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Abstract

In this paper, we present several conditions for K1;3-free graphs, which guarantee the graph
is subpancyclic. In particular, we show that every K1;3-free graph with a minimum degree sum
�2 ¿ 2

√
3n + 1 − 4; every {K1;3; P7}-free graph with �2¿ 9; every {K1;3; Z4}-free graph with

�2¿ 9; and every K1;3-free graph with maximum degree �, diam(G)¡ (�+6)=4 and �2¿ 9 is
subpancyclic.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

If not speci9ed otherwise, we will use notation from [1]. We consider 9nite simple
graphs only. A graph on n vertices is called subpancyclic if it contains cycles of
every length l with 36l6c(G), where c(G) denotes the circumference of G. If G is
subpancyclic and hamiltonian, it is called pancyclic.

We will always denote the edge set of the graph G by E, and V will denote its
vertex set. For some graph H , a graph is said to be H -free, if it does not contain
an induced copy of H . The complete bipartite graph K1;3 is also called the claw. The
graph Z4 is a triangle with a path of length four attached to one of its vertices, the
graph P7 is the path on seven vertices.
The degree of a vertex v is denoted by d(v). We will write �(G) or (if no confusion

arises) � for the maximum degree in G, and �(G) or � for the minimum degree in G.
By �2(G) or �2, we will denote the minimum of {d(u) + d(v) | u; v∈V; uv =∈E}.
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Let C be a cycle in G, and assign some orientation to C. For two vertices x; y∈V (C),
the notation xCy will stand for the path from x to y along C following the orientation
of C. An xy-path P in G is called a shortening path of C, if V (P)∩V (C)= {x; y} and
|P|¡min{|xCy|; |yCx|}. An edge xy =∈E(C) with x; y∈V (C) is called a chord of C.

We will start by proving the following lemma.

Lemma 1. Let G be a claw-free graph with �2(G)¿9. Suppose, for some m¿3, G
has an m-cycle C, but no (m − 1)-cycle. Then there is no shortening path of C.

As we will see, Lemma 1 has several interesting consequences.

Theorem 2. Let G be a claw-free graph with maximum degree � and �2(G)¿9. If
diam(G)¡(� + 6)=4, then G is subpancyclic.

Theorem 3. Let G be a claw-free graph with minimum degree � and �2(G)¿9. If G
is not a line graph, and diam(G)¡(� + 3)=2, then G is subpancyclic.

Theorem 4. Let G be a {K1;3; Z4}-free graph with �2¿9. Then G is subpancyclic. If
G is 2-connected, then G is pancyclic.

Theorem 5. Let G be a {K1;3; P7}-free graph with �2¿9. Then G is subpancyclic.

Theorem 6. Let G be a claw-free graph on n¿5 vertices with �2¿2
√
3n + 1 − 4.

Then G is subpancyclic.

From Theorem 6, we obtain as a corollary the following theorem of Trommel
et al. [4]:

Theorem 7. Let G be a claw-free graph on n¿5 vertices. If the minimum degree �
is �¿

√
3n + 1− 2, then G is subpancyclic.

In the proofs of Theorems 2–6, we will frequently use the following theorem from
Flandrin et al. [3], and its corollaries:

Theorem 8. Let G be a claw-free graph. Then the graph 〈N 〉 induced by the neigh-
borhood N of any vertex x falls in one of the three cases:

1. 〈N 〉 is hamiltonian.
2. 〈N 〉 consists of two complete subgraphs G1 and G2, connected with some edges,
all of them having a common vertex in G1.

3. 〈N 〉 consists of two complete subgraphs with no edges in between.

Corollary 9. Let G be a claw-free graph with maximum degree �. Then G contains
cycles of length l for all l with 36l6
�=2�+ 1.

Proof. The proof is obvious.
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Corollary 10. Let G be a claw-free graph with minimum degree �. If G is not a line
graph, then G contains cycles of length l for all l with 36l6� + 1.

Proof. Observe that G is a line graph if the neighborhoods of all vertices are in the
third class of Theorem 8. Therefore, there is a vertex x with 〈N (x)〉 in the 9rst or
second class of Theorem 8. In either case, 〈N (x)〉 is traceable, implying 〈N (x)∪{x}〉
is pancyclic.

2. Proof of Lemma 1

Suppose instead P is the shortest shortening path. We will distinguish two cases.
Case 1: Suppose P is a chord (P = xy).
Pick two chords u1u2 and v1v2, such that u1; u2 ∈ xCy; v1; v2 ∈yCx, where both chords

are minimal in the sense that there is no other chord uv with u; v∈ u1Cu2 or u; v∈ v1Cv2.
This does not exclude the possibility of one or both of these chords being identical
with xy.
Let K := {v∈V (C) | ∃u∈V (C): uv is a chord}, L :=V (C)−K . If there is a shorten-

ing path of C with length exactly two with both its endvertices in u1Cu2 (v1Cv2), pick
such a shortening path s1s2s3 (t1t2t3), such that s1Cs3 (t1Ct3) is as short as possible,
else set s1 = s2 = u1; s3 = u2 (t1 = t2 = v1; t3 = v2).
Let a1; a2; : : : ; ar be the vertices of s+1 Cs−3 ∩L (in order), let b1; b2; : : : ; bl be the ver-

tices of t+1 Ct−3 ∩L. Without loss of generality, by symmetry, we may assume that l¿r.
Further, if l= r we may assume that d(bi)¿5 for all 16i6l (since they belong to L,
there are no edges between the ai and the bj, so �2(G)¿9 guarantees the statement).
Now we will construct a cycle C′ ⊂〈C ∪ s2〉 with m − r − 16|C′|6m − 1, which

we will then extend to a Cm−1 to get a contradiction.
Start with the cycle s1s2s3Cs1. Note that c= |s1s2s3Cs1|6m − 1. If c¿m − r − 1,

this cycle is the desired C′. Otherwise, s+1 Cs−3 ∩K �= ∅ and we can pick a vertex
u∈ s+1 Cs−3 ∩K . Then u has an edge to some vertex v∈ s+3 Cs−1 . There cannot be an
edge v−v+, else there is a Cm−1. There is no claw centered at v, so v+u∈E or v−u ∈E.
Therefore, u can be inserted in the cycle between v and one of its neighbors to extend
the cycle. If two vertices u; w∈ s+1 Cs−3 ∩K share the same neighbors v; v+ ∈ s+3 Cs−1 ,
then all of uCw (or wCu) can be inserted between v and v+ to extend the cycle. Thus,
any number of vertices in s+1 Cs−3 ∩K can be inserted (we do not have control about
the number of vertices of s+1 Cs−3 ∩L inserted in the process). With this process, we
insert m− r−1− c vertices out of s+1 Cs−3 ∩K . The resulting cycle C′ is of the desired
length, since at most r vertices out of L were inserted.
To extend C′, consider b1; b4; b7; : : : ; b3�l=3�−2. Since t1Ct3 is the shortest such seg-

ment possible, these vertices have pairwise disjoint neighborhoods. Further, none of
them is a neighbor of s2, else there is a claw at s2. By Theorem 8, C′ can be extended
through the neighborhoods of these vertices by any number of vertices up to d(bi)− 2
for each bi, i=1; 4; : : : :
If l= r, then d(bi)¿5, so this extends C′ by up to 3
l=3�¿r vertices, resulting in

a Cm−1.
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If 36r¡l, let d := min{4; d(b1); d(b4); : : :}. Then C′ is extendable by∑�l=3�−1
i=0 (d(b1+3i) − 2)¿d − 2 + (
l=3� − 1)(7 − d)¿3
l=3� − 1 vertices, yielding

a Cm−1.
If 16r¡l=3, consider b1 and b3. One of them has degree at least 5, so we can

extend by up to 3 vertices, which is again enough.
If r =1; l=2, the only problem would be if d(b1)=d(b2)= 2, else we could extend

by one, which is enough. But then, d(a1)¿7, and by a symmetric argument we can
9nd a cycle C′′ ⊂〈C ∪ t2〉 which includes a−1 a1a+1 , and m−36|C′′|6m−1. This cycle
can now be extended around a1 to a Cm−1.
Finally, if r =0, C′ is already a Cm−1. This contradiction concludes the argument,

hence C has no chords.
Case 2: Suppose P has length ¿2 (P = z0z1z2 · · ·zl, with x= z0; y= zl).
Assume, that P is chosen such that k = |xCy| is minimal. Observe, that k¿l − 1

(else k = l− 1, and a Cm−1 is easily found). Let v0 =y; v1 =y+; : : : ; vm−k+1 = x. Since
k is minimal, x+z1 =∈E. Since C is chordless, x+vm−k =∈E. Thus, vm−kz1 ∈E to prevent
a claw at x. A symmetric argument shows that v1zl−1 ∈E. Now m−k¿k, else k would
not have been minimal.
Consider C′ = xPyCx. We know that m−k+l+1= |C′|6m−2. We will now extend

C′ to a Cm−1 to get the contradiction. None of the edges vizj; 26i6m−k −1; 06j6l
exists, else let j be minimal, such that for some 26i6m − k − 1, there is an edge
vizj (j¿1, else chord). To prevent a claw at zj, zj+1vi ∈E is necessary. But now,
consider the paths P′ = vizj+1Py and P′′ = vizjPx. Both of them are shorter than P.
Since P is the shortest shortening path, P′ and P′′ cannot be shortening paths, thus
1+l−j = |P′|¿|yCvi|= i+1, and j+2= |P′′|¿|viCx|=m−k− i+2. But this implies
that l¿m − k¿k, a contradiction to P being a shortening path.
Now, note that none of the neighborhoods of v2; v5; : : : ; v3�k=3�−1 intersect, else k was

not minimal.
If k¿6, let d := min{4; d(v2); d(v5); : : : ; d(v3�k=3�−1)}. We can extend C′ around

v2; v5; : : : ; v3�k=3�−1 by up to
∑�k=3�−1

i=0 (d(v2+3i) − 2)¿d − 2 + (�l=3� − 1)(7 − d)¿
3�k=3� − 1¿k − 3 vertices to get a Cm−1, just like in the 9rst case.
If k =5, |C′|=m+ l− 4¿m− 2. As either d(v2)¿5 or d(v4)¿5, we can extend it

around by one vertex, and we have our contradiction.
If k64, then m − 2¿|C′|¿m − k + l + 1¿m − 4 + 2 + 1=m − 1, a contradiction.

3. Proofs of the theorems

Proof of Theorem 2. Suppose G is not subpancyclic. Then for some m, G has a Cm,
but no Cm−1. By Corollary 9, m¿(�+6)=2. But now, the diameter condition guarantees
a shortening path, which is impossible by Lemma 1.

Proof of Theorem 3. Suppose G is not subpancyclic. Then for some m, G has a Cm,
but no Cm−1. By Corollary 10, m¿� + 3. But now, the diameter condition guarantees
a shortening path, which is impossible by Lemma 1.
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Proof of Theorem 4. Suppose G is not subpancyclic. Then for some m, G has a Cm,
but no Cm−1. By Corollary 9, m¿6. By Lemma 1, C :=Cm has no chords. By the
degree condition, there is a vertex v∈V (C) with d(v)¿5.
If m=6, the neighborhood of v is split into two complete subgraphs, not connected

by edges. Else there was a 5-cycle in N (v)∪ v by Theorem 8 (take a P4 in N (v),
and connect both its ends with v). Without loss of generality, let x; y∈N (v)∩N (v+)
(so xv−; yv− =∈E; xy∈E). Observe that xv++; yv++ =∈E, else there is a 5-cycle. Fur-
ther, x and y cannot be adjacent to any other vertex of C, else there is a short-
ening path of C, which is not possible by Lemma 1. Now yxv+Cv− form a Z4,
a contradiction.
If m¿7, there exist z ∈V −V (C); y∈V (C), such that z ∈ (N (y)∩N (y+))−N (y++).

But then, zyy+Cy5+ form a Z4 (Again, z cannot be adjacent to any of y3+; y4+y5+,
else there is a shortening path of C).
If G is 2-connected, then it is hamiltonian by a result of Brousek et al. [2], thus G

is pancyclic.

Proof of Theorem 5. Suppose G is not subpancyclic. Then for some m, G has a Cm,
but no Cm−1. By Corollary 9, m¿6. By Lemma 1, C :=Cm has no chords.
If m=6, let v∈V (C) be the vertex on C with the largest degree. The degree condi-

tion guarantees d(v)¿5. By Theorem 8, the neighborhood of v is split into two com-
plete subgraphs of size at most 3, not connected by edges, else there is a C5 in N (v)∪ v.
Hence, |N (v)∩N (v−)|; |N (v)∩N (v+)| ∈ {1; 2}, with one of them being 1 only in the
case that d(v)= 5. Let x∈N (v)∩N (v+); y∈N (v)∩N (v−). Clearly xy =∈E or a C5

is immediate. Now neither of the two edges xv++; yv−− can exist by the following
argument: If |N (v)∩N (v+)|=2, then xv++ completes a 5-cycle. If |N (v)∩N (v+)|=1,
then d(v)= 5, and therefore d(z)¿4 for all z ∈V (C) (a z with a smaller degree would
guarantee a vertex of degree ¿6 in the chordless C, contradicting d(v)’s maximal-
ity). In particular d(v+)¿4. Let x′ ∈N (v+)−{v; v++; x}. Then x′v++ ∈E to prevent a
claw at v+. If xv++ ∈E, then xv++x′v+vx is a C5. Hence, in either case xv++ =∈E. The
argument against yv−− ∈E is symmetric.
Further, x; y cannot have any other adjacencies on C, else a shortening path of C

exists, a contradiction to Lemma 1. Now xv+Cv−y is a P7, a contradiction.
If m=7, observe that there are at most two vertices on C with degree 64. Thus,

there is a vertex v∈V (C) with d(v); d(v+); d(v−)¿5. By Theorem 8, the neighborhood
of v is split into two complete subgraphs, not connected by edges, else there is a C6 in
N (v)∪ v. Without loss of generality, let x; y∈N (v)∩N (v+). Then xv++ =∈E, else there
is a C6 in v+ ∪N (v+), using v; v+; v++; x; y and one other neighbor of v+. Further, x
has no other neighbors on C, else a shortening path of C exists. But now xv+Cv− is
a P7, a contradiction.
If m¿8, vCv6+ forms a P7 for any v∈V (C), a contradiction.
Hence, G is subpancyclic.

Proof of Theorem 6. Suppose G is not subpancyclic. Then for some m, G has a Cm,
but no Cm−1. By Corollary 9, m¿�=2 + 3¿�2=4 + 3.
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Case 1: Suppose n¡12.
Note that the degree sum condition implies the following bounds on �2:

n∈{6; 7; 8} ⇒ �2¿n − 1;

n∈{9; 10} ⇒ �2¿n − 2;

n=11 ⇒ �2¿n − 3:

Consider all the possible values for m. Since n¿5, m¿�=2 + 3¿
√
3n + 1=2 + 3¿5.

Say, C =Cm = v1 : : : vmv1.
If m=6, then the only chords C could have are of the form vivi+3. But then claw

freeness forces either vivi+2 or vivi+4, which leads to a C5. So C has no chords.
For n68, there are at least

6∑
i=1

(d(vi)− 2)¿3�2 − 12¿3(n − 1)− 12=3n − 15

edges from C to V −C, but at most 3(n− 6)=3n− 18 edges from V −C to C, since
no vertex in V −C can have more than three neighbors on C without producing a C5.
Thus, n¿9.
For 96n610, the same count shows that there are exactly 3n − 18 edges from

C to V − C, hence every vertex of V − C has exactly three neighbors on C. To
avoid a claw and a C5, all the three have to be in a row. If two of the vertices
u; w∈V − C are adjacent, a C5 can easily be found. But now d(u) + d(w)= 6¡�2,
a contradiction.
For n=11, there are at least 3�2 − 12¿12 edges from C to V − C, so out of the

9ve vertices in V − C, at least two vertices u; w∈V − C have three neighbors on the
cycle, and two more vertices x; y∈V − C have at least two neighbors on the cycle.
If any of the edges uw; ux; uy; wx; wy exists, a C5 can easily be found. Since �2¿8,
both u and w must be adjacent to the remaining vertex z. But now again, a C5 can be
found.
If m=7, the only possible chords are of the form viv(i+3)mod 7. To avoid claws,

all chords of this form have to exist if one exists. But now v1v2v5v6v7v4v1 is a C6.
Therefore, C has no chords. This yields immediately n¿8. Observe, that for n¡12,
the degree sum condition ensures that �2¿n − 3. Now a similar count as in the last
case gives at least

7∑
i=1

(d(vi)− 2)¿
7
2

�2 − 14¿
7
2
(n − 3)− 14=3n − 21 +

n − 7
2

edges going out of C, with at most 3(n − 7) going in, a contradiction.
If m=8 and C has a chord, then C has exactly the chords (after a cyclic renumbering

of the vertices) v1v5; v1v6; v2v5; v2v6. If any of those are missing, there is a claw, if
there are any more than those, there is a C7. But now the degree sum condition forces
v3 or v8 to have a neighbor outside the cycle, say v3x∈E. To avoid a claw, v2x∈E
or v4x∈E. But this again yields a C7. So C has no chords, and a similar count as
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before yields

8∑
i=1

(d(vi)− 2)¿4�2 − 16¿4(n − 3)− 16=4n − 28¿3(n − 8);

a contradiction.
If m=9, a similar count shows the existence of chords. But if there is a chord,

claw-freeness forces the appearance of a K4 of the form vivi+1vi+4vi+5 inside 〈C〉, say
at v1v2v5v6.
Now v8 has no neighbors outside C: Suppose x∈V −C; xv8 ∈E. To prevent a claw

at v8, x has to be adjacent to v7 or v9. But then the 7-cycle C′ = v2v5Cv2 can be
extended to a C8 through x.
If v8v3 ∈E, then v3 is adjacent to either v7 or v9 to avoid a claw at v8. But then again,

C′ can be extended through v3. The symmetric argument shows that v8v4 =∈E. Further,
if v8v2 ∈E, then v8v3 ∈E to prevent a claw at v2, which is not possible. The symmetric
argument shows that v8v5 =∈E. So d(v8)= 2. But this implies that d(v3)¿n − 5. We
know that v3 is not adjacent to v8, v1 and v5. Further, v3 cannot be adjacent to v9
without creating a claw at v9. Thus, v3 is adjacent to all other vertices, in particular
v3v6; v3v7 ∈E. But now, C′ can be extended through v3, a contradiction.
If m¿10, a chord is guaranteed, again. Consider a chord vivj, such that |viCvj| is

minimal. Now 9nd a chord vrvs on vjCvi, such that there is no other chord within
vrCvs. Either all vertices in vrCvs or all vertices in ViCvj have chords, since there is at
most one vertex outside C, and all vertices with degree at most 3 have to be pairwise
adjacent. Say all vertices in vrCvs have chords. Now, similar to the 9rst case in the
proof of Lemma 1, insert all but one of vr+1Cvs−1 into vsCvrvs to construct a Cm−1.
Case 2: Suppose n¿12, m¿�2=2 + 3.
By Lemma 1, C has no chords (n¿12 guarantees �2¿9). Thus, there are

∑
v∈V (C)

(d(v)− 2)¿m
(

�2

2
− 2

)

edges from C to G−C. On the other hand, every vertex in G−C can have at most three
neighbors on C, otherwise C has a shortening path, which is impossible by Lemma 1.
So

m
(

�2

2
− 2

)
63(n − m);

thus

3n¿m
(

�2

2
+ 1

)
¿
(

�2

2
+ 3

)(
�2

2
+ 1

)

¿ (
√
3n + 1 + 1)(

√
3n + 1− 1)=3n;

a contradiction.
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Case 3: Suppose n¿12, m¡�2=2 + 3.
Let d := 
�2=2�, so m6d+2. By Corollary 9, we know that m¿�=2+ 3¿d=2+ 3,

particularly m¿6. By Lemma 1, C has no chords. Let C = v1v2· · ·vmv1. Since all
vertices of degree ¡d have to be pairwise adjacent, we may assume that d(vi)¿d
for 36i6m. For i=1; 2; : : : ; m− 1, let Ni :=N (vi)∩N (vi+1), let Nm :=N (vm)∩N (v1).
Since G is claw-free, every vertex adjacent to C lies in some Ni. Note, that if d(vi)¿d,
then Ni−1 ∩Ni = ∅, and Ni−1 and Ni induce complete subgraphs, otherwise, 〈N (vi)〉 is
traceable by Theorem 8, so we can 9nd cycles of any length up to d(vi) + 1 in
〈N (vi)∪ vi〉, in particular one of length m − 1.
Now we claim that there cannot be any edges or 2-paths between Ni and Nj, for

36i¡j6m − 1. If j − i¿4, an edge or 2-path leads to a shortening path of C, a
contradiction to Lemma 1. If j − i63 and m¿7, one can easily 9nd a cycle of length
at most 6 through that edge or 2-path, vi+1 and vj, which we can then extend to a
Cm−1, using any number of vertices out of N (vj). If m=6, then j− i62, and one can
easily 9nd a cycle of length at most 5 through that edge or 2-path, vi+1 and vj, which
we can then extend to a C5, using any number of vertices out of N (vj).
Since all vertices of degree ¡d have to be pairwise adjacent, we can now guarantee,

after possibly renumbering the vertices of C, that all such vertices in H :=
⋃

Ni ∪C
must lie in Nm ∪N1 ∪N2 ∪{v1; v2}.
Our next claim is, that for two vertices x; y∈Ni; 36i6m − 1, their neighborhoods

intersect as follows: N (x)∩N (y)=Ni ∪{vi; vi+1}−{x; y}. We already established that it
is at least of that size, since 〈Ni〉 is complete. But it cannot be bigger; for suppose, there
is a z ∈ (N (x)∩N (y))−H . Then, z is not adjacent to vi. Therefore, the neighborhood
of x is traceable by Theorem 8, and since d(x)¿d, we can 9nd a Cm−1 in 〈N (x)∪ x〉.

Let Mi := {z ∈V −H : zx∈E for some x∈Ni}. Since |Ni|6m−4 for all 36i6m−1
(else you can 9nd a Cm−1 in 〈Ni ∪{xi; xi+1}〉, since 〈Ni〉 is complete), and the degree
of vertices in Ni is at least d, every x∈Ni has at least d − m + 3 neighbors outside
Ni ∪{xi; xi+1}. Thus, |Mi|¿(d−m+3)|Ni| for 36i6m−1. Further, the Mi are disjoint,
otherwise there would be 2-paths between the Ni.
But now we see that

n ¿|C|+ |Nm ∪N1 ∪N2|+
m−1∑
i=3

|Ni ∪Mi|

¿ |C|+ |Nm ∪N1 ∪N2|+
m−1∑
i=3

(d − m + 4)|Ni|

¿∗ m +
(d(vm)− 2) + (d(v1)− 2) + (d(v3)− 2) + (d − m + 4)

∑m−1
i=4 (d(vi)− 2)

2

¿
d
2
+ 3 +

d − 2 + �2 − 4 + (d − m + 4)(m − 4)(d − 2)
2

¿∗∗ 4d − 1 + (2d − 4)(d − 2)
2

¿ d2 − 2d + 3

¿ n;
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where ¿∗ results from a count that counts every vertex in the Ni at most twice, and
¿∗∗ comes from the fact, that for d¿2,

min
d=2+36m6d+2

((d − m + 4)(m − 4))= 2d − 4

and �2¿2d − 1. This contradiction concludes the proof.

4. Sharpness

In this section, we demonstrate the sharpness of some of the results.
The following family of graphs (see also Fig. 1) demonstrates the sharpness

of the bound on �2 in Lemma 1. Let k¿4, and let H1; : : : ; H2k be 2k disjoint
copies of K5, and uivi an edge of Hi (i=1; : : : ; 2k). Now the graph Fk is obtained from⋃2k

i=1 Hi − uivi by adding the edges v1u2; v2u3; : : : ; v2k−1u2k ; v2ku1 and the edges u1vk ;
u1uk+1; u2kvk , u2kvk+1. We have �2(Fk)= 8, and there is a C6k with chords, but no Cp

for 5k + 2¡p¡6k.
The graph G in Fig. 2 shows that in Theorem 5, P7-free cannot be replaced by

P8-free. This graph is {K1;3; P8}-free with �2 = 10, and G contains a C8 but no C7.
The degree bounds in Theorems 6 and 7 are sharp. Consider the following family of
graphs from [2]:
For any integer p¿2, we de9ne the graph Gp as follows. Let H1; : : : ; Hp be

p-disjoint copies of K3p−2, and uivi an edge of Hi (i=1; : : : ; p). Now Gp is obtained
from

⋃p
i=1 Hi − uivi by adding the edges v1u2; v2u3; : : : ; vp−1up; vpu1.

The graph Gp is both hamiltonian and claw-free. Furthermore, we have �(Gp)= 3p−3
and |V (Gp)|=p(3p−2), implying that �(Gp)=

√
3n + 1−2. It is obvious that Gp does

not contain C3p−1 and hence Gp is not (sub)pancyclic.

H H H

HH

1 2

k+12k

1

2

k

k+12k

v

v

uv

v

u1

K
u2

Fig. 1. Graph Fk .
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Fig. 2. Graph G.
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