Partitioning Vertices of a Tournament into Independent Cycles

Guantao Chen¹

Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303

Ronald J. Gould²

Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322

and

Hao Li

L.R.I., Bât. 490, Université Paris-Sud, 91405 Orsay Cedex, France Received October 7, 1997; published online July 24, 2001

Let k be a positive integer. A strong digraph G is termed k-connected if the removal of any set of fewer than k vertices results in a strongly connected digraph. The purpose of this paper is to show that every k-connected tournament with at least 8k vertices contains k vertex-disjoint directed cycles spanning the vertex set. This result answers a question posed by Bollobás. © 2001 Elsevier Science

This article will generally follow the notation and terminology defined in [1]. A digraph is called *strongly connected* or *strong* if for every pari of vertices u and v there exists a directed path from u to v and a directed path from v to u. Let k be a positive integer. A digraph G is *k*-connected if the removal of any set of fewer than k vertices results in a strong digraph. A tournament with n vertices will also be called an n-tournament.

It is well-known that every tournament contains a hamiltonian path and every strong tournament contains a hamiltonian cycle. Reid [2] proved that if T is a 2-connected n-tournament, $n \ge 6$, that is, T is not the 7-tournament that contains no transitive subtournament with 4 vertices (i.e., the quadratic residue 7-tournament), then T contains two vertex-disjoint cycles

² Research partially supported under O.N.R. Grant N00014-97-1-0499.

¹ Research partially supported under N.S.F. Grant DMS 0070059.

spanning V(T). In fact, he showed that one cycle can be taken to be a triangle. This result established an affirmative answer (for r = s = 1) to the following problem asked by Thomassen (see [3]): If r and s are positive integers, does there exist a (least) positive integer m = m(r, s) so that all but a finite number of m-connected tournaments can be partitioned into an r-connected subtournament and an s-connected subtournament? Song [4] was able to show that if T is a 2-connected n-tournament with $n \ge 6$ then the vertices of T can be partitioned into two cycles of lengths s and n-sfor any integer s with $3 \le s \le n-3$, unless T is the 7-tournament described above. The following problem was posed by Bollobás (see [2]) for tournaments.

Problem 1. If k is a positive integer, what is the least integer g(k) so that all but a finite number of g(k)-connected tournaments contain k vertex-disjoint cycles that span V(T)?

Reid observed that g(k) exists and $g(k) \leq 3k-4$ for $k \geq 2$ as follows: Recall that g(1) = 1 and g(2) = m(1, 1) = 2. If *T* is (g(k-1)+3)-connected, then the removal of a triangle leaves a g(k-1)-connected tournament that can be expressed as k-1 nontrivial vertex-disjoint cycles; that is, $g(k) \leq g(k-1)+3$. Thus, $g(3) \leq 5$, and, in general, $g(k) \leq 3k-4$. The following example shows that $g(k) \geq k$.

Let $n \ge 3k$. Let *T* be an *n*-tournament with $V(T) = \{v_1, v_2, ..., v_n\}$, where v_i dominates v_j for all $1 \le i \le j \le n$ except when $1 \le i \le k$ and $n-k+1 \le j \le n$ (in which case v_j dominates v_i). If *S* is any set of fewer than *k* vertices, then T-S is strongly connected; that is, *T* is *k*-connected. Clearly, any nontrivial cycle in *T* must use an arc $\overrightarrow{v_jv_i}$ for some $1 \le i \le k$ and some $n-k+1 \le j \le n$, so that *T* contains at most *k* vertex-disjoint cycles.

The main result of this article, stated below, shows that g(k) = k.

THEOREM 1. Every k-connected n-tournament T with $n \ge 8k$ contains k vertex-disjoint cycles that span V(T).

In [4], Song posed the following problem.

Problem 2. If k is a positive integer, what is the least integer f(k) so that all but a finite number of f(k)-connected tournaments contain k vertex-disjoint cycles of lengths $n_1, n_2, ..., n_k$ where $n = n_1 + n_2 + \cdots + n_k$ and $n_i \ge 3$ for all i = 1, 2, ..., k?

Clearly, f(1) = g(1) = 1. Song showed that f(2) = g(2) = 2. Clearly, $f(k) \ge g(k)$ holds for every k. Song conjectured that f(k) = g(k).

Let T be a tournament. The arc set of T will be denoted by E(T). If \vec{uv} is an arc in T, then *udominates* v and v is *dominated* by u. A set $A \subseteq V(T)$ dominates a set $B \subseteq V(T)$ if every vertex of A dominates every vertex of B. If $A = \{x\}$, we say that x dominates B. For any $X \subseteq V(T)$, let T[X] denote the subtournament induced by X.

Let T be a tournament and let C be a cycle in T. For every vertex $v \in V(C)$, let v_C^+ denote the successor of v on C and let v_C^- denote the predecessor of v on C. If no confusion arises, v^+ and v^- will be used to denote v_C^+ and v_C^- , respectively. Let X be a cycle or a path of T and let u and v be two vertices on X (u, v are in that order along X if X is a path). We define X[u, v] as the subpath of X from u to v. For any $u \notin V(C)$, if u is dominated by a vertex $x \in V(C)$ and u dominates x^+ , then $ux^+C[x^+, x] xu$ is a cycle longer than C. In this case, we say that u can be inserted into C. So, if u cannot be inserted into a cycle C, then either u dominates V(C) or V(C) dominates u. In the case, we call C an out-cycle of u while in the second case we call C an *in-cycle* of u. The following lemma will be used in the proof of Theorem 1.

LEMMA 1. Every k-connected tournament with $n \ge 5k-3$ vertices and $k \ge 2$ contains k vertex-disjoint cycles.

Proof. To the contrary, let $k \ (\ge 2)$ be the smallest positive integer such that there is a k-connected tournament T with $n \ge 5k - 3$ vertices, which does not contain k vertex-disjoint cycles. By the minimality of k and the fact that every strong tournament has a cycle, T contains k - 1 vertex-disjoint cycles. Since every cycle of length at least 4 contains a chord, T contains k - 1 vertex-disjoints triangles, say, $T_1, T_2, ..., T_{k-1}$. Let $H = T - \bigcup_{i=1}^{k-1} V(T_i)$. Since H does not contain a cycle, H is a transitive tournament. Let $P = v_1 v_2 \cdots v_m$ be the unique hamiltonian path in H. Since H is transitive, then $v_i v_j \in E(T)$ for any $1 \le i < j \le m$.

Let $F = \{v_1, v_2, ..., v_k\}$ and $B = \{v_{m-k+1}, v_{m-k+2}, ..., v_m\}$. Since $m \ge (5k-3) - 3(k-1) = 2k$, then $F \cap B = \emptyset$. Since T is k-connected, there exist k vertex-disjoint paths $P_1, P_2, ..., P_k$ from B to F. Clearly, these paths plus the appropriate arcs from F to B form k vertex-disjoint cycles.

Proof of Theorem 1. Let *T* be a *k*-connected tournament with $n \ge 8k$ vertices. Since $8k \ge 5k - 3$, *T* contains *k* vertex-disjoint cycles by Lemma 1. Let $C_1, C_2, ..., C_k$ be *k* vertex-disjoint cycles of *T* such that $\sum_{i=1}^{k} |V(C_i)|$ is maximum. Let $\mathscr{C} = \{C_1, C_2, ..., C_k\}$. To the contrary, then, we may assume that $\sum_{i=1}^{k} |V(C_i)| < n$. Let $H = T - \bigcup_{i=1}^{k} V(C_i)$. Since *H* is a tournament, *H* has a hamiltonian path. Let $P = v_1 v_2 \cdots v_m$ be a hamiltonian path in *H*. The linear order of $v_1, v_2, ..., v_m$ will play a role in our proof.

For each $v_i \in V(H)$ $(1 \le i \le m)$ and each $C_\ell \in \mathcal{C}$ $(1 \le \ell \le k)$, since v_i cannot be inserted into C_ℓ , C_ℓ is either an in-cycle of v_i or an out-cycle of v_i . We partition \mathcal{C} into two sets \mathcal{I}_i and \mathcal{O}_i for each i = 1, 2, ..., m as

 $\mathcal{I}_{i} = \{ C_{\ell} \mid C_{\ell} \text{ is an in-cycle of } v_{i} \},$ $\mathcal{O}_{i} = \{ C_{\ell} \mid C_{\ell} \text{ is an out-cycle of } v_{i} \}.$

For any two vertices v_i , $v_j \in V(H)$ and a cycle $C_{\ell} \in \mathcal{C}$, if i < j and C_{ℓ} is an out-cycle of v_j , then C_{ℓ} is also an out-cycle of v_i ; otherwise, let x and x^+ be two consecutive vertices on C_{ℓ} . The cycle $P[v_i, v_j] C_{\ell}[x^+, x] v_i$ is longer than C_{ℓ} which leads to a contradiction of the maximality of $\sum_{s=1}^{k} |V(C_s)|$. Thus, $\mathcal{O}_j \subseteq \mathcal{O}_i$. As a consequence,

$$\mathcal{O}_m \subseteq \mathcal{O}_{m-1} \subseteq \cdots \subseteq \mathcal{O}_1$$
 and $\mathcal{I}_m \supseteq \mathcal{I}_{m-1} \supseteq \cdots \supseteq \mathcal{I}_1$.

CLAIM 1. If S is a strong subtournament of H, then $\mathcal{I}_i = \mathcal{I}_j$ and $\mathcal{O}_i = \mathcal{O}_j$ for any two vertices v_i and $v_j \in V(S)$.

Proof. Suppose, to the contrary, that there is a cycle $C_{\ell} \in \mathscr{C}$ such that $C_{\ell} \in \mathscr{I}_i$ and $C_{\ell} \in \mathscr{O}_j$. Let $P[v_i, v_j]$ be a path in S connecting v_i and v_j and let x be an arbitrary vertex on C_{ℓ} . Then, the cycle $P[v_i, v_j] C[x^+, x] v_i$ is longer than C, a contradiction.

We will show that there exist k vertex disjoint cycles which contain all vertices of $\bigcup_{i=1}^{k} V(C_i)$ and v_m , which produces a contradiction. For convenience, let $\mathscr{I} = \mathscr{I}_m$, $\mathscr{O} = \mathscr{O}_m$, and $H^* = H - v_m$.

CLAIM 2.
$$\sum_{C_i \in \mathcal{O}} |V(C_i)| \ge k$$
 and $\sum_{C_i \in \mathscr{I}} |V(C_j)| \ge k$.

Proof. Let S be the strong component containing v_m in H. (Note that S could be $\{v_l\}$.) Since $P = v_1 v_2 \cdots v_m$ is a hamiltonian path in H, V(H) - V(S) dominates V(S). By Claim 1, $\bigcup_{C_i \in \mathscr{I}} V(C_i)$ dominates V(S). Also, S is the strong component of v_m in $T[V(H) \cup (\bigcup_{C_i \in \mathscr{I}} V(C_i))] = T - \bigcup_{C_i \in \mathscr{O}} V(C_i)$. Thus, $\sum_{C \in \mathscr{O}_m} |V(C)| \ge k$ is k-connected.

Since v_m dominates $\bigcup_{C_i \in \mathcal{O}} V(C_i)$, V(H) dominates $\bigcup_{C_i \in \mathcal{O}} V(C_i)$. As S is the strong component of v_m in $T[V(H) \cup (\bigcup_{C_j \in \mathcal{O}} V(C_j))] = T - \bigcup_{C_i \in \mathcal{F}} V(C_i)$, we see that $\sum_{C_i \in \mathcal{F}_m} |V(C_i)| \ge k$.

Without loss of generality, we may assume that $\sum_{C_i \in \mathscr{I}} |V(C_i)| \ge \sum_{C_j \in \mathscr{O}} |V(C_j)|$. Otherwise, we may reverse the directions of all arcs of *T* and exchange the roles of v_1 and v_m and consider \mathscr{O}_1 . Since $\mathscr{O}_1 \supseteq \mathscr{O}_m$, $\sum_{C_i \in \mathscr{O}_1} |V(C_i)| \ge \sum_{C_j \in \mathscr{I}_1} |V(C_j)|$.

Since $|V(T)| = n \ge 8k$, we have that

$$\sum_{C_i \in \mathscr{I}} |V(C_i)| + |V(H^*)| \ge 4k.$$

Define

$$R = \left\{ y \in \bigcup_{C_i \in \mathscr{I}} V(C_i) : \overrightarrow{xy} \in E(T) \text{ for some } x \in \bigcup_{C_j \in \mathscr{O}} V(C_j) \right\}$$

and

$$U = \bigcup_{C_i \in \mathscr{I}} V(C_i) - R.$$

That is, any $y \in R$ is dominated by some vertices in $\bigcup_{C_j \in \emptyset} V(C_j)$ and any $u \in U$ dominates all vertices in $\bigcup_{C_i \in \emptyset} V(C_j)$ for all $u \in U$.

CLAIM 3. For each $C_i \in \mathcal{I}$, $|V(C_i) \cap R| \leq 3$ and equality holds only when C_i is a triangle.

Proof. Let $x \in C_s \in \mathcal{O}$ and $y \in V(C_t) \cap R$ such that $\overrightarrow{xy} \in E(T)$. If $\overrightarrow{y-z} \in E(T)$ for some $z \in V(C_t) - \{y, y^-\}$, the cycles $v_m C_s[x^+, x] C_t[y, z^-] v_m$ and $C_t[z, y^-] z$ plus the remaining k - 2 cycles of \mathscr{C} contradict the maximality of $\sum_{i=1}^{k} |V(C_i)|$. Hence, $V(C_t) - \{y, y^-\}$ dominates y^- . Suppose w is another vertex in $R \cap V(C_t)$. Similarly, we have that $V(C_t) - \{w, w^-\}$ dominates w^- . If w and y are not two consecutive vertices on C_t , then w^- and y^- dominate each other, a contradiction. Thus, every two vertices in $R \cap V(C_t)$ must be consecutive vertices on C_t . Consequently, $|R \cap V(C_t)| \leq 3$ and the equality holds only when C_t is a triangle. ■

Since $\sum_{C \in \mathscr{I}} |V(C)| + |H^*| \ge 4k$ and $|R \cap V(C_i)| \le 3$ for each $C_i \in \mathscr{I}$, then $|U \cup H^*| = |U| + |V(H^*)| \ge k$ follows. Since T is k-connected and

$$\mathcal{O} = \mathcal{O}_m \subseteq \mathcal{O}_{m-1} \cdots \subseteq \mathcal{O}_1,$$

there exist k vertex-disjoint paths, $P_i[x_i, y_i]$ (i = 1, 2, ..., k), such that x_i is in some cycle in \mathcal{O} and $y_i \in U \cup V(H^*)$ and all internal vertices of the path are in $R \cup \{u\}$. Furthermore, we can assume that all internal vertices of the path $P_i[x_i, y_i]$ are in R. Otherwise, suppose that $v_m \in V(P_i[x_i, y_i])$ for some i = 1, ..., k. Let u be the predecessor of v_m on $P_i[x_i, y_i]$ and w be the successor of v_m on $P_i[x_i, y_i]$. We can suppose that u is in \mathscr{I} and b is in H^* . So the arc uw belongs to T, and thus v_m can be omitted in the path $P_i[x_i, y_i]$. For each $P_i[x_i, y_i]$, we define a *hop* to be two consecutive vertices u and u^+ on $P_i[x_i, y_i]$ such that u and u^+ are not consecutive vertices on the same cycle of \mathscr{I} . Let h_i be the number of hops on $P_i[x_i, y_i]$. We choose k vertex-disjoint paths $P_1[x_1, y_1]$, $P_2[x_2, y_2]$, ..., $P_k[x_k, y_k]$ such that:

1. For each *i*, $x_i \in \bigcup_{C_i \in \mathcal{O}} V(C_i)$, $y_i \in U \cup V(H^*)$, and all internal vertices are in *R*.

- 2. Under Condition 1, $\sum_{i=1}^{k} h_i$ is minimum.
- 3. Under Conditions 1 and 2, $\sum_{i=1}^{k} |V(P_i[x_i, y_i])|$ is maximum.

A cycle $C_i \in \mathscr{I}$ is called a *used in-cycle* with respect to $P_1[x_1, x_k], ..., P_k[x_k, y_k]$ if C_i contains some vertices in $\bigcup_{\ell=1}^k V(P_\ell(x_\ell, y_\ell])$, otherwise it is called an *unused in-cycle*. Similarly, a cycle $C_i \in \mathcal{O}$ is called a *used out-cycle* if it contains some vertices in $\{x_1, x_2, ..., x_k\}$, otherwise it is called an *unused out-cycle*. All used in-cycles and out-cycles are called *used cycles* and all unused in-cycles and out-cycles are called *unused cycles*.

CLAIM 4. For each used in-cycle C_i , $V(C_i) - \bigcup_{i=1}^k V(P_i[x_i, y_i]) \subseteq R$.

Proof. Suppose, to the contrary, that there is a vertex $u \in U \cap (V(C_j) - \bigcup_{i=1}^k V(P_i[x_i, y_i]))$. Let u^* be the first vertex in $\bigcup_{i=1}^k V(P_i(x_i, y_i])$ along C_j in the reverse direction from u. Suppose that $u^* \in V(P_i(x_i, y_i])$. Let $P_i^* = P_i[x_i, u^*] C_j[u^*, u]$. If $u^* \neq y_i$, the number of hops on P_i^* is less than h_i , a contradiction to the minimality of $\sum_{i=1}^k h_i$. If $u^* = y_i$, the number of hops on $P_i^* = h_i$, but P_i^* is longer than $P_i[x_i, y_i]$, a contradiction to the maximality of $\sum_{i=1}^k |V(P_i[x_i, y_i])|$. ■

For each i = 1, ..., k, let C_i^{in} be the cycle in \mathscr{I} containing y_i and C_i^{out} be the cycle in \mathscr{O} containing x_i . Starting from x_i , let x_i^* be the first vertex along cycle C_i^{out} in the reverse direction from x_i , such that $(x_i^*)^- \in \{x_1, x_2, ..., x_k\}$. For each i = 1, 2, ..., k, let

$$Q_i = C_i^{out}[x_i^*, x_i] P_i[x_i, y_i].$$

Clearly, all vertices in used out-cycles are in $\bigcup_{i=1}^{k} V(Q_i[x_i^*, y_i])$. By Claim 4, we choose k vertex-disjoint paths $Q_1[x_1, y_1]$, $Q_2[x_2, y_2]$, ..., $Q_k[x_k, y_k]$ such that

1. For each $i = 1, 2, ..., k, x_i \in \bigcup_{C_i \in \mathcal{O}} V(C_i), y_i \in U \cup V(H^*)$, and all internal vertices are in $\bigcup_{C_i \in \mathcal{O}} V(C_j)$.

2. For each used in-cycle C_j , $V(C_j) - \bigcup_{i=1}^k V(Q_i[x_i, y_i]) \subseteq R$.

3. For each used out-cycle C_i , $V(C_i) \subseteq \bigcup_{i=1}^k V(Q_i[x_i, y_i])$.

4. Under the above three conditions, $\sum_{i=1}^{k} |V(Q_i[x_i, y_i])|$ is maximum.

Let r be the number of unused cycles with respect to $Q_1[x_1, y_1]$, $Q_2[x_2, y_2], ..., Q_k[x_k, y_k]$. Let S be the set of vertices in used cycles but not in $\bigcup_{i=1}^k V(Q_i(x_i, y_i])$. Then, from Statements 2 and 3 above, $S \subseteq R$. Note that $\{y_1, y_2, ..., y_k\} \subseteq U \cup V(H^*)$ dominates $\bigcup_{C_i \in \mathcal{O}} V(C_i)$. In particular, we have $y_i x_j \in E(T)$ for all i = 1, 2, ..., k and j = 1, 2, ..., k. If $S = \emptyset$, let

$$C_1^* = Q_1[x_1, y_1] y_1 v_m x_1,$$

$$C_i^* = Q_i[x_i, y_i], \quad \text{for} \quad i = 2, ..., k - r - 1,$$

and

$$C_{k-r}^* = Q_{k-r}[x_{k-r}, y_{k-r}] Q_{k-r+1}[x_{k-r+1}, y_{k-r+1}] \cdots$$
$$\cdots Q_{k-1}[x_{k-1}, y_{k-1}] Q_k[x_k, y_k] x_{k-r}.$$

Let \mathscr{C}^* be the set containing the above cycles and all unused cycles. Clearly, \mathscr{C}^* contains exactly k vertex-disjoint cycles, and the union of the vertex sets of these cycles contains all vertices in $\bigcup_{i=1}^k V(C_i)$ and v_m , a contradiction to the maximality of $\sum_{i=1}^k |V(C_i)|$.

Thus, we conclude that $S \neq \emptyset$. Let $Q[w_1, w_q] = w_1 w_2 \cdots w_q$ be a hamiltonian path in T[S].

CLAIM 5.
$$w_1$$
 dominates $\{y_1, y_2, ..., y_k\}$.

Proof. Suppose, to the contrary and without loss of generality, that $\overrightarrow{y_1w_1} \in E(T)$. Let

$$C_1^* = Q_1^*[x_1, y_1] Q[w_1, w_q] v_m x_1,$$

$$C_2^* = Q_i[x_i, y_i] x_i, \quad \text{for} \quad i = 2, ..., k - r - 1,$$

and

$$C_{k-r}^* = Q_{k-r}[x_{k-r}, y_{k-r}] Q_{k-r+1}[x_{k-r+1}, y_{k-r+1}] \cdots$$
$$\cdots Q_{k-1}[x_{k-1}, y_{k-1}] Q_k[x_k, y_k] x_{k-r}.$$

In the same manner as before, these cycles lead to a contradiction of the maximality of $\sum_{i=1}^{k} |V(C_i)|$.

CLAIM 6.
$$w_1$$
 dominates $\bigcup_{i=1}^k V(Q_i[x_i, y_i])$.

Proof. Suppose, to the contrary, that there is a vertex $u \in V(Q_i[x_i, y_i])$ such that $\overrightarrow{uw_1} \in E(T)$. Since $\overrightarrow{w_1 y_i} \in E(T)$, there are two consecutive vertices u_i and u_i^+ on $Q_i[x_i, y_i]$ such that $\overrightarrow{u_iw_1} \in E(T)$ and $\overrightarrow{w_1u_i^+} \in E(T)$. Path $Q_i[x_i, u_i] w_1 Q_i[u_i^+, y_i]$ plus the other k-1 paths contradict the maximality of $\sum_{i=1}^{k} |V(Q_i[x_i, y_i])|$.

Since $w_1 \in R$, there is a vertex $x \in \bigcup_{C_j \in \mathcal{O}} V(C_j)$ which dominates w_1 . From Claim 6, x must be on an unused out-cycle C_s since $\bigcup_{i=1}^k V(Q_i[x_i, y_i])$ contains all vertices in all used out-cycles. Let x^+ be the successor of x on C_s . We construct k - r + 1 cycles as follows.

$$C_{1}^{*} = Q_{1}[x_{1}, y_{1}] C_{s}[x^{+}, x] Q[w_{1}, w_{q}] v_{m}x_{1},$$

$$C_{i}^{*} = Q_{i}[x_{i}, y_{i}] x_{i}, \quad \text{for} \quad i = 2, ..., k - r,$$

and

$$C_{k-r+1}^* = Q_{k-r+1}[x_{k-r+1}, y_{k-r+1}] Q_{k-r+2}[x_{k-r+2}, y_{k-r+2}] \cdots$$
$$\cdots Q_k[x_k, y_k] x_{k-r+1}^*.$$

These k-r+1 cycles and r-1 remaining unused cycles lead to a contradiction of the maximality of $\sum_{i=1}^{k} |V(C_i)|$, which completes the proof of Theorem 1.

REFERENCES

- J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications," Macmillan, London/ New York, 1976.
- K. B. Reid, Two complementary circuits in two-connected tournaments, *in* "Cycles in Graphs" (B. R. Alspach and C. D. Godsil, Eds.), Annals of Discrete Mathematics, Vol. 27, pp. 321–334, North-Holland, Amsterdam, 1985.
- K. B. Reid, Three problems on tournaments, *in* "Graph Theory and Its Applications: East and West," Annals of the New York Academy Science, Vol. 576, pp. 466–473, New York Academy of Science, New York, 1989.
- Z. Song, Complementary cycles of all lengths in tournaments, J. Combin. Theory Ser. B 57 (1993), 18–25.