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Let G be a graph and u, v be two distinct vertices of G. A u− v path P is called non-
separating if G−V (P ) is connected. The purpose of this paper is to study the number
of nonseparating u− v path for two arbitrary vertices u and v of a given graph. For a
positive integer k, we will show that there is a minimum integer α(k) so that if G is an
α(k)-connected graph and u and v are two arbitrary vertices in G, then there exist k ver-
tex disjoint paths P1[u,v], P2[u,v], . . ., Pk[u,v] such that G−V (Pi[u,v]) is connected for
every i (i=1,2, . . . ,k). In fact, we will prove that α(k)≤22k+2. It is known that α(1)=3.
A result of Tutte showed that α(2)=3. We show that α(3)=6. In addition, we prove that
if G is a 5-connected graph, then for every pair of vertices u and v there exists a path
P [u,v] such that G−V (P [u,v]) is 2-connected.

1. Introduction

The purpose of this article is to investigate graphs, which preserve some
connectivity properties after the removal of the vertex set of some paths.
The following result was conjectured to be true by Lovász [7] and proved by
Thomassen [11].

Theorem 1. If G is a (k+3)-connected graph, then G contains a cycle C
such that G−V (C) is k-connected.
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However, the problem becomes more difficult if one requires the cycle to
contain a specific edge. Given a pair of vertices u and v, a u−v path P is a
path from u to v. The following conjecture due to Lovász [7] is still open.

Conjecture 1. For each natural number k, there exists a least natural num-
ber β(k) such that, for any two vertices u, v in any β(k)-connected graph
G, there exists a u−v path P such that G−V (P ) is k-connected.

By a theorem of Tutte [13], we have that β(1) = 3. We will prove that
β(2)≤ 5 in this paper. In fact, results in [3] and [13] show that if u and v
are two vertices in a 3-connected graph G, then there exist two internally
vertex disjoint u-v paths P and Q such that both G−V (P ) and G−V (Q)
are connected.

Let P [x,y] be an x-y path in G. If no confusion arises, we sometimes use
only P to stand for P [x,y]. If u and v are two vertices on P in the order
from x to y along P , let P [u,v] denote the subpath from u to v and P−[v,u]
denote the subpath from v to u. If P [x,y] is not an edge, we will use either
IP or P (x,y) to denote P [x,y]−{x,y}, the internal segment of the path. If
P [x,y] =xy, we define that IP =P (x,y) = ∅. For two paths P and Q, P is
internally disjoint from Q if V (IP )∩V (Q) = ∅. If P and Q have the same
end vertices, then the statement P is internally disjoint from Q is equivalent
to the statement Q is internally disjoint from P . In this case, we say P and
Q are two internally vertex disjoint paths. If H is a connected subgraph of
G and both a and b are either in H or adjacent to some vertices in H, let
aHb denote an arbitrary path joining a and b such that all internal vertices
are in H.

A path P is called a nonseparating path if G−V (P ) is connected. Given a
positive number k, we will investigate the minimum number α(k) such that
if G is an α(k)-connected graph and u, v are two vertices of G, then there
exist k internally vertex disjoint nonseparating u−v paths P1, P2, . . ., Pk.

The value α(k) is related to a property called (s,t)-linked described be-
low. A graph G is (s,t)-linked if for every two vertex disjoint sets S and
T with |S| = s and |T | = t, G contains two vertex disjoint connected
subgraphs F and H such that S ⊆ V (F ) and T ⊆ V (H). Let G be a
graph and let x1,x2, · · · ,xk,y1,y2, · · · ,yk be 2k distinct vertices of G. We
say that G has an (x1,x2, · · · ,xk,y1,y2, · · · ,yk)-linkage if G contains k ver-
tex disjoint paths P1[x1,y1], P2[x2,y2], · · ·, Pk[xk,yk]. A graph is said to
be k-linked if it has at least 2k vertices and for any choice of 2k distinct
vertices x1,x2, · · · ,xk,y1,y2, · · · ,yk, G has an (x1,x2, · · · ,xk,y1,y2, · · · ,yk )-
linkage. Larman and Mani [6] and Jung [4] proved independently that there
exists a (smallest) integer f(k) such that every f(k)-connected graph is
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k-linked. The proof is based on a result of Mader [8] dealing with subdi-
visions of large complete graphs. Bollobás and Thomason [2] proved that
f(k) ≤ 22k. A complete characterization of k-linked graphs is not known.
Clearly, G is (2,2)-linked if and only if G is 2-linked. Jung [4] proved that
all 4-connected nonplanar graphs are 2-linked. Seymour [9] and Thomassen
[12] characterized graphs which do not contain an (x,u,y,v)-linkage for four
specific distinct vertices u, v, x, y.

Suppose that G is an α(k+1)-connected graph. Let S={x,y} and T be
two disjoint subsets of V (G) where |T |= k. Since G is α(k+ 1)-connected,
there are k+1 internally vertex disjoint nonseparating x−y paths. One such
path, say P [x,y], does not contain any vertex of T . Let F be the subgraph
induced by V (P [x,y]) and H=G−V (F ). Clearly, S⊆V (F ) and T ⊆V (H)
and both F and H are connected. Thus, every α(k+1)-connected graph (if it
exists) is (2,k)-linked. In particular, every α(3)-connected graph is 2-linked.

Let G be a graph and H be a subgraph or a subset of V (G). We define

N(H) = {x 
∈ V (G) − V (H) : xy ∈ E(G) for some y ∈ V (H) or H}.

The following result from [3] will be used quite often in our proofs.

Lemma 1.1. Let G be a 3-connected graph and let H be a connected in-
duced subgraph of G. Let F be a component of G−V (H). Then, for every
two vertices x and y in H, there is a path Q[x,y] in H such that each com-
ponent C of H−V (Q[x,y]) is adjacent to F , that is, N(C)∩V (F ) 
=∅.

A set of internally vertex disjoint x−y paths (walks) P1,P2, . . . ,Pm are
called unified paths (walks) if for each i (1 ≤ i≤m) IP1, IP2, · · ·, IPi−1,
IPi+1, · · ·, IPk are in the same component of G− V (Pi). Unified paths
play a fundamental role in the results we develop. Lemma 1.2 follows from
Lemma 1.1.

Lemma 1.2. Let G be a 3-connected graph and let x and y be two distinct
nonadjacent vertices of G. Then, G contains k internally vertex disjoint
nonseparating x−y paths if, and only if, G contains a set of k unified x−y
paths.

Proof. Let G be a 3-connected graph. We will only show that if G contains
a set of k unified x− y paths then G contains k internally vertex disjoint
nonseparating x−y paths, since the reverse implication is trivial. Let P1[x,y],
P2[x,y], · · · , Pk[x,y] be a set of k unified x−y paths such that the number
of nonseparating paths among these k-paths is maximum. If all P1[x,y],
P2[x,y], · · · , Pk[x,y] are nonseparating paths, we are done. Suppose, to the
contrary, P1[x,y] is not a nonseparating path. Since P1[x,y], P2[x,y], · · · ,
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Pk[x,y] form a set of unified paths, let C be the component of G−V (P1[x,y])
containing ∪i�=1V (IPi). Let H = G− V (C). By Lemma 1.1, there is an
x−y path Q1[x,y] in H such that G−V (Q1[x,y]) is connected. We claim
that Q1[x,y], P2[x,y], · · · , Pk[x,y] is a set of unified paths, which yields
a contradiction to the maximality of the number of nonseparating paths
among the k unified paths. Suppose, to the contrary, there is an i≥2 such
that IQ1 and ∪j �=1,iIPj are in different components of G−V (Pi[x,y]). Then,
all vertices of ∪j �=1,iIPj are in the same component and V (IQ1)∩V (IP1)=∅,
since P1[x,y], P2[x,y], · · · , Pk[x,y] is a set of unified paths. Let D be the
component of H−V (P1) containing V (IQ1). Then, by the definition of H,
D is a component of G−V (P1) different from C and hence N(D)⊆V (P1).
Moreover, again from the fact that P1, . . ., Pk are unified paths while Q1, P2,
· · ·, Pk are not unified paths, it follows that N(D)∩V (IP1)=∅. Consequently,
{x,y} is a cut set separating D, a contradiction to the fact that G is 3-
connected.

The following lemma will be used several times in this paper. We will
not give a proof since it follows directly from the definitions of unified paths
and walks.

Lemma 1.3. Let G be a connected graph and let x and y be two distinct
nonadjacent vertices of G. Then, G contains k unified x−y paths if and only
if G contains k unified x−y walks.

A graph G is said to be unified k−linked if it has at least 2k vertices
and for any choice of distinct s1, s2, . . . ,sk, t1, t2, . . . , tk, G contains vertex
disjoint paths P1[s1, t1],P2[s2, t2], . . . ,Pk[sk, tk] such that all sj (j 
= i) and all
tj (j 
= i) are in the same component of G−V (Pi[si, ti]) for each i (1≤ i≤k).
Bollobás and Thomason [2] proved that every 22k-connected graph is k-
linked. In fact, following their proof, it is easy to show that the following
result is true.

Theorem 2. Let G be a graph with vertex connectivity κ(G)≥22k. Then
G is unified k-linked.

The following results is a consequence of Theorem 2 and Lemma 1.2.
Corollary 3. Let G be a graph with vertex connectivity κ(G) ≥ 22k+ 2.
Then for every two vertices u and v there are k internally vertex disjoint
nonseparating u−v paths P1, . . . ,Pk, that is, α(k)≤22k+2.
Proof. Let u1, . . . ,uk be k neighbors of u and v1, . . . ,vk be k neighbors of v
in G−{u1,u2, . . . ,uk} and let G∗ =G−{u,v}. By Theorem 2 and Lemma 1.2,
G∗ contains k vertex disjoint nonseparating paths P1[u1,v1],. . ., Pk[uk,vk].
Let Pi =uP [ui,vi]v for each i=1,2, . . . ,k.



GRAPH CONNECTIVITY AFTER PATH REMOVAL 189

2. The exact value of α(1),α(2),and α(3)

Let {x,y} be the part of two vertices of a complete bipartite graph K2,n

(n≥3). Clearly, there does not exist a nonseparating x-y path. Thus, α(1)≥
3. As stated earlier, a theorem of Tutte [13] and a result in [3] state that
if G is a 3-connected graph and u and v are two nonadjacent vertices of
G, then there exist two internally vertex disjoint paths P1[u,v] and P2[u,v]
such that G−V (P1[u,v]) and G−V (P2[u,v]) are connected. From which, we
conclude that α(1)=α(2)=3. Since there do not exist three vertex disjoint
nonseparating paths for two nonadjacent vertices on the unbounded face of
a 5-connected plane graph, then α(3)≥ 6. The remainder of this section is
devoted to proving that α(3)≤ 6. Let x and y be two distinct vertices in a
graph G. If x and y are adjacent and G is 3-connected, following the proof
of α(2) = 3 in [3], it is not difficult to show that G contains three unified
x−y paths (one of them is the edge xy). If x and y are not adjacent in G, we
will describe all graphs which do not contain three unified x−y paths. Our
approach is inspired by the following result of Jung and a stronger result
obtained independently by Seymour and Thomassen.

Theorem 4. (Jung [4]) Every 4-connected non-planar graph is 2-linked.

Let G be a graph and let x and y be two nonadjacent vertices of G.
The following definition is from [12]. Let G0 be a plane graph such that the
unbounded face is bounded by a 4-cycle, say S0 =x1x2y1y2x1 and such that
every other face is bounded by a 3-cycle. Suppose in addition that G0 has
no separating 3-cycle (i.e. a 3-cycle which is not a facial cycle). For each
3-cycle S of G0 we add KS , a possibly empty complete graph vertex disjoint
from G0, and we join all vertices of KS to all vertices of S. The resulting
graph is called an (x1,x2,y1,y2)-web with frame S0 and rib G0. If G0 has
more than four vertices, S0 and the rib G0 are uniquely determined, and it
follows from well-known results on planar graphs that G0 (and hence also
G) is 3-connected and that any cut set of three vertices of G0 is of the form
{x1,y1,z} or {x2,y2,z}. A simple argument shows that G does not contain
three internally vertex disjoint nonseparating x1−y1 paths if x1 and y1 are
not adjacent.

Theorem 5. (Seymour [9] and Thomassen [11]) Let x1,x2,y1,y2 be ver-
tices of a graph G. If G has no (x1,x2,y1,y2)−linkage and the addition of
any edge results in a graph containing an (x1,x2,y1,y2)-linkage, then G is
an (x1,x2,y1,y2)-web. Conversely, any (x1,x2,y1,y2)-web is maximal with
respect to the property of not containing an (x1,x2,y1,y2)-linkage.
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In this paper, we obtain a similar characterization for graphs, which do
not contain three unified x-y paths.

Theorem 6. Let x, y be two nonadjacent vertices of a graph G of order
n≥ 4. If G does not contain three unified x− y paths and the addition of
any edge to G results in a graph which has three unified x−y paths, then
there are two vertices u and v such that G is a (x,u,y,v)-web. Conversely,
any (x,u,y,v)-web with x and y nonadjacent is maximal with respect to the
property that the graph does not contain three unified x−y paths.

Proof. To prove the second part of Theorem 6, we consider an (x,u,y,v)-
web G and let w and z be two nonadjacent vertices of G. By Theorem 5,
G∪ {wz} has an (x,u,y,v)-linkage. Let P [x,y] and Q[u,v] be two vertex
disjoint paths. Then P1 =xuy, P2 =P [x,y], and P3 =xvy are three unified
x−y paths. The proof is complete.

The first part of Theorem 6 is proved by induction on the number of
vertices of G. If G has only four vertices, the statement is trivial. Suppose
the result is true for graphs of order less than n (n≥ 5). Let G be a graph
of order n satisfying the conditions of Theorem 6 and hence, G does not
contain three unified x−y paths. We proceed with the following claims.

Claim 2.1. G is 2-connected.

Proof. Suppose z is a cutvertex of G with a,b neighbors of z belonging to
distinct components of G−z. Since G does not contain three unified x−y
paths, adding the edge ab to G does not create three unified x− y paths,
contradicting the edge maximality of G.

Claim 2.2. G is 3-connected.

Proof. To the contrary, let {a,b} be a cutset of G and let G1 and G2 be two
induced subgraphs ofG such that V (G1)∩V (G2)={a,b} and V (G1)∪V (G2)=
V (G).

Suppose {a,b}={x,y}. By the induction hypothesis, Gi is a subgraph of
an (x,ui,y,vi)-web or Gi is a path xviy for each i= 1,2. It is then readily
seen that G∪{v1v2} is a subgraph of an (x,u1,y,u2)-web. Thus, G∪{v1v2}
does not contain three unified x-y paths, a contradiction.

Suppose that {a,b} 
= {x,y}. If both x and y are in G1, the maximality
property of G implies that the edge ab is present and G1 is also edge maximal
with respect to the property of not containing three unified x−y paths. Then,
G1 is an {x,u,y,v}-web. Now clearly, G is a subgraph of a web. Similarly, it is
impossible to have both x, y in G2. Therefore, without loss of generality, we
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assume that x∈V (G1)−{a,b} and y∈V (G2)−{a,b}. Now by the maximality
of G, we can see that both G1 and G2 are complete graphs, which implies
that G is an {x,a,y,b}-web.

Claim 2.3. For every triangle A, each component of G−V (A) intersects
{x,y}.

Proof. To the contrary, assume there is a triangle A such that there is a
component of G−V (A) that fails to intersect {x,y}. Let H be the union
of all such components. Further, select A such that |V (H)| is maximum.
Since xy 
∈E(G), at most one of x and y is on A. If there are two vertices
u,v∈V (H)∪A such that uv 
∈E(G), thenG∪{u,v} contains three unified x−y
paths, implying that G contains three unified x-y paths. Thus, G(V (H)∪A)
is a clique. Moreover it is easy to see that G−V (H) is maximal with respect
to the property of containing no three unified x− y paths. Thus, by the
induction hypothesis, G−V (H) is an (x,u,y,v)-web with rib, say, G0. Let
S be the unique triangle of G0 such that every path from V (H) to {x,y}
intersects S. The maximality of G implies that every vertex of H is joined
to every vertex of S. Thus, A=V (S) and G is an (x,u,y,v)-web.

Claim 2.4. Let A be a set of three vertices in G such that G−A is discon-
nected. Then, each component of G−A intersects {x,y}.

Proof. Suppose, to the contrary, there is a component H of G−A not
intersecting {x,y}. We consider three cases according to the cardinality of
A∩{x,y}.

Case 1. Suppose that |{x,y}∩A|=2.
Let A={x,y,z}. Then, xz∈E(G) (and by a similar argument yz∈E(G)),

for if xz /∈ E(G), G∪{xz} contains three unified x− y paths, P1, P2, P3.
Clearly, one of P1, P2, P3, say P1, contains the edge xz and the other two
paths, P2, P3 must be either both in G−V (H) or G[V (H)∪{x,y}]. Without
loss of generality, say that they both are in G−V (H). Then, xHzP1[z,y],
P2, and P3 are three unified x−y walks in G, a contradiction by Lemma 1.3.

Let G1 =G[V (H)∪A] and G2 =G−V (H). Since both xz, yz are present
in G and G is edge maximal with respect to the property of not containing
three unified x−y paths, both G1 and G2 are also edge maximal with respect
to the same property. By our induction hypothesis, we assume that Gi is
an (x,ui,y,vi)-web for i = 1,2. If z ∈ {u1,v1} and z ∈ {u2,v2}, we assume
z = u1 = u2. Then G is an (x,v1,y,v2)-web. Thus, we can assume that
z /∈ {u1,v1,u2}. Then, xu1y, xv1y, and xu2y form a set of unified paths, a
contradiction completing Case 1.
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We now can assume that at most one of x and y is in A. The subclaim
below is needed in dealing with the following two cases.

Subclaim 2.4.1. For any two vertices a, b∈A−{x,y}, ab∈E(G).

Proof. Assume, to contrary, ab /∈E(G). Then G∪{ab} contains three unified
x−y paths, P1,P2,P3. If ab is on P1, then V (P2∪P3)∩V (H) = ∅. We may
assume a precedes b on P1.

Then, P1[x,a]aHbP1[b,y], P2, P3 are unified x−y walks in G, a contradic-
tion by Lemma 1.3. Thus, ab is not on any of P1,P2,P3. Without loss of gen-
erality, we assume that ab connects two paths P1 and P2 in G∪{ab}−V (P3).
Since |A|= 3 and {a,b}⊂A, we have V (P3)∩V (H) = ∅. So, P1 and P2 are
connected in G−V (P3), a contradiction.

Case 2. Suppose that |A∩{x,y}|=0.
A contradiction follows directly from Claim 2.3 and Subclaim 2.4.1.

Case 3. Suppose that |A∩{x,y}|=1.
Without loss of generality, we assume that A = {x,z1,z2}. By Sub-

claim 2.4.1, z1z2∈E(G). Since G[A] 
=K3, without loss of generality, assume
that xz1 /∈E(G). From the maximality of G, G∗ =G∪{xz1} contains three
unified x−y paths P1,P2,P3. We will show |V (H)|=1 and xz2 /∈E(G).

Note that xz1 must be on one of P1, P2, and P3 since G∪{xz1}−V (Pi)=
G−V (Pi). Without loss of generality, we assume that xz1∈E(P1).

If V (P2∪P3)∩V (H)=∅, then xHz1P1[z1,y], P2, and P3 are three unified
x−y walks in G, a contradiction by Lemma 1.3. Without loss of generality,
we assume V (P2)∩ V (H) 
= ∅. Therefore z2 ∈ V (P2). If xz2 ∈ E(G), then
xHz1P1[z1,y], xz2P2[z2,y], P3 are three unified x− y walks in G, again a
contradiction by Lemma 1.3.

Moreover, we assume that G[V (H) ∪ A] does not contain two paths
Q1[x,z1] and Q2[x,z2] such that V (Q1(x,z1])∩V (Q2(x,z2])=∅. By Menger’s
theorem, G[V (H)∪A] contains a cutvertex w separating x and {z1,z2}. If
|V (H)| ≥ 2, then since G is 3-connected so {x,w} is not a cutset. Then
B= {w,z1,z2} is a cut of G which contains neither x or y, a contradiction
to Case 2. Thus, V (H) = {w}. In particular, we have that x,z1,z2 are all
adjacent to w. Furthermore, by our assumption, xz1 is on P1 and xwz2 is a
segment of P2. For convenience, we let

Q1 = xwz1P1[z1, y], Q2 = P2, Q3 = P3.

We easily see that Q1, xz2Q2[z2,y], Q3 are unified paths in G∪{xz2}.
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Subclaim 2.4.2. Suppose that G contains a path R[x,v] internally disjoint
from Q1, Q2, and Q3 with v(
= w) ∈ V (IQ1), and let Q

′
1 = R[x,v]Q1[v,y].

Suppose further that in G−V (Q
′
1), IQ2 and IQ3 are in the same component.

Then, Q
′
1, Q2, Q3 are unified paths.

Proof. In G−V (Q2) and G−V (Q3), Q1[z1,v) is in the same component as
Q1[v,y). Hence the desired conclusion follows from the fact that P1, P2, and
P3 are unified paths in G∪{xz1}.

Subclaim 2.4.3. There does not exist a path R[x,v] with v(
=w)∈V (IQ1∪
IQ2) and V (R(x,v))∩V (Q1∪Q2∪Q3)=∅.

Proof. Suppose, to then contrary, G contains a path R[x,v] such that
V (R(x,v))∩V (P1∪P2∪P3)=∅ and v(
=w)∈V (IQ1)∪V (IQ2), say v∈V (IQ1).
Let Q∗

1 =R[x,v]Q1[v,y]. To prove Subclaim 2.4.3 we will show that we can
choose R[x,v] such that Q∗

1, Q2,and Q3 are unified x− y paths. By Sub-
claim 2.4.2, we only need to show that IQ2 and IQ3 are in the same compo-
nent in G−V (Q∗

1). To the contrary, assume that IQ2 and IQ3 are in different
components of G−V (Q∗

1). Since Q2 and Q3 are in the same component of
G− V (P1), V (R(x,v)) separates Q2 and Q3 in G− V (P1). In particular,
there are two internally vertex-disjoint paths T2[u2,v2] and T3[v3,u3] with
u2∈V (Q2[z2,y)), u3∈V (Q3(x,y)), v2,v3∈V (R(x,v)), and

V (T2 ∪ T3) ∩ V (Q1 ∪Q2 ∪Q3 ∪R) = ∅.

If v2 ∈ V (R(x,v3)), let Q∗
2 =R[x,v2]T−

2 [v2,u2]Q2[u2,y]. In G−V (Q∗
2), IQ1

and IQ3 are in the same component. By Subclaim 2.4.2, Q1, Q∗
2, and Q3 are

three unified x−y paths, a contradiction. Thus, v2∈V (R[v3,v)).
We choose T2 and T3 so that v3 is as close as possible to v on R. We may

assume we have chosen the path R(x,v) such that |R(v3,v)| is minimum.
We will show that Q3∪R[x,v3)∪IT3 and Q1[z1,y)∪Q2[z2,y)∪R(v3,v)∪IT2

are in different components of G−{y,v3,w}. Thus, {y,v3,w} is a cut of G,
a contradiction since v3w 
∈E(G).

Suppose, to the contrary, there is a path S[u∗,v∗] in G−{y,v3,w} such
that u∗∈V (Q3∪R(x,v3)∪IT3), v∗∈V (Q1[z1,y)∪Q2[z2,y)∪R(v3,v)∪IT2),
and

V (IS) ∩ V (Q1 ∪Q2 ∪Q3 ∪ T2 ∪ T3 ∪R) = ∅.
We will show a contradiction case by case as follows.

Case I. u∗ ∈ V (R[x,v3)). In this case, if v∗ ∈ V (R(v3,v)), path R∗ =
R[x,u∗]S[u∗,v∗]R[v∗,v] will give a contradiction to the minimality of
|V (R(v3,v))|. If v∗∈V (IT2),
let Q∗

2 = R[x,u∗]S[u∗,v∗]T−
2 [v∗,u2]Q2[u2,y]. IQ1 and IQ3 are in the same
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component of G − V (Q∗
2), a contradiction to Subclaim 2.4.2. If v∗ ∈

V (Q1[z1,y)), let Q∗∗
1 = R[x,u∗]S[u∗,v∗]Q1[v∗,y]. In G− V (Q∗∗

1 ), IQ2 and
IQ3 are in the same component, a contradiction to Subclaim 2.4.2. Thus,
v∗∈V (Q2[z2,y)). Let Q∗

2 =R[x,u∗]S[u∗,v∗]Q2[v∗,y]. In G−V (Q∗
2), IQ1 and

IQ3 are in the same component, a contradiction to Subclaim 2.4.2 again.

Case II. u∗ ∈ V (Q3(x,y)). From the minimality of |V (R(v3,v))|, v∗ 
∈
V (R(v3,v)). Since IQ2 and IQ3 are in different components of G−V (Q∗

1)
where Q∗

1 = R[x,v]Q1[v,y], then v∗ 
∈ V (IT2) and v∗ 
∈ V (IQ2). Thus,
v∗ ∈ V (Q1[z1,y)). Let Q∗

2 = R[x,v2]T−[v2,u2]Q2[u2,y]. Then, S connecting
IQ1 and IQ3 in G−V (Q∗

2), a contradiction to Subclaim 2.4.2.

Case III. u∗ ∈ V (IT3). In the same manner as Case 2, we can show that
there is a contradiction.

Let z3 be the successor of x on Q3. Then, by Subclaim 2.4.1, {y,w,z3}
is not a cut, and hence there is a path R1[x,x1] connecting x to a vertex
x1∈V (Q3(z3,y)) which is internally disjoint from Q1∪Q2∪Q3. Pick R1[x,x1]
such that |V (Q3[x,x1])| is maximum with the above property. If Q3(x,x1)
and IQ1∪IQ2 are in the same components of G−V (Q3[x1,y])∪{x}, we stop.
Otherwise, let R2[y1,x2] be a path from y1∈Q3(x,x1) to x2∈Q3(x1,y) which
is internally vertex disjoint from Q3 with |V (Q3[x,x2])| maximum. Suppose
we have constructed Ri[yi−1,xi] for i = 1,2, · · · ,m with yi−1 ∈ Q3(x,xi−1)
and xi ∈ Q3(xi−1,y) and |Q3[x,xi]| maximum, where y0 = x. If Q3(x,xm)
and IQ1∪IQ2 are in the same component of G−V (Q3[xm,y])∪{x}, we stop.
Otherwise by Case 1 there is a path Rm+1[ym,xm+1] from ym∈Q3(x,xm) to
xm+1 ∈Q3(xm,y]. Because G is finite and 3−connected, this process must
stop. So we obtain a set of vertex disjoint paths.

R1[x, x1], R2[y1, x2], R3[y2, x3], · · · , Rk[yk−1, xk], S[yk, v]

satisfying:

1. The endvertices are in the order x,y1,x1,y2,x2,y3,x3, · · · ,yk,xk along the
path Q3 from x to y;

2. Vertex v∈V (IQ1∪IQ2), without loss of generality say v∈V (IQ1).
3. All vertices on these paths are not in V (Q1 ∪Q2) except the vertices x

and v.

We now attempt to revise Q3 to Q∗
3 such that there is a path R[x,v] from

x to v∈IQ1∪IQ2 internally disjoint from Q1, Q2, Q∗
3. By our construction,

Q3[x,xk]∪R1[x,x1]∪·· ·∪Rk[yk,xk] contains two vertex disjoint (except x)
paths X1[x,yk] and X2[x,xk]. Let Q∗

3 =X2[x1,xk]Q3[xk,y]. It is easy to see
that for Q1, Q2, Q∗

3, the deletion of any one path does not separate the



GRAPH CONNECTIVITY AFTER PATH REMOVAL 195

internal parts of the other two. Hence, these paths satisfy the properties of
Q1, Q2, and Q3 from the proceeding paragraph and there is a path R[x,v]
with v ∈ V (IQ1 ∪ IQ2) satisfying V (IR)∩V (IQ1 ∪ IQ2 ∪ IQ3) = ∅, which
contradicts Subclaim 2.4.3.

Let S0 be a smallest cut separating x and y. Clearly, |S0| ≥ 3. By
Menger’s theorem, there are k = |S0| internally vertex disjoint x− y paths
P1, P2, · · · ,Pk. Let S0∩V (Pi)={vi} for each i=1,2, · · · ,k.

For each Pi, let Ri be the subgraph induced by V (Pi) and the components
of G−V (IPi) which do not contain either x or y. Applying Lemma 1.1 on
each Ri, we obtain k internally vertex disjoint x−y paths Q1, Q2, . . ., Qk

such that each component of G−V (∪k
i=1Qi) is adjacent to at least two of

IQ1, IQ2, . . ., IQk. For convenience, we still denote these paths by P1, P2,
. . ., Pk.

Define a graph G on {1,2, . . . ,k} by joining i and j if and only if there ex-
ists a path Q[v,w] with v∈V (IPi) and w∈V (IPj) and V (IQ)∩V (∪k

i=1Pi)=
∅. From the fact that G−{x,y} is connected, it follows that G is connected.
On the other hand, from the assumption that there does not exist a set of
three unified paths, it follows that G is a forest with maximum degree at
most 2. Consequently, G is a path. Relabeling if necessary, we assume that
there does not exist a path Q[wi,wj ] with wi∈V (IPi) and wj ∈V (IPj) and
V (IQ)∩V (∪k

i=1Pi)=∅. In addition, each component C of G−V (∪k
i=1Pi) is

adjacent to exactly two consecutive paths Pj and Pj+1 for some j=1, 2, . . .,
k−1. Thus, V (G−V (∪k

i=1Pi)) can be partitioned into

V1,2, V2,3, · · · , Vk−1,k

such that each component of Vi,i+1 is adjacent to vertices of V (Pi) and
V (Pi+1) in G−{x,y}. Note that some Vi,i+1 may be empty. Under the above
conditions, we assume that

∑ |V (Pi)| is minimum. Then, by the minimality
of

∑ |V (Pi)|, the following holds.

Claim 2.5. Let v ∈ V (IPi) such that N(v)∩V (IPi−1 ∪ IPi+1) 
= ∅. Then
there is no edge in G with one end on Pi(x,v) and the other end on Pi(v,y).

We note that G−S0 consists of exactly two components, since otherwise
there is a component which contains neither x nor y and would thus have
to be adjacent to at least three of the vertices of S0, say vi, vj, vk, i<j<k,
a contradiction. Let Hx be the component of G−S0 containing x and Hy be
the one containing y.

Claim 2.6. Either |V (Hx)|=1 or |V (Hy)|=1 holds.
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Proof. Suppose to the contrary, |V (Hx)| ≥ 2 and |V (Hy)| ≥ 2. Let Gx be
the graph obtained from G by contracting Hy to a vertex y∗and adding the
edge vivi+1 if both vivi+1 /∈E(G) and there is a path connecting Pi[vi,y) and
Pi+1(vi+1,y) or Pi(vi,y) and Pi+1[vi+1,y) which is internally disjoint from
Pi∪Pi+1. We define Gy in the same manner.

Clearly, Gx does not contain three unified x−y∗ paths. By our induction
hypothesis, Gx is a subgraph of an {x,u,y∗,v}-web with rib G0

x. We claim
that Gx is planar.

Otherwise, by the definitions of web and rib, Gx has a cut A of three ver-
tices from the rib G0

x such that the subgraph H induced by the components
of Gx−A with V (H)∩{x,y∗,u,v}=∅, has at least two vertices. Furthermore,
A 
⊇ {x,y∗}. If y∗ /∈A, then A is a cut of G, a contradiction to Claim 2.4.
Thus, y∗∈A. Since G is 3-connected and the neighborhood of y∗ in Gx is S0,
then S0∩V (H) 
=∅. If |S0∩V (H)|=1, then, (A−{y∗})∪(S0∩V (H)) is a cut
of G with three vertices, again a contradiction. Assume that vi, vj ∈V (H)
where 1≤ i<j≤k. Since x /∈V (H), then A={y∗,ui,uj} where ui∈Pi(x,vi)
and uj ∈Pj(x,vj). If i>1, vi−1vi is not present in Gx. There does not exist
a path from Pi−1[vi−1,y) to Pi[vi,y) which is internally vertex disjoint from
Pi−1∪Pi in G. Similarly from above, if j≥ i+2, there does not exist a path
from Pi[vi,y) to Pi+1[vi+1,y) internally disjoint from Pi ∪Pi+1 and there
does not exist a path from Pj−1[vj−1,y) to Pj [vj ,y) internally disjoint from
Pj−1∪Pj. If j<k, there does not exist a path from Pj [vj ,y) to Pj+1[vj+1,y)
which is internally vertex disjoint from Pj ∪Pj+1 in G. Thus, {y, ui, uj} is
a cut of G, a contradiction, and Gx is therefore planar.

Since G is 3-connected, G[IPi∪IPi+1∪Vi,i+1] is connected for each i=1,
2, · · · , k−1. Thus, Gx has a path Ri from si∈Pi(x,vi] to si+1∈Pi+1(x,vi+1]
such that V (Ri(si,si+1)) ⊆ Vi,i+1. Hence, for each plane embedding of Gx,
x, y∗, v1, vk are cofacial and vi, vi+1 are cofacial for each i=1, 2, . . ., k−1.

Similarly, we can show that Gy is a planar graph and for each plane
embedding of Gy, x∗, y, v1, vk are cofacial and vi, vi+1 are cofacial for each
i=1, 2, . . ., k−1. Then, G is a plane graph and has a plane embedding such
that the unbounded face is P1[x,y]P−

k [y,x]. By the maximality of G, we see
that G is a maximal planar graph, and hence, G is a web. Thus, either Hx

or Hy only contains one vertex, completing Claim 2.6.

Without loss of generality, we assume that Hy ={y}. Two vertex disjoint
paths Q[a,b] and R[c,d] with a and c∈V (P1(x,y)) and b and d∈V (P2[x,y))
are called a pair of crossing paths between P1 and P2 if a∈V (P1(x,c)) and
d ∈ V (P2[x,b)) and all internal vertices are in V1,2. Similarly, two vertex
disjoint paths Q[a,b] and R[c,d] are called a pair of crossing paths between
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Pk−1 and Pk if a∈V (Pk−1[x,c)) and d∈V (Pk(x,b)) and all internal vertices
are in Vk−1,k.

Claim 2.7. There do not exist a pair of crossing paths between P1 and P2

and there do not exist a pair of crossing paths between Pk−1 and Pk.

Proof. Suppose, to the contrary, that there are a pair of crossing paths
Q[a,b] and R[c,d] between P1 and P2 such that a ∈ V (P1(x,c)) and d ∈
V (P2(x,b)).

We first show that we can pick two crossing paths Q[a,b] and R[c,d] such
that

N(P2(x, b)) ∩ (V2,3 ∪ V (IP3)) = ∅.
Suppose, to the contrary, there do not exist two such crossing paths. We
assume that |P1[x,a]| + |P2[x,d]| is minimum with the crossing property
described above. The following statements hold:

N(P2(d, b)) ∩ (V2,3 ∪ V (IP3)) = ∅, and either

N(P2(x, d]) ∩ (V2,3 ∪ V (IP3)) = ∅ or N(P2[b, y)) ∩ (V2,3 ∪ V (IP3)) = ∅.
Otherwise, P1[x,a]Q[a,b]P2[b,y], P2[x,d]R−[d,c]P1[c,y], P3 are unified

x−y paths, a contradiction. Thus,

N(P2(b, y)) ∩ (V2,3 ∪ V (IP3)) = ∅.

By Claim 2.5, there is no edge with one end on P1[x,a) and the other end
on P1(a,y] and there is no edge with one end on P2[x,d) and the other end
on P2(d,y]. Since {a,d,y} is not a cut of G, there is a path L[w,w

′
] with

w∈P1[x,a)∪P2[x,d) and w
′ ∈P1(a,y)∪P2(d,y).

Without loss of generality, we assume that w ∈ P2[x,d). If IL ⊆ V2,3,
we get a contradiction to the assumption that N(P2(d,y))∩V2,3 = ∅. Thus,
IL⊆V1,2. Assume first that L does not intersect IQ∪IR. By minimality of
|P1[x,a]|+ |P2[x,d]|, w′ ∈P2(d,y). Since every component of V1,2 is adjacent
to both IP1 and IP2, there is a path L

′
[z

′
z] with z

′ ∈ IL and z ∈ IP1 ∪
IQ∪ IR. By the the minimality of |P1[x,a]|+ |P2[x,d]|, z ∈ Q[a,b). Hence
L[w,z

′
]L

′
joins P2[x,d) and Q[a,b). Assume now that L intersects IQ∪IR.

Let z be the first vertex on L that belongs to IQ∪ IR. Then, z ∈ IQ by
the minimality of |P1[x,a]|+ |P2[x,d]|. Thus in either case, there is a path
S[w,z] with w ∈ P2[x,d) and z ∈Q[a,b). We choose S such that |P2[x,w]|
is minimum. By Claim 2.5, there is no edge with one endvertex in P2[x,w)
and the other one in P2(w,y]. Since P1, P2[x,w]S[w,z]Q−[z,b]P2[b,y],P3 do
not form a set of three unified paths, N(P2(w,d))∩(V2,3∪V (IP3))=∅. From
the minimality of both |P2[x,w]| and |P1[x,a]|+ |P2[x,d]| and the fact that
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every component of V1,2 is adjacent to both IP1 and IP2, there is no path
from P1(a,y)∪P2(w,y) to P1[x,a)∪P2[x,w) with all internal vertices in V1,2.
Recall that N(P2(w,y))∩ (V2,3∪V (IP3)) = ∅. Thus, we see that {y,a,w} is
a cut of G, a contradiction.

We now pick two crossing paths Q[a,b] and R[c,d] between P1 and P2

such that a∈V (P1(x,c)), d∈V (P2(x,b)), and

N(P2(x, b)) ∩ (V2,3 ∪ V (IP3)) = ∅.

Further, |P1[c,y]|+|P2[b,y]| is minimum with respect to the above properties.
In the same manner as the argument above, we can show that N(P2[b,y))∩
(V2,3∪V (IP3))=∅. Thus, N(IP2)∩(V2,3∪V (IP3))=∅, which implies that G
is 2-connected, a contradiction.

Claim 2.8. P1[x,y]=xv1y and P2[x,y]=xv2y.

Proof. Suppose, to the contrary, |V (P1[x,y])|≥4. Let u1 be the predecessor
of v1 along path P1[x,y]. Contracting the edge v1y to a new vertex y∗,
we obtain a new graph G∗. Since G does not contain three unified x− y
paths, G∗ does not contain three unified x− y∗ paths. By the induction
hypothesis, G∗ is a spanning subgraph of an (x,u,y∗,v)-web G∗∗ with rib
G∗

0 say. If G∗∗ − V (G∗
0) has a component KA such that |V (KA)| ≥ 2, let

A=N(KA)∩V (G∗
0). By the definitions of web and rib, we see that |A|= 3

and |A∩{x,y∗}| ≤ 1. Uncontracting y∗, we obtain a cut B of G from A.
Since G does not contain three vertices separating V (KA) from {x,y}, then
|B|=4 and y, v1∈B. Furthermore, if V (KA)∩S0 =∅, then B−{y} is a cut
set of G, a contradiction. Thus, V (KA)∩S0 
=∅.

If vi ∈ V (KA) then there is a ui ∈ V (Pi(x,vi)) such that ui ∈ A. On
the other hand, if there are two distinct vertices vi, vj ∈V (KA), then S0∪
{ui,uj}−{vi,vj} is cut separating x and y. However, S0∪{ui,uj}−{vi,vj}
is neither a neighborhood of x nor a neighborhood y, a contradiction to
Claim 2.6. Thus, |V (KA)∩S0| = 1. Furthermore, V (KA)∩S0 = {v2} since
B−{v1} is not a cut. In particular, we see that in G∗∗−G∗

0, KA is the unique
component which contains at least two vertices. Thus, the resulting graph
G∗ is planar if we contract V (KA) to a vertex. Let B={v1,u2,w,y}, where
u2∈V (P2(x,y)).

Subclaim 2.8.1. If w is adjacent to some vertices in V2,3∪V (IP3), then w
is adjacent to y, which implies that w=v3 and G contains a cycle v1ywu2v1.

Proof. Let H ′ be the subgraph of G induced by B∪V (KA). SinceKA has at
least two vertices, there is no vertex z in H ′ which separates {v1,u2} from
{y,w}, for if this were the case, then either {v1,u2,z} or {y,w,z} would
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separate G, a contradiction. So by Menger’s theorem, H ′ contains paths
R1, R2 connecting {v1,u2} and {y,w}. If R1 is a v1 −w path and R2 is
a u2 − y path, then P1, P2[x,u]R2[u2,y], and P3 are three unified walks, a
contradiction by Lemma 1.3. Thus, R1 is a v1−y path while R2 is a u2−w
path. We claim that the edge e=u2w is present in G. For otherwise we add
this edge to G and obtain a set of three unified x−y paths, L1, L2, L3. If
one of them, say L1, contains u2w, we replace the edge by R2 to obtain a
walk L∗

1 from x to y. It is then readily seen that L∗
1, L2, L3 are unified walks

in G, again a contradiction by Lemma 1.3. Thus, without loss of generality,
we assume that e is a bridge connecting L1 and L2 in G−V (L3). In this
case, we can assume that V (L1 ∪L2 ∪L3)∩V (KA) = ∅. Thus, L1, L2, L3

are unified paths in G, a contradiction. By considering the sets {v1,y} and
{u2,w} instead of {v1,u2} and {y,w}, respectively, we conclude as above
that v1u2 and yw are also present. Hence, G[B] = v1ywu2v1. In particular,
we have shown w=v3, completing Subclaim 2.8.1.

Let G′ denote the graph obtained by contracting KA into a vertex z0.
It is easy to see that G

′
does not contain a set of three unified x−y paths.

By the induction hypothesis, G′ is a spanning subgraph of an (x,u,y,v)-
web G′′ with rib say G′

0. For each vertex z ∈ V (B)∪ {z0}, we note that
G′ contains at least four internally vertex disjoint z−{x,y} paths. Since x
and y are not on a triangle of G′′, B∪{z0}⊆V (G

′
0). Since two consecutive

vertices of the cycle v1ywu2y1 do not separate G, each of the four 3 -cycles
of G′

0 containing z0 are facial cycles of G′
0 and each complete graph of G′′

attached to these 3-cycles empty. Also, by the connectivity properties of G,
each complete graph of G′ attached to any other 3-cycle of G′

0 is empty. So
it follows that G−V (H) has a plane embedding such that x and y lie on the
boundary of the unbounded face and G[B] = v1ywu2v1 is a facial cycle. By
the maximality of G all other facial cycles are 3-cycles.

Now H ′ = G[V (KA) ∪B] has no (u2,v1,y,w)-linkage and is therefore
contained in a (u2,v1,y,w)-web H ′′. By the connectivity property of G it
follows that H ′′ has no separating 3-cycle. Then, H ′′ is planar and G[B] is
the facial cycle of the unbounded face. It follows that G is planar and has a
plane embedding such that x and y are on the boundary of the unbounded
face. By maximality we see that G is an (x,u,y,v)−web for some u and v.
Thus, we can assume that w∈V (IP1∪IP2)∪V1,2 andN(w)∩(V2,3∪V (IP3))=∅.

If w ∈ V (P1(x,v1)), then since {w,u2,y} is not a cut of G, there is a
path R[v∗1 ,u

∗
2] from v∗1 ∈V (P2(w,v1]) to u∗2 ∈V (P1[x,w)∪P2[x,u2)). If u2 ∈

V (P1[x,w)), by the minimality of
∑k

i=1 |V (Pi)|, we see that R[v∗1 ,u
∗
2] is not

an edge. Since every component of V1,2 is adjacent to both paths IP1 and
IP2, we can choose u∗2 ∈ V (P2[x,u2)). Since B = {y,v1,w,u2} is a cut of
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G, R[v∗1 ,u
∗
2]∩V (KA) = ∅ holds. Contracting KA to one vertex, we obtain

a subdivision K3,3 with vertex set {x,v∗1 ,v2} ∪{y,w,u∗2}, which contradicts
the fact that if we contract KA to a vertex in G∗ the resulting graph is a
planar graph. Thus, w /∈V (P1).

By the minimality of
∑k

i=1 |V (Pi)|, if w ∈ V (P2(u2,v2)), then N(w) ∩
V (P2[x,u2))=∅. Since N(w)∩(V2,3∪V (IP3))=∅ and B−{w} is not a cut of
G, there is a path R1[w,u∗1] with u∗1∈V (P1(x,v1)) and such that all vertices
of R1[w,u∗1] (except u∗1) are in V1,2. We pick the path R1[w,u∗1] such that
|V (P1[x,u∗1])| is minimum.

If there is a path R2[w,u∗2] with u∗2∈P2(x,u2), let u∗2 such that |P2[x,u∗2]|
is minimum. Otherwise, let u∗2 = u2. If N(P2(u∗2,y))∩ (V2,3 ∪ V (IP3)) 
= ∅,
then G[B ∪ V (KA)] does not have two vertex disjoint paths X1[w,y] and
X2[v1,u2]. Otherwise, P1, P2[x,u∗2]R−

2 [u∗2,w]X1[w,y], P3 form a set of three
unified x−y paths, a contradiction. In the same manner as before, we see
that G[B] forms a 4-cycle wv1yu2w. In particular, the edge yu2 is present
in G, a contradiction. Hence, N(P2(u∗2,y))∩(V2,3∪V (IP3))=∅.

Since {u∗1,u∗2,y} is not a cut of G, there is a path S[z1,z2] such that
either z1∈P1[x,u∗1) and z2∈P2(u∗2,u2) or z1∈P1(u∗1,v1) and z2∈P2[x,u∗2) .
In either case, we obtain a pair of crossing paths between P1 and P2, which
contradicts Claim 2.7 and completing the proof of Claim 2.8.

Since P1 =xv1y and P2 =xvky, G does not have an (x,v1,y,v2)-linkage.
Otherwise, suppose that there are two vertex disjoint paths Q[x,y] and
R[v1,vk]. It is not difficult to see that P1, Q[x,y], and P3 are three unified
x−y paths, a contradiction. Thus, G is contained in an (x,v1,y,v2)-web by
Thomassen’s theorem. Since G does not contain a three cut separating some
vertices from {x,y}, then G is a planar graph. By maximality, G is a maxi-
mum planar graph so G is an (x,v1,y,v2)-web, a contradiction, completing
the proof.

By Lemma 1.1 and the fact α(2)=3, we obtain the following result.

Corollary 7. Let x, y be two distinct vertices of a 3-connected graph G of
order n≥ 4. If G does not contain three internally vertex disjoint nonsepa-
rating x−y paths and adding any edge to G results in a graph which has
three internally vertex disjoint nonseparating x−y paths, then there are an-
other two vertices u and v such that G is an (x,u,y,v) -web. Conversely, any
(x,u,y,v)-web in which x and y are not adjacent is maximal with respect to
the property of not contain three internal vertex disjoint x−y paths.
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3. The case k=2 of Lovász’s conjecture

The following result will be proved in this section.

Theorem 8. If G is a 5-connected graph, then for every pair of vertices u
and v there exists a u−v path P [u,v] such that G−V (P [u,v]) is 2-connected.

Proof. Suppose, to the contrary, that G−V (P [u,v]) is not 2-connected for
all u-v paths P [u,v]. Let P [u,v] be a u−v path, H=G−V (P [u,v]), and B
be a block of H with the maximum number of vertices.

Let C1, C2, . . . , Cm be the components of H −V (B). Without loss of
generality, we assume that

|V (C1)| ≥ |V (C2)| ≥ . . . ≥ |V (Cm)|.

To reach a contradiction, we suppose that P [u,v] satisfies the following prop-
erties.

1. The number of vertices in the block B is maximum among all possible
u−v paths.

2. The number of vertices in each of the components C1, C2, . . . , Cm is
as large as possible with the larger order components having priority,
that is, we assume that |V (C1)| is as large as possible, then, under this
constraint, |V (C2)| is as large as possible, . . ., |V (Cm)| is as large as
possible if all the above constraints are satisfied.

3. Under both of the above constraints, we assume that |V (P [u,v])| is as
small as possible.

By property 3, we also note that P [u,v] is an induced path. Since B is a
block of H1, we have |N(Cm)∩V (B)|≤1. Let w be the neighbor of Cm in B if
N(Cm)∩V (B) 
=∅. Since G is 5-connected, we see that |N(Cm)∩V (P [u,v])|≥
4. Let x be the first vertex of N(Cm) on P [u,v] along the order of P [u,v]
from u to v and let y be the last vertex of N(Cm) on P [u,v] along the order
of P [u,v] from u to v.

Claim 3.1. There do not exist two independent edges such that each has
one endvertex on P (x,y) and the other endvertex in V (H−{w}∪V (Cm)).

Proof. Suppose, to the contrary, x1y1 and x2y2 are two vertex disjoint paths
with x1, x2 ∈ V (P (x,y)) and y1, y2 ∈ V ((H)−{w}∪V (Cm)). Without loss
of generality, we assume that x1 and x2 occur in that order from x to y
along the subpath of P (x,y). Let xCmy be a path connecting vertices x and
y with all its internal vertices in Cm and Q[u,v] =P [u,x]xCmyP [y,v]. Let
H∗=G−V (Q[u,v]).
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If N(V (P (x,y)) ∩ (∪m−1
i=1 V (Ci)) = ∅, then y1, y2 ∈ V (B). G[V (B) ∪

V (P [x1,x2])] is a 2-connected subgraph, which contradicts the maximality
of |V (B)|. Thus, {y1,y2}∩ (∪m−1

i=1 V (Ci)) 
=∅. Since H−V (Cm)⊆H∗, B is a
2-connected subgraph of H∗ and Ci is connected in H∗ for each i=1, 2, . . .,
m−1. Then, either H∗ has a block larger than B or there is an i such that
H∗−V (B) contains a component larger than Ci and C1, C2, . . ., Ci−1 are
components of H∗−V (B), a contradiction.

By the above Claim, we see that there is a vertex z such that all edges
with one endvertex in P (x,y) and the other one in V (H)−{w}∪V (Cm) must
contain z as an endvertex. Since P [u,v] is an induced path, {x, y, w, z} is
a cut set which separates Cm and B, which contradicts the fact that G is
5-connected.

We proved that β(2)≤5. The complete bipartite graph K3,n shows that
β(2) > 3. Kawarabayashi [5] recently constructed some examples showing
β(2) 
=4. Thus, β(2)=5.
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