On k-Ordered Bipartite Graphs

Jill R. Faudree
University of Alaska Fairbanks
Fairbanks, AK 99775
ffjrf@aurora.uaf.edu

Ronald J. Gould
Emory University
Atlanta, GA 30322
rg@mathcs.emory.edu

Florian Pfender
Emory University
Atlanta, GA 30322
fpfende@mathcs.emory.edu

Allison Wolf
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332
awolf@cc.gatech.edu

Submitted: Oct 30, 2001; Accepted: Mar 26, 2003; Published: Apr 15, 2003
MSC Subject Classifications: 05C35, 05C45

Abstract

In 1997, Ng and Schultz introduced the idea of cycle orderability. For a positive integer k, a graph G is k-ordered if for every ordered sequence of k vertices, there is a cycle that encounters the vertices of the sequence in the given order. If the cycle is also a hamiltonian cycle, then G is said to be k-ordered hamiltonian. We give minimum degree conditions and sum of degree conditions for nonadjacent vertices that imply a balanced bipartite graph to be k-ordered hamiltonian. For example, let G be a balanced bipartite graph on $2 n$ vertices, n sufficiently large. We show that for any positive integer k, if the minimum degree of G is at least $(2 n+k-1) / 4$, then G is k-ordered hamiltonian.

1 Introduction

Over the years, hamiltonian graphs have been widely studied. A variety of related properties have also been considered. Some of the properties are weaker, for example traceability in graphs, while others are stronger, for example hamiltonian connectedness. Recently a new strong hamiltonian property was introduced in [3].

We say a graph G on n vertices, $n \geq 3$, is k-ordered for an integer $k, 1 \leq k \leq n$, if for every sequence $S=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of k distinct vertices in G there exists a cycle that contains all the vertices of S in the designated order. A graph is k-ordered hamiltonian if for every sequence S of k vertices there exists a hamiltonian cycle which encounters the vertices in S in the designated order. We will always let $S=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ denote the ordered k-set. If we say a cycle C contains S, we mean C contains S in the designated
order under some orientation. The neighborhood of a vertex v will be denoted by $N(v)$, the degree of v by $d(v)$, the degree of v to a subgraph H by $d_{H}(v)$, and the minimum degree of a graph G by $\delta(G)$. A graph on n vertices is said to be k-linked if $n \geq 2 k$ and for every set $\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right\}$ of $2 k$ distinct vertices there are vertex disjoint paths P_{1}, \ldots, P_{k} such that P_{i} joins x_{i} to y_{i} for all $i \in\{1, \ldots, k\}$. Clearly, a k-linked graph is also k-ordered.

In the process of finding bounds implying a graph to be k-ordered hamiltonian, Ng and Schultz [3] showed the following:

Proposition 1. [3] Let G be a hamiltonian graph on n vertices, $n \geq 3$. If G is k-ordered, $3 \leq k \leq n$, then G is $(k-1)$-connected.

Theorem 2. [3] Let G be a graph of order $n \geq 3$ and let k be an integer with $3 \leq k \leq n$. If

$$
d(x)+d(y) \geq n+2 k-6
$$

for every pair x, y of nonadjacent vertices of G, then G is k-ordered hamiltonian.
Faudree et al.[4] improved the last bound as follows.
Theorem 3. [4] Let G be a graph of sufficiently large order n. Let $k \geq 3$. If

$$
\delta(G) \geq \begin{cases}\frac{n+k-3}{2}, & \text { if } k \text { is odd } \\ \frac{n+k-2}{2}, & \text { if } k \text { is even }\end{cases}
$$

then G is k-ordered hamiltonian.
Theorem 4. [4] Let G be a graph of sufficiently large order n. Let $k \geq 3$. If for any two nonadjacent vertices x and y,

$$
d(x)+d(y) \geq n+\frac{3 k-9}{2}
$$

then G is k-ordered hamiltonian.
Theorem 5. [4] Let k be an integer, $k \geq 2$. Let G be a $(k+1)$-connected graph of sufficiently large order n. If

$$
|N(x) \cup N(y)| \geq \frac{n+k}{2}
$$

for all pairs of distinct vertices $x, y \in V(G)$, then G is k-ordered hamiltonian.
Much like results for hamiltonicity, smaller bounds are possible if we restrict G to be a balanced bipartite graph. In fact, we get the following results:

Theorem 6. Let $G(A \cup B, E)$ be a balanced bipartite graph of order $2 n \geq 618$. Let $3 \leq k \leq \frac{n}{103}$. If $\delta(G) \geq 4 k-1$ and for any two nonadjacent vertices $x \in A$ and $y \in B$, $d(x)+d(y) \geq n+\frac{k-1}{2}$, then G is k-ordered hamiltonian.

The bound on the degree sum is sharp, as will be shown later with an example. The upper bound on k comes out of the proof, the correct bound should be a lot larger and possibly as large as $n / 4$.

Corollary 7. Let G be a balanced bipartite graph of order $2 n \geq 618$. Let $3 \leq k \leq \frac{n}{103}$. If

$$
\delta(G) \geq \frac{2 n+k-1}{4}
$$

then G is k-ordered hamiltonian.
Theorem 8. Let $G(A \cup B, E)$ be a balanced bipartite graph of order $2 n \geq 618$. Let $3 \leq k \leq$ $\min \left\{\frac{n}{103}, \frac{\sqrt{n}}{4}\right\}$. If for any two nonadjacent vertices $x \in A$ and $y \in B, d(x)+d(y) \geq n+k-2$, then G is k-ordered hamiltonian.

The last bound is sharp, as the following graph G shows:
Let the vertex set $V:=A_{1} \cup A_{2} \cup B_{1} \cup B_{2} \cup B_{3}$, with $\left|A_{1}\right|=\left|B_{1}\right|=k / 2,\left|B_{2}\right|=k-1$, $\left|A_{2}\right|=n-k / 2,\left|B_{3}\right|=n-3 k / 2+1$. Let the edge set consist of all edges between A_{1} and B_{1} minus a k-cycle, all edges between A_{1} and B_{2}, and all edges between A_{2} and the B_{i} for $i \in\{1,2,3\}$. Then G has minimum degree $\delta(G)=3 k / 2-3$, minimal degree sum $n+k-3$, and G is not k-ordered, as there is no cycle containing the vertices of $A_{1} \cup B_{1}$ in the same order as the cycle whose edges were removed between A_{1} and B_{1}. This example further suggests the following conjecture, strengthening Theorem 6 to a sharp result:

Conjecture 9. Let $G(A \cup B, E)$ be a balanced bipartite graph of order $2 n$. Let $k \geq 3$. If $\delta(G) \geq \frac{3 k-1}{2}-2$ and for any two nonadjacent vertices $x \in A$ and $y \in B, d(x)+d(y) \geq$ $n+\frac{k-1}{2}$, then G is k-ordered hamiltonian.

In some of the proofs the following theorem of Bollobás and Thomason[1] comes in handy.

Theorem 10. [1] Every $22 k$-connected graph is k-linked.

2 Proofs

In this section we will prove Theorem 6 and Theorem 8.
From now on, A and B will always be the partite sets of the balanced bipartite graph G, and for a subgraph $H \subset G, H^{A}:=H \cap A$ and $H^{B}:=H \cap B$ will be its corresponding parts.

The following result and its corollary, which give sufficient conditions for k-ordered to imply k-ordered hamiltonian, will make the proofs easier.
Theorem 11. Let $k \geq 3$ and let $G(A \cup B, E)$ be a balanced bipartite, k-ordered graph of order $2 n$. If for every pair of nonadjacent vertices $x \in A$ and $y \in B$

$$
d(x)+d(y) \geq n+\frac{k-1}{2}
$$

then G is k-ordered hamiltonian.

Proof: Let $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ be an ordered subset of the vertices of G. Let C be a cycle of maximum order $2 c$ containing all vertices of S in appropriate order. Let $L:=G-C$. Notice that L is balanced bipartite, since C is. Let $l:=|L| / 2=\left|L^{A}\right|=\left|L^{B}\right|$.

Claim 1. Either L is connected or L consists of the union of two complete balanced bipartite graphs.

To prove the claim, it suffices to show that $d_{L}(u)+d_{L}(v) \geq l$ for all nonadjacent pairs $u \in L^{A}, v \in L^{B}$. Suppose the contrary, that is, there are two such vertices u, v with $d_{L}(u)+d_{L}(v)<l$. Since $d(u)+d(v) \geq n+(k-1) / 2$, it follows that $d_{C}(u)+d_{C}(v) \geq$ $c+(k+1) / 2$. There are no common neighbors of u and v on C, hence there are at least $k+1$ edges on C with both endvertices adjacent to $\{u, v\}$. Fix a direction on C. Say there are r edges on C directed from a u-neighbor to a v-neighbor, and t edges from a v-neighbor to a u-neighbor. Without loss of generality, let $r \geq t$. On C, between any two of the $r \geq(k+1) / 2$ edges of that type, there have to be at least two vertices of S, else C could be enlarged (see Figure 1). Thus $|S| \geq k+1$, a contradiction, which proves the claim.

Figure 1:

In particular, the claim shows that there are no isolated vertices in L and that all of L 's components are balanced.

Suppose $l \geq 1$. Let L_{1} be a component of $L, L_{2}:=L-L_{1}, l_{1}:=\left|L_{1}\right| / 2$, and $l_{2}:=\left|L_{2}\right| / 2$. The k vertices of S split the cycle C into k intervals: $\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right], \ldots$, $\left[x_{k}, x_{1}\right]$. Assume there are vertices $x, y \in L_{1}(x=y$ is possible) with distinct neighbors in one of the intervals of C determined by S, say $\left[x_{i}, x_{i+1}\right]$. Let z_{1} and z_{2} be the immediate successor and predecessor on C to the neighbors of x and y respectively according to the orientation of C. Observe that we can choose x and y and their neighbors in C such that none of the vertices on the interval $\left[z_{1}, z_{2}\right]$ have neighbors in L_{1}. We can also assume that $z_{1} \neq z_{2}$, otherwise $x=y$ by the maximality of C, and bypassing z_{1} through x would lead to a cycle of the same order, but the new outside component $L_{1}-x$ would not be balanced, a contradiction to claim 1 . Let z be either z_{2} or its immediate predecessor such that z_{1} and z are from different parts. Since x and y are in the same component of L, there is an x, y-path through L. Let \bar{y} be either y or its immediate predecessor on the path such that x and \bar{y} are from different parts. If $x=y$, let \bar{y} be any neighbor of x in L. Let R be the path on C from z_{1} to z_{2} and $r:=|R|$. Since C is maximal, the x, \bar{y}-path
can't be inserted, and since neither x nor \bar{y} have neighbors on R,

$$
d(x)+d(\bar{y}) \leq 2 l_{1}+\frac{2 c-r+1}{2} .
$$

Further, the z_{1}, z-path can't be inserted anywhere on $C-R$, else C could be enlarged by inserting it and going through L instead (or in the case $x=y$ we would get a same length cycle with unbalanced outside components). Since z_{1} and z have no neighbors in L_{1}, we get

$$
d\left(z_{1}\right)+d(z) \leq 2 l_{2}+r+\frac{2 c-r+1}{2} .
$$

Hence

$$
d(x)+d(\bar{y})+d\left(z_{1}\right)+d(z) \leq 2 l_{2}+2 l_{1}+2 c+1=2 n+1,
$$

which contradicts (with $k \geq 3$) that

$$
d(x)+d(z) \geq n+\frac{k-1}{2}
$$

and

$$
d(\bar{y})+d\left(z_{1}\right) \geq n+\frac{k-1}{2} .
$$

Thus, there is no interval $\left[x_{i}, x_{i+1}\right]$ with two independent edges to L_{1}. By Proposition 1, G is $(k-1)$-connected, thus all but possibly one of the segments $\left(x_{i}, x_{i+1}\right)$ have exactly one vertex with a neighbor in L_{1}.

Since $\left|N_{C}\left(L_{1}\right)\right| \leq k$, we assume without loss of generality that $\left|N_{C}\left(L_{1}^{B}\right)\right| \leq k / 2$. Let $x \in L_{1}^{B}$ and let $\left|N_{C}(x)\right|=d \leq k / 2$. Thus, for every $v \in C$ that is not adjacent to L_{1} the degree sum condition implies:

$$
d(v) \geq n+\frac{k-1}{2}-\left(l_{1}+d\right)=c+l_{2}+\left(\frac{k}{2}-d-\frac{1}{2}\right) .
$$

On the other hand, we know $d(v) \leq c+l_{2}-1$. Thus, $d \geq 2$. Now we have shown that $N_{L_{1}}(C)$ includes vertices from both L_{1}^{A} and L_{1}^{B}. So, without loss of generality, assume L_{1} has neighbors y and z in $\left(x_{1} \ldots x_{2}\right)$ and $\left(x_{2} \ldots x_{3}\right)$ respectively and such that y and z are in different partite sets.

Let y, z be the unique vertices in $\left(x_{1}, x_{2}\right)$ and $\left(x_{2}, x_{3}\right)$ respectively, which have neighbors in L_{1}. Since the successors of y and z are from different parts and not adjacent to L_{1}, they must be adjacent to each other. But now C can be extended, which is a contradiction.
This proves that L has to be empty. Therefore C is hamiltonian.
An immediate Corollary to Theorem 11 is the following:
Corollary 12. Let $k \geq 3$ and let G be a k-ordered balanced bipartite graph of order $2 n$. If $\delta(G) \geq \frac{n}{2}+\frac{k-1}{4}$, then G is k-ordered hamiltonian.

To see that these bounds are sharp, consider the following graph $G(A \cup B, E)$:

$$
A:=A_{1} \cup A_{2}, B:=B_{1} \cup B_{2}
$$

with

$$
\begin{gathered}
\left|A_{1}\right|=\left|B_{1}\right|=\left\lceil\frac{n}{2}+\frac{k-1}{4}\right\rceil-1, \\
\left|A_{2}\right|=\left|B_{2}\right|=n-\left|A_{1}\right|,
\end{gathered}
$$

and

$$
E:=\left\{a b \mid a \in A_{1}, b \in B\right\} \cup\left\{a b \mid a \in A, b \in B_{1}\right\} .
$$

For n sufficiently large, G is obviously a k-connected, k-ordered, and balanced bipartite graph. The minimum degree is $\delta(G)=d(v)=\left|A_{1}\right|$ for any vertex $v \in B_{2} \cup A_{2}$, thus the minimum degree condition is just missed. But G is not k-ordered hamiltonian, for if we consider $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\},\left\{x_{1}, x_{3}, \ldots\right\} \subseteq A_{2},\left\{x_{2}, x_{4}, \ldots\right\} \subseteq B_{2}$. Let C be a cycle that picks up S in the designated order. Then $C \cap\left(A_{1} \cup B_{2}\right)$ consists of at least $\lfloor k / 2\rfloor$ paths, all of which start and end in A_{1}. Therefore $\left|C \cap A_{1}\right| \geq\left|C \cap B_{2}\right|+(k-1) / 2$. If C was hamiltonian, it would follow that $\left|A_{1}\right| \geq\left|B_{2}\right|+(k-1) / 2$, which is not true.

The following easy lemmas will be useful.
Lemma 13. Let G be a graph, let $k \geq 1$ be an integer and let $v \in V(G)$ with $d(v) \geq 2 k-1$ for some k. If $G-v$ is k-linked, then G is k-linked.

Proof: This is an easy exercise.

Lemma 14. Let G be a $2 k$-connected graph with a k-linked subgraph $H \subset G$. Then G is k-linked.

Proof: Let $S:=\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right\}$ be a set of $2 k$ vertices in G, not necessarily disjoint from H. Since G is $2 k$-connected, there are $2 k$ disjoint paths from S to H, including the possibility of one-vertex paths. Since H is k-linked, those paths can be joined in a way that k paths arise which connect x_{i} with y_{i} for $1 \leq i \leq k$.

Lemma 15. Let $k \geq 1$. Let $G(A \cup B, E)$ be a bipartite graph with $d(v) \geq \frac{|B|}{2}+\frac{3 k}{2}$ for all $v \in A$, and $d(w) \geq 2 k$ for all $w \in B$. Then G is k-linked.

Proof: Let $S:=\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right\}$ be a set of $2 k$ vertices in G. Pick a set $S^{\prime}:=\left\{x_{1}^{\prime}, \ldots, x_{k}^{\prime}, y_{1}^{\prime}, \ldots, y_{k}^{\prime}\right\} \subset A$ as follows: If $x_{i} \in A$ set $x_{i}^{\prime}=x_{i}$. Otherwise let x_{i}^{\prime} be a neighbor of x_{i} not in S. Similarly pick the y_{i}^{\prime}. It is possible to pick $2 k$ different vertices for S^{\prime} since $d(w) \geq 2 k$ for all $w \in B$.

Now find disjoint paths of length 2 between x_{i}^{\prime} and y_{i}^{\prime} avoiding all the other vertices of S for $1 \leq i \leq k$. This is possible since $\left|N\left(x_{i}^{\prime}\right) \cap N\left(y_{i}^{\prime}\right)\right| \geq d\left(x_{i}^{\prime}\right)+d\left(y_{i}^{\prime}\right)-|B| \geq 3 k$.

Proof of Theorem 6: By Theorem 11, it suffices to show that G is k-ordered.
Let K be a minimal cutset. If $|K| \geq 22 k$, then G is k-linked by Theorem 10. Therefore it is k-ordered. Assume now that $|K|<22 k$. We have to deal with two cases.

Case 1. There is an isolated vertex $v \in G-K$.
Since $|K|=|N(v)| \geq \delta(G) \geq 4 k-1, G$ is $2 k$-connected, thus by Lemma 14 it suffices to find a k-linked subgraph. Without loss of generality, let $v \in B$. Let $R=G-K-v$. Then $d(w)>n-22 k$ for all $w \in R^{A}$. So there are at least $(n-22 k)^{2}$ edges in R, resulting in less than $23 k$ vertices $u \in R^{B}$ with $d_{R}(u)<2 k$. Let H be the subgraph of R induced by R^{A} and the vertices of R^{B} with $d_{R}(u) \geq 2 k$. For $w \in R^{A}$, we have $d_{H}(w) \geq n-45 k \geq \frac{\left|H^{B}\right|}{2}+\frac{3 k}{2}$, since $n>100 k$. By Lemma $15, H$ is k-linked.
Case 2. There are no isolated vertices in $G-K$.
First, observe that $G-K$ has exactly two components. Otherwise, for the three components C_{1}, C_{2}, C_{3} choose vertices $v_{i} \in C_{i}^{A}, w_{i} \in C_{i}^{B}, 1 \leq i \leq 3$.
Then we can bound their degree sum as follows:

$$
\begin{aligned}
2 n+2|K| & \geq\left(\left|C_{1}\right|+|K|\right)+\left(\left|C_{2}\right|+|K|\right)+\left(\left|C_{3}\right|+|K|\right) \\
& \geq\left(d\left(v_{1}\right)+d\left(w_{1}\right)\right)+\left(d\left(v_{2}\right)+d\left(w_{2}\right)\right)+\left(d\left(v_{3}\right)+d\left(w_{3}\right)\right) \\
& =\left(d\left(v_{1}\right)+d\left(w_{2}\right)\right)+\left(d\left(v_{2}\right)+d\left(w_{3}\right)\right)+\left(d\left(v_{3}\right)+d\left(w_{1}\right)\right) \\
& \geq 3\left(n+\frac{k-1}{2}\right),
\end{aligned}
$$

a contradiction.
Call the two components L and R. Without loss of generality, let $|R| \geq|L|$ and $\left|L^{A}\right| \geq\left|L^{B}\right|$. Let $v \in L^{A}, w \in L^{B}, x \in R^{A}, y \in R^{B}$. Then

$$
\begin{gathered}
\left|L^{A}\right|+\left|R^{A}\right|+\left|K^{A}\right|=\left|L^{B}\right|+\left|R^{B}\right|+\left|K^{B}\right|=n \\
\left|L^{B}\right|+\left|R^{A}\right|+|K| \geq d(w)+d(x) \geq n+\frac{k-1}{2} \\
\left|L^{A}\right|+\left|R^{B}\right|+|K| \geq d(v)+d(y) \geq n+\frac{k-1}{2}
\end{gathered}
$$

Thus, the inequalities above imply the parts of the components are of similar size:

$$
\begin{aligned}
\left|L^{A}\right|-\left|L^{B}\right| & \leq\left|K^{B}\right|-\frac{k-1}{2} \\
\left|R^{A}\right|-\left|R^{B}\right| & \leq\left|K^{B}\right|-\frac{k-1}{2} \\
\left|R^{B}\right|-\left|R^{A}\right| & \leq\left|K^{A}\right|-\frac{k-1}{2}
\end{aligned}
$$

Further, we get the following bounds for the degrees inside the components:

$$
\begin{aligned}
d_{R}(y) & \geq n+\frac{k-1}{2}-d(v)-\left|K^{A}\right| \\
& \geq n+\frac{k-1}{2}-\left|L^{B}\right|-\left|K^{B}\right|-\left|K^{A}\right| \\
& =\left|R^{B}\right|-\left(\left|K^{A}\right|-\frac{k-1}{2}\right), \\
d_{R}(x) & \geq\left|R^{A}\right|-\left(\left|K^{B}\right|-\frac{k-1}{2}\right), \\
d_{L}(w) & \geq\left|L^{B}\right|-\left(\left|K^{A}\right|-\frac{k-1}{2}\right), \\
d_{L}(v) & \geq\left|L^{A}\right|-\left(\left|K^{B}\right|-\frac{k-1}{2}\right) .
\end{aligned}
$$

Claim 1. R is k-linked.
By symmetry of the argument, we may assume that $\left|R^{B}\right| \geq\left|R^{A}\right|$, thus

$$
\left|R^{B}\right| \geq \frac{|R|}{2} \geq \frac{2 n-|K|-|L|}{2} \geq \frac{n}{2}-\frac{|K|}{4} .
$$

Now,

$$
\begin{aligned}
d_{R}(y) & \geq\left|R^{B}\right|-\left(\left|K^{A}\right|-\frac{k-1}{2}\right) \geq \frac{\left|R^{A}\right|}{2}+\frac{\left|R^{B}\right|}{2}-|K|+\frac{k-1}{2} \\
& \geq \frac{\left|R^{A}\right|}{2}+\frac{n}{4}-\frac{9|K|}{8}+\frac{k-1}{2} \geq \frac{\left|R^{A}\right|}{2}+\frac{103 k}{4}-\frac{9(22 k-1)}{8}+\frac{k-1}{2} \\
& >\frac{\left|R^{A}\right|}{2}+\frac{3 k}{2} .
\end{aligned}
$$

Further,

$$
d_{R}(x) \geq\left|R^{A}\right|-\left(\left|K^{B}\right|-\frac{k-1}{2}\right) \geq\left|R^{B}\right|-|K|+\frac{k-1}{2}>2 k .
$$

Hence, the conditions of Lemma 15 are satisfied for R, and R is k-linked.
If $|K| \geq 2 k$, then G is k-linked by Lemma 14 and we are done. So assume from now on $|K|<2 k$.

Claim 2. L is k-linked.
If $|L|>n-2 k$, the proof is similar to the last case:

$$
d_{L}(v) \geq\left|L^{A}\right|-\left|K^{B}\right|+\frac{k-1}{2}>\frac{\left|L^{B}\right|}{2}+\frac{n-2 k}{4}-2 k+\frac{k-1}{2}>\frac{\left|L^{B}\right|}{2}+\frac{3 k}{2},
$$

and

$$
d_{L}(w) \geq\left|L^{A}\right|-\left(\left|K^{B}\right|-\frac{k-1}{2}\right)>\left|L^{B}\right|-|K|>2 k .
$$

Applying Lemma 15 to L gives the result.
If $|L| \leq n-2 k, L$ is complete bipartite from the degree sum condition. Further, $\left|L^{A}\right| \geq\left|L^{B}\right| \geq d(v)-\left|K^{B}\right| \geq 2 k$ from the minimum degree condition, hence L is k-linked. \diamond

Let $S:=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a set in $V(G)$. We want to find a cycle passing through S in the prescribed order. Note that the minimum degree condition forces $|R| \geq|L| \geq|K|$. Assume $|K|=\kappa(G)=k+t$ where $t \geq-1$. Using the fact that K is a minimal cut set, by Hall's Theorem (see for instance [2]) there is a matching of K into L and respectively K into R, which together produce $k+t$ pairwise disjoint P_{3} 's. Of all such matchings, pick one on either side with the fewest intersections with the set S.

Observe that a vertex $s \in K^{B}$ is either adjacent to every vertex of L^{A} or $d(s)>n / 4$. Otherwise there would be a vertex $v \in L^{A}$ not connected to s, and $d(v)+d(s) \leq\left|L^{B}\right|+$ $\left|K^{B}\right|+n / 4 \leq n / 2-k+2 k+n / 4$, a contradiction. A similar argument shows that the analog statement is true for $s \in K^{A}$, since $\left|L^{A}\right|$ and $\left|L^{B}\right|$ differ by less than $|K|<2 k$. Hence, each vertex $s \in K$ has large degree to at least one of L or R, in fact large enough that either $(L \cup\{s\})$ or $(R \cup\{s\})$ is k-linked.

Assign every vertex of K one by one to either L or R such that the new subgraphs \bar{L} and \bar{R} are still k-linked, applying Lemma 13 repeatedly. Left over from the P_{3} 's is now one matching with $k+t$ edges between \bar{L} and \bar{R}. We call an edge of this matching a double if both its endvertices are in S and a single if exactly one endvertex is in S. If an edge is disjoint from S, we call it free.

We claim that the number of doubles is at most t if k is even and at most $t+1$ if k is odd. Let l^{A} (and respectively r^{A}) be the number of doubles which are edges between L^{A} and K^{B} (respectively between R^{A} and K^{B}). Define l^{B} and r^{B} similarly. Note that this means $d:=l^{A}+l^{B}+r^{A}+r^{B}$ is the number of doubles. Let $v \in L^{A}-S, w \in L^{B}-S, x \in R^{A}-S$ and $y \in R^{B}-S$ such that none of those vertices are on an edge of the matching (this is possible since $\left|L^{A}\right|-\left|K^{B}\right| \geq 2 k,\left|L^{B}\right|-\left|K^{A}\right| \geq 2 k$ from the minimum degree condition). Then

$$
2 n+2\left\lceil\frac{k-1}{2}\right\rceil \leq d(v)+d(w)+d(x)+d(y) \leq 2 n+k+t-l^{A}-l^{B}-r^{A}-r^{B}
$$

If $d \geq t+1$ for k even or $t+2$ for k odd, we obtain a contradiction to the above inequality.
Let c be the number of elements of S that are not vertices on any of the $k+t$ edges of the matching. Then $t+d+c$ of the edges are free. We are now prepared to construct the cycle containing the set $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ by constructing a set of disjoint x_{i}, x_{i+1}-paths, using that \bar{L} and \bar{R} are k-linked. Note that in constructing each x_{i}, x_{i+1}-path, using a free edge is only necessary if (1) x_{i} is not on a single and (2) x_{i} and x_{i+1} are on different sides. If k is even, these two conditions can occur at most $2 d+c$ times. If k is odd, these two conditions can occur at most $2 d-1+c$ times (because of the parity, condition 2 cannot occur for every vertex). But neither ever exceeds $t+d+c$, the number of free edges. Hence, we may form a cycle containing the elements of S in the appropriate order.

Proof of Theorem 8: By Theorem 11 it suffices to show that G is k-ordered.
If the minimum degree $\delta(G) \geq 4 k-1$, then we are done by Theorem 6 . Thus, suppose that $s \in A$ is a vertex with $d(s)<4 k-1$. Let R be the induced subgraph of G on the following vertex set:

$$
\begin{gathered}
R^{B}:=\{v \in B: s v \notin E\}, \\
R^{A}:=\left\{w \in A: d_{R^{B}} \geq 2 k\right\} .
\end{gathered}
$$

The degree sum condition guarantees $d(v) \geq n-3 k$ for all $v \in R^{B}$. Further, $\left|R^{B}\right|=$ $n-d(s) \geq n-4 k+2$. It is easy to see that $\left|R^{A}\right|>n-4 k$ and that all the conditions for Lemma 15 are satisfied. Hence, R is k-linked.

Let H be the biggest k-linked subgraph of G. If $G=H$, we are done. Otherwise, let $L:=G-H$. The size of L is $|L|=2 n-|H| \leq 2 n-|R| \leq 8 k$. Observe that no vertex $v \in L$ has $d_{H}(v)>2 k-2$, otherwise $V(H) \cup\{v\}$ would induce a bigger k-linked subgraph by Lemma 13. Hence, no vertex in L has degree greater than $10 k$, and therefore, L is complete bipartite.

Define

$$
\alpha:=\min \left\{\left\{d_{H}(v) \mid v \in L^{A}\right\} \cup\{2 k\}\right\}
$$

$$
\beta:=\min \left\{\left\{d_{H}(v) \mid v \in L^{B}\right\} \cup\{2 k\}\right\}
$$

Since L is small, there are vertices $x \in H^{A}, y \in H^{B}$, with $N(x) \cup N(y) \subset H$. If $L^{A}=\emptyset$, then $\alpha=2 k$, and if $L^{B}=\emptyset$, then $\beta=2 k$. Either way, we get $\alpha+\beta \geq 2 k$.

Now assume that $L^{A} \neq \emptyset$ and $L^{B} \neq \emptyset$. Let $v \in L^{A}$ such that $d_{H}(v)=\alpha$. Then

$$
n+k-2 \leq d(v)+d(y) \leq d(v)+\left|H^{A}\right|=d(v)+n-\left|L^{A}\right|
$$

Thus, $d(v) \geq\left|L^{A}\right|+k-2$, and

$$
\left|L^{B}\right|+\alpha=d(v) \geq\left|L^{A}\right|+k-2
$$

Analogously, let $w \in L^{B}$ with $d_{H}(w)=\beta$, then

$$
n+k-2 \leq d(w)+d(x) \leq d(w)+\left|H^{B}\right|=d(w)+n-\left|L^{B}\right|
$$

and thus $d(w) \geq\left|L^{B}\right|+k-2$ and

$$
\left|L^{A}\right|+\beta=d(w) \geq\left|L^{B}\right|+k-2
$$

Therefore,

$$
\alpha+\beta \geq 2 k-4
$$

Let $S:=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a set in $V(G)$. From now on, all the indices are modulo k. To build the cycle, we need to find paths from x_{i} to x_{i+1} for all $1 \leq i \leq k$.

If x_{i} and x_{i+1} are neighbors, just use the connecting edge as path. Now, for all other $x_{i} \in L$ we find two neighbors y_{i} and z_{i} not in S. If x_{i} and x_{i+i} have a common neighbor v which is not already used, set $z_{i}=y_{i+1}=v$. Afterwards, we can find distinct y_{i} and z_{i} by the following count: Suppose $x_{i} \in L^{A}$, so we need to find $y_{i}, z_{i} \in N\left(x_{i}\right)-U_{i}$, where

$$
U_{i}:=N\left(x_{i}\right) \cap\left\{\left\{x_{j}, y_{j}, z_{j}:|i-j|>1\right\} \cup\left\{z_{i+1}, y_{i-1}\right\}\right\} .
$$

For every $x_{j} \in L^{A},|i-j|>1$, there can be at most two vertices in U_{i}. For $x_{j} \in L^{A},|i-j|=$ 1 , there can be at most one vertex in U_{i}. For $x_{j} \in B,|i-j|>1$, there can be at most one vertex in U_{i}. Hence,

$$
\left|U_{i}\right| \leq 2\left|L^{A} \cap S-\left\{x_{i-1}, x_{i}, x_{i+1}\right\}\right|+2+\left|B \cap S-\left\{x_{i-1}, x_{i}, x_{i+1}\right\}\right| \leq\left|L^{A}\right|+k-4,
$$

and since $d\left(x_{i}\right) \geq\left|L^{A}\right|+k-2$, we can pick y_{i} and z_{i}.
Try to choose as few y_{i}, z_{i} out of L as possible (i.e. pick as many as possible in H). Now for all y_{i}, z_{j}, where $y_{i} \neq z_{i-1}, z_{j} \neq y_{j+1}$, choose vertices y_{i}^{\prime}, $z_{i}^{\prime} \in H$ as follows: If $y_{i} \in H$, let $y_{i}^{\prime}=y_{i}$, if $z_{i} \in H$, let $z_{i}^{\prime}=z_{i}$. Otherwise, let y_{i}^{\prime} be a neighbor of y_{i} in H, and let z_{i}^{\prime} be a neighbor of z_{i} in H, which is not already used. We need to check if there is a vertex in $N\left(y_{i}\right) \cap H$ available.

Let $O_{i}=\left(N\left(x_{i}\right) \cup N\left(y_{i}\right)\right) \cap H$. We know that

$$
\left|O_{i}\right|=d_{H}\left(x_{i}\right)+d_{H}\left(y_{i}\right) \geq \alpha+\beta \geq 2 k-4 .
$$

For every $j \notin\{i-1, i, i+1\},\left|O_{i} \cap\left\{x_{j}, y_{j}, z_{j}, y_{j}^{\prime}, z_{j}^{\prime}\right\}\right| \leq 2$, and for $j=i+1, \mid O_{i} \cap$ $\left\{x_{j}, y_{j}, y_{j}^{\prime}\right\} \mid \leq 1$. This is a total count of at most $2 k-5$, at least one is left over for y_{i}^{\prime}. Observe that $y_{i}^{\prime} \notin N\left(x_{i}\right)$, otherwise we would have chosen it to be y_{i}, so in fact $y_{i}^{\prime} \in N\left(y_{i}\right)$. A similar count shows the availability of a vertex for z_{i}^{\prime}, with one possible exception: The one vertex left over could be y_{i}^{\prime}. This is only a problem if the count for y_{i}^{\prime} gave us exactly one available vertex, otherwise we can just pick a different y_{i}^{\prime}. But now we can switch the vertices y_{i} and z_{i}, and choose y_{i}^{\prime} from $\left\{x_{i+1}, y_{i+1}, y_{i+1}^{\prime}\right\}$ (one of those is in $N\left(x_{i}\right) \cup N\left(y_{i}\right)$, since the count of used vertices gave exactly $2 k-5$), and choose z_{i}^{\prime} from $\left\{x_{i-1}, y_{i-1}, y_{i-1}^{\prime}\right\}$.

For all $x_{i} \in H$, set $y_{i}^{\prime}=z_{i}^{\prime}=x_{i}$. Since H is k-linked, we can now find $z_{i}^{\prime}, y_{i+1}^{\prime}$-paths inside H for all needed indices to complete the cycle.

3 Further Results

We also looked at the following closely related property:
Definition 1. We say a graph G is k-ordered connected if for every sequence $S=$ $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of k distinct vertices in G, there exists a path from x_{1} to x_{k} that contains all the vertices of S in the given order. A graph is k-ordered hamiltonian connected if there is always a hamiltonian path from x_{1} to x_{k} which encounters S in the designated order.

Along the lines of the proofs in [4], you can show the following theorems for this property:

Theorem 16. Let G be a graph of sufficiently large order n. Let $k \geq 3$. If

$$
\delta(G) \geq \frac{n+k-3}{2}
$$

then G is k-ordered hamiltonian connected.
Theorem 17. Let G be a graph of sufficiently large order n. Let $k \geq 3$. If for any two nonadjacent vertices x and $y, d(x)+d(y) \geq n+\frac{3 k-6}{2}$, then G is k-ordered hamiltonian connected.

The proofs do not give any new insights, so we will not present them here.

References

[1] B. Bollobás, C. Thomason, Highly Linked Graphs, Combinatorica 16 (1996), no.3, 313-320.
[2] G. Chartrand, L. Lesniak, "Graphs \& Digraphs", Chapman and Hall, London, 1996.
[3] L. Ng, M. Schultz, k-Ordered Hamiltonian Graphs, J. Graph Theory 1 (1997), 45-57.
[4] J.Faudree, R.Faudree, R.Gould, M.Jacobson, L.Lesniak, On k-Ordered Graphs, J. Graph Theory 35 (2000), no.2, 69-82.

