Spanning bipartite graphs with high degree sum in graphs

Guantao Chen ${ }^{\text {a }}$, Shuya Chiba ${ }^{\text {b }}$, Ronald J. Gould ${ }^{\text {c }}$, Xiaofeng Gu ${ }^{\text {d }}$, Akira Saito ${ }^{\text {e,*, }}$ Masao Tsugaki, Tomoki Yamashita ${ }^{\text {f }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, United States of America
${ }^{\mathrm{b}}$ Applied Mathematics, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
${ }^{\text {c }}$ Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, United States of America
${ }^{\mathrm{d}}$ Department of Mathematics, University of West Georgia, Carrollton, GA 30118, United States of America
${ }^{\mathrm{e}}$ Department of Information Science, Nihon University, Sakurajosui 3-25-40, Setagaya-Ku, Tokyo 156-8550, Japan
${ }^{\mathrm{f}}$ Department of Science, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan

ARTICLE INFO

Article history:

Received 14 April 2018
Received in revised form 31 August 2019
Accepted 5 September 2019
Available online xxxx

Keywords:

Hamiltonian cycle
Ore's Theorem
Bipartite graph

Abstract

The classical Ore's Theorem states that every graph G of order $n \geq 3$ with $\sigma_{2}(G) \geq n$ is hamiltonian, where $\sigma_{2}(G)=\min \left\{d_{G}(x)+d_{G}(y): x, y \in V(G), x \neq y, x y \notin E(G)\right\}$. Recently, Ferrara, Jacobson and Powell (Discrete Math. 312 (2012), 459-461) extended the Moon-Moser Theorem and characterized the non-hamiltonian balanced bipartite graphs H of order $2 n \geq 4$ with partite sets X and Y satisfying $\sigma_{1,1}(H) \geq n$, where $\sigma_{1,1}(H)=\min \left\{d_{H}(x)+d_{H}(y): x \in X, y \in Y, x y \notin E(H)\right\}$. Though the latter result apparently deals with a narrower class of graphs, we prove in this paper that it implies Ore's Theorem for graphs of even order.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we only consider finite simple graphs. For standard graph-theoretic notation and terminology not explained in this paper, we refer the reader to [1]. For $v \in V(G)$, let $N_{G}(v)$ and $d_{G}(v)$ denote the neighborhood and the degree of v in G, respectively. If H is a subgraph of G, we write $H \subseteq G$. For a graph G and $X \subseteq V(G)$, we denote by $G[X]$ the subgraph of G induced by X.

Let X and Y be disjoint sets of vertices in G. Then let $E_{G}(X, Y)$ denote the set of edges $e=x y$ with $x \in X$ and $y \in Y$, and let $e_{G}(X, Y)=\left|E_{G}(X, Y)\right|$. Furthermore, $G[X, Y]$ is the graph defined by $V(G[X, Y])=X \cup Y$ and $E(G[X, Y])=E_{G}(X, Y)$. Note that $G[X, Y]$ is a bipartite graph with partite sets X and Y.

When no confusion results, we often identify a singleton set with its element. For example, if $x \in V(G)$, we write $e_{G}(x, Y)$ instead of $e_{G}(\{x\}, Y)$. If, in addition, $Y=\{y\}$, we write $e_{G}(x, y)$ instead of $e_{G}(\{x\},\{y\})$. Note that the value of $e_{G}(x, y)$ is either 0 or 1 since we only consider simple graphs.

Degree sum is a topic which has been studied actively in the theory of hamiltonicity. It deals with the minimum sum of degrees of vertices in certain independent sets and relates with hamiltonian properties of graphs. One of the most well-known results in this topic is Ore's Theorem. For a non-complete graph G, we define $\sigma_{2}(G)$ by

$$
\sigma_{2}(G)=\min \left\{d_{G}(x)+d_{G}(y): x, y \in V(G), x \neq y, x y \notin E(G)\right\}
$$

If G is a complete graph, we define $\sigma_{2}(G)=+\infty$.

[^0]

Fig. 1. Graphs of type 1 and type 2.

Theorem A (Ore's Theorem [4]). For $n \geq 3$, every graph G of order n with $\sigma_{2}(G) \geq n$ is hamiltonian.
Moon and Moser [3] investigated a degree sum condition for hamiltonicity in bipartite graphs. A bipartite graph is said to be balanced if its partite sets have the same order. Trivially, a bipartite graph contains a hamiltonian cycle only if it is balanced. Also, according to the spirit of Ore's Theorem, it may not be appropriate to incorporate the degree sum of vertices chosen from the same partite set. Actually, Moon and Moser only considered the degree sum of pairs of vertices taken from different partite sets. Let G be a bipartite graph with partite sets X and Y. If G is not a complete bipartite graph, we define $\sigma_{1,1}(G)$ by

$$
\sigma_{1,1}(G)=\min \left\{d_{G}(x)+d_{G}(y): x \in X, y \in Y, x y \notin E(G)\right\}
$$

If G is a complete bipartite graph, we define $\sigma_{1,1}(G)=+\infty$.
Theorem B (Moon and Moser [3]). For $n \geq 2$, every balanced bipartite graph G of order $2 n$ with $\sigma_{1,1}(G) \geq n+1$ is hamiltonian.
Observing Theorems A and B, we may want to relax the condition $\sigma_{1,1}(G) \geq n+1$ in Theorem B to $\sigma_{1,1}(G) \geq n$. However, we cannot do it without allowing exceptions. Let n and t be integers with $n \geq 2$ and $1 \leq t \leq n-1$. Then following [2], we define $H_{t, n-t}$ to be the graph formed from $K_{t, t} \cup K_{n-t, n-t}$ by selecting one partite set of each complete bipartite graph and adding all possible edges between these sets. Then every graph G with $K_{t, t} \cup K_{n-t, n-t} \subseteq G \subseteq H_{t, n-t}$ is a bipartite graph of order $2 n$ and satisfies $\sigma_{1,1}(G)=n$, but it is not hamiltonian. Also, let G_{1} and G_{2} be the graphs depicted in Fig. 1. Then $G_{i}(i=1,2)$ is a bipartite graph of order 8 and satisfies $\sigma_{1,1}\left(G_{i}\right)=4$, but it is not hamiltonian.

The above graphs arise as counterexamples if we relax the degree sum condition $\sigma_{1,1}(G) \geq n+1$ to $\sigma_{1,1}(G) \geq n$. However, Ferrara, Jacobson and Powell [2] proved that these are the only exceptions.

Theorem C ([2]). Let n be an integer with $n \geq 2$ and let G be a balanced bipartite graph of order $2 n$ with $\sigma_{1,1}(G) \geq n$. Then one of the following holds.
(1) G is hamiltonian.
(2) $K_{t, t} \cup K_{n-t, n-t} \subseteq G \subseteq H_{t, n-t}$ for some integer t with $1 \leq t \leq n-1$.
(3) G is isomorphic to G_{1} or G_{2}.

In this paper, we study the relationship between Ore's Theorem and Theorem C. Theorem C only deals with bipartite graphs, while Ore's Theorem handles both bipartite and non-bipartite graphs. Apparently, Ore's Theorem concerns a broader class of graphs. However, we prove that Theorem C implies Ore's Theorem. If a graph G of order $2 n$ satisfies $K_{t, t} \cup K_{n-t, n-t} \subseteq G \subseteq H_{t, n-t}$ for some t with $1 \leq t \leq n-1$, we call G a graph of type 1 . Also, we say that a graph G is of type 2 if G is isomorphic to either G_{1} or G_{2}. See Fig. 1, where the symbol ' + ' means that every vertex on the left is joined to every vertex on the right by an edge, while ' \oplus ' means that there may exist an edge joining a vertex on the left and a vertex on the right.

Theorem 1. Let n be an integer with $n \geq 2$ and let G be a graph of order $2 n$. If $\sigma_{2}(G) \geq 2 n$, then G contains a spanning balanced bipartite graph H such that
(1) $\sigma_{1,1}(H) \geq n$, and
(2) H is of neither type 1 nor type 2.

For a graph of even order satisfying Ore's condition, Theorem 1 gives more detailed information than the existence of a hamiltonian cycle.

In the next section, we give a proof to Theorem 1. In Section 3, we give concluding remarks.

2. Proof of Theorem 1

In the subsequent arguments, we frequently use the following observations. The proof is an easy calculation and we omit it.

Lemma 2. Let G be a graph and let X and Y be disjoint nonempty subsets of $V(G)$. Let $x \in X$ and $y \in Y$. Then
(1) $e_{G}(X \backslash\{x\}, Y \cup\{x\})=e_{G}(X, Y)-e_{G}(x, Y)+e_{G}(x, X \backslash\{x\})$ and
(2) $e_{G}((X \backslash\{x\}) \cup\{y\},(Y \backslash\{y\}) \cup\{x\})=e_{G}(X, Y)-e_{G}(x, Y)-e_{G}(y, X)+e_{G}(x, X \backslash\{x\})+e_{G}(y, Y \backslash\{y\})+2 e_{G}(x, y)$.

A partition $\{X, Y\}$ of the vertex set $V(G)$ of a graph G of even order is said to be balanced if $|X|=|Y|=\frac{1}{2}|V(G)|$. A balanced partition $\{X, Y\}$ is said to be a maximal partition of G if $e_{G}\left(X^{\prime}, Y^{\prime}\right) \leq e_{G}(X, Y)$ holds for every balanced partition $\left\{X^{\prime}, Y^{\prime}\right\}$ of $V(G)$. The next lemma acts as a basis of our proof.

Lemma 3. Let G be a graph of even order. Then $\sigma_{1,1}(G[X, Y]) \geq \frac{1}{2} \sigma_{2}(G)$ holds for every maximal partition $\{X, Y\}$ of G.
Proof. Let $\{X, Y\}$ be a maximal partition of G, and let $H=G[X, Y]$. Since there is nothing to prove if H is a complete bipartite graph, we assume that H is not a complete bipartite graph. Let $x \in X$ and $y \in Y$ with $x y \notin E(H)$ and $d_{H}(x)+d_{H}(y)=\sigma_{1,1}(H)$. Note $d_{H}(x)=e_{G}(x, Y)$ and $d_{H}(y)=e_{G}(y, X)$.

Let $X^{\prime}=(X \backslash\{x\}) \cup\{y\}$ and $Y^{\prime}=(Y \backslash\{y\}) \cup\{x\}$. By Lemma 2 (2),

$$
e_{G}\left(X^{\prime}, Y^{\prime}\right)=e_{G}(X, Y)+e_{G}(x, X \backslash\{x\})+e_{G}(y, Y \backslash\{y\})-e_{G}(x, Y)-e_{G}(y, X)
$$

Since $d_{G}(x)=e_{G}(x, X \backslash\{x\})+e_{G}(x, Y)=e_{G}(x, X \backslash\{x\})+d_{H}(x)$ and $d_{G}(y)=e_{G}(y, Y \backslash\{y\})+e_{G}(y, X)=e_{G}(y, Y \backslash\{y\})+d_{H}(y)$, it follows that $e_{G}\left(X^{\prime}, Y^{\prime}\right)-e_{G}(X, Y)=d_{G}(x)+d_{G}(y)-2\left(d_{H}(x)+d_{H}(y)\right)$. Moreover, since $\{X, Y\}$ is a maximal partition of G, we have $e_{G}\left(X^{\prime}, Y^{\prime}\right) \leq e_{G}(X, Y)$. Therefore, $d_{G}(x)+d_{G}(y)-2\left(d_{H}(x)+d_{H}(y)\right) \leq 0$, which yields

$$
2 \sigma_{1,1}(H)=2\left(d_{H}(x)+d_{H}(y)\right) \geq d_{G}(x)+d_{G}(y) \geq \sigma_{2}(G)
$$

By Lemma 3, if G is a graph of order $2 n$ with $\sigma_{2}(G) \geq 2 n$, then $\sigma_{1,1}(G[X, Y]) \geq n$ holds for every maximal partition $\{X, Y\}$ of G.

In the proof of Theorem 1, we will find a required graph as $G[X, Y]$ for some balanced partition $\{X, Y\}$. The next lemma says that when we deal with maximal partitions in the proof, a graph of type 2 does not arise.

Lemma 4. Let G be a graph of order 8 with $\sigma_{2}(G) \geq 8$. Then $G[X, Y]$ is not a graph of type 2 for any maximal partition $\{X, Y\}$ of G.

Proof. Assume $G[X, Y]$ is a graph of type 2 for some maximal partition $\{X, Y\}$ of G. Let $H=G[X, Y]$. Label the vertices of H as in G_{1} in Fig. 1, where possibly the edge $x_{4} y_{4}$ exists as in G_{2}. We may assume $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$.

Claim. For each pair of distinct indices i and j with $\{i, j\} \subseteq\{1,2,3\}, e_{G}\left(x_{i}, X \backslash\left\{x_{i}\right\}\right)+e_{G}\left(y_{j}, Y \backslash\left\{y_{j}\right\}\right)=4$.
Proof. Note $x_{i} y_{j} \notin E(G)$ and $e_{G}\left(x_{i}, Y\right)=e_{G}\left(y_{j}, X\right)=2$. Let $X^{\prime}=\left(X \backslash\left\{x_{i}\right\}\right) \cup\left\{y_{j}\right\}$ and $Y^{\prime}=\left(Y \backslash\left\{y_{j}\right\}\right) \cup\left\{x_{i}\right\}$. By Lemma 2 (2),

$$
\begin{aligned}
e_{G}\left(X^{\prime}, Y^{\prime}\right) & =e_{G}(X, Y)-e_{G}\left(x_{i}, Y\right)-e_{G}\left(y_{j}, X\right)+e_{G}\left(x_{i}, X \backslash\left\{x_{i}\right\}\right)+e_{G}\left(y_{j}, Y \backslash\left\{y_{j}\right\}\right) \\
& =e_{G}(X, Y)+e_{G}\left(x_{i}, X \backslash\left\{x_{i}\right\}\right)+e_{G}\left(y_{j}, Y \backslash\left\{y_{j}\right\}\right)-4 .
\end{aligned}
$$

Since $\{X, Y\}$ is a maximal partition, we have $e_{G}\left(X^{\prime}, Y^{\prime}\right) \leq e_{G}(X, Y)$, which implies $e_{G}\left(x_{i}, X \backslash\left\{x_{i}\right\}\right)+e_{G}\left(y_{j}, Y \backslash\left\{y_{j}\right\}\right) \leq 4$.
Since $\sigma_{2}(G) \geq 8$ and $x_{i} y_{j} \notin E(G)$, we have $d_{G}\left(x_{i}\right)+d_{G}\left(y_{j}\right) \geq 8$. On the other hand,

$$
\begin{aligned}
d_{G}\left(x_{i}\right)+d_{G}\left(y_{j}\right) & =e_{G}\left(x_{i}, X \backslash\left\{x_{i}\right\}\right)+e_{G}\left(x_{i}, Y\right)+e_{G}\left(y_{j}, Y \backslash\left\{y_{j}\right\}\right)+e_{G}\left(y_{j}, X\right) \\
& =e_{G}\left(x_{i}, X \backslash\left\{x_{i}\right\}\right)+e_{G}\left(y_{j}, Y \backslash\left\{y_{j}\right\}\right)+4 .
\end{aligned}
$$

These imply $e_{G}\left(x_{i}, X \backslash\left\{x_{i}\right\}\right)+e_{G}\left(y_{j}, Y \backslash\left\{y_{1}\right\}\right) \geq 4$. Therefore, we have $e_{G}\left(x_{i}, X \backslash\left\{x_{i}\right\}\right)+e_{G}\left(y_{j}, Y \backslash\left\{y_{j}\right\}\right)=4$.
By applying Claim with $(i, j)=(1,2)$ and $(i, j)=(3,1)$, we have $e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)+e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right)=4$ and $e_{G}\left(x_{3}, X \backslash\left\{x_{3}\right\}\right)+e_{G}\left(y_{1}, Y \backslash\left\{y_{1}\right\}\right)=4$. By adding them, we have

$$
e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)+e_{G}\left(y_{1}, Y \backslash\left\{y_{1}\right\}\right)+e_{G}\left(x_{3}, X \backslash\left\{x_{3}\right\}\right)+e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right)=8 .
$$

On the other hand, $e_{G}\left(x_{3}, X \backslash\left\{x_{3}\right\}\right)+e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right)=4$ by Claim with $(i, j)=(3,2)$. Therefore, we have $e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)+$ $e_{G}\left(y_{1}, Y \backslash\left\{y_{1}\right\}\right)=4$.

Now let $X^{\prime \prime}=\left(X \backslash\left\{x_{1}\right\}\right) \cup\left\{y_{1}\right\}$ and $Y^{\prime \prime}=\left(Y \backslash\left\{y_{1}\right\}\right) \cup\left\{x_{1}\right\}$, and apply Lemma $2(2)$ to $\left(X^{\prime \prime}, Y^{\prime \prime}\right)$. Since $x_{1} y_{1} \in E(G)$, we have

$$
\begin{aligned}
e_{G}\left(X^{\prime \prime}, Y^{\prime \prime}\right) & =e_{G}(X, Y)-e_{G}\left(x_{1}, Y\right)-e_{G}\left(y_{1}, X\right)+e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)+e_{G}\left(y_{1}, Y \backslash\left\{y_{1}\right\}\right)+2 \\
& =e_{G}(X, Y)-2-2+4+2=e_{G}(X, Y)+2
\end{aligned}
$$

This contradicts the maximality of $\{X, Y\}$, and hence the lemma follows.
We now prove Theorem 1. By Lemmas 3 and 4, if we take a maximal partition $\{X, Y\}$ in a graph G of order $2 n$ with $\sigma_{2}(G) \geq 2 n$, then $\sigma_{1,1}(G[X, Y]) \geq n$ and $G[X, Y]$ is not a graph of type 2 . Based on this observation, in the proof of

Fig. 2. Proof of Claim 2.

Theorem 1, we first try to find a maximal partition $\{X, Y\}$ such that $G[X, Y]$ is not a graph of type 1 . If we find one, $G[X, Y]$ is a required spanning subgraph of G. However, in some cases, we fail to find such a maximal partition. If it happens, we will search for a required partition $\{X, Y\}$ in the broader set of balanced partitions. In this case, Lemmas 3 and 4 do not help us, and we will give a specific proof to confirm that $G[X, Y]$ has the required property.

Proof of Theorem 1. Let G be a graph of order $2 n$ with $\sigma_{2}(G) \geq 2 n$, and assume G does not satisfy the conclusion. Then for every balanced partition $\{X, Y\}$ of G, either $\sigma_{1,1}(G[X, Y])<n$ or $G[X, Y]$ is a graph of either type 1 or type 2 .

Take a maximal partition $\{X, Y\}$ of G. Then by Lemmas 3 and $4, G[X, Y]$ is a graph of type 1 , which means $K_{t, t} \cup K_{n-t, n-t} \subseteq$ $G[X, Y] \subseteq H_{t, n-t}$ for some t with $1 \leq t \leq n-t$. Let X_{1} and Y_{1} be the partite sets of $K_{t, t}$ and X_{2} and Y_{2} be the partite sets of $K_{n-t, n-t}$. By symmetry, we may assume $E_{G}\left(Y_{1}, X_{2}\right) \subseteq E\left(H_{t, n-t}\right)$ (see Fig. 1). Then we have
(C1) $x y \in E(G)$ for every $x \in X_{1}$ and $y \in Y_{1}$,
(C2) $x y \in E(G)$ for every $x \in X_{2}$ and $y \in Y_{2}$, and
(C3) $E_{G}\left(X_{1}, Y_{2}\right)=\emptyset$.
We may assume $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$.
Now we take arbitrary vertices $x_{1} \in X_{1}$ and $y_{2} \in Y_{2}$ and fix them. Also we define $X^{\prime}, Y^{\prime}, X_{1}^{-}$and Y_{2}^{-}by

$$
\begin{aligned}
X^{\prime} & =\left(X \backslash\left\{x_{1}\right\}\right) \cup\left\{y_{2}\right\}, \\
Y^{\prime} & =\left(Y \backslash\left\{y_{2}\right\}\right) \cup\left\{x_{1}\right\}, \\
X_{1}^{-} & =X_{1} \backslash\left\{x_{1}\right\} \text { and } \\
Y_{2}^{-} & =Y_{2} \backslash\left\{y_{2}\right\} .
\end{aligned}
$$

We will prove a series of claims.
Claim 1. $e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)+e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right)=n$, and $\left\{X^{\prime}, Y^{\prime}\right\}$ is a maximal partition.
Proof. Note $x_{1} y_{2} \notin E(G)$ by (C3). Hence $d_{G}\left(x_{1}\right)+d_{G}\left(y_{2}\right) \geq 2 n$ by the hypothesis. Also note $e_{G}\left(x_{1}, Y\right)=t$ and $e_{G}\left(y_{2}, X\right)=n-t$ by (C1), (C2), and (C3). Therefore,

$$
\begin{aligned}
e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)+e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right) & =d_{G}\left(x_{1}\right)-e_{G}\left(x_{1}, Y\right)+d_{G}\left(y_{2}\right)-e_{G}\left(y_{2}, X\right) \\
& \geq 2 n-t-(n-t)=n .
\end{aligned}
$$

On the other hand, by Lemma 2 (2),

$$
\begin{aligned}
e_{G}\left(X^{\prime}, Y^{\prime}\right) & =e_{G}(X, Y)-e_{G}\left(x_{1}, Y\right)-e_{G}\left(y_{2}, X\right)+e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)+e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right) \\
& =e_{G}(X, Y)-t-(n-t)+e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)+e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right) \\
& =e_{G}(X, Y)-n+e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)+e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right)
\end{aligned}
$$

Since $\{X, Y\}$ is a maximal partition, $e_{G}\left(X^{\prime}, Y^{\prime}\right) \leq e_{G}(X, Y)$ and hence we have $e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)+e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right) \leq n$. Thus, we have $e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)+e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right)=n$ and $e_{G}\left(X^{\prime}, Y^{\prime}\right)=e_{G}(X, Y)$. In particular, $\left\{X^{\prime}, Y^{\prime}\right\}$ is a maximal partition.

Claim 2. $e_{G}\left(X_{1}, X_{2}\right)=0$ or $e_{G}\left(Y_{1}, Y_{2}\right)=0$.
Proof. Assume $e_{G}\left(X_{1}, X_{2}\right)>0$ and $e_{G}\left(Y_{1}, Y_{2}\right)>0$. Then there exist vertices $u_{1} \in X_{1}, u_{2} \in X_{2}, v_{1} \in Y_{1}$ and $v_{2} \in Y_{2}$ with $u_{1} u_{2}, v_{1} v_{2} \in E(G)$. Let $\hat{X}=X_{1} \cup Y_{2}, \hat{Y}=Y_{1} \cup X_{2}$ and $\hat{H}=G[\hat{X}, \hat{Y}]$. Note that $\{\hat{X}, \hat{Y}\}$ is a balanced partition of $V(G)$ though we do not know whether it is a maximal partition of G (see Fig. 2).

Take $\hat{x} \in \hat{X}$ and $\hat{y} \in \hat{Y}$ with $\hat{x} \hat{y} \notin E(\hat{H})$. By (C1) and (C2), $\hat{H}\left[X_{1}, Y_{1}\right]=H\left[X_{1}, Y_{1}\right]$ and $\hat{H}\left[Y_{2}, X_{2}\right]=H\left[X_{2}, Y_{2}\right]$ are balanced complete bipartite graphs of order $2 t$ and $2(n-t)$, respectively. Therefore, $\{\hat{x}, \hat{y}\} \nsubseteq X_{1} \cup Y_{1}$ and $\{\hat{x}, \hat{y}\} \nsubseteq X_{2} \cup Y_{2}$, which

Fig. 3. H^{*}.
imply $\{\hat{x}, \hat{y}\} \cap\left(X_{1} \cup Y_{1}\right) \neq \emptyset$ and $\{\hat{x}, \hat{y}\} \cap\left(X_{2} \cup Y_{2}\right) \neq \emptyset$. Hence we have $d_{\hat{H}}(\hat{x})+d_{\hat{H}}(\hat{y}) \geq t+(n-t)=n$, which implies $\sigma_{1,1}(\hat{H}) \geq n$. Moreover, $\hat{H}\left[X_{i}, Y_{i}\right]$ contains a hamiltonian path P_{i} joining u_{i} and v_{i} for $i \in\{1,2\}$. Then $u_{1} P_{1} v_{1} v_{2} P_{2} u_{2} u_{1}$ is a hamiltonian cycle in \hat{H}. Thus, \hat{H} is of neither type 1 nor type 2 . This is a contradiction.

By Claim 2 and the symmetry, we may assume

$$
\begin{equation*}
e_{G}\left(X_{1}, X_{2}\right)=0 \tag{*}
\end{equation*}
$$

Claim 3. We have $e_{G}\left(x_{1}, X_{1}^{-}\right) \geq 1$ and $e_{G}\left(y_{2}, Y_{1}\right) \geq 2$. In particular, $\left|X_{1}\right| \geq 2$.
Proof. By Claim 1, $e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)+e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right)=n$. Since $\left|Y \backslash\left\{y_{2}\right\}\right|=n-1$, we have $e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right) \leq n-1$. Therefore, since $e_{G}\left(X_{1}, X_{2}\right)=0$ by $(*), e_{G}\left(x_{1}, X_{1}^{-}\right)=e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)=n-e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right) \geq 1$.

Since $e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)=e_{G}\left(x_{1}, X_{1} \backslash\left\{x_{1}\right\}\right) \leq\left|X_{1}\right|-1=t-1$ and $e_{G}\left(y_{2}, Y_{2} \backslash\left\{y_{2}\right\}\right) \leq\left|Y_{2}\right|-1=n-t-1$, we have

$$
\begin{aligned}
n & =e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)+e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right) \\
& =e_{G}\left(x_{1}, X \backslash\left\{x_{1}\right\}\right)+e_{G}\left(y_{2}, Y_{1}\right)+e_{G}\left(y_{2}, Y_{2} \backslash\left\{y_{2}\right\}\right) \\
& \leq t-1+(n-t-1)+e_{G}\left(y_{2}, Y_{1}\right)=n-2+e_{G}\left(y_{2}, Y_{1}\right),
\end{aligned}
$$

which yields $e_{G}\left(y_{2}, Y_{1}\right) \geq 2$.
For a pair of distinct vertices y_{1}, v_{1} in Y_{1}, we call $\left(y_{1}, v_{1}\right)$ a violating pair if it satisfies the following two conditions (P1) and (P2), where $X^{*}=\left(X \backslash\left\{x_{1}\right\}\right) \cup\left\{y_{1}\right\}, Y^{*}=\left(Y \backslash\left\{y_{1}\right\}\right) \cup\left\{x_{1}\right\}$ and $H^{*}=G\left[X^{*}, Y^{*}\right]$.
(P1) $Y_{2} \subseteq N_{G}\left(y_{1}\right)$ and $X_{2} \subseteq N_{G}\left(v_{1}\right)$.
(P2) $d_{H^{*}}\left(x_{1}\right)+d_{H^{*}}\left(x^{*}\right) \geq n$ for any $x^{*} \in X^{*} \backslash\left\{y_{1}\right\}$ with $x_{1} x^{*} \notin E(G)$.
Claim 4. There does not exist a violating pair.
Proof. Assume that Y_{1} contains a violating pair $\left(y_{1}, v_{1}\right)$. Let $X^{*}=\left(X \backslash\left\{x_{1}\right\}\right) \cup\left\{y_{1}\right\}, Y^{*}=\left(Y \backslash\left\{y_{1}\right\}\right) \cup\left\{x_{1}\right\}$ and $H^{*}=G\left[X^{*}, Y^{*}\right]$. Note that $\left\{X^{*}, Y^{*}\right\}$ is a balanced partition of $V(G)$ though we do not know whether it is a maximal partition of G.

By (C2) and (P1), $Y_{2} \cup\left\{v_{1}\right\} \subseteq N_{G}\left(x_{2}^{*}\right)$ for each $x_{2}^{*} \in X_{2}$ and $X_{2} \cup\left\{y_{1}\right\} \subseteq N_{G}\left(y_{2}^{*}\right)$ for each $y_{2}^{*} \in Y_{2}$. In particular, we have

- $d_{H^{*}}\left(x_{2}^{*}\right) \geq n-t+1$ for each $x_{2}^{*} \in X_{2}$, and
- $d_{H^{*}}\left(y_{2}^{*}\right) \geq n-t+1$ for each $y_{2}^{*} \in Y_{2}$.

Moreover, by (C1) $x_{1} \in N_{G}\left(y_{1}\right)$ and hence, by (P1), $Y_{2} \cup\left\{x_{1}\right\} \subseteq N_{G}\left(y_{1}\right)$. In particular.

- $d_{H^{*}}\left(y_{1}\right) \geq n-t+1$.

We claim $\sigma_{1,1}\left(H^{*}\right) \geq n$. Take $x^{*} \in X^{*}$ and $y^{*} \in Y^{*}$ with $x^{*} y^{*} \notin E\left(H^{*}\right)$. Note $X^{*}=\left(X_{1} \backslash\left\{x_{1}\right\}\right) \cup X_{2} \cup\left\{y_{1}\right\}$ and $Y^{*}=\left(Y_{1} \backslash\left\{y_{1}\right\}\right) \cup Y_{2} \cup\left\{x_{1}\right\}$ (see Fig. 3).

If $y^{*} \in Y_{1} \backslash\left\{y_{1}\right\}$, then since $X_{1} \backslash\left\{x_{1}\right\} \subseteq N_{G}\left(y^{*}\right)$ by (C1), $d_{H^{*}}\left(y^{*}\right) \geq t-1$ and $x^{*} \notin X_{1} \backslash\left\{x_{1}\right\}$. Hence $x^{*} \in X_{2} \cup\left\{y_{1}\right\}$, which implies $d_{H^{*}}\left(x^{*}\right) \geq n-t+1$. Thus, we have $d_{H^{*}}\left(x^{*}\right)+d_{H^{*}}\left(y^{*}\right) \geq n$.

If $y^{*} \in Y_{2}$, then $d_{H^{*}}\left(y^{*}\right) \geq n-t+1$. Moreover, since $X_{2} \subseteq N_{G}\left(y^{*}\right)$ by (C2) and $Y_{2} \subseteq N_{G}\left(y_{1}\right)$ by (P1), we have $x^{*} \notin X_{2} \cup\left\{y_{1}\right\}$, which implies $x^{*} \in X_{1} \backslash\left\{x_{1}\right\}$. Then $Y_{1} \backslash\left\{y_{1}\right\} \subseteq N_{G}\left(x^{*}\right)$ and hence $d_{H^{*}}\left(x^{*}\right) \geq t-1$. Thus, we have $d_{H^{*}}\left(x^{*}\right)+d_{H^{*}}\left(y^{*}\right) \geq n$.

Finally, if $y^{*}=x_{1}$, then since $y_{1} \in N_{G}\left(x_{1}\right)$, we have $x^{*} \neq y_{1}$. Then $d_{H^{*}}\left(x^{*}\right)+d_{H^{*}}\left(y^{*}\right)=d_{H^{*}}\left(x^{*}\right)+d_{H^{*}}\left(x_{1}\right) \geq n$ by (P2). Therefore, we have $\sigma_{1,1}\left(H^{*}\right) \geq n$.

Take $x_{2} \in X_{2}$. By (P1), $\left\{y_{1} y_{2}, v_{1} x_{2}\right\} \subseteq E(G)$ and hence $\left\{y_{1} y_{2}, v_{1} x_{2}\right\} \subseteq E\left(H^{*}\right)$. Also, $x_{1} y_{1} \in E\left(H^{*}\right)$ by (C1). By Claim 3, there exists a vertex $u_{1} \in X_{1} \backslash\left\{x_{1}\right\}$ with $u_{1} x_{1} \in E(G)$, which implies $u_{1} x_{1} \in E\left(H^{*}\right)$.

Fig. 4. Proof of Claim 5.

Since $H^{*}\left[X_{1} \backslash\left\{x_{1}\right\}, Y_{1} \backslash\left\{y_{1}\right\}\right]=G\left[X_{1} \backslash\left\{x_{1}\right\}, Y_{1} \backslash\left\{y_{1}\right\}\right]$ is a balanced complete bipartite graph, it contains a hamiltonian path P_{1} joining u_{1} and v_{1}. Also since $H^{*}\left[X_{2}, Y_{2}\right]=G\left[X_{2}, Y_{2}\right]$ is a balanced complete bipartite graph, it contains a hamiltonian path P_{2} joining x_{2} and y_{2}. Then $u_{1} P_{1} v_{1} x_{2} P_{2} y_{2} y_{1} x_{1} u_{1}$ is a hamiltonian cycle of H^{*}. This implies that H^{*} is of neither type 1 nor type 2 , which is a contradiction.

Claim 5. $\left|Y_{2}\right| \geq 2$.
Proof. Assume the contrary. Then $Y_{2}=\left\{y_{2}\right\}$ and $t=\left|X_{1}\right|=n-1$. Let $X_{2}=\left\{x_{2}\right\}$.
Assume $N_{G}\left(x_{2}\right) \cap Y_{1}=\emptyset$. Let $\hat{X}=X_{1} \cup\left\{y_{2}\right\}=\left(X \backslash\left\{x_{2}\right\}\right) \cup\left\{y_{2}\right\}$ and $\hat{Y}=Y_{1} \cup\left\{x_{2}\right\}=\left(Y \backslash\left\{y_{2}\right\}\right) \cup\left\{x_{2}\right\}$. Then $\{\hat{X}, \hat{Y}\}$ is a balanced partition of $V(G)$. We have $e_{G}\left(x_{2}, Y\right)=e_{G}\left(x_{2}, y_{2}\right)=1$ by the assumption, $e_{G}\left(y_{2}, X\right)=e_{G}\left(y_{2}, x_{2}\right)=1$ by (C2) and (C3), $e_{G}\left(x_{2}, X \backslash\left\{x_{2}\right\}\right)=e_{G}\left(x_{2}, X_{1}\right)=0$ by $(*)$ and $e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right)=e_{G}\left(y_{2}, Y_{1}\right) \geq 2$ by Claim 3 . Then by applying Lemma 2 (2) to \hat{X} and \hat{Y}, we have

$$
\begin{aligned}
e_{G}(\hat{X}, \hat{Y}) & =e_{G}(X, Y)-e_{G}\left(x_{2}, Y\right)-e_{G}\left(y_{2}, X\right)+e_{G}\left(x_{2}, X \backslash\left\{x_{2}\right\}\right)+e_{G}\left(y_{2}, Y \backslash\left\{y_{2}\right\}\right)+2 e_{G}\left(x_{2}, y_{2}\right) \\
& \geq e_{G}(X, Y)-1-1+0+2+2=e_{G}(X, Y)+2
\end{aligned}
$$

This contradicts the maximality of $\{X, Y\}$. Hence we have $N_{G}\left(x_{2}\right) \cap Y_{1} \neq \emptyset$. Take $v_{1} \in N_{G}\left(x_{2}\right) \cap Y_{1}$. By Claim 3, we can take $y_{1} \in N_{G}\left(y_{2}\right) \cap\left(Y_{1} \backslash\left\{v_{1}\right\}\right)$ (see Fig. 4).

We claim that $\left(y_{1}, v_{1}\right)$ is a violating pair. Since $X_{2}=\left\{x_{2}\right\}$ and $Y_{2}=\left\{y_{2}\right\}, y_{1}$ and v_{1} satisfy (P1). Let $X^{*}=\left(X \backslash\left\{x_{1}\right\}\right) \cup\left\{y_{1}\right\}$, $Y^{*}=\left(Y \backslash\left\{y_{1}\right\}\right) \cup\left\{x_{1}\right\}$ and $H^{*}=G\left[X^{*}, Y^{*}\right]$. By Claim 3, $N_{G}\left(x_{1}\right) \cap\left(X_{1} \backslash\left\{x_{1}\right\}\right) \neq \emptyset$. We also have $x_{1} y_{1} \in E(G)$ by (C1) and hence $d_{H^{*}}\left(x_{1}\right) \geq 2$.

Let $x^{*} \in X^{*} \backslash\left\{y_{1}\right\}=X \backslash\left\{x_{1}\right\}=\left(X_{1} \backslash\left\{x_{1}\right\}\right) \cup\left\{x_{2}\right\}$ with $x_{1} x^{*} \notin E(G)$. If $x^{*} \in X_{1} \backslash\left\{x_{1}\right\}$, then $d_{H^{*}}\left(x^{*}\right) \geq\left|Y_{1} \backslash\left\{y_{1}\right\}\right|=n-2$ by (C1) and $d_{H^{*}}\left(x_{1}\right)+d_{H^{*}}\left(x^{*}\right) \geq 2+(n-2)=n$.

Suppose $x^{*}=x_{2}$. Then by $(*), x_{1} x_{2} \notin E(G)$ and hence $d_{G}\left(x_{1}\right)+d_{G}\left(x_{2}\right) \geq 2 n$ since $\sigma_{2}(G) \geq 2 n$. On the other hand, by (C1) and (C3), $e_{G}\left(x_{1}, Y \backslash\left\{y_{1}\right\}\right)=e_{G}\left(x_{1}, Y_{1} \backslash\left\{y_{1}\right\}\right)=\left|Y_{1}\right|-1=n-2$, and by $(*), e_{G}\left(x_{2},\left(X_{1} \backslash\left\{x_{1}\right\}\right) \cup\left\{y_{1}\right\}\right)=e_{G}\left(x_{2}, y_{1}\right) \leq 1$. Therefore,

$$
\begin{aligned}
d_{H^{*}}\left(x_{1}\right)+d_{H^{*}}\left(x_{2}\right) & =d_{G}\left(x_{1}\right)-e_{G}\left(x_{1}, Y \backslash\left\{y_{1}\right\}\right)+d_{G}\left(x_{2}\right)-e_{G}\left(x_{2},\left(X_{1} \backslash\left\{x_{1}\right\}\right) \cup\left\{y_{1}\right\}\right) \\
& \geq 2 n-(n-2)-1=n+1 .
\end{aligned}
$$

Thus, (P2) is satisfied and hence $\left\{y_{1}, v_{1}\right\}$ is a violating pair. This contradicts Claim 4, and the claim follows.
Recall $X^{\prime}=\left(X \backslash\left\{x_{1}\right\}\right) \cup\left\{y_{2}\right\}$ and $Y^{\prime}=\left(Y \backslash\left\{y_{2}\right\}\right) \cup\left\{x_{1}\right\}$. Since $\left\{X^{\prime}, Y^{\prime}\right\}$ is a maximal partition of G by Claim 1, $G\left[X^{\prime}, Y^{\prime}\right]$ is a graph of type 1 by the assumption. Thus, $K_{s, s} \cup K_{n-s, n-s} \subseteq G\left[X^{\prime}, Y^{\prime}\right] \subseteq H_{s, n-s}$ for some s with $1 \leq s \leq n-1$. Let X_{1}^{\prime} and Y_{1}^{\prime} be the partite sets of $K_{s, s}$ and X_{2}^{\prime} and Y_{2}^{\prime} be the partite sets of $K_{n-s, n-s}$, where $E_{G}\left(Y_{1}^{\prime}, X_{2}^{\prime}\right) \subseteq E\left(H_{s, n-s}\right)$ and $E_{G}\left(X_{1}^{\prime}, Y_{2}^{\prime}\right)=\emptyset$. Thus, we can apply (C1), (C2) and (C3) to ($X_{1}^{\prime}, Y_{1}^{\prime}, X_{2}^{\prime}, Y_{2}^{\prime}$) instead of ($X_{1}, Y_{1}, X_{2}, Y_{2}$). We may assume $X^{\prime}=X_{1}^{\prime} \cup X_{2}^{\prime}$ and $Y^{\prime}=Y_{1}^{\prime} \cup Y_{2}^{\prime}$ 。

Claim 6. We have $X_{1}^{-} \subseteq X_{2}^{\prime}, X_{1}^{\prime} \subseteq X_{2} \cup\left\{y_{2}\right\}, Y_{2}^{-} \subseteq Y_{1}^{\prime}$, and $Y_{2}^{\prime} \subseteq Y_{1} \cup\left\{x_{1}\right\}$.
Proof. Note $X=\left(X^{\prime} \backslash\left\{y_{2}\right\}\right) \cup\left\{x_{1}\right\}$ and $Y=\left(Y^{\prime} \backslash\left\{x_{1}\right\}\right) \cup\left\{y_{2}\right\}$.
We first prove the following subclaim.
Subclaim. $X_{1}^{\prime} \cap X_{1}^{-}=\emptyset$.
Proof. Assume $X_{1}^{\prime} \cap X_{1}^{-} \neq \emptyset$, and take $x_{1}^{\prime} \in X_{1}^{\prime} \cap X_{1}^{-}$. We investigate the inclusion relationships between $\left\{X_{1}^{-}, Y_{1}, X_{2}, Y_{2}^{-}\right\}$ and $\left\{X_{1}^{\prime}, Y_{1}^{\prime}, X_{2}^{\prime}, Y_{2}^{\prime}\right\}$.

Take $v_{1} \in Y_{1}$. Then $v_{1} \neq y_{2}$ and hence $v_{1} \in Y^{\prime}=Y_{1}^{\prime} \cup Y_{2}^{\prime}$. Since $x_{1}^{\prime} \in X_{1}$, we have $x_{1}^{\prime} v_{1} \in E(G)$ by (C1) for $\left(X_{1}, Y_{1}, X_{2}, Y_{2}\right)$. On the other hand, $x_{1}^{\prime} \in X_{1}^{\prime}$ and hence $N_{G}\left(x_{1}^{\prime}\right) \cap Y_{2}^{\prime}=\emptyset$ by (C3) for ($X_{1}^{\prime}, Y_{1}^{\prime}, X_{2}^{\prime}, Y_{2}^{\prime}$). Therefore, we have $v_{1} \notin Y_{2}^{\prime}$ and hence $v_{1} \in Y_{1}^{\prime}$. This proves $Y_{1} \subseteq Y_{1}^{\prime}$.

Take $v_{2} \in Y_{2}^{-}$. Then $v_{2} \in Y^{\prime}=Y_{1}^{\prime} \cup Y_{2}^{\prime}$. Since $x_{1}^{\prime} \in X_{1}, v_{2} \notin N_{G}\left(x_{1}^{\prime}\right)$ by (C3) for ($X_{1}, Y_{1}, X_{2}, Y_{2}$). On the other hand, since $x_{1}^{\prime} \in X_{1}^{\prime}$, we have $Y_{1}^{\prime} \subseteq N_{G}\left(x_{1}^{\prime}\right)$ by (C1) for ($X_{1}^{\prime}, Y_{1}^{\prime}, X_{2}^{\prime}, Y_{2}^{\prime}$). These imply $v_{2} \notin Y_{1}^{\prime}$ and hence $v_{2} \in Y_{2}^{\prime}$. This proves $Y_{2}^{-} \subseteq Y_{2}^{\prime}$.

Fig. 5. Proof of Subclaim.

By Claim 5, $\left|Y_{2}\right| \geq 2$ and hence $Y_{2}^{-} \neq \emptyset$. Take $y_{2}^{\prime} \in Y_{2}^{-}$.
Take $u_{1} \in X_{1}^{-}$. Then $u_{1} \in X^{\prime}=X_{1}^{\prime} \cup X_{2}^{\prime}$. Since $u_{1} \in X_{1}$ and $y_{2}^{\prime} \in Y_{2}, u_{1} \notin N_{G}\left(y_{2}^{\prime}\right)$ by (C3) for ($X_{1}, Y_{1}, X_{2}, Y_{2}$). On the other hand, since $Y_{2}^{-} \subseteq Y_{2}^{\prime}$, we have $X_{2}^{\prime} \subseteq N_{G}\left(y_{2}^{\prime}\right)$ by (C2) for ($X_{1}^{\prime}, Y_{1}^{\prime}, X_{2}^{\prime}, Y_{2}^{\prime}$). Therefore, we have $u_{1} \notin X_{2}^{\prime}$ and hence $u_{1} \in X_{1}^{\prime}$. This proves $X_{1}^{-} \subseteq X_{1}^{\prime}$.

Take $u_{2} \in X_{2}$. Then since $u_{2} \neq x_{1}, u_{2} \in X^{\prime}=X_{1}^{\prime} \cup X_{2}^{\prime}$. Since $y_{2}^{\prime} \in Y_{2}, u_{2} \in N_{G}\left(y_{2}^{\prime}\right)$ by (C2) for ($X_{1}, Y_{1}, X_{2}, Y_{2}$). On the other hand, since $Y_{2}^{-} \subseteq Y_{2}^{\prime}$, we have $X_{1}^{\prime} \cap N_{G}\left(y_{2}^{\prime}\right)=\emptyset$ by (C3) for ($X_{1}^{\prime}, Y_{1}^{\prime}, X_{2}^{\prime}, Y_{2}^{\prime}$). Therefore, we have $u_{2} \notin X_{1}^{\prime}$ and hence $u_{2} \in X_{2}^{\prime}$. This proves $X_{2} \subseteq X_{2}^{\prime}$.

By the definition of $Y^{\prime}, x_{1} \in Y^{\prime}=Y_{1}^{\prime} \cup Y_{2}^{\prime}$. Also, by Claim $3, N_{G}\left(x_{1}\right) \cap X_{1}^{-} \neq \emptyset$, and since $X_{1}^{-} \subseteq X_{1}^{\prime}$, we have $N_{G}\left(x_{1}\right) \cap X_{1}^{\prime} \neq \emptyset$. On the other hand, since $E_{G}\left(X_{1}^{\prime}, Y_{2}^{\prime}\right)=\emptyset$ by (C3) for $\left(X_{1}^{\prime}, Y_{1}^{\prime}, X_{2}^{\prime}, Y_{2}^{\prime}\right)$, we have $x_{1} \notin Y_{2}^{\prime}$. This implies $x_{1} \in Y_{1}^{\prime}$ (see Fig. 5).

At this stage, we have $Y_{1} \cup\left\{x_{1}\right\} \subseteq Y_{1}^{\prime}$ and $Y_{2}^{-} \subseteq Y_{2}^{\prime}$. Since $Y_{1}^{\prime} \cup Y_{2}^{\prime}=Y^{\prime}=Y_{1} \cup\left\{x_{1}\right\} \cup Y_{2}^{-}$, these yield $Y_{1}^{\prime}=Y_{1} \cup\left\{x_{1}\right\}$ and $Y_{2}^{\prime}=Y_{2}^{-}$. In particular, $\left|Y_{2}^{\prime}\right|=\left|Y_{2}^{-}\right|=n-t-1$. On the other hand, since $X_{2} \subseteq X_{2}^{\prime}$, we have $\left|X_{2}^{\prime}\right| \geq\left|X_{2}\right|=n-t$, and hence $G\left[X_{2}^{\prime}, Y_{2}^{\prime}\right]$ is not a balanced bipartite graph. This contradicts the fact that X_{2}^{\prime} and Y_{2}^{\prime} are the partite sets of the balanced bipartite graph $K_{n-s, n-s}$. Hence the subclaim follows.

Since $X_{1}^{-} \subseteq X \backslash\left\{x_{1}\right\} \subseteq X^{\prime}=X_{1}^{\prime} \cup X_{2}^{\prime}$ and $X_{1}^{\prime} \cap X_{1}^{-}=\emptyset$ by Subclaim, we have $X_{1}^{-} \subseteq X_{2}^{\prime}$. Furthermore, since $X_{1}^{\prime} \subseteq X^{\prime}=X_{1}^{-} \cup X_{2} \cup\left\{y_{2}\right\}$ and $X_{1}^{-} \cap X_{1}^{\prime}=\emptyset$, we have $X_{1}^{\prime} \subseteq X_{2} \cup\left\{y_{2}\right\}$.

Assume $Y_{2}^{\prime} \cap Y_{2}^{-} \neq \emptyset$ and take $y_{2}^{\prime} \in Y_{2}^{\prime} \cap Y_{2}^{-}$. Note $X_{1}^{-} \neq \emptyset$ by Claim 3. Take $u_{1} \in X_{1}^{-}$. Then since $X_{1}^{-} \subseteq X_{2}^{\prime}, u_{1} \in X_{2}^{\prime}$. However, since $y_{2}^{\prime} \in Y_{2}^{-}$and $u_{1} \in X_{1}^{-}, u_{1} y_{2}^{\prime} \notin E(G)$ by (C3) for ($X_{1}, Y_{1}, X_{2}, Y_{2}$), while since $y_{2}^{\prime} \in Y_{2}^{\prime}$ and $u_{1} \in X_{2}^{\prime}, u_{1} y_{2}^{\prime} \in E(G)$ by (C2) for ($X_{1}^{\prime}, Y_{1}^{\prime}, X_{2}^{\prime}, Y_{2}^{\prime}$). This is a contradiction, and hence we have $Y_{2}^{\prime} \cap Y_{2}^{-}=\emptyset$.

Since $Y_{2}^{-} \subseteq Y \backslash\left\{y_{2}\right\} \subseteq Y^{\prime}=Y_{1}^{\prime} \cup Y_{2}^{\prime}$ and $Y_{2}^{-} \cap Y_{2}^{\prime}=\emptyset$, we have $Y_{2}^{-} \subseteq Y_{1}^{\prime}$. Furthermore, since $Y_{2}^{\prime} \subseteq Y^{\prime}=Y_{1} \cup Y_{2}^{-} \cup\left\{x_{1}\right\}$ and $Y_{2}^{-} \cap Y_{2}^{\prime}=\emptyset$, we have $Y_{2}^{\prime} \subseteq Y_{1} \cup\left\{x_{1}\right\}$.

Claim 7. $x_{1} \in Y_{2}^{\prime}$ and $y_{2} \in X_{1}^{\prime}$.

Proof. Assume $x_{1} \notin Y_{2}^{\prime}$. Since $x_{1} \in Y^{\prime}=Y_{1}^{\prime} \cup Y_{2}^{\prime}$, we have $x_{1} \in Y_{1}^{\prime}$. Then we have $X_{1}^{\prime} \subseteq N_{G}\left(x_{1}\right)$ by (C1) for ($X_{1}^{\prime}, Y_{1}^{\prime}, X_{2}^{\prime}, Y_{2}^{\prime}$). Since $X_{1}^{\prime} \subseteq X_{2} \cup\left\{y_{2}\right\}$ by Claim 6, this yields $N_{G}\left(x_{1}\right) \cap\left(X_{2} \cup\left\{y_{2}\right\}\right) \neq \emptyset$. On the other hand, since $e_{G}\left(X_{1}, X_{2}\right)=0$ by (*) and $E_{G}\left(X_{1}, Y_{2}\right)=\emptyset$ by (C3) for $\left(X_{1}, Y_{1}, X_{2}, Y_{2}\right), N_{G}\left(x_{1}\right) \cap\left(X_{2} \cup\left\{y_{2}\right\}\right)=\emptyset$. This is a contradiction, and we have $x_{1} \in Y_{2}^{\prime}$.

Note $y_{2} \in X^{\prime}=X_{1}^{\prime} \cup X_{2}^{\prime}$. Since $E_{G}\left(X_{1}, Y_{2}\right)=\emptyset$ by (C3) for ($X_{1}, Y_{1}, X_{2}, Y_{2}$), we have $y_{2} \notin N_{G}\left(x_{1}\right)$. On the other hand, since $x_{1} \in Y_{2}^{\prime}, X_{2}^{\prime} \subseteq N_{G}\left(x_{1}\right)$ by (C2) for ($X_{1}^{\prime}, Y_{1}^{\prime}, X_{2}^{\prime}, Y_{2}^{\prime}$), This implies $y_{2} \notin X_{2}^{\prime}$ and hence $y_{2} \in X_{1}^{\prime}$.

Claim 8. $X_{1}^{\prime}=X_{2} \cup\left\{y_{2}\right\}$ and $X_{2}^{\prime}=X_{1}^{-}$.
Proof. Since $x_{1} \in Y_{2}^{\prime}$ by Claim 7, we have $X_{2}^{\prime} \subseteq N_{G}\left(x_{1}\right)$ by (C2) for ($X_{1}^{\prime}, Y_{1}^{\prime}, X_{2}^{\prime}, Y_{2}^{\prime}$). On the other hand, since $e_{G}\left(X_{1}, X_{2}\right)=0$ by ($*$) and $x_{1} \in X_{1}, N_{G}\left(x_{1}\right) \cap X_{2}=\emptyset$. These imply $X_{2}^{\prime} \cap X_{2}=\emptyset$.

Note $X_{1}^{\prime} \cup X_{2}^{\prime}=X^{\prime}=X_{1}^{-} \cup X_{2} \cup\left\{y_{2}\right\}$. Then since $X_{1}^{-} \subseteq X_{2}^{\prime}$ by Claim 6, $y_{2} \in X_{1}^{\prime}$ by Claim 7 and $X_{2}^{\prime} \cap X_{2}=\emptyset$, we have $X_{2}^{\prime}=X_{1}^{-}$and $X_{1}^{\prime}=X_{2} \cup\left\{y_{2}\right\}$.

Claim 9. We have $\left|N_{G}\left(y_{2}\right) \cap Y_{1}\right|=2$. Moreover, $N_{G}(x) \cap Y_{1}=N_{G}\left(y_{2}\right) \cap Y_{1}$ for each $x \in X_{2}$.
Proof of Claim 9. Note $Y_{1}^{\prime} \cup Y_{2}^{\prime}=Y^{\prime}=Y_{1} \cup Y_{2}^{-} \cup\left\{x_{1}\right\}$. Since $Y_{2}^{-} \subseteq Y_{1}^{\prime}$ by Claim 6 and $x_{1} \in Y_{2}^{\prime}$ by Claim 7, we have $Y_{1}^{\prime}=Y_{2}^{-} \cup\left(Y_{1} \cap Y_{1}^{\prime}\right)$ and $Y_{2}^{\prime}=\left(Y_{1} \backslash\left(Y_{1} \cap Y_{1}^{\prime}\right)\right) \cup\left\{x_{1}\right\}$.

Take $x \in X_{2}$. Note $X_{2} \cup\left\{y_{2}\right\}=X_{1}^{\prime}$ by Claim 8, and hence $\left\{x, y_{2}\right\} \subseteq X_{1}^{\prime}$. By (C1) and (C3) for ($X_{1}^{\prime}, Y_{1}^{\prime}, X_{2}^{\prime}, Y_{2}^{\prime}$), $Y_{1}^{\prime} \subseteq N_{G}(x) \cap N_{G}\left(y_{2}\right)$ and $Y_{2}^{\prime} \cap\left(N_{G}(x) \cup N_{G}\left(y_{2}\right)\right)=\emptyset$. Since $Y_{1} \subseteq Y_{1}^{\prime} \cup Y_{2}^{\prime}$, it follows that $N_{G}(x) \cap Y_{1}=N_{G}\left(y_{2}\right) \cap Y_{1}=Y_{1} \cap Y_{1}^{\prime}$.

Moreover, since $X_{2}^{\prime}=X_{1}^{-}$by Claim 8, we have

$$
\begin{aligned}
n & =\left|Y_{1}^{\prime}\right|+\left|X_{2}^{\prime}\right|=\left|Y_{2}^{-}\right|+\left|Y_{1} \cap Y_{1}^{\prime}\right|+\left|X_{1}^{-}\right| \\
& =\left(\left|Y_{2}\right|-1\right)+\left|Y_{1} \cap Y_{1}^{\prime}\right|+\left(\left|X_{1}\right|-1\right)=\left|X_{1}\right|+\left|Y_{2}\right|+\left|Y_{1} \cap Y_{1}^{\prime}\right|-2 \\
& =n+\left|Y_{1} \cap Y_{1}^{\prime}\right|-2,
\end{aligned}
$$

which yields $\left|Y_{1} \cap Y_{1}^{\prime}\right|=2$. Since $N_{G}(x) \cap Y_{1}=N_{G}\left(y_{2}\right) \cap Y_{1}=Y_{1} \cap Y_{1}^{\prime}$, we obtain the desired conclusion.
Claim 10. $X_{1}^{-} \subseteq N_{G}\left(x_{1}\right)$ and $Y_{2}^{-} \subseteq N_{G}\left(y_{2}\right)$
Proof. Take $u_{1} \in X_{1}^{-}$and $v_{2} \in Y_{2}^{-}$. Then by Claim 6, $u_{1} \in X_{2}^{\prime}$ and by Claim 7, $x_{1} \in Y_{2}^{\prime}$. Hence we have $x_{1} u_{1} \in E(G)$ by (C2) for ($X_{1}^{\prime}, Y_{1}^{\prime}, X_{2}^{\prime}, Y_{2}^{\prime}$). Moreover, by Claim $6, v_{2} \in Y_{1}^{\prime}$ and by Claim 7, $y_{2} \in X_{1}^{\prime}$. Hence $y_{2} v_{2} \in E(G)$ by (C1) for ($X_{1}^{\prime}, Y_{1}^{\prime}, X_{2}^{\prime}, Y_{2}^{\prime}$).

Since x_{1} and y_{2} are arbitrarily chosen from X_{1} and Y_{2}, respectively, under the assumption of (*), Claim 10 tells us that both $G\left[X_{1}\right]$ and $G\left[Y_{2}\right]$ are complete graphs.

By Claim $9,\left|N_{G}\left(y_{2}\right) \cap Y_{1}\right|=2$. Hence we let $N_{G}\left(y_{2}\right) \cap Y_{1}=\left\{y_{1}, v_{1}\right\}$. Then $N_{G}(x) \cap Y_{1}=\left\{y_{1}, v_{2}\right\}$ for every $x \in X_{2}$. Moreover, since y_{2} is arbitrarily chosen from Y_{2} under the assumption of $(*)$, we can apply Claim 9 to a vertex in X_{2} and arbitrary vertex in Y_{2} and obtain $N_{G}(v) \cap Y_{1}=\left\{y_{1}, v_{1}\right\}$ for every vertex v in Y_{2}. Therefore, $X_{2} \cup Y_{2} \subseteq N_{G}\left(y_{1}\right) \cap N_{G}\left(v_{1}\right)$.

We now prove that $\left(y_{1}, v_{1}\right)$ is a violating pair. Since $X_{2} \cup Y_{2} \subseteq N_{G}\left(y_{1}\right) \cap N_{G}\left(v_{1}\right)$, it satisfies (P1). Let $X^{*}=\left(X \backslash\left\{x_{1}\right\}\right) \cup\left\{y_{1}\right\}$, $Y^{*}=\left(Y \backslash\left\{y_{1}\right\}\right) \cup\left\{x_{1}\right\}$ and $H^{*}=G\left[X^{*}, Y^{*}\right]$.

Take $x^{*} \in X^{*} \backslash\left\{y_{1}\right\}=X \backslash\left\{x_{1}\right\}=\left(X_{1} \backslash\left\{x_{1}\right\}\right) \cup X_{2}$ with $x^{*} x_{1} \notin E(G)$. Since $G\left[X_{1}\right]$ is a complete graph, $X_{1} \backslash\left\{x_{1}\right\} \subseteq N_{H^{*}}\left(x_{1}\right)$. This implies $x^{*} \notin X_{1} \backslash\left\{x_{1}\right\}$ and hence $x^{*} \in X_{2}$. Moreover, since $x_{1} y_{1} \in E\left(H^{*}\right), d_{H^{*}}\left(x_{1}\right) \geq\left|X_{1} \backslash\left\{x_{1}\right\}\right|+1=t$. On the other hand, by (C2), $Y_{2} \subseteq N_{H^{*}}\left(x^{*}\right)$, which implies $d_{H^{*}}\left(x^{*}\right) \geq n-t$. Thus, we have $d_{H^{*}}\left(x^{*}\right)+d_{H^{*}}\left(x_{1}\right) \geq(n-t)+t=n$ and hence (P2) holds. Therefore, $\left(y_{1}, v_{1}\right)$ is a violating pair. However, this contradicts Claim 4, and the theorem follows.

3. Concluding remarks

In this paper, we have investigated two degree sum conditions for the existence of a hamiltonian cycle. One of them is the classical Ore's Theorem. The other is an extension of the Moon-Moser Theorem, which was proved in [2]. Though the latter only concerns bipartite graphs, we have proved that it implies Ore's Theorem.

We do not know the relationship between the Moon-Moser Theorem itself and Ore's Theorem. Hence we raise the following question.

Question. For a positive integer n, does every graph G of order $2 n$ with $\sigma_{2}(G) \geq 2 n$ contain a spanning bipartite subgraph H with $\sigma_{1,1}(H) \geq n+1$?

We believe that the answer to this question is negative. However, we have not found such an example.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The work of G.C. was partially supported by NSF, United States grant DMS-1855716. The work of S.C. was supported by JSPS, Japan KAKENHI Grant Number JP17K05347. The work of R.G. was supported by The Heilbrun Distinguished Emeritus Fellowship, United States. The work of X.G. was partially supported by a grant from The Simons Foundation, United States (the Grant Number 522728). The work of A.S. was supported by JSPS, Japan KAKENHI Grant Numbers JP25330017, JP16KT0136 and JP17K00018. The work of T.Y. was supported by JSPS, Japan KAKENHI Grant Number JP16K05262.

References

[1] G. Chartrand, L. Lesniak, P. Zhang, Graphs \& Digraphs, fifth ed., Chapman and Hall/CRC, Boca Raton, Florida, USA, 2011.
[2] M.J. Ferrara, M.S. Jacobson, J. Powell, Characterizing degree-sum maximal nonhamiltonian bipartite graphs, Discrete Math. 312 (2012) $459-461$.
[3] J.W. Moon, L. Moser, On hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 163-165.
[4] O. Ore, Note on hamilton circuits, Amer. Math. Monthly 67 (1960) 55.

[^0]: * Corresponding author.

 E-mail addresses: gchen@gsu.edu (G. Chen), schiba@kumamoto-u.ac.jp (S. Chiba), rg@mathcs.emory.edu (R.J. Gould), xgu@westga.edu (X. Gu), asaito@chs.nihon-u.ac.jp (A. Saito), tsugaki@hotmail.com (M. Tsugaki), yamashita@math.kindai.ac.jp (T. Yamashita).

