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Let k£ be a positive integer. A strong digraph G is termed k-connected if the
removal of any set of fewer than k vertices results in a strongly connected digraph.
The purpose of this paper is to show that every k-connected tournament with at
least 8k vertices contains k vertex-disjoint directed cycles spanning the vertex set.
This result answers a question posed by Bollobas.  © 2001 Elsevier Science

This article will generally follow the notation and terminology defined in
[1]. A digraph is called strongly connected or strong if for every pari of
vertices u and v there exists a directed path from u to v and a directed path
from v to u. Let k be a positive integer. A digraph G is k-connected if the
removal of any set of fewer than k vertices results in a strong digraph.
A tournament with n vertices will also be called an n-tournament.

It is well-known that every tournament contains a hamiltonian path and
every strong tournament contains a hamiltonian cycle. Reid [2] proved
that if 7 is a 2-connected n-tournament, n > 6, that is, 7 is not the 7-tour-
nament that contains no transitive subtournament with 4 vertices (i.e., the
quadratic residue 7-tournament), then 7" contains two vertex-disjoint cycles

! Research partially supported under N.S.F. Grant DMS 0070059.
2 Research partially supported under O.N.R. Grant N00014-97-1-0499.

213

0095-8956/01 $35.00
© 2001 Elsevier Science
All rights reserved.



214 CHEN, GOULD, AND LI

spanning V(T'). In fact, he showed that one cycle can be taken to be a tri-
angle. This result established an affirmative answer (for r=s=1) to the
following problem asked by Thomassen (see [3]): If » and s are positive
integers, does there exist a (least) positive integer m = m(r, s) so that all but
a finite number of m-connected tournaments can be partitioned into an
r-connected subtournament and an s-connected subtournament? Song [4]
was able to show that if T is a 2-connected n-tournament with » > 6 then
the vertices of T can be partitioned into two cycles of lengths s and n—s
for any integer s with 3 <s<n—3, unless 7 is the 7-tournament described
above. The following problem was posed by Bollobas (see [2]) for tour-
naments.

Problem 1. 1If k is a positive integer, what is the least integer g(k) so
that all but a finite number of g(k)-connected tournaments contain k
vertex-disjoint cycles that span V(T')?

Reid observed that g(k) exists and g(k)<3k—4 for k=2 as follows:
Recall that g(1)=1 and g(2)=m(1,1)=2. If T'is (g(k — 1) + 3)-connected,
then the removal of a triangle leaves a g(k — 1)-connected tournament that
can be expressed as k — 1 nontrivial vertex-disjoint cycles; that is, g(k) <
g(k—1)+3. Thus, g(3)<5, and, in general, g(k) <3k —4. The following
example shows that g(k) > k.

Let n>3k. Let T be an n-tournament with V(7T') = {v,, v,, .., v,,}, where
v; dominates v; for all 1 <i< j<n except when 1<i<kand n—k+1<j
<n (in which case v; dominates v;). If S is any set of fewer than k vertices,
then T—S is strongly connected; that is, 7" is k-connected. Clearly, any
nontrivial cycle in T must use an arc vj_v: for some 1<i<k and some
n—k+1<j<n, so that T contains at most k vertex-disjoint cycles.

The main result of this article, stated below, shows that g(k)=k.

THEOREM 1. Every k-connected n-tournament T with n>= 8k contains k
vertex-disjoint cycles that span V(T).

In [4], Song posed the following problem.

Problem 2. 1If k is a positive integer, what is the least integer f(k) so
that all but a finite number of f(k)-connected tournaments contain k
vertex-disjoint cycles of lengths n,, n,, .., n, where n=n,+n,+ --- +n,
and n;=3 for alli=1, 2, .., k?

Clearly, f(1)=g(1)=1. Song showed that f(2)=g(2)=2. Clearly,
f(k)>= g(k) holds for every k. Song conjectured that f(k) = g(k).
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Let T be a tournament. The arc set of 7 will be denoted by E(T). If w
is an arc in 7, then udominates v and v is dominated by u. A set A< V(T)
dominates a set B< V(T) if every vertex of 4 dominates every vertex of B.
If A= {x}, we say that x dominates B. For any X < V(T), let T[ X] denote
the subtournament induced by X.

Let T be a tournament and let C be a cycle in 7. For every vertex
ve V(C), let v} denote the successor of v on C and let v, denote the
predecessor of v on C. If no confusion arises, v* and v~ will be used to
denote vg and v, respectively. Let X be a cycle or a path of 7 and let u
and v be two vertices on X (u, v are in that order along X if X is a path).
We define X[u, v] as the subpath of X from u to v. For any u¢ V(C), if
u is dominated by a vertex x € V(C) and u dominates x*, then ux*C[x™,
x] xu is a cycle longer than C. In this case, we say that u can be inserted
into C. So, if u cannot be inserted into a cycle C, then either # dominates
V(C) or V(C) dominates u. In the case, we call C an out-cycle of u while
in the second case we call C an in-cycle of u. The following lemma will be
used in the proof of Theorem 1.

Lemma 1. Every k-connected tournament with n=>= 5k —3 vertices and
k =2 contains k vertex-disjoint cycles.

Proof. To the contrary, let k ( >2) be the smallest positive integer such
that there is a k-connected tournament 7" with n > 5k — 3 vertices, which
does not contain k vertex-disjoint cycles. By the minimality of £ and the
fact that every strong tournament has a cycle, 7 contains k —1 vertex-
disjoint cycles. Since every cycle of length at least 4 contains a chord,
T contains k — 1 vertex-disjoints triangles, say, T;, T5, .., T),_;. Let H=
T— ¥z V(T,). Since H does not contain a cycle, H is a transitive tourna-
ment. Let P=v,v, ---v,, be the unique hamiltonian path in H. Since H is
transitive, then v,_v; e E(T) for any 1 <i<j<m.

Let F={v1, 0y, 0, 0} and B={0,, 11> Um—_ks2s - Upm}. Since m=
(5k—3)—3(k—1)=2k, then FnB= (. Since T is k-connected, there
exist k vertex-disjoint paths P,, P,, ..., P, from B to F. Clearly, these paths
plus the appropriate arcs from F to B form k vertex-disjoint cycles. ||

Proof of Theorem 1. Let T be a k-connected tournament with n> 8k
vertices. Since 8k = 5k — 3, T contains k vertex-disjoint cycles by Lemma 1.
Let C,, C,, ..., C; be k vertex-disjoint cycles of T such that 3%_, [V(C))|
is maximum. Let 4 ={C,, Cs, .., C;}. To the contrary, then, we may
assume that 3%_, |V(C,;)| <n. Let H=T—J*_, V(C,). Since H is a tour-
nament, A has a hamiltonian path. Let P=v,v, ---v,, be a hamiltonian
path in H. The linear order of v,, v,, ..., v,, Will play a role in our proof.
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For each v, e V(H) (1 <i<m) and each C, €% (1 </ <k), since v; can-
not be inserted into C,, C, is either an in-cycle of v; or an out-cycle of v;.
We partition % into two sets .% and @ for each i=1, 2, ..., m as

g, ={C,|C,is an in-cycle of v,},

0,={C,|C,is an out-cycle of v,}.

For any two vertices v;, v;€ V(H) and a cycle C, €%, if i< jand C, is
an out-cycle of v;, then C, is also an out-cycle of v;; otherwise, let x and
x* be two consecutive vertices on C,. The cycle P[v;, v;] C,[x™*, x]v; is
longer than C, which leads to a contradiction of the maximality of

k_LIV(Cy)|. Thus, (; = (. As a consequence,
0, <0,_1<--- <0 and Ip2I_ 12 DA,

Cramv 1. If' S is a strong subtournament of H, then .9;=.%; and ;= ()
Sor any two vertices v; and v; € V(S).

Proof. Suppose, to the contrary, that there is a cycle C, € ¢ such that
C,e 9 and C, €. Let P[v;, v;] be a path in S connecting v, and v; and
let x be an arbitrary vertex on C,. Then, the cycle P[v,;, v;] C[x™*, x] v;is
longer than C, a contradiction. ||

We will show that there exist k vertex disjoint cycles which contain all
vertices of J*_, V(C;) and v,,, which produces a contradiction. For con-
venience, let ¥ =24, 0=0,,, and H*=H —v,,.

CLAaM 2. Yoo |V(C))| =k and Yces [V(C)| = k.

Proof. Let S be the strong component containing v,, in H. (Note that
S could be {v;}.) Since P=wv v, --v,, is a hamiltonian path in H,
V(H) —V(S) dominates V(S). By Claim I, ¢, V(C;) dominates V(S).
Also, S is the strong component of v,, in T[ V(H)U(UCJ,EJr McC))l=
T—Uceo V(C)). Thus, Y ceq, [V(C)| =k is k-connected.

Since v, dominates (J¢,co V(Cy), V(H) dominates c,co V(C;). As Sis the
strong component of v,, in T[ V(H)u (UCjE@ MCNI=T—Ucers VC),
we see that 3o, [V(C)| =k |1

Without loss of generality, we may assume that Y., |V(C)| >
ch co | V(C;)|. Otherwise, we may reverse the directions of all arcs of 7"and

exchange the roles of v, and v, and consider ¢,. Since ¢, =20,
Yceo IVC)Z2ces VG
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Since |V(T)| =n = 8k, we have that

S IV(C)|+ | VH*)| = 4k.

Cie s

Define

R= {ye U W(C)):xy e E(T)for some xe | V(Cj)}

C,e s Cje(O

and

U= () MC)-R

Cie s

That is, any y € R is dominated by some vertices in UC co V(C;) and any
ue U dominates all vertices in ch co V(C;) for all ue U’

CLam 3. For each C; e 7, |V(C;) n R| <3 and equality holds only when
C; is a triangle.

Proof. Let xe C,e (@ and ye V(C,) n R such that x—f e E(T). Ifny €
E(T) for some ze V(C,)—{y, y~}, the cycles v, C[x*,x] C,[y,z7 ] v,
and C,[z, y~ ] z plus the remaining k 2 cycles of € contradict the maxi-
mality of >*_, |V(C;)|. Hence, V(C,) —{y, y~} dominates y ~. Suppose w
is another vertex in Rn V(C,). Slrmlarly, we have that V(C,)—{w,w™}
dominates w. If w and y are not two consecutive vertices on C,, then w~
and y~ dominate each other, a contradiction. Thus, every two vertices in
RN V(C,) must be consecutive vertices on C,. Consequently, |[Rn V(C,)|
< 3 and the equality holds only when C, is a triangle. ||

Since > ccys |[V(C)| + |H*| =4k and |RnV(C;)| <3 for each C;e.?,
then |Uu H*| = |U| + |V(H*)| = k follows. Since T is k-connected and

0=0,<0,_,--- =0,

there exist k vertex-disjoint paths, P;[ x;, y;] (i=1, 2, ..., k), such that x; is
in some cycle in @ and y, € Uvu V(H*) and all internal vertices of the path
are in Ru {u}. Furthermore, we can assume that all internal vertices of the
path P,[x;, y;] are in R. Otherwise, suppose that v,, € V(P;[ x;, y;]) for
some i=1, ..., k. Let u be the predecessor of v,, on P;[ x;, y,] and w be the
successor of v,, on P,[x;, y;]. We can suppose that u is in .# and b is in
H*. So the arc uw belongs to 7, and thus v,, can be omitted in the path

Pix;, y:]
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For each P;[ x;, y;], we define a hop to be two consecutive vertices # and
ut on P,[x;, y;] such that u and u™ are not consecutive vertices on the
same cycle of .#. Let h; be the number of hops on P,[x;, y;]. We choose
k vertex-disjoint paths P [ x;, y11, P>[ X2, V21, » Pil Xi, Vi ] such that:

1. Foreach i, x;€ Ucco V(C)), y;€ U V(H*), and all internal ver-
tices are in R.

2. Under Condition 1, 3*_, £, is minimum.
3. Under Conditions 1 and 2, 3'*_, |V(P,[x;, y;])| is maximum.

A cycle C;e.# is called a used in-cycle with respect to P[xy, xX;], ...,
P [xk, y] if C; contains some vertices in (J%_, V(P,(x,, y,]), otherwise
it is called an unused in-cycle. Similarly, a cycle C; € O is called a used out-
cycle if it contains some vertices in {x;, X,, .., X;}, otherwise it is called an
unused out-cycle. All used in-cycles and out-cycles are called used cycles and
all unused in-cycles and out-cycles are called unused cycles.

CrLamv 4. For each used in-cycle C;, V(C;)— K V(P[x;, y]) SR

Proof. Suppose, to the contrary, that there is a vertex ue Un (V(C;) —
K V(P[x;, ¥:])). Let u* be the first vertex in Ul,l V(P,(x;, y;]) along
C; in the reverse direction from u. Suppose that u*e V(P;(x;, y;]). Let
P¥=P[x;,u*] C[u*,u]. If u*# y,;, the number of hops on P¥ is less
than h;, a contradiction to the minimality of Y*_, h, If u*=y,, the
number of hops on P*=/h;, but P¥ is longer than P,[ x;, y,], a contradic-

tion to the maximality of 3%_, |V(P,[x;, y: ]I |1

For each i=1, .., k, let C? be the cycle in .# containing y, and C?“ be
the cycle in @ containing x,. Starting from Xx;, let x* be the first vertex
along cycle C?¢“ in the reverse direction from x;, such that (x*)~ e
{X1, X5, ., X} For each i=1, 2, ..., k, let

Q;=C[x¥, x;]1 P[xi, yi]-

Clearly, all vertices in used out-cycles are in Uz—l V(Q,[xF, y;]). By
Claim 4, we choose k vertex-disjoint paths Q[ xy, ¥11, Os[ X2, V215 s
Oul xx, yi] such that

l. For each i=1, 2, .., k, x;€ Ucco V(Cy), y; € UL V(H¥), and all
internal vertices are in ch ce V(C)).

2. For each used in-cycle C;, V(C;) — f‘=1 V(Q:[x: v:])

SR
3. For each used out-cycle C;, V(C;) = K VO xi yi))
)

4. Under the above three conditions, Y*_, [V( Q[ x;, y:]
mum.

1S maxi-



PARTITIONING VERTICES INTO CYCLES 219

Let r be the number of unused cycles with respect to Q[ x;, y1],
Os[ x5, V21, s Ol Xk, ¥i]- Let S be the set of vertices in used cycles but
not in U*_, (Q;(x;, y;]). Then, from Statements 2 and 3 above, S<R.
Note that {yy, y,, .., ¥ SUU V(H*) dominates Jc o V(C;). In par-
ticular, we have y_,x_; eE(T)foralli=1,2,..,kandj=1, 2, .., k.

If S= &, let

Ct=0i[x1, 11 y1vmx1,
Cr=0,[x;: ¥l for i=2,.,k—r—1,

and

Cér = Ok Xk—rs Vie—r ] Ore—r it [ X—rits Vie—r1 1+
Ol Xke—1s Vi1 1 Ol Xkes Yiedl Xie— s

Let €* be the set containing the above cycles and all unused cycles.
Clearly, €* contains exactly k vertex-disjoint cycles, and the union of the
vertex sets of these cycles contains all vertices in (J*_, V(C,) and v,,, a con-
tradiction to the maximality of Y%_, |V(C,)|.

Thus, we conclude that S# . Let Q[wy,w,]=wwy---w
hamiltonian path in T[S].

g be a

CLamM 5. w, dominates {y1, Yz, .« Vic}-

Proof. Suppose, to the contrary and without loss of generality, that
e
yiwy, € E(T). Let

;k = Q;k[xlﬂ yl] Q[WU qu] UmX1,
Cik:Qi[xi, yl] Xis for l:2’ "'9k_r_19
and
le—r = Qk—r[xk—n yk—r] Qk—r+1[xk—r+15 yk—r+1] e
o Qe alXe—1s Yie—1] Ol X, Yiel X

In the same manner as before, these cycles lead to a contradiction of the
maximality of 3*_, [V(C,)|. 1

CLamM 6. w, dominates \J*_, V(OQ,[x;, y;]).

i=1
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Proof. Suppose, to the contrary, that there is a vertex u € V(Q,[ x;, ¥;1)

such that Fv; € E(T). Since W € E(T), there are two consecutive vertices
u; and u;t on Q[ x;, y;] such that Tw{ € E(T) and w,u € E(T). Path
Ol x;, u;] le,-[ui*, v:] plus the other kK —1 paths contradict the maxi-
mality of 21_1 V(Qi[xi, v: DI 1

Since w; € R, there is a vertex x € Uc <o V(C;) which dominates w,. From
Claim 6, x must be on an unused out- cycle C, since U*_, M(Q;[x;, ¥:1)
contains all vertices in all used out-cycles. Let x* be the successor of x on
C,. We construct k —r+ 1 cycles as follows.

Cik = Ql[xlﬂ yl] Cs[x+’ X] Q[WD M}q] UmX15
Ct* = Qi[xiﬂ yl] xi) fOr l:29 () k_ra

and

Crri1 = Or—rit X v 1> Vierw1] Qo[ X yios Vi pyn] oo
Qi Xie> il XE_, 11

These k —r+1 cycles and r—1 remaining unused cycles lead to a con-
tradiction of the maximality of 3*_, | V(C;)|, which completes the proof of
Theorem 1.
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