, 2019

Theorem

Let k be a positive integer. Let $G = (V_1, V_2, E)$ be a bipartute graph with $|V_1| = |V_2| \ge 3k$. If $\delta(G) \ge 2k + 1$, then G contains k vertex-disjoint doubly chorded cycles.

イロト イポト イヨト イヨト

Theorem with Brandt, Chen, Faudree, and Lesniak, 1997

Let k be a positive integer and let G be a graph of order $n \ge 4k$. If

 $\sigma_2(G) \geq n,$

then G has a 2-factor with exactly k vertex disjoint cycles.

Theorem (Chiba, Jiang, Yan, 2019)

For positive integers k and c, there exists an integer f(k, c)such that if G is a graph of order $n \ge f(k, c)$ and $\sigma_2(G) \ge n$, then G can be partitioned into k vertex-disjoint cycles, each of which has at least c chords.

イロト イヨト イヨト イヨト

臣

For nonadjacent vertices x, y let $N(x, y) = N(x) \cup N(y)$.

Theorem RG, Hirohata, Horn, 2010

If G is a graph on $n \ge 4k$ vertices such that for any pair of non-adjacent vertices x, y,

$$|N(x,y)| \geq 4k+1,$$

then H contains at least k vertex disjoint chorded cycles.

Conjecture

Let G be a graph of sufficiently large order n. Then if

 $|N(u,v)| \geq 4k+1$

< A ≥ < B

G contains k vertex disjoint doubly chorded cycles.

Question

When can we have many chorded cycles of the same length?

Image: A mathematical states and a mathem

臣
with Chen, Hirohata, Ota and Song, 2015

Theorem

Let k be a natural number. Then there exists a positive integer n_k such that if G is a graph with $\delta(G) \ge 3k + 8$ and order at least n_k , then G contains k vertex disjoint chorded cycles of the same length.

Theorem

Let G be a multigraph of order n and minimum degree at least 5. Then G contains a chorded cycle of length at most $c_0 \log_2 n$, where $30 \le c_0 \le 300$ is a constant.

Specifing certain edges to be chords

Question

When can we make an independent set of k edges the chords of k vertex disjoint cycles?

with M. Cream, R. Faudree, K. Hirohata, 2016

Question

Can we make an independent set of k edges chords of k vertex disjoint cycles?

Theorem

Let $k \ge 1$ be an integer and G be a graph of order $n \ge 14k$. If $\sigma_2(G) \ge n + 3k - 2$, then for any k independent edges e_1, e_2, \ldots, e_k of G, the graph G contains k vertex disjoint cycles C_1, C_2, \ldots, C_k such that e_i is a chord of C_i for all $1 \le i \le k$. Furthermore, $4 \le |V(C_i)| \le 5$ for each i.

Question- Placing vertices (or edges) on chorded cycles

Question

When can we distribute k vertices on k disjoint chorded cycles?

Theorem with Cream, Faudree and Hirohata, 2016

Let $k \ge 1$ be an integer and let G be a graph of order $n \ge 16k - 12$. If $\delta(G) \ge n/2$ then for any set of k vertices $\{v_1, v_2, \ldots, v_k\}$ there exists a collection of k vertex disjoint chorded cycles $\{C_1, \ldots, C_k\}$ such that $v_i \in V(C_i)$ and $|V(C_i)| \le 6$ for each $i = 1, 2, \ldots, k$.

< (17) > < (17) > (17)

Theorem [with Cream, Faudree and Hirohata, 2016]

Let G be a graph of order $n \ge 18k - 2$ and let e_1, e_2, \ldots, e_k be a set of k independent edges in G. If

$$\delta(G) \geq \frac{n+2k-2}{2}$$

then there exists a system of k chorded cycles C_1, \ldots, C_k such that $e_i \in E(C_i)$ and $|V(C_i)| \le 6$ for each $i = 1, 2, \ldots, k$.

With Cream, Faudree and Hirohata, 2016.

As a Corollary to the proof we obtain the fact the edges

 e_1, e_2, \ldots, e_k

can be a mix of either chords or edges of the cycles (again one edge per cycle).

Further, we can show that the cycle system can also be extended to span V(G).

Theorem with Cream, Faudree and Hirohata, 2016

Let G be a graph of order $n \ge 22k - 2$ and let e_1, \ldots, e_k be k independent edges in G. Then if

$$\delta(G) \geq \frac{n+2k-2}{2}$$

then there exists a system of k vertex disjoint doubly chorded cycles C_i, \ldots, C_k such that $e_i \in E(C_i)$ and $|V(C_i)| \le 6$ for each $i = 1, 2, \ldots, k$.

Corollary

The above system can be extended to span V(G).

Fact

Given independent path $P_{r_1}, P_{r_2}, \ldots, P_{r_k}$ with each $r_i \ge 2$ let $r = \sum r_i$. Then the number of interior vertices in this path system is r - 2k.

< ロ > < 同 > < 三 > < 三 >

Theorem Cream, RG, Faudree, Hirohata, 2016

For an integer $k \ge 1$, let G be a graph of order $n \ge 16k + r - 3$ with

$$\delta(G) \geq \frac{n}{2} + r - k - 1,$$

and let P_1, \ldots, P_k be any k independent paths in G. Then there exist k disjoint doubly chorded cycles D_1, \ldots, D_k such that D_i contains P_i as a path along the cycle and $r_i + 2 \le |V(D_i)| \le r_i + 4$ for all $1 \le i \le k$.

Forbidden Subgraphs = Forbidden Induced Subgraphs

< A > < B > <

Forbidden Subraphs and Pancyclic Graphs

Theorem with Faudree, 1997

Let *R* and *S* be connected graphs $(R, S \neq P_3)$ and let *G* $(G \neq C_n)$ be a 2-connected graph of order $n \ge 10$. Then *G* is $\{R, S\}$ -free implies *G* is pancyclic if, and only if, $R = K_{1,3}$ and *S* is one of P_4, P_5, P_6, Z_1 or Z_2 .

Let G be a 2-connected graph of order $n \ge 10$. If G is $\{K_{1,3}, Z_2\}$ -free, then $G = C_n$ or G is chorded pancyclic.

Let G be a 2-connected graph of order $n \ge 5$. If G is $\{K_{1,3}, P_4\}$ -free, then G is chorded pancyclic.

< (17) > < (17) > >

Let G be a 2-connected graph of order $n \ge 8$. If G is $\{K_{1,3}, P_5\}$ -free, then G is chorded pancyclic.

< (17) > < (17) > >

Let G be a 2-connected graph of order $n \ge 13$. If G is $\{K_{1,3}, P_6\}$ -free, then G is chorded pancyclic.

Theorem (Hendry, 1990)

If G is a graph of order $n \ge 3$ with $\delta(G) \ge \frac{n+1}{2}$, then G is vertex pancyclic (ie. each vertex appears on a cycle of each length from 3 to n).

Theorem Cream, RG, Hirohata, 2019

If G is a graph of order $n \ge 4$ with $\delta(G) \ge \frac{n+1}{2}$, then G is chorded vertex pancyclic (ie. each vertex appears on a chorded cycle of each length from 3 to n).

Theorem Cream, RG, Hirohata, 2019

Let G be a graph of order $n \ge 5$ with $\delta(G) \ge \frac{n}{2}$. Then for $k \ge 5$ and any $x \in V(G)$, there is a doubly chorded k-cycle in G containing x. (ie. chorded 5-pancyclic).

Theorem (Randerath, et al., 2002)

If G is a graph of order $n \ge 4$ with $\sigma_2(G) \ge n+1$, then G vertex 4-pancyclic.

Theorem Cream, RG, Hirohata, 2019

If G is a graph of order $n \ge 4$ with $\sigma_2 \ge n+1$, then G is chorded vertex 5-pancyclic.

Theorem (Randerath et al. 2002)

Let G be a graph of order $n \ge 3$ with $\sigma_2(G) \ge \lceil \frac{4n}{3} \rceil - 1$, then G is vertex pancyclic.

Theorem Cream, RG, Hirohata, 2019

Let G be a graph of order $n \ge 8$ with $\sigma_2(G) \ge \lceil \frac{4n}{3} \rceil - 1$, then G is chorded vertex pancyclic.

Question

How many chords should we expect or hope to find?

< A ≥ < B

Cycles with many chords?

A special case: Cliques

< 17 > <

 K_5 : 4-regular but with 5 chords

In general:

Given a K_{k+1} : It is k-regular with

$$f(k)=\frac{(k-2)(k+1)}{2}$$

A 🕨 🕨 🖌 🗐

chords. We think of f(k) chorded cycles as "loose" K_{k+1} cliques.

Note: There are no single chorded cliques.

Theorem (Ali, Staton - 1999) If $\delta(G) = k$, then G contains a $\left\lceil \frac{k(k-2)}{2} \right\rceil - chorded \ cycle.$

<ロ> (四) (四) (三) (三) (三)

Note: There are no single chorded cliques.

Theorem (Ali, Staton - 1999)

If $\delta(G) = k$, then G contains a

$$\left\lceil \frac{k(k-2)}{2} \right\rceil$$
 – chorded cycle.

Corollary

If $\delta(G) \ge 3$, then G contains a doubly chorded cycle - that is, a loose K_4 .

(日)、<回)、<三)、</p>

Theorem

If $\delta(G) = k$, then G contains an

$$f(k) = rac{(k+1)(k-2)}{2}$$
 - chorded cycle.

・ロト ・回ト ・ヨト

Theorem

If $\delta(G) = k$, then G contains an $f(k) = \frac{(k+1)(k-2)}{2}$ - chorded cycle. longest path in G

Theorem

If $\delta(G) = k$, then G contains an $f(k) = \frac{(k+1)(k-2)}{2}$ - chorded cycle.

イロト イヨト イヨト イヨト

longest path in G

Theorem

If $\delta(G) = k$, then G contains an $f(k) = \frac{(k+1)(k-2)}{2}$ – chorded cycle.

ヘロマ ヘロマ ヘロマ

longest path in G

Lower End: $\delta(G) \ge k$ implies an $f(k) = \frac{(k-1)(k+2)}{2}$ -chorded cycle.

Upper End:

Theorem (Hajnal and Szemerédi, 1970)

If $\delta(G) \ge kt$, |G| = (k + 1)t, then G can be covered by t vertex disjoint K_{k+1} 's.

< /i>
</i>

RG, P. Horn and C. Magnant, 2014

Conjecture

If $\delta(G) \ge kt$, and $|G| \ge (k+1)t$ then G contains t

$$f(k) = \frac{(k+1)(k-2)}{2}$$
 – disjoint chorded cycles.

イロト イヨト イヨト イヨト

RG, P. Horn and C. Magnant, 2014

Conjecture If $\delta(G) \ge kt$, and $|G| \ge (k+1)t$ then G contains t $f(k) = \frac{(k+1)(k-2)}{2}$ – disjoint chorded cycles.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Tight End: Hajnal-Szemerédi Theorem.

Conjecture

If
$$\delta(G) \ge kt$$
, and $|G| \ge (k+1)t$ then G contains t
$$f(k) = \frac{(k+1)(k-2)}{2} - \text{disjoint chorded cycles.}$$

Tight End: Hajnal-Szemerédi Theorem. If t = 1, this is our first Theorem.

RG, P. Horn and C. Magnant, 2014

Conjecture

If
$$\delta(G) \ge kt$$
, and $|G| \ge (k+1)t$ then G contains t
$$f(k) = \frac{(k+1)(k-2)}{2} - \text{disjoint chorded cycles.}$$

Tight End: Hajnal-Szemerédi Theorem. If t = 1, this is our first Theorem. We show it is true for some classes of graphs, and for graphs with some extra "room".

RG, P. Horn, C. Magnant 2014

Theorem

There exist k_0 , t_0 such that if $\delta(G) \ge kt$, where $k \ge k_0$, $t \ge t_0$ and $n \ge n_0(k, t)$, then G contains t disjoint cycles with at least

$$f(k)=\frac{(k+1)(k-2)}{2}$$

< A ≥ < B

chords.

RG, P. Horn, C. Magnant 2014

Theorem

There exist k_0 , t_0 such that if $\delta(G) \ge kt$, where $k \ge k_0$, $t \ge t_0$ and $n \ge n_0(k, t)$, then G contains t disjoint cycles with at least

$$f(k)=\frac{(k+1)(k-2)}{2}$$

chords.

• Bounds for k_0 and t_0 show a tradeoff.
RG, P. Horn, C. Magnant 2014

Theorem

There exist k_0 , t_0 such that if $\delta(G) \ge kt$, where $k \ge k_0$, $t \ge t_0$ and $n \ge n_0(k, t)$, then G contains t disjoint cycles with at least

$$f(k)=\frac{(k+1)(k-2)}{2}$$

chords.

- Bounds for k_0 and t_0 show a tradeoff.
- Bounds for *n*⁰ quite large.

Theorem

Let
$$d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil$$

- If G has average degree at least 2d, then G contains a $f(k) = \frac{(k+1)(k-2)}{2}$ -chorded cycle.
- There exist graphs with average degree 2d o(1) with no f(k)-chorded cycle.

< A ≥ < B

Theorem

Let
$$d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil$$

- If G has average degree at least 2d, then G contains a $f(k) = \frac{(k+1)(k-2)}{2}$ -chorded cycle.
- There exist graphs with average degree 2d o(1) with no f(k)-chorded cycle.

A (1) > (1)

Theorem

Let
$$d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil$$

- If G has average degree at least 2d, then G contains a $f(k) = \frac{(k+1)(k-2)}{2}$ -chorded cycle.
- There exist graphs with average degree 2d o(1) with no f(k)-chorded cycle.

< A > < 3

• Sharpness: Bipartite graph $K_{d,n}$.

Theorem

Let
$$d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil$$

- If G has average degree at least 2d, then G contains a $f(k) = \frac{(k+1)(k-2)}{2}$ -chorded cycle.
- There exist graphs with average degree 2d o(1) with no f(k)-chorded cycle.
- Sharpness: Bipartite graph $K_{d,n}$.
- k = 2, 3, 4: Trivial induction removing vertex of lowest degree if < δ.

Theorem

Let
$$d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil$$

- If G has average degree at least 2d, then G contains a $f(k) = \frac{(k+1)(k-2)}{2}$ -chorded cycle.
- There exist graphs with average degree 2d o(1) with no f(k)-chorded cycle.
- Sharpness: Bipartite graph $K_{d,n}$.
- k = 2, 3, 4: Trivial induction removing vertex of lowest degree if < δ.

• $k \ge 5$ much tougher induction.