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Abstract: For a positive integer k, a graph G is k-ordered hamiltonian if for
every ordered sequence of k vertices there is a hamiltonian cycle that
encounters the vertices of the sequence in the given order. It is shown
that if G is a graph of order n with 3 � k � n /2, and deg(u)þ deg(v ) �
nþ (3k� 9)/2 for every pair u; v of nonadjacent vertices of G, then G is
k-ordered hamiltonian. Minimum degree conditions are also given for
k -ordered hamiltonicity. � 2003 Wiley Periodicals, Inc. J Graph Theory 42: 199–210, 2003
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1. INTRODUCTION

One of the most widely studied classes of graphs are hamiltonian graphs, that is,

graphs that possess spanning cycles. In this article, we consider a special family of

hamiltonian graphs known as k-ordered hamiltonian graphs. A graph is k-ordered

hamiltonian if for every ordered sequence of k vertices there is a hamiltonian

cycle that encounters the vertices of the sequence in the given order. This concept

was introduced by Chartrand. Clearly, every hamiltonian graph is 3-ordered

hamiltonian. Ng and Schultz [5] showed the following.

Theorem 1.1. Let G be a graph of order n and let k be an integer with 3 �
k � n. If degðuÞ þ degðvÞ � nþ 2k � 6 for every pair u; v of nonadjacent vertices
of G, then G is k-ordered hamiltonian.

Corollary 1.1. Let G be a graph of order n and let k be an integer with

3 � k � n. If degðuÞ � n=2þ k � 3 for every vertex u of G, then G is k-ordered

hamiltonian.

Corollary 1.1 is an analog of the well-known theorem of Dirac [1] that says

that every graph of order n � 3 with minimum degree at least n=2 is hamiltonian,

and Theorem 1.1 is an analog of Ore’s theorem [6] that says that every graph of

order n � 3 such that degðuÞ þ degðvÞ � n for every pair u; v of nonadjacent

vertices is hamiltonian. We note that the restriction n in the statement of Ore’s

theorem is simply twice the restriction n=2 in the statement of Dirac’s theorem.

The same holds for Corollary 1.1 and Theorem 1.1.

Both bounds for k-hamiltonicity were improved for small k with respect to n.

The first result was improved by Faudree et al. [2].

Theorem 1.2. Let k � 3 be an integer and let G be a graph of order n � 53k2. If

degðuÞ þ degðvÞ � nþ ð3k � 9Þ=2 for every pair u; v of nonadjacent vertices of

G, then G is k-ordered hamiltonian.

The second result was improved by Kierstead et al. [3] as follows.

Theorem 1.3. Let k � 2 be an integer and let G be a graph of order n � 11k � 3.

If degðuÞ � n
2

� �
þ bk

2
c � 1 for every vertex u of G, then G is k-ordered hamiltonian.
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We note that both of these bounds are sharp for the respective values of k.

Thus, a bit unexpectedly, for small k, the Dirac type bound does not follow from

the Ore type bound.

Our main result says that the bound of Theorem 1.2 holds for every k.

Theorem 1.4. Let k be an integer with 3 � k � n=2 and let G be a graph of

order n. If degðuÞ þ degðvÞ � nþ ð3k � 9Þ=2 for every pair u; v of nonadjacent

vertices of G, then G is k-ordered hamiltonian.

The bound in this theorem is sharp. Moreover, for large k it implies the bound

of the Dirac type. Thus,

(a) for large k, the Ore type bound yields the Dirac type bound;

(b) for small k, the Ore type bound is more than twice the Dirac type bound;

and

(c) for moderate k, the situation is not clear.

2. DEGREE SUM CONDITIONS

The following concept will be useful in establishing the primary result of this

section. For a positive integer k; a graph G is k-ordered if for every sequence of

k vertices there is a cycle that encounters the vertices of the sequence in the given

order. The following lemma gives a condition under which a k-ordered graph is

k-ordered hamiltonian. The proof uses the following notations. If C is a cycle in a

graph with an understood orientation, and S is a set of vertices of C, then Sþ and

S� denote the successors and predecessors of the vertices in S on C, respec-

tively. If S ¼ fxg, we simply write xþ and x�: Also, if x and y are vertices of C,

then x~CCy denotes the path from x to y along C in the designated direction or, when

appropriate, the vertex set of this path. The notation xC
 
y denotes the path from x

to y in the opposite direction. Similar notation is used in the case of paths.

Lemma 2.1. If G is a k-ordered, ðk þ 1Þ-connected graph of order n � 3 such

that degðuÞ þ degðvÞ � n for every pair u; v of nonadjacent vertices of G, then G

is k-ordered hamiltonian.

Proof. Let x1; x2; . . . xk be an ordered sequence of k vertices of G. Since G is

k-ordered, there is a cycle C that encounters these vertices in this order. Choose

such a cycle C such that VðCÞj j is as large as possible. Assume VðCÞ 6¼ VðGÞ and

let H be a component of G� VðCÞ. Since G is ðk þ 1Þ-connected, NCðHÞj j �
k þ 1 and hence NCðHÞ \ xi~CCxiþ1

�� �� � 2 for some i; 1 � i � k; where we consider

xkþ1 ¼ x1: We may assume NCðHÞ \ xk~CCx1

�� �� � 2. Choose a pair of distinct

vertices y1; y2 in NCðHÞ \ xk~CCx1 so that xk; y1; y2; and x1 appear in this order

along C, and so that y1
~CCy2 is as short as possible. Possibly xk ¼ y1 or y2 ¼ x1. Let

zi 2 NHðyiÞ ði ¼ 1; 2Þ. Note that possibly z1 ¼ z2. Since H is connected, there

exists a path P from z1 to z2 in H. Then C0 ¼ y2
~CCy1z1

~PPz2y2 is a cycle which
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encounters x1; x2; . . . ; xk in this order. If y2 ¼ yþ1 , then VðC0Þj j > VðCÞj j, which

contradicts the maximality of VðCÞj j. Therefore, y2 6¼ yþ1 . Note that possibly

yþ1 ¼ y�2 . By the choice of y1 and y2, NCðHÞ \ yþ1
~CCy�2 ¼ �. In particular,

yþ1 z1 =2EðGÞ, and hence degGðyþ1 Þ þ degGðz1Þ � n.

Let A1 ¼ NGðyþ1 Þ � VðCÞ, A2 ¼ NGðyþ1 Þ \ y2
~CCy1, A3 ¼ NGðyþ1 Þ \ yþ1

~CCy�2 ,

B1 ¼ NG z1ð Þ � V ðC Þ and B2 ¼ NG z1ð Þ \ y2
~CCy1. Then NGðyþ1 Þ is the disjoint

union of A1, A2, and A3, and since NGðz1Þ \ yþ1 ~CCy�2 ¼ �, NGðz1Þ is the disjoint

union of B1 and B2. If A1 \ B1 6¼ �, say v 2 A1 \ B1, then v 2 VðHÞ since

v 2 NGðz1Þ. However, this implies yþ1 2 NCðHÞ, which contradicts the fact that

NCðHÞ \ yþ1
~CCy�2 ¼ �. Thus, we have A1 \ B1 ¼ �. Since z1 =2A1 [ B1, we have

n� VðCÞj j � 1 � A1 [ B1j j ¼ A1j j þ B1j j. Furthermore, since yþ1 =2A3, we have

A3j j � yþ1
~CCy�2

�� ��� 1. Therefore, we have

n � degGðyþ1 Þ þ degGðz1Þ ¼ A1j j þ A2j j þ A3j j þ B1j j þ B2j j
� n� VðCÞj j � 1þ yþ1

~CCy�2
�� ��� 1þ A2j j þ B2j j;

or A2j j þ B2j j � y2
~CCy1

�� ��þ 2.

Assume B2j j � 1
2
y2
~CCy1

�� ��þ 1. Then fv; vþg � NGðz1Þ for some v 2 y2
~CCy�1 , and

vþ~CCvz1v
þ is a cycle which contains x1; x2; . . . ; xk in this order. However, this

again contradicts the maximality of VðCÞj j. Therefore, B2j j � 1
2
ð y2

~CCy1

�� ��þ 1Þ.
This implies

A2j j ¼ NGðyþ1 Þ \ y2
~CCy1

�� �� � 1

2
y2
~CCy1

�� ��þ 3

2
:

Applying the same arguments to z2 and y�2 instead of z1 and yþ1 , we have

NGðy�2 Þ \ y2
~CCy1

�� �� � 1
2
y2
~CCy1

�� ��þ 3
2
. Let X ¼ ðNGðyþ1 Þ \ yþ2 ~CCy1Þ� and Y ¼ NG

ðy�2 Þ \ y2
~CCy1. Since

Xj j ¼ Xþj j ¼ NGðyþ1 Þ \ yþ2
~CCy1

�� �� � 1

2
y2
~CCy1

�� ��þ 1

2

and X [ Y � y2
~CCy1,

X \ Yj j ¼ Xj j þ Yj j � X [ Yj j

� 1

2
y2
~CCy1

�� ��þ 1

2
þ 1

2
y2
~CCy1

�� ��þ 3

2
� y2

~CCy1

�� �� ¼ 2

and hence X \ Y 6¼ �. Let v 2 X \ Y . Then vþ 2 NGðyþ1 Þ \ yþ2
~CCy1. Let

C00 ¼ y1z1
~PPz2y2

~CCvy�2 C
 
yþ1 v

þ~CCy1:
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Then C00 contains x1; x2; . . . ; xk in this order and VðC00Þj j > VðCÞj j. (Note that the

arguments are valid even if y�2 ¼ yþ1 .) This contradicts the maximality of VðCÞj j,
and the lemma follows. &

Lemma 2.1 can now be used to improve the result of Theorem 1.2. For con-

venience, we restate Theorem 1.5 here as Theorem 2.1.

Theorem 2.1. Let k be an integer with 3 � k � n=2 and let G be a graph of

order n: If degðuÞ þ degðvÞ � nþ ð3k � 9Þ=2 for every pair u; v of nonadjacent

vertices of G, then G is k-ordered hamiltonian.

Proof. By the assumptions of the theorem, G is hamiltonian, and hence,

k-ordered hamiltonian for k � 3. Thus we may assume that k � 4. Furthermore,

the assumed degree conditions imply that G is ðk þ 1Þ-connected unless k ¼ 4

or 5: In these cases it is straightforward to check that G is k-ordered hamiltonian.

Thus we may assume that G is ðk þ 1Þ-connected and, by the previous lemma, it

suffices to show that G is k-ordered.

Let K ¼ fx1; x2; . . . ; xkg be an ordered sequence of k vertices of G. We show

that G contains a cycle that encounters these vertices in the given order. Let W be

the set of indices i such that xixiþ1 2 EðGÞ and w ¼ Wj j. A 1-improvement of size

s of G is a set of vertices S ¼ fy1; y2; . . . ; ysg � VðGÞ � K and a set of indices

fi1; i2; . . . ; isg such that for every j ¼ 1; 2; . . . ; s, we have that xijxijþ1 =2 EðGÞ and

yj is adjacent to both xij and xijþ1. The indices i1; i2; . . . ; is will be called S-indices.

For i ¼ 1; 2; . . . ; k, let �ðiÞ ¼ 1 if neither of the edges xi�1xi and xixiþ1 is in

EðGÞ, and otherwise, �ðiÞ ¼ 0.

Claim 2.1. There is a 1-improvement of size s � 3k � n� 2w:

Consider the auxiliary bipartite graph H with partite sets P and Q, where

Q ¼ VðGÞ � K; and

P ¼ ffxi; xiþ1g : i 2 f1; 2; . . . ; kgnW;where k þ 1 � 1g;

and a vertex fxi; xiþ1g 2 P is adjacent to a vertex q 2 Q if and only if q is a

common neighbor of xi and xiþ1 in G. By the construction of H, s is the size of a

maximum matching in H: By Ore’s theorem or, more generally, by Berge’s

theorem on maximum matchings [4], there exists T � P such that

NHðTÞj j ¼ Tj j � ðk � s� wÞ:

If s ¼ k � w, we immediately get the desired conclusion for Theorem 2.1.

Thus we may assume s < k � w which, in particular, implies T 6¼ �. Let

fxi; xiþ1g 2 T such that �ðiÞ þ �ðiþ 1Þ is maximum. Let L ¼ Q� NHðTÞ. By

definition, L ¼ ðL� NGðxiÞÞ [ ðL� NGðxiþ1ÞÞ: We may assume that

L� NGðxiÞj j � L� NGðxiþ1Þj j ð1Þ
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and that y 2 L� NGðxiÞ:
By (1),

degGðxiÞ � n� 2� �ðiÞ � Lj j=2

and degGðyÞ � n� 1� ð Tj j þ 1� �ðiÞÞ=2: Since xiy =2 EðGÞ, we conclude that

nþ 3k � 9

2
� n� 2� �ðiÞ � Lj j

2

� �
þ n� 1� Tj j þ 1þ �ðiÞ

2

� �

¼ 2n� Tj j þ 7þ �ðiÞ þ n� k� NHðTÞj j
2

¼ 2n� Tj j þ 7þ �ðiÞþ n� k� Tj jþ k� s�w

2
:

Hence,

nþ 3k � 9

2
� 2nþ 7þ n� s� wþ �ðiÞ

2
� 0: ð2Þ

Case 1. Suppose wþ �ðiÞ � 2: Then we are finished by (2).

Case 2. Suppose w ¼ 0: Then �ðjÞ ¼ 1 for every j: In particular, �ðiÞ ¼ 1: Thus,

if the inequality in (2) is strict, then we are done. In order to have equality in (2),

we must have

(a) L� NGðxiÞj j ¼ Lj j=2, so Lj j is even and, in view of (1), L� NGðxiÞ ¼
L \ NGðxiþ1Þ;

(b) 3k � 9 is even (and hence k is odd);

(c) degGðyÞ ¼ n� 1� Tj j=2; so that Tj j is even;

(d) every nonedge at y must ‘‘spoil’’ exactly two elements of T to have

degG y ¼ n� 1� Tj j=2; in particular, the pair ðxi�1; xiÞ must be in T :

Because of (a), the roles of xi and xiþ1 are interchangeable, and hence

ðxiþ1; xiþ2Þ must be in T . Applying the above reasoning to the pair ðxiþ1; xiþ2Þ, we

get that ðxiþ2; xiþ3Þ 2 T , and so on. It follows that T ¼ P and, since W ¼ ;, Tj j ¼
k. Then by (c), k is even, a contradiction to (b).

Case 3. Suppose w ¼ 1 and �ðiÞ ¼ 0: This is possible only if i� 1 is the unique

index in W : Because of the choice of i, we get Tj j � 2: Thus, NHðTÞj j � 2�
ðk � s� wÞ: On the other hand, since xixiþ1 =2 EðGÞ;

NHðTÞj j � NGðxiÞ \ NGðxiþ1Þ � Kj j

� nþ 3k � 9

2
� ðn� 2Þ � ðk � 2Þ þ �ðiÞ þ �ðiþ 1Þ ¼ k þ 1

2
:
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Since k � s� w � 0, we get ðk þ 1Þ=2 � 2. This is posssible only for k � 3,

which is impossible since k � 4. This proves Claim 2.1.

Let ðS; fi1; i2; . . . ; isÞg be a 1-improvement of G. Construct the auxiliary bi-

partite graph F as follows. One partite set of F is M ¼ VðGÞ � K � S . The other

partite set of F is R: In order to define R, let I ¼ f1; 2; . . . ; kgnfi1; i2; . . . ; isgnW :
Then

R ¼ [Ifði; xiÞ; ði; xiþ1Þg:

We join v 2 M with ði; xjÞ 2 R if and only if vxj 2 EðGÞ: Note that Rj j ¼
2ðk � s� wÞ. Call a pair (i; xjÞ 2 R senior if xj is adjacent in G to at least k � w

vertices in VðGÞ � K, and junior, otherwise.

Claim 2.2. If S is a 1-improvement of maximum size, then the auxiliary graph F

contains a matching covering all senior elements of R.

If there is no such matching, then there exists T � R consisting of senior

vertices with NFðTÞj j � Tj j � 1:

Case 1. Suppose there is an i such that ði; xiÞ 2 T and ði; xiþ1Þ 2 T , say i ¼ 1.

Due to the maximality of S, ðNGðx1Þ \ NGðx2ÞÞ � K � S: Hence, NFðTÞj j �
ðk � wÞ þ ðk � wÞ � 2s ¼ Rj j, a contradiction to the choice of T .

Case 2. Suppose Tj j � k � s� w: Let ði; xjÞ 2 T : Since ði; xjÞ is senior, xj is

adjacent in G to at least k � w� s vertices in VðGÞ � K � S: Therefore,

NFðTÞj j � k � s� w � Tj j, again a contradiction to the choice of T .

Claim 2.3. If S is a 1-improvement of maximum size, then the auxiliary graph F

contains a matching covering all elements of R.

By Claim 2.1, Rj j ¼ 2ðk � s� wÞ � 2k � s� 2w� ð3k � n� 2wÞ ¼ n� k�
s ¼ Mj j, and hence by Claim 2.2, we can assign to every ði; xiÞ 2 R a vertex zi;1
and to every ði� 1; xiÞ 2 R a vertex zi�1;2 so that xizi;1 2 EðGÞ provided that ði; xiÞ
is senior and xizi�1;2 2 EðGÞ provided that ði� 1; xiÞ is senior. Among all such

assignments choose one with the maximum number of edges of the form xizi;1 and

xizi�1;2. We will show that all edges of this kind exist in G which will prove the

claim.

Assume that, say, x1 is not adjacent to z1;1. Recall then that ð1; x1Þ is junior.

Let Zi ¼ fzi;1; zi;2g and Z ¼ [i " IZi: Let Z� be the set of vertices in Z adjacent to

x1 and let S� be the set of vertices in S adjacent to x1: If some zi;1 2 Z� and

z1;1xi 2 EðGÞ; then we can switch zi;1 with z1;1 and have z1;1x1 2 EðGÞ;
maintaining the desired properties. Thus, in this case, z1;1xi =2 EðGÞ. Similarly,

z1;1xiþ1 =2 EðGÞ if zi;2x1 2 EðGÞ: By the maximality of S, if yj 2 S�, then z1;1 is

not adjacent to both xij and xijþ1
, but possibly one of them. Therefore, since

z1;1 =2Z�, it follows that degðz1;1Þ � n� 1� ð S�j j þ Z�j j þ ð1� �ð1ÞÞÞ=2, where

in S�j j þ T�j j, one missing edge (other than z1;1x1) is counted at most twice, and
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the missing edge z1;1x1 is counted at most once if �ð1Þ ¼ 1 and is not counted if

�ð1Þ ¼ 0: Hence

nþ 3k � 9

2
� degðx1Þ þ degðz1;1Þ � ðk � 2� �ð1Þ þ S�j j þ Z�j jÞþ

n� 1� S�j j þ Z�j j þ 2� �ð1Þ
2

� �
¼ nþ k � 4þ S�j j þ Z�j j � �ð1Þ

2
:

It follows that k � S�j j þ Z�j j þ 1� �ð1Þ: Since x1 is junior, S�j j þ Z�j j �
k � 1� w and thus k � k � w� �ð1Þ: But if w ¼ 0, then �ð1Þ ¼ 1. This con-

tradiction proves Claim 2.3.

We now complete the proof of the theorem. Claim 2.3 says that we can assume

that for every i ¼ 1; 2; . . . ; k there is either yi 2 S adjacent to both xi and xiþ1 in

the case xixiþ1 =2 EðGÞ or there are two vertices zi;1 2 NGðxiÞ and zi;2 2 NGðxiþ1Þ:
Moreover, all the yi and zi;j are distinct. Let Zi ¼ fzi;1; zi;2g and Z ¼ [ki¼1Zi.

Among all such assignments, choose one with the maximum number of edges of

the kind zi;1zi;2. We will show that all edges of this kind exist, which will imply

the theorem.

Assume that in our assignment there is an i such that zi;1zi;2 =2 EðGÞ; say i ¼ 1.

Let P ¼ VðGÞ � K � S� Z: By the maximality of S , no vertex in P is adjacent to

both x1and x2. Let P0 be the set of vertices in P that are adjacent to neither x1 nor

x2, and for i ¼ 1; 2, let Pi be the set of vertices in P adjacent to xi: For i ¼ 0; 1; 2;
let pi ¼ Pij j. For j ¼ 0; 1; 2; let Sj denote the set of vertices in S adjacent to

exactly j of the vertices x1 and x2 and let sj ¼ Sj
�� ��.

Since x1x2 =2 EðGÞ, degðx1Þ þ degðx2Þ � nþ ð3k � 9Þ=2: Recall that by the

maximality of S, no vertex in Z is adjacent to both x1 and x2: It follows that

nþ 3k � 9

2

� degðx1Þ þ degðx2Þ � ðn� 2Þ þ ðk � 2Þ � �ð1Þ � �ð2Þ þ s2 � s0 � p0;

and hence

s2 � �0:5þ �ð1Þ þ �ð2Þ þ s0 þ p0 þ k=2:

Since z1;1 and z1;2 are nonadjacent, degðz1;1Þ þ degðz1;2Þ � nþ ð3k � 9Þ=2: On

the other hand, z1;j is adjacent to no vertex in P3�jð j ¼ 1; 2Þ. Furthermore, for

every Z-index or S2-index j, each of z1;1 and z1;2 is not adjacent to at least one of

xj; xjþ1: It follows that

nþ 3k � 9

2
� degðz1;1Þ þ degðz1;2Þ �

2ðn� 2Þ � p2 � p1 � s2 �
Zj j þ ð1� �ð1ÞÞ þ ð1� �ð2ÞÞ

2
;
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and hence

3k=2þ 0:5þ p1 þ p2 þ s2 þ
Zj j � �ð1Þ � �ð2Þ

2
� n:

Recall that

s2 � �0:5þ �ð1Þ þ �ð2Þ þ s0 þ p0 þ k=2:

Hence

2k þ s0 þ p0 þ p1 þ p2 þ
Zj j
2
þ �ð1Þ þ �ð2Þ

2
� n:

But

p0 þ p1 þ p2 þ
Zj j
2
¼ VðGÞ � K � Sj j � Zj j

2
¼ n� k � ðk � wÞ ¼ n� 2k þ w:

These last two statements imply that 2k þ n� 2k þ wþ �ð1Þþ �ð2Þ
2

� n, which

in turn gives wþ �ð1Þþ�ð2Þ
2
� 0: But by the definitions of w and �ð1Þ; we have

wþ �ð1Þþ�ð2Þ
2
� 1. This contradiction completes the proof of the theorem. &

Corollary 2.1. Let k be an integer with 3 � k � n=2 and let G be a graph of

order n. If degðvÞ � n=2þ 3k�9
4

for every vertex v of G, then G is k-ordered

hamiltonian.

That Theorem 2.1 is sharp is indicated by the following example which was

mentioned in Ng et al. [5]. The graph G with n vertices is composed of three

parts: copies of Kk�1; Kk � Ck, and Kn�2kþ1, where the vertices of the ‘‘missing’’

cycle Ck are indexed in the natural order. Further, G contains all the edges

between the copies of Kk�1and Kn�2kþ1, and all of the edges between the copies

of Kk�1 and Kk � Ck. Between the copies of Kn�2kþ1 and Kk � Ck, G contains all

edges incident to the even indexed vertices of Ck. This graph is not k-ordered

because there is no cycle containing the vertices of Ck in order. However, when k

is even, if u 2 VðKn�2kþ1Þ and v 2 VðKk � CkÞ, where v is an odd-indexed

vertex, degðuÞ þ degðvÞ ¼ nþ 3k�10
2

:

3. MINIMUM DEGREE CONDITIONS

In this section, we consider minimum degree conditions that guarantee that a

graph is k-ordered hamiltonian. The main interest in such results follows from

the following observation. Theorem 2.1 gives a result based on the degree sums

of nonadjacent vertices of a graph of order n. Here we have the condition for
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3 � k � n=2, that if degðuÞ þ degðvÞ � nþ ð3k � 9Þ=2 for all nonadjacent ver-

tices u and v of a graph G, then G is k-ordered hamiltonian. However,

Theorem 1.3 gives a minimum degree result that says that for n � 11k � 3, if

degðuÞ � n
2

� �
þ k

2

� �
� 1 for every vertex u of a graph G, then G is k-ordered

hamiltonian. Both of these results are sharp. However, the bound given in

Theorem 2.1 is not twice the bound given in Theorem 1.3, unlike most results of

this nature. So an obvious questions is, for all n and k, what minimum degree

condition implies that a graph G is k-ordered hamiltonian?

In the previous sections, we have seen two such results, the aforementioned

Theorem 1.3 for values of n; k satisfying n � 11k � 3, and Corollary 2.1 for

values of n; k satisfying k � n=2: It is also obvious that for n=2 < k � 2n=3,

minimum degree at least n� 2 guarantees a k-ordered hamiltonian graph, and

that for k > 2n=3 (and in fact for any k), minimum degree n� 1 gives a k-ordered

hamiltonian graph. The main object of this section is to provide examples that

discuss the sharpness of these known results.

For 2 � k � n=3, consider the graph G that consists of three parts: two copies

of Kðn�kþ2Þ=2 and a copy of Kk�2, where n and k are of the same parity. The

vertices in the copy of Kk�2 are adjacent to all other vertices of the graph. Then G

is not k-ordered hamiltonian since G is not ðk � 1Þ-connected, a necessary

condition for a graph to be k-ordered hamiltonian, and �ðGÞ is n
2
þ k

2
� 2:

For n=3 < k < 2ðnþ 2Þ=5, consider the graph G that consists of three parts:

copies of K3k�n�1;K2n�4kþ1 and Kk � Ck, where the vertices of the ‘‘missing’’

cycle are indexed in the natural order. G contains all the edges between the copy

of K3k�n�1 and the rest of the graph. The vertices of K2n�4kþ1 are divided into two

sets A and B; where Aj j ¼ n� 2k þ 1 and Bj j ¼ n� 2k: All vertices of A are

adjacent to the even indexed vertices of Ck and all vertices of B are adjacent to the

odd indexed vertices of Ck: Then G is not k-ordered hamiltonian since there is no

hamiltonian cycle containing the vertices of Ck in order, and �ðGÞ ¼ 2k � 3:
For 2ðnþ 2Þ=5 � k � n=2, consider the graph that consists of three parts:

copies of Kk=2;Kn�3k=2 and Kk � Ck, where the vertices of the ‘‘missing’’ cycle

are indexed in the natural order and k is even. The vertices of Kn�3k=2 are as

evenly as possible divided into two sets A and B: All vertices of A are adjacent to

the even indexed vertices of Ck and all vertices of B are adjacent to the odd

indexed vertices of Ck: In addition, there is a specified set of 5k=2� n� 2

consecutive vertices of Ck that are adjacent to all vertices of A and B. Then G is

not k-ordered hamiltonian since there is no hamiltonian cycle containing the

vertices of Ck in order, and �ðGÞ ¼ n=2þ 3k=4� 3:
For n=2 < k � 2n=3, consider the graph Kn � Ck: Then G is not k-ordered

hamiltonian since there is no hamiltonian cycle containing the vertices of Ck in

order, and �ðGÞ ¼ n� 3:
For 2n=3 < k � n, consider the graph Kn � k=2ð ÞK2, where k is even, and the

vertices of the ‘‘missing’’ matching are labeled as x1; x2; . . . ; xk in the natural

order. Then G is not k-ordered hamiltonian since there is no hamiltonian cycle

containing x1; x2; . . . ; xk in order, and �ðGÞ ¼ n� 2:
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We can summarize the previous discussion as follows. Let �ðn; kÞ be the

smallest integer m for which any graph of order n with minimum degree at least

m is k-ordered hamiltonian. We then have the following theorem.

Theorem 3.1. For positive integers k; n with 3 � k � n we have

(i) �ðn; kÞ ¼ n
2

� �
þ k

2

� �
� 1, for k � ðnþ 3Þ=11;

(ii) �ðn; kÞ > n
2
þ k

2
� 2, for ðnþ 3Þ=11 < k � n=3;

(iii) �ðn; kÞ � 2k � 2; for n=3 < k < 2ðnþ 2Þ=5;
(iv) �ðn; kÞ ¼ n=2þ 3k�9

4

� �
, for 2ðnþ 2Þ=5 � k � n=2;

(v) �ðn; kÞ ¼ n� 2, for n=2 < k � 2n=3; and
(vi) �ðn; kÞ ¼ n� 1, for 2n=3 < k � n:

Figure 1 indicates the relationship between the exact values known for �ðn; kÞ
and the bounds provided by the examples.

FIGURE 1. Bounds for �(n,k).

k-ORDERED HAMILTONIAN GRAPHS 209



ACKNOWLEDGMENT

Alexandr V Kostochka thanks 99-01-00581 of the Russian Foundation for

Fundamental Research and a Dutch-Russian Cooperative Grant.

REFERENCES

[1] G. Dirac, Some theorems on abstract graphs, Proc London Math Soc 2 (1952),

69–81.

[2] J. Faudree, R. Faudree, R. Gould, M. Jacobson, and L. Lesniak, On k-ordered

graphs, J Graph Theory, to appear.
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