

Discrete Mathematics 256 (2002) 151-160

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Pancyclicity in claw-free graphs

R.J. Gould, F. Pfender*

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA

Received 8 August 2000; received in revised form 26 September 2001; accepted 8 October 2001

Abstract

In this paper, we present several conditions for $K_{1,3}$ -free graphs, which guarantee the graph is subpancyclic. In particular, we show that every $K_{1,3}$ -free graph with a minimum degree sum $\delta_2 > 2\sqrt{3n+1} - 4$; every $\{K_{1,3}, P_7\}$ -free graph with $\delta_2 \ge 9$; every $\{K_{1,3}, Z_4\}$ -free graph with $\delta_2 \ge 9$; and every $K_{1,3}$ -free graph with maximum degree Δ , diam $(G) < (\Delta + 6)/4$ and $\delta_2 \ge 9$ is subpancyclic.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Claw-free; Pancyclicity; Forbidden subgraphs

1. Introduction

If not specified otherwise, we will use notation from [1]. We consider finite simple graphs only. A graph on *n* vertices is called *subpancyclic* if it contains cycles of every length *l* with $3 \le l \le c(G)$, where c(G) denotes the circumference of *G*. If *G* is subpancyclic and hamiltonian, it is called *pancyclic*.

We will always denote the edge set of the graph G by E, and V will denote its vertex set. For some graph H, a graph is said to be H-free, if it does not contain an induced copy of H. The complete bipartite graph $K_{1,3}$ is also called the *claw*. The graph Z_4 is a triangle with a path of length four attached to one of its vertices, the graph P_7 is the path on seven vertices.

The degree of a vertex v is denoted by d(v). We will write $\Delta(G)$ or (if no confusion arises) Δ for the maximum degree in G, and $\delta(G)$ or δ for the minimum degree in G. By $\delta_2(G)$ or δ_2 , we will denote the minimum of $\{d(u) + d(v) | u, v \in V, uv \notin E\}$.

^{*} Corresponding author.

E-mail addresses: rg@mathcs.emory.edu (R.J. Gould), fpfende@emory.edu (F. Pfender).

⁰⁰¹²⁻³⁶⁵X/02/\$ - see front matter O 2002 Elsevier Science B.V. All rights reserved. PII: \$0012-365X(01)00465-4

Let *C* be a cycle in *G*, and assign some orientation to *C*. For two vertices $x, y \in V(C)$, the notation xCy will stand for the path from *x* to *y* along *C* following the orientation of *C*. An *xy*-path *P* in *G* is called a *shortening path of C*, if $V(P) \cap V(C) = \{x, y\}$ and $|P| < \min\{|xCy|, |yCx|\}$. An edge $xy \notin E(C)$ with $x, y \in V(C)$ is called a *chord of C*. We will start by proving the following lemma.

Lemma 1. Let G be a claw-free graph with $\delta_2(G) \ge 9$. Suppose, for some m > 3, G has an m-cycle C, but no (m - 1)-cycle. Then there is no shortening path of C.

As we will see, Lemma 1 has several interesting consequences.

Theorem 2. Let G be a claw-free graph with maximum degree Δ and $\delta_2(G) \ge 9$. If diam $(G) < (\Delta + 6)/4$, then G is subpancyclic.

Theorem 3. Let G be a claw-free graph with minimum degree δ and $\delta_2(G) \ge 9$. If G is not a line graph, and diam $(G) < (\delta + 3)/2$, then G is subpancyclic.

Theorem 4. Let G be a $\{K_{1,3}, Z_4\}$ -free graph with $\delta_2 \ge 9$. Then G is subpancyclic. If G is 2-connected, then G is pancyclic.

Theorem 5. Let G be a $\{K_{1,3}, P_7\}$ -free graph with $\delta_2 \ge 9$. Then G is subpancyclic.

Theorem 6. Let G be a claw-free graph on $n \ge 5$ vertices with $\delta_2 > 2\sqrt{3n+1} - 4$. Then G is subpancyclic.

From Theorem 6, we obtain as a corollary the following theorem of Trommel et al. [4]:

Theorem 7. Let G be a claw-free graph on $n \ge 5$ vertices. If the minimum degree δ is $\delta > \sqrt{3n+1} - 2$, then G is subpancyclic.

In the proofs of Theorems 2-6, we will frequently use the following theorem from Flandrin et al. [3], and its corollaries:

Theorem 8. Let G be a claw-free graph. Then the graph $\langle N \rangle$ induced by the neighborhood N of any vertex x falls in one of the three cases:

- 1. $\langle N \rangle$ is hamiltonian.
- 2. $\langle N \rangle$ consists of two complete subgraphs G_1 and G_2 , connected with some edges, all of them having a common vertex in G_1 .
- 3. $\langle N \rangle$ consists of two complete subgraphs with no edges in between.

Corollary 9. Let G be a claw-free graph with maximum degree Δ . Then G contains cycles of length l for all l with $3 \le l \le \lceil \Delta/2 \rceil + 1$.

Proof. The proof is obvious. \Box

Corollary 10. Let G be a claw-free graph with minimum degree δ . If G is not a line graph, then G contains cycles of length l for all l with $3 \le l \le \delta + 1$.

Proof. Observe that G is a line graph if the neighborhoods of all vertices are in the third class of Theorem 8. Therefore, there is a vertex x with $\langle N(x) \rangle$ in the first or second class of Theorem 8. In either case, $\langle N(x) \rangle$ is traceable, implying $\langle N(x) \cup \{x\} \rangle$ is pancyclic. \Box

2. Proof of Lemma 1

Suppose instead P is the shortest shortening path. We will distinguish two cases. Case 1: Suppose P is a chord (P = xy).

Pick two chords u_1u_2 and v_1v_2 , such that $u_1, u_2 \in xCy, v_1, v_2 \in yCx$, where both chords are minimal in the sense that there is no other chord uv with $u, v \in u_1Cu_2$ or $u, v \in v_1Cv_2$. This does not exclude the possibility of one or both of these chords being identical with xy.

Let $K := \{v \in V(C) \mid \exists u \in V(C): uv \text{ is a chord}\}, L := V(C) - K$. If there is a shortening path of *C* with length exactly two with both its endvertices in u_1Cu_2 (v_1Cv_2), pick such a shortening path $s_1s_2s_3$ ($t_1t_2t_3$), such that s_1Cs_3 (t_1Ct_3) is as short as possible, else set $s_1 = s_2 = u_1, s_3 = u_2$ ($t_1 = t_2 = v_1, t_3 = v_2$).

Let $a_1, a_2, ..., a_r$ be the vertices of $s_1^+ C s_3^- \cap L$ (in order), let $b_1, b_2, ..., b_l$ be the vertices of $t_1^+ C t_3^- \cap L$. Without loss of generality, by symmetry, we may assume that $l \ge r$. Further, if l = r we may assume that $d(b_i) \ge 5$ for all $1 \le i \le l$ (since they belong to L, there are no edges between the a_i and the b_j , so $\delta_2(G) \ge 9$ guarantees the statement).

Now we will construct a cycle $C' \subset \langle C \cup s_2 \rangle$ with $m - r - 1 \leq |C'| \leq m - 1$, which we will then extend to a C_{m-1} to get a contradiction.

Start with the cycle $s_1s_2s_3Cs_1$. Note that $c = |s_1s_2s_3Cs_1| \le m - 1$. If $c \ge m - r - 1$, this cycle is the desired C'. Otherwise, $s_1^+Cs_3^- \cap K \ne \emptyset$ and we can pick a vertex $u \in s_1^+Cs_3^- \cap K$. Then u has an edge to some vertex $v \in s_3^+Cs_1^-$. There cannot be an edge v^-v^+ , else there is a C_{m-1} . There is no claw centered at v, so $v^+u \in E$ or $v^{-u} \in E$. Therefore, u can be inserted in the cycle between v and one of its neighbors to extend the cycle. If two vertices $u, w \in s_1^+Cs_3^- \cap K$ share the same neighbors $v, v^+ \in s_3^+Cs_1^-$, then all of uCw (or wCu) can be inserted between v and v^+ to extend the cycle. Thus, any number of vertices in $s_1^+Cs_3^- \cap K$ can be inserted (we do not have control about the number of vertices of $s_1^+Cs_3^- \cap L$ inserted in the process). With this process, we insert m - r - 1 - c vertices out of $s_1^+Cs_3^- \cap K$. The resulting cycle C' is of the desired length, since at most r vertices out of L were inserted.

To extend C', consider $b_1, b_4, b_7, \ldots, b_{3\lceil l/3\rceil - 2}$. Since t_1Ct_3 is the shortest such segment possible, these vertices have pairwise disjoint neighborhoods. Further, none of them is a neighbor of s_2 , else there is a claw at s_2 . By Theorem 8, C' can be extended through the neighborhoods of these vertices by any number of vertices up to $d(b_i) - 2$ for each b_i , $i = 1, 4, \ldots$.

If l = r, then $d(b_i) \ge 5$, so this extends C' by up to $3\lceil l/3 \rceil \ge r$ vertices, resulting in a C_{m-1} .

If $3 \le r < l$, let $d := \min\{4, d(b_1), d(b_4), \ldots\}$. Then C' is extendable by $\sum_{i=0}^{\lceil l/3 \rceil - 1} (d(b_{1+3i}) - 2) \ge d - 2 + (\lceil l/3 \rceil - 1)(7 - d) \ge 3\lceil l/3 \rceil - 1$ vertices, yielding a C_{m-1} .

If $1 \le r < l = 3$, consider b_1 and b_3 . One of them has degree at least 5, so we can extend by up to 3 vertices, which is again enough.

If r = 1, l = 2, the only problem would be if $d(b_1) = d(b_2) = 2$, else we could extend by one, which is enough. But then, $d(a_1) \ge 7$, and by a symmetric argument we can find a cycle $C'' \subset \langle C \cup t_2 \rangle$ which includes $a_1^- a_1 a_1^+$, and $m - 3 \le |C''| \le m - 1$. This cycle can now be extended around a_1 to a C_{m-1} .

Finally, if r = 0, C' is already a C_{m-1} . This contradiction concludes the argument, hence C has no chords.

Case 2: Suppose P has length ≥ 2 ($P = z_0 z_1 z_2 \cdots z_l$, with $x = z_0, y = z_l$).

Assume, that *P* is chosen such that k = |xCy| is minimal. Observe, that k > l - 1 (else k = l - 1, and a C_{m-1} is easily found). Let $v_0 = y, v_1 = y^+, \dots, v_{m-k+1} = x$. Since *k* is minimal, $x^+z_1 \notin E$. Since *C* is chordless, $x^+v_{m-k} \notin E$. Thus, $v_{m-k}z_1 \in E$ to prevent a claw at *x*. A symmetric argument shows that $v_1z_{l-1} \in E$. Now $m-k \ge k$, else *k* would not have been minimal.

Consider C' = xPyCx. We know that $m-k+l+1 = |C'| \le m-2$. We will now extend C' to a C_{m-1} to get the contradiction. None of the edges $v_i z_j$, $2 \le i \le m-k-1$, $0 \le j \le l$ exists, else let j be minimal, such that for some $2 \le i \le m-k-1$, there is an edge $v_i z_j$ ($j \ge 1$, else chord). To prevent a claw at z_j , $z_{j+1}v_i \in E$ is necessary. But now, consider the paths $P' = v_i z_{j+1} Py$ and $P'' = v_i z_j Px$. Both of them are shorter than P. Since P is the shortest shortening path, P' and P'' cannot be shortening paths, thus $1+l-j = |P'| \ge |yCv_i| = i+1$, and $j+2 = |P''| \ge |v_i Cx| = m-k-i+2$. But this implies that $l \ge m-k \ge k$, a contradiction to P being a shortening path.

Now, note that none of the neighborhoods of $v_2, v_5, \ldots, v_{3\lfloor k/3 \rfloor - 1}$ intersect, else k was not minimal.

If $k \ge 6$, let $d := \min\{4, d(v_2), d(v_5), \dots, d(v_{3\lfloor k/3 \rfloor - 1})\}$. We can extend C' around $v_2, v_5, \dots, v_{3\lfloor k/3 \rfloor - 1}$ by up to $\sum_{i=0}^{\lfloor k/3 \rfloor - 1} (d(v_{2+3i}) - 2) \ge d - 2 + (\lfloor l/3 \rfloor - 1)(7 - d) \ge 3\lfloor k/3 \rfloor - 1 \ge k - 3$ vertices to get a C_{m-1} , just like in the first case.

If k = 5, $|C'| = m + l - 4 \ge m - 2$. As either $d(v_2) \ge 5$ or $d(v_4) \ge 5$, we can extend it around by one vertex, and we have our contradiction.

If $k \leq 4$, then $m - 2 \geq |C'| \geq m - k + l + 1 \geq m - 4 + 2 + 1 = m - 1$, a contradiction.

3. Proofs of the theorems

Proof of Theorem 2. Suppose G is not subpancyclic. Then for some m, G has a C_m , but no C_{m-1} . By Corollary 9, $m \ge (\Delta+6)/2$. But now, the diameter condition guarantees a shortening path, which is impossible by Lemma 1. \Box

Proof of Theorem 3. Suppose G is not subpancyclic. Then for some m, G has a C_m , but no C_{m-1} . By Corollary 10, $m \ge \delta + 3$. But now, the diameter condition guarantees a shortening path, which is impossible by Lemma 1. \Box

Proof of Theorem 4. Suppose G is not subpancyclic. Then for some m, G has a C_m , but no C_{m-1} . By Corollary 9, $m \ge 6$. By Lemma 1, $C := C_m$ has no chords. By the degree condition, there is a vertex $v \in V(C)$ with $d(v) \ge 5$.

If m = 6, the neighborhood of v is split into two complete subgraphs, not connected by edges. Else there was a 5-cycle in $N(v) \cup v$ by Theorem 8 (take a P_4 in N(v), and connect both its ends with v). Without loss of generality, let $x, y \in N(v) \cap N(v^+)$ (so $xv^-, yv^- \notin E, xy \in E$). Observe that $xv^{++}, yv^{++} \notin E$, else there is a 5-cycle. Further, x and y cannot be adjacent to any other vertex of C, else there is a shortening path of C, which is not possible by Lemma 1. Now yxv^+Cv^- form a Z_4 , a contradiction.

If $m \ge 7$, there exist $z \in V - V(C)$, $y \in V(C)$, such that $z \in (N(y) \cap N(y^+)) - N(y^{++})$. But then, zyy^+Cy^{5+} form a Z_4 (Again, z cannot be adjacent to any of y^{3+} , $y^{4+}y^{5+}$, else there is a shortening path of C).

If G is 2-connected, then it is hamiltonian by a result of Brousek et al. [2], thus G is pancyclic. \Box

Proof of Theorem 5. Suppose G is not subpancyclic. Then for some m, G has a C_m , but no C_{m-1} . By Corollary 9, $m \ge 6$. By Lemma 1, $C := C_m$ has no chords.

If m = 6, let $v \in V(C)$ be the vertex on *C* with the largest degree. The degree condition guarantees $d(v) \ge 5$. By Theorem 8, the neighborhood of *v* is split into two complete subgraphs of size at most 3, not connected by edges, else there is a C_5 in $N(v) \cup v$. Hence, $|N(v) \cap N(v^-)|, |N(v) \cap N(v^+)| \in \{1, 2\}$, with one of them being 1 only in the case that d(v) = 5. Let $x \in N(v) \cap N(v^+), y \in N(v) \cap N(v^-)$. Clearly $xy \notin E$ or a C_5 is immediate. Now neither of the two edges xv^{++}, yv^{--} can exist by the following argument: If $|N(v) \cap N(v^+)| = 2$, then xv^{++} completes a 5-cycle. If $|N(v) \cap N(v^+)| = 1$, then d(v) = 5, and therefore $d(z) \ge 4$ for all $z \in V(C)$ (a *z* with a smaller degree would guarantee a vertex of degree ≥ 6 in the chordless *C*, contradicting d(v)'s maximality). In particular $d(v^+) \ge 4$. Let $x' \in N(v^+) - \{v, v^{++}, x\}$. Then $x'v^{++} \in E$ to prevent a claw at v^+ . If $xv^{++} \in E$, then $xv^{++}x'v^+vx$ is a C_5 . Hence, in either case $xv^{++} \notin E$. The argument against $yv^{--} \in E$ is symmetric.

Further, x, y cannot have any other adjacencies on C, else a shortening path of C exists, a contradiction to Lemma 1. Now xv^+Cv^-y is a P_7 , a contradiction.

If m = 7, observe that there are at most two vertices on *C* with degree ≤ 4 . Thus, there is a vertex $v \in V(C)$ with $d(v), d(v^+), d(v^-) \geq 5$. By Theorem 8, the neighborhood of *v* is split into two complete subgraphs, not connected by edges, else there is a C_6 in $N(v) \cup v$. Without loss of generality, let $x, y \in N(v) \cap N(v^+)$. Then $xv^{++} \notin E$, else there is a C_6 in $v^+ \cup N(v^+)$, using v, v^+, v^{++}, x, y and one other neighbor of v^+ . Further, *x* has no other neighbors on *C*, else a shortening path of *C* exists. But now xv^+Cv^- is a P_7 , a contradiction.

If $m \ge 8$, vCv^{6+} forms a P_7 for any $v \in V(C)$, a contradiction. Hence, G is subpancyclic. \Box

Proof of Theorem 6. Suppose G is not subpancyclic. Then for some m, G has a C_m , but no C_{m-1} . By Corollary 9, $m \ge \Delta/2 + 3 \ge \delta_2/4 + 3$.

Case 1: Suppose n < 12.

Note that the degree sum condition implies the following bounds on δ_2 :

$$n \in \{6, 7, 8\} \Rightarrow \delta_2 \ge n - 1,$$

$$n \in \{9, 10\} \Rightarrow \delta_2 \ge n - 2,$$

$$n = 11 \Rightarrow \delta_2 \ge n - 3.$$

Consider all the possible values for *m*. Since $n \ge 5$, $m \ge d/2 + 3 > \sqrt{3n+1}/2 + 3 \ge 5$. Say, $C = C_m = v_1 \dots v_m v_1$.

If m = 6, then the only chords C could have are of the form $v_i v_{i+3}$. But then claw freeness forces either $v_i v_{i+2}$ or $v_i v_{i+4}$, which leads to a C₅. So C has no chords.

For $n \leq 8$, there are at least

$$\sum_{i=1}^{6} (d(v_i) - 2) \ge 3\delta_2 - 12 \ge 3(n-1) - 12 = 3n - 15$$

edges from C to V - C, but at most 3(n-6) = 3n - 18 edges from V - C to C, since no vertex in V - C can have more than three neighbors on C without producing a C_5 . Thus, $n \ge 9$.

For $9 \le n \le 10$, the same count shows that there are exactly 3n - 18 edges from C to V - C, hence every vertex of V - C has exactly three neighbors on C. To avoid a claw and a C_5 , all the three have to be in a row. If two of the vertices $u, w \in V - C$ are adjacent, a C_5 can easily be found. But now $d(u) + d(w) = 6 < \delta_2$, a contradiction.

For n = 11, there are at least $3\delta_2 - 12 \ge 12$ edges from C to V - C, so out of the five vertices in V - C, at least two vertices $u, w \in V - C$ have three neighbors on the cycle, and two more vertices $x, y \in V - C$ have at least two neighbors on the cycle. If any of the edges uw, ux, uy, wx, wy exists, a C_5 can easily be found. Since $\delta_2 \ge 8$, both u and w must be adjacent to the remaining vertex z. But now again, a C_5 can be found.

If m = 7, the only possible chords are of the form $v_i v_{(i+3) \mod 7}$. To avoid claws, all chords of this form have to exist if one exists. But now $v_1 v_2 v_5 v_6 v_7 v_4 v_1$ is a C_6 . Therefore, C has no chords. This yields immediately $n \ge 8$. Observe, that for n < 12, the degree sum condition ensures that $\delta_2 \ge n - 3$. Now a similar count as in the last case gives at least

$$\sum_{i=1}^{7} (d(v_i) - 2) \ge \frac{7}{2} \,\delta_2 - 14 \ge \frac{7}{2} (n-3) - 14 = 3n - 21 + \frac{n-7}{2}$$

edges going out of C, with at most 3(n-7) going in, a contradiction.

If m = 8 and C has a chord, then C has exactly the chords (after a cyclic renumbering of the vertices) $v_1v_5, v_1v_6, v_2v_5, v_2v_6$. If any of those are missing, there is a claw, if there are any more than those, there is a C_7 . But now the degree sum condition forces v_3 or v_8 to have a neighbor outside the cycle, say $v_3x \in E$. To avoid a claw, $v_2x \in E$ or $v_4x \in E$. But this again yields a C_7 . So C has no chords, and a similar count as

156

before yields

$$\sum_{i=1}^{8} (d(v_i) - 2) \ge 4\delta_2 - 16 \ge 4(n-3) - 16 = 4n - 28 > 3(n-8),$$

a contradiction.

If m = 9, a similar count shows the existence of chords. But if there is a chord, claw-freeness forces the appearance of a K_4 of the form $v_i v_{i+1} v_{i+4} v_{i+5}$ inside $\langle C \rangle$, say at $v_1 v_2 v_5 v_6$.

Now v_8 has no neighbors outside C: Suppose $x \in V - C$, $xv_8 \in E$. To prevent a claw at v_8 , x has to be adjacent to v_7 or v_9 . But then the 7-cycle $C' = v_2v_5Cv_2$ can be extended to a C_8 through x.

If $v_8v_3 \in E$, then v_3 is adjacent to either v_7 or v_9 to avoid a claw at v_8 . But then again, C' can be extended through v_3 . The symmetric argument shows that $v_8v_4 \notin E$. Further, if $v_8v_2 \in E$, then $v_8v_3 \in E$ to prevent a claw at v_2 , which is not possible. The symmetric argument shows that $v_8v_5 \notin E$. So $d(v_8) = 2$. But this implies that $d(v_3) \ge n - 5$. We know that v_3 is not adjacent to v_8 , v_1 and v_5 . Further, v_3 cannot be adjacent to v_9 without creating a claw at v_9 . Thus, v_3 is adjacent to all other vertices, in particular v_3v_6 , $v_3v_7 \in E$. But now, C' can be extended through v_3 , a contradiction.

If $m \ge 10$, a chord is guaranteed, again. Consider a chord $v_i v_j$, such that $|v_i C v_j|$ is minimal. Now find a chord $v_r v_s$ on $v_j C v_i$, such that there is no other chord within $v_r C v_s$. Either all vertices in $v_r C v_s$ or all vertices in $V_i C v_j$ have chords, since there is at most one vertex outside C, and all vertices with degree at most 3 have to be pairwise adjacent. Say all vertices in $v_r C v_s$ have chords. Now, similar to the first case in the proof of Lemma 1, insert all but one of $v_{r+1} C v_{s-1}$ into $v_s C v_r v_s$ to construct a C_{m-1} . *Case* 2: Suppose $n \ge 12$, $m \ge \delta_2/2 + 3$.

By Lemma 1, C has no chords $(n \ge 12)$ guarantees $\delta_2 \ge 9$. Thus, there are

$$\sum_{v \in V(C)} (d(v) - 2) \ge m \left(\frac{\delta_2}{2} - 2\right)$$

edges from C to G-C. On the other hand, every vertex in G-C can have at most three neighbors on C, otherwise C has a shortening path, which is impossible by Lemma 1. So

$$m\left(\frac{\delta_2}{2}-2\right) \leqslant 3(n-m),$$

thus

$$3n \ge m\left(\frac{\delta_2}{2}+1\right) \ge \left(\frac{\delta_2}{2}+3\right)\left(\frac{\delta_2}{2}+1\right)$$
$$> (\sqrt{3n+1}+1)(\sqrt{3n+1}-1) = 3n,$$

a contradiction.

Case 3: *Suppose* $n \ge 12$, $m < \delta_2/2 + 3$.

Let $d := \lceil \delta_2/2 \rceil$, so $m \leq d+2$. By Corollary 9, we know that $m \geq \Delta/2 + 3 \geq d/2 + 3$, particularly $m \geq 6$. By Lemma 1, *C* has no chords. Let $C = v_1 v_2 \cdots v_m v_1$. Since all vertices of degree < d have to be pairwise adjacent, we may assume that $d(v_i) \geq d$ for $3 \leq i \leq m$. For i = 1, 2, ..., m-1, let $N_i := N(v_i) \cap N(v_{i+1})$, let $N_m := N(v_m) \cap N(v_1)$. Since *G* is claw-free, every vertex adjacent to *C* lies in some N_i . Note, that if $d(v_i) \geq d$, then $N_{i-1} \cap N_i = \emptyset$, and N_{i-1} and N_i induce complete subgraphs, otherwise, $\langle N(v_i) \rangle$ is traceable by Theorem 8, so we can find cycles of any length up to $d(v_i) + 1$ in $\langle N(v_i) \cup v_i \rangle$, in particular one of length m - 1.

Now we claim that there cannot be any edges or 2-paths between N_i and N_j , for $3 \le i < j \le m - 1$. If $j - i \ge 4$, an edge or 2-path leads to a shortening path of *C*, a contradiction to Lemma 1. If $j - i \le 3$ and $m \ge 7$, one can easily find a cycle of length at most 6 through that edge or 2-path, v_{i+1} and v_j , which we can then extend to a C_{m-1} , using any number of vertices out of $N(v_j)$. If m = 6, then $j - i \le 2$, and one can easily find a cycle of length at most 5 through that edge or 2-path, v_{i+1} and v_j , which we can then extend to a can easily find a cycle of length at most 5 through that edge or 2-path, v_{i+1} and v_j , which we can then extend to a C_5 , using any number of vertices out of $N(v_j)$.

Since all vertices of degree $\langle d \rangle$ have to be pairwise adjacent, we can now guarantee, after possibly renumbering the vertices of *C*, that all such vertices in $H := \bigcup N_i \cup C$ must lie in $N_m \cup N_1 \cup N_2 \cup \{v_1, v_2\}$.

Our next claim is, that for two vertices $x, y \in N_i$, $3 \le i \le m - 1$, their neighborhoods intersect as follows: $N(x) \cap N(y) = N_i \cup \{v_i, v_{i+1}\} - \{x, y\}$. We already established that it is at least of that size, since $\langle N_i \rangle$ is complete. But it cannot be bigger; for suppose, there is a $z \in (N(x) \cap N(y)) - H$. Then, z is not adjacent to v_i . Therefore, the neighborhood of x is traceable by Theorem 8, and since $d(x) \ge d$, we can find a C_{m-1} in $\langle N(x) \cup x \rangle$.

Let $M_i := \{z \in V - H: zx \in E \text{ for some } x \in N_i\}$. Since $|N_i| \leq m-4$ for all $3 \leq i \leq m-1$ (else you can find a C_{m-1} in $\langle N_i \cup \{x_i, x_{i+1}\}\rangle$, since $\langle N_i \rangle$ is complete), and the degree of vertices in N_i is at least d, every $x \in N_i$ has at least d - m + 3 neighbors outside $N_i \cup \{x_i, x_{i+1}\}$. Thus, $|M_i| \geq (d - m + 3)|N_i|$ for $3 \leq i \leq m - 1$. Further, the M_i are disjoint, otherwise there would be 2-paths between the N_i .

But now we see that

$$\begin{split} n & \geq |C| + |N_m \cup N_1 \cup N_2| + \sum_{i=3}^{m-1} |N_i \cup M_i| \\ \geq & |C| + |N_m \cup N_1 \cup N_2| + \sum_{i=3}^{m-1} (d - m + 4)|N_i| \\ \geq^* m + \frac{(d(v_m) - 2) + (d(v_1) - 2) + (d(v_3) - 2) + (d - m + 4)\sum_{i=4}^{m-1} (d(v_i) - 2)}{2} \\ \geq & \frac{d}{2} + 3 + \frac{d - 2 + \delta_2 - 4 + (d - m + 4)(m - 4)(d - 2)}{2} \\ \geq^{**} \frac{4d - 1 + (2d - 4)(d - 2)}{2} \\ \geq & d^2 - 2d + 3 \\ > & n, \end{split}$$

158

where \geq^* results from a count that counts every vertex in the N_i at most twice, and \geq^{**} comes from the fact, that for $d \geq 2$,

$$\min_{d/2+3 \le m \le d+2} \left((d-m+4)(m-4) \right) = 2d-4$$

and $\delta_2 \ge 2d - 1$. This contradiction concludes the proof. \Box

4. Sharpness

In this section, we demonstrate the sharpness of some of the results.

The following family of graphs (see also Fig. 1) demonstrates the sharpness of the bound on δ_2 in Lemma 1. Let $k \ge 4$, and let H_1, \ldots, H_{2k} be 2k disjoint copies of K_5 , and $u_i v_i$ an edge of H_i $(i = 1, \ldots, 2k)$. Now the graph F_k is obtained from $\bigcup_{i=1}^{2k} H_i - u_i v_i$ by adding the edges $v_1 u_2, v_2 u_3, \ldots, v_{2k-1} u_{2k}, v_{2k} u_1$ and the edges $u_1 v_k$, $u_1 u_{k+1}, u_{2k} v_k, u_{2k} v_{k+1}$. We have $\delta_2(F_k) = 8$, and there is a C_{6k} with chords, but no C_p for 5k + 2 .

The graph G in Fig. 2 shows that in Theorem 5, P_7 -free cannot be replaced by P_8 -free. This graph is $\{K_{1,3}, P_8\}$ -free with $\delta_2 = 10$, and G contains a C_8 but no C_7 . The degree bounds in Theorems 6 and 7 are sharp. Consider the following family of graphs from [2]:

For any integer $p \ge 2$, we define the graph G_p as follows. Let H_1, \ldots, H_p be *p*-disjoint copies of K_{3p-2} , and $u_i v_i$ an edge of H_i $(i = 1, \ldots, p)$. Now G_p is obtained from $\bigcup_{i=1}^p H_i - u_i v_i$ by adding the edges $v_1 u_2, v_2 u_3, \ldots, v_{p-1} u_p, v_p u_1$.

The graph G_p is both hamiltonian and claw-free. Furthermore, we have $\delta(G_p) = 3p-3$ and $|V(G_p)| = p(3p-2)$, implying that $\delta(G_p) = \sqrt{3n+1}-2$. It is obvious that G_p does not contain C_{3p-1} and hence G_p is not (sub)pancyclic.

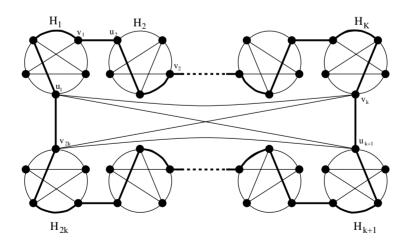


Fig. 1. Graph F_k .

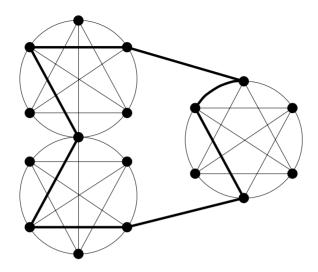


Fig. 2. Graph G.

References

- [1] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
- [2] J. Brousek, Z. Ryjáček, O. Favaron, Forbidden subgraphs, hamiltonicity and closure in claw-free graphs, Discrete Math. 196 (1999) 29-50.
- [3] E. Flandrin, I. Fournier, A. Germa, Pancyclism in K_{1,3}-free graphs, Ph.D. Thesis, 1990.
- [4] H. Trommel, H.J. Veldman, A. Verschut, Pancyclicity of claw-free hamiltonian graphs, Discrete Math. 197/198 (1999) 781–789.