Partitioning Vertices of a Tournament into Independent Cycles

Guantao Chen ${ }^{1}$
Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303
Ronald J. Gould ${ }^{2}$
Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
and

Hao Li
L.R.I., Bât. 490, Université Paris-Sud, 91405 Orsay Cedex, France

Received October 7, 1997; published online July 24, 2001

Let k be a positive integer. A strong digraph G is termed k-connected if the removal of any set of fewer than k vertices results in a strongly connected digraph. The purpose of this paper is to show that every k-connected tournament with at least $8 k$ vertices contains k vertex-disjoint directed cycles spanning the vertex set. This result answers a question posed by Bollobás. © 2001 Elsevier Science

This article will generally follow the notation and terminology defined in [1]. A digraph is called strongly connected or strong if for every pari of vertices u and v there exists a directed path from u to v and a directed path from v to u. Let k be a positive integer. A digraph G is k-connected if the removal of any set of fewer than k vertices results in a strong digraph. A tournament with n vertices will also be called an n-tournament.

It is well-known that every tournament contains a hamiltonian path and every strong tournament contains a hamiltonian cycle. Reid [2] proved that if T is a 2 -connected n-tournament, $n \geqslant 6$, that is, T is not the 7 -tournament that contains no transitive subtournament with 4 vertices (i.e., the quadratic residue 7 -tournament), then T contains two vertex-disjoint cycles

[^0]spanning $V(T)$. In fact, he showed that one cycle can be taken to be a triangle. This result established an affirmative answer (for $r=s=1$) to the following problem asked by Thomassen (see [3]): If r and s are positive integers, does there exist a (least) positive integer $m=m(r, s)$ so that all but a finite number of m-connected tournaments can be partitioned into an r-connected subtournament and an s-connected subtournament? Song [4] was able to show that if T is a 2 -connected n-tournament with $n \geqslant 6$ then the vertices of T can be partitioned into two cycles of lengths s and $n-s$ for any integer s with $3 \leqslant s \leqslant n-3$, unless T is the 7 -tournament described above. The following problem was posed by Bollobás (see [2]) for tournaments.

Problem 1. If k is a positive integer, what is the least integer $g(k)$ so that all but a finite number of $g(k)$-connected tournaments contain k vertex-disjoint cycles that span $V(T)$?

Reid observed that $g(k)$ exists and $g(k) \leqslant 3 k-4$ for $k \geqslant 2$ as follows: Recall that $g(1)=1$ and $g(2)=m(1,1)=2$. If T is $(g(k-1)+3)$-connected, then the removal of a triangle leaves a $g(k-1)$-connected tournament that can be expressed as $k-1$ nontrivial vertex-disjoint cycles; that is, $g(k) \leqslant$ $g(k-1)+3$. Thus, $g(3) \leqslant 5$, and, in general, $g(k) \leqslant 3 k-4$. The following example shows that $g(k) \geqslant k$.

Let $n \geqslant 3 k$. Let T be an n-tournament with $V(T)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where v_{i} dominates v_{j} for all $1 \leqslant i \leqslant j \leqslant n$ except when $1 \leqslant i \leqslant k$ and $n-k+1 \leqslant j$ $\leqslant n$ (in which case v_{j} dominates v_{i}). If S is any set of fewer than k vertices, then $T-S$ is strongly connected; that is, T is k-connected. Clearly, any nontrivial cycle in T must use an arc $\overrightarrow{v_{j} v_{i}}$ for some $1 \leqslant i \leqslant k$ and some $n-k+1 \leqslant j \leqslant n$, so that T contains at most k vertex-disjoint cycles.

The main result of this article, stated below, shows that $g(k)=k$.

Theorem 1. Every k-connected n-tournament T with $n \geqslant 8 k$ contains k vertex-disjoint cycles that span $V(T)$.

In [4], Song posed the following problem.
Problem 2. If k is a positive integer, what is the least integer $f(k)$ so that all but a finite number of $f(k)$-connected tournaments contain k vertex-disjoint cycles of lengths $n_{1}, n_{2}, \ldots, n_{k}$ where $n=n_{1}+n_{2}+\cdots+n_{k}$ and $n_{i} \geqslant 3$ for all $i=1,2, \ldots, k$?

Clearly, $f(1)=g(1)=1$. Song showed that $f(2)=g(2)=2$. Clearly, $f(k) \geqslant g(k)$ holds for every k. Song conjectured that $f(k)=g(k)$.

Let T be a tournament. The arc set of T will be denoted by $E(T)$. If $\overrightarrow{u v}$ is an arc in T, then udominates v and v is dominated by u. A set $A \subseteq V(T)$ dominates a set $B \subseteq V(T)$ if every vertex of A dominates every vertex of B. If $A=\{x\}$, we say that x dominates B. For any $X \subseteq V(T)$, let $T[X]$ denote the subtournament induced by X.

Let T be a tournament and let C be a cycle in T. For every vertex $v \in V(C)$, let v_{C}^{+}denote the successor of v on C and let v_{C}^{-}denote the predecessor of v on C. If no confusion arises, v^{+}and v^{-}will be used to denote v_{C}^{+}and v_{C}, respectively. Let X be a cycle or a path of T and let u and v be two vertices on $X(u, v$ are in that order along X if X is a path $)$. We define $X[u, v]$ as the subpath of X from u to v. For any $u \notin V(C)$, if u is dominated by a vertex $x \in V(C)$ and u dominates x^{+}, then $u x^{+} C\left[x^{+}\right.$, $x] x u$ is a cycle longer than C. In this case, we say that u can be inserted into C. So, if u cannot be inserted into a cycle C, then either u dominates $V(C)$ or $V(C)$ dominates u. In the case, we call C an out-cycle of u while in the second case we call C an in-cycle of u. The following lemma will be used in the proof of Theorem 1.

Lemma 1. Every k-connected tournament with $n \geqslant 5 k-3$ vertices and $k \geqslant 2$ contains k vertex-disjoint cycles.

Proof. To the contrary, let $k(\geqslant 2)$ be the smallest positive integer such that there is a k-connected tournament T with $n \geqslant 5 k-3$ vertices, which does not contain k vertex-disjoint cycles. By the minimality of k and the fact that every strong tournament has a cycle, T contains $k-1$ vertexdisjoint cycles. Since every cycle of length at least 4 contains a chord, T contains $k-1$ vertex-disjoints triangles, say, $T_{1}, T_{2}, \ldots, T_{k-1}$. Let $H=$ $T-\bigcup_{i=1}^{k-1} V\left(T_{i}\right)$. Since H does not contain a cycle, H is a transitive tournament. Let $P=v_{1} v_{2} \cdots v_{m}$ be the unique hamiltonian path in H. Since H is transitive, then $\overrightarrow{v_{i} v_{j}} \in E(T)$ for any $1 \leqslant i<j \leqslant m$.

Let $F=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and $B=\left\{v_{m-k+1}, v_{m-k+2}, \ldots, v_{m}\right\}$. Since $m \geqslant$ $(5 k-3)-3(k-1)=2 k$, then $F \cap B=\varnothing$. Since T is k-connected, there exist k vertex-disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ from B to F. Clearly, these paths plus the appropriate arcs from F to B form k vertex-disjoint cycles.

Proof of Theorem 1. Let T be a k-connected tournament with $n \geqslant 8 k$ vertices. Since $8 k \geqslant 5 k-3, T$ contains k vertex-disjoint cycles by Lemma 1 . Let $C_{1}, C_{2}, \ldots, C_{k}$ be k vertex-disjoint cycles of T such that $\sum_{i=1}^{k}\left|V\left(C_{i}\right)\right|$ is maximum. Let $\mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$. To the contrary, then, we may assume that $\sum_{i=1}^{k}\left|V\left(C_{i}\right)\right|<n$. Let $H=T-\bigcup_{i=1}^{k} V\left(C_{i}\right)$. Since H is a tournament, H has a hamiltonian path. Let $P=v_{1} v_{2} \cdots v_{m}$ be a hamiltonian path in H. The linear order of $v_{1}, v_{2}, \ldots, v_{m}$ will play a role in our proof.

For each $v_{i} \in V(H)(1 \leqslant i \leqslant m)$ and each $C_{\ell} \in \mathscr{C}(1 \leqslant \ell \leqslant k)$, since v_{i} cannot be inserted into C_{ℓ}, C_{ℓ} is either an in-cycle of v_{i} or an out-cycle of v_{i}. We partition \mathscr{C} into two sets \mathscr{I}_{i} and \mathscr{O}_{i} for each $i=1,2, \ldots, m$ as

$$
\begin{aligned}
\mathscr{I}_{i} & =\left\{C_{\ell} \mid C_{\ell} \text { is an in-cycle of } v_{i}\right\}, \\
\mathscr{O}_{i} & =\left\{C_{\ell} \mid C_{\ell} \text { is an out-cycle of } v_{i}\right\} .
\end{aligned}
$$

For any two vertices $v_{i}, v_{j} \in V(H)$ and a cycle $C_{\ell} \in \mathscr{C}$, if $i<j$ and C_{ℓ} is an out-cycle of v_{j}, then C_{ℓ} is also an out-cycle of v_{i}; otherwise, let x and x^{+}be two consecutive vertices on C_{ℓ}. The cycle $P\left[v_{i}, v_{j}\right] C_{\ell}\left[x^{+}, x\right] v_{i}$ is longer than C_{ℓ} which leads to a contradiction of the maximality of $\sum_{s=1}^{k}\left|V\left(C_{s}\right)\right|$. Thus, $\mathcal{O}_{j} \subseteq \mathcal{O}_{i}$. As a consequence,

$$
\mathcal{O}_{m} \subseteq \mathcal{O}_{m-1} \subseteq \cdots \subseteq \mathcal{O}_{1} \quad \text { and } \quad \mathscr{I}_{m} \supseteq \mathscr{I}_{m-1} \supseteq \cdots \supseteq \mathscr{I}_{1} .
$$

Claim 1. If S is a strong subtournament of H, then $\mathscr{I}_{i}=\mathscr{I}_{j}$ and $\mathcal{O}_{i}=\mathcal{O}_{j}$ for any two vertices v_{i} and $v_{j} \in V(S)$.

Proof. Suppose, to the contrary, that there is a cycle $C_{\ell} \in \mathscr{C}$ such that $C_{\ell} \in \mathscr{I}_{i}$ and $C_{\ell} \in \mathcal{O}_{j}$. Let $P\left[v_{i}, v_{j}\right]$ be a path in S connecting v_{i} and v_{j} and let x be an arbitrary vertex on C_{ℓ}. Then, the cycle $P\left[v_{i}, v_{j}\right] C\left[x^{+}, x\right] v_{i}$ is longer than C, a contradiction.

We will show that there exist k vertex disjoint cycles which contain all vertices of $\bigcup_{i=1}^{k} V\left(C_{i}\right)$ and v_{m}, which produces a contradiction. For convenience, let $\mathscr{I}=\mathscr{I}_{m}, \mathcal{O}=\mathcal{O}_{m}$, and $H^{*}=H-v_{m}$.

CLaim 2. $\quad \sum_{C_{i} \in \mathcal{O}}\left|V\left(C_{i}\right)\right| \geqslant k$ and $\sum_{C_{j} \in \mathscr{I}}\left|V\left(C_{j}\right)\right| \geqslant k$.
Proof. Let S be the strong component containing v_{m} in H. (Note that S could be $\left\{v_{l}\right\}$.) Since $P=v_{1} v_{2} \cdots v_{m}$ is a hamiltonian path in H, $V(H)-V(S)$ dominates $V(S)$. By Claim $1, \bigcup_{c_{i} \in \mathscr{I}} V\left(C_{i}\right)$ dominates $V(S)$. Also, S is the strong component of v_{m} in $T\left[V(H) \cup\left(\cup_{C_{j} \in \mathscr{I}} V\left(C_{j}\right)\right)\right]=$ $T-\bigcup_{c_{i} \in \mathscr{O}} V\left(C_{i}\right)$. Thus, $\sum_{C \in \mathscr{O}_{m}}|V(C)| \geqslant k$ is k-connected.

Since v_{m} dominates $\bigcup_{c_{i} \in \mathcal{O}} V\left(C_{i}\right), V(H)$ dominates $\bigcup_{c_{i} \in \mathcal{O}} V\left(C_{i}\right)$. As S is the strong component of v_{m} in $T\left[V(H) \cup\left(\bigcup_{C_{j} \in \mathscr{O}} V\left(C_{j}\right)\right)\right]=T-\bigcup_{c_{i} \in \mathscr{I}} V\left(C_{i}\right)$, we see that $\sum_{C_{i} \in \mathscr{\mathscr { I }}_{m}}\left|V\left(C_{i}\right)\right| \geqslant k$.

Without loss of generality, we may assume that $\sum_{c_{i} \in \mathscr{I}}\left|V\left(C_{i}\right)\right| \geqslant$ $\sum_{C_{j} \in \mathcal{O}}\left|V\left(C_{j}\right)\right|$. Otherwise, we may reverse the directions of all arcs of T and exchange the roles of v_{1} and v_{m} and consider \mathcal{O}_{1}. Since $\mathcal{O}_{1} \supseteq \mathcal{O}_{m}$, $\sum_{C_{i} \in \mathcal{O}_{1}}\left|V\left(C_{i}\right)\right| \geqslant \sum_{C_{j} \in \mathscr{I}_{1}}\left|V\left(C_{j}\right)\right|$.

Since $|V(T)|=n \geqslant 8 k$, we have that

$$
\sum_{C_{i} \in \mathscr{I}}\left|V\left(C_{i}\right)\right|+\left|V\left(H^{*}\right)\right| \geqslant 4 k .
$$

Define

$$
R=\left\{y \in \bigcup_{C_{i} \in \mathscr{I}} V\left(C_{i}\right): \overrightarrow{x y} \in E(T) \text { for some } x \in \bigcup_{C_{j} \in \mathcal{O}} V\left(C_{j}\right)\right\}
$$

and

$$
U=\bigcup_{C_{i} \in \mathscr{I}} V\left(C_{i}\right)-R .
$$

That is, any $y \in R$ is dominated by some vertices in $\bigcup_{C_{j} \in \mathcal{O}} V\left(C_{j}\right)$ and any $u \in U$ dominates all vertices in $\bigcup_{C_{j} \in \mathcal{O}} V\left(C_{j}\right)$ for all $u \in U$.

Claim 3. For each $C_{i} \in \mathscr{I},\left|V\left(C_{i}\right) \cap R\right| \leqslant 3$ and equality holds only when C_{i} is a triangle.

Proof. Let $x \in C_{s} \in \mathcal{O}$ and $y \in V\left(C_{t}\right) \cap R$ such that $\overrightarrow{x y} \in E(T)$. If $\overrightarrow{y^{-} \vec{z}} \in$ $E(T)$ for some $z \in V\left(C_{t}\right)-\left\{y, y^{-}\right\}$, the cycles $v_{m} C_{s}\left[x^{+}, x\right] C_{t}\left[y, z^{-}\right] v_{m}$ and $C_{t}\left[z, y^{-}\right] z$ plus the remaining $k-2$ cycles of \mathscr{C} contradict the maximality of $\sum_{i=1}^{k}\left|V\left(C_{i}\right)\right|$. Hence, $V\left(C_{t}\right)-\left\{y, y^{-}\right\}$dominates y^{-}. Suppose w is another vertex in $R \cap V\left(C_{t}\right)$. Similarly, we have that $V\left(C_{t}\right)-\left\{w, w^{-}\right\}$ dominates w^{-}. If w and y are not two consecutive vertices on C_{t}, then w^{-} and y^{-}dominate each other, a contradiction. Thus, every two vertices in $R \cap V\left(C_{t}\right)$ must be consecutive vertices on C_{t}. Consequently, $\left|R \cap V\left(C_{t}\right)\right|$ $\leqslant 3$ and the equality holds only when C_{t} is a triangle.

Since $\sum_{C \in \mathscr{I}}|V(C)|+\left|H^{*}\right| \geqslant 4 k$ and $\left|R \cap V\left(C_{i}\right)\right| \leqslant 3$ for each $C_{i} \in \mathscr{I}$, then $\left|U \cup H^{*}\right|=|U|+\left|V\left(H^{*}\right)\right| \geqslant k$ follows. Since T is k-connected and

$$
\mathcal{O}=\mathcal{O}_{m} \subseteq \mathcal{O}_{m-1} \cdots \subseteq \mathcal{O}_{1},
$$

there exist k vertex-disjoint paths, $P_{i}\left[x_{i}, y_{i}\right](i=1,2, \ldots, k)$, such that x_{i} is in some cycle in \mathcal{O} and $y_{i} \in U \cup V\left(H^{*}\right)$ and all internal vertices of the path are in $R \cup\{u\}$. Furthermore, we can assume that all internal vertices of the path $P_{i}\left[x_{i}, y_{i}\right]$ are in R. Otherwise, suppose that $v_{m} \in V\left(P_{i}\left[x_{i}, y_{i}\right]\right)$ for some $i=1, \ldots, k$. Let u be the predecessor of v_{m} on $P_{i}\left[x_{i}, y_{i}\right]$ and w be the successor of v_{m} on $P_{i}\left[x_{i}, y_{i}\right]$. We can suppose that u is in \mathscr{I} and b is in H^{*}. So the arc $u w$ belongs to T, and thus v_{m} can be omitted in the path $P_{i}\left[x_{i}, y_{i}\right]$.

For each $P_{i}\left[x_{i}, y_{i}\right]$, we define a hop to be two consecutive vertices u and u^{+}on $P_{i}\left[x_{i}, y_{i}\right]$ such that u and u^{+}are not consecutive vertices on the same cycle of \mathscr{I}. Let h_{i} be the number of hops on $P_{i}\left[x_{i}, y_{i}\right]$. We choose k vertex-disjoint paths $P_{1}\left[x_{1}, y_{1}\right], P_{2}\left[x_{2}, y_{2}\right], \ldots, P_{k}\left[x_{k}, y_{k}\right]$ such that:

1. For each $i, x_{i} \in \bigcup_{c_{i} \in \mathcal{O}} V\left(C_{i}\right), y_{i} \in U \cup V\left(H^{*}\right)$, and all internal vertices are in R.
2. Under Condition $1, \sum_{i=1}^{k} h_{i}$ is minimum.
3. Under Conditions 1 and $2, \sum_{i=1}^{k}\left|V\left(P_{i}\left[x_{i}, y_{i}\right]\right)\right|$ is maximum.

A cycle $C_{i} \in \mathscr{I}$ is called a used in-cycle with respect to $P_{1}\left[x_{1}, x_{k}\right], \ldots$, $P_{k}\left[x_{k}, y_{k}\right]$ if C_{i} contains some vertices in $\bigcup_{\ell=1}^{k} V\left(P_{\ell}\left(x_{\ell}, y_{\ell}\right]\right)$, otherwise it is called an unused in-cycle. Similarly, a cycle $C_{i} \in \mathcal{O}$ is called a used outcycle if it contains some vertices in $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, otherwise it is called an unused out-cycle. All used in-cycles and out-cycles are called used cycles and all unused in-cycles and out-cycles are called unused cycles.

Claim 4. For each used in-cycle $C_{j}, V\left(C_{j}\right)-\bigcup_{i=1}^{k} V\left(P_{i}\left[x_{i}, y_{i}\right]\right) \subseteq R$.
Proof. Suppose, to the contrary, that there is a vertex $u \in U \cap\left(V\left(C_{j}\right)-\right.$ $\bigcup_{i=1}^{k} V\left(P_{i}\left[x_{i}, y_{i}\right]\right)$). Let u^{*} be the first vertex in $\bigcup_{i=1}^{k} V\left(P_{i}\left(x_{i}, y_{i}\right]\right)$ along C_{j} in the reverse direction from u. Suppose that $u^{*} \in V\left(P_{i}\left(x_{i}, y_{i}\right]\right)$. Let $P_{i}^{*}=P_{i}\left[x_{i}, u^{*}\right] C_{j}\left[u^{*}, u\right]$. If $u^{*} \neq y_{i}$, the number of hops on P_{i}^{*} is less than h_{i}, a contradiction to the minimality of $\sum_{i=1}^{k} h_{i}$. If $u^{*}=y_{i}$, the number of hops on $P_{i}^{*}=h_{i}$, but P_{i}^{*} is longer than $P_{i}\left[x_{i}, y_{i}\right]$, a contradiction to the maximality of $\sum_{i=1}^{k}\left|V\left(P_{i}\left[x_{i}, y_{i}\right]\right)\right|$.

For each $i=1, \ldots, k$, let $C_{i}^{i n}$ be the cycle in \mathscr{I} containing y_{i} and $C_{i}^{\text {out }}$ be the cycle in \mathcal{O} containing x_{i}. Starting from x_{i}, let x_{i}^{*} be the first vertex along cycle $C_{i}^{\text {out }}$ in the reverse direction from x_{i}, such that $\left(x_{i}^{*}\right)^{-\epsilon}$ $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. For each $i=1,2, \ldots, k$, let

$$
Q_{i}=C_{i}^{\text {out }}\left[x_{i}^{*}, x_{i}\right] P_{i}\left[x_{i}, y_{i}\right] .
$$

Clearly, all vertices in used out-cycles are in $\bigcup_{i=1}^{k} V\left(Q_{i}\left[x_{i}^{*}, y_{i}\right]\right)$. By Claim 4, we choose k vertex-disjoint paths $Q_{1}\left[x_{1}, y_{1}\right], Q_{2}\left[x_{2}, y_{2}\right], \ldots$, $Q_{k}\left[x_{k}, y_{k}\right]$ such that

1. For each $i=1,2, \ldots, k, x_{i} \in \bigcup_{c_{i} \in \mathcal{O}} V\left(C_{i}\right), y_{i} \in U \cup V\left(H^{*}\right)$, and all internal vertices are in $\bigcup_{C_{j} \in \mathscr{\mathscr { C }}} V\left(C_{j}\right)$.
2. For each used in-cycle $C_{j}, V\left(C_{j}\right)-\bigcup_{i=1}^{k} V\left(Q_{i}\left[x_{i}, y_{i}\right]\right) \subseteq R$.
3. For each used out-cycle $C_{j}, V\left(C_{j}\right) \subseteq \bigcup_{i=1}^{k} V\left(Q_{i}\left[x_{i}, y_{i}\right]\right)$.
4. Under the above three conditions, $\sum_{i=1}^{k}\left|V\left(Q_{i}\left[x_{i}, y_{i}\right]\right)\right|$ is maximum.

Let r be the number of unused cycles with respect to $Q_{1}\left[x_{1}, y_{1}\right]$, $Q_{2}\left[x_{2}, y_{2}\right], \ldots, Q_{k}\left[x_{k}, y_{k}\right]$. Let S be the set of vertices in used cycles but not in $\bigcup_{i=1}^{k} V\left(Q_{i}\left(x_{i}, y_{i}\right]\right)$. Then, from Statements 2 and 3 above, $S \subseteq R$. Note that $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\} \subseteq U \cup V\left(H^{*}\right)$ dominates $\bigcup_{c_{i} \in \mathcal{O}} V\left(C_{i}\right)$. In particular, we have $\overrightarrow{y_{i} x_{j}} \in E(T)$ for all $i=1,2, \ldots, k$ and $j=1,2, \ldots, k$.

If $S=\varnothing$, let

$$
\begin{aligned}
& C_{1}^{*}=Q_{1}\left[x_{1}, y_{1}\right] y_{1} v_{m} x_{1}, \\
& C_{i}^{*}=Q_{i}\left[x_{i}, y_{i}\right], \quad \text { for } \quad i=2, \ldots, k-r-1,
\end{aligned}
$$

and

$$
\begin{aligned}
C_{k-r}^{*}= & Q_{k-r}\left[x_{k-r}, y_{k-r}\right] Q_{k-r+1}\left[x_{k-r+1}, y_{k-r+1}\right] \cdots \\
& \cdots Q_{k-1}\left[x_{k-1}, y_{k-1}\right] Q_{k}\left[x_{k}, y_{k}\right] x_{k-r} .
\end{aligned}
$$

Let \mathscr{C}^{*} be the set containing the above cycles and all unused cycles. Clearly, \mathscr{C}^{*} contains exactly k vertex-disjoint cycles, and the union of the vertex sets of these cycles contains all vertices in $\bigcup_{i=1}^{k} V\left(C_{i}\right)$ and v_{m}, a contradiction to the maximality of $\sum_{i=1}^{k}\left|V\left(C_{i}\right)\right|$.

Thus, we conclude that $S \neq \varnothing$. Let $Q\left[w_{1}, w_{q}\right]=w_{1} w_{2} \cdots w_{q}$ be a hamiltonian path in $T[S]$.

Claim 5. w_{1} dominates $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$.
Proof. Suppose, to the contrary and without loss of generality, that $\overrightarrow{y_{1} w_{1}} \in E(T)$. Let

$$
\begin{aligned}
C_{1}^{*} & =Q_{1}^{*}\left[x_{1}, y_{1}\right] Q\left[w_{1}, w_{q}\right] v_{m} x_{1}, \\
C_{2}^{*} & =Q_{i}\left[x_{i}, y_{i}\right] x_{i}, \quad \text { for } \quad i=2, \ldots, k-r-1,
\end{aligned}
$$

and

$$
\begin{aligned}
C_{k-r}^{*}= & Q_{k-r}\left[x_{k-r}, y_{k-r}\right] Q_{k-r+1}\left[x_{k-r+1}, y_{k-r+1}\right] \cdots \\
& \cdots Q_{k-1}\left[x_{k-1}, y_{k-1}\right] Q_{k}\left[x_{k}, y_{k}\right] x_{k-r}
\end{aligned}
$$

In the same manner as before, these cycles lead to a contradiction of the maximality of $\sum_{i=1}^{k}\left|V\left(C_{i}\right)\right|$.

Claim 6. w_{1} dominates $\bigcup_{i=1}^{k} V\left(Q_{i}\left[x_{i}, y_{i}\right]\right)$.

Proof. Suppose, to the contrary, that there is a vertex $u \in V\left(Q_{i}\left[x_{i}, y_{i}\right]\right)$ such that $\overrightarrow{u w_{1}} \in E(T)$. Since $\overrightarrow{w_{1} y_{i}} \in E(T)$, there are two consecutive vertices u_{i} and u_{i}^{+}on $Q_{i}\left[x_{i}, y_{i}\right]$ such that $\overrightarrow{u_{i} w_{1}} \in E(T)$ and $\overrightarrow{w_{1} u_{i}^{+}} \in E(T)$. Path $Q_{i}\left[x_{i}, u_{i}\right] w_{1} Q_{i}\left[u_{i}^{+}, y_{i}\right]$ plus the other $k-1$ paths contradict the maximality of $\sum_{i=1}^{k}\left|V\left(Q_{i}\left[x_{i}, y_{i}\right]\right)\right|$.

Since $w_{1} \in R$, there is a vertex $x \in \bigcup_{C_{j} \in \mathcal{O}} V\left(C_{j}\right)$ which dominates w_{1}. From Claim 6, x must be on an unused out-cycle C_{s} since $\bigcup_{i=1}^{k} V\left(Q_{i}\left[x_{i}, y_{i}\right]\right)$ contains all vertices in all used out-cycles. Let x^{+}be the successor of x on C_{s}. We construct $k-r+1$ cycles as follows.

$$
\begin{aligned}
& C_{1}^{*}=Q_{1}\left[x_{1}, y_{1}\right] C_{s}\left[x^{+}, x\right] Q\left[w_{1}, w_{q}\right] v_{m} x_{1}, \\
& C_{i}^{*}=Q_{i}\left[x_{i}, y_{i}\right] x_{i}, \quad \text { for } \quad i=2, \ldots, k-r,
\end{aligned}
$$

and

$$
\begin{aligned}
C_{k-r+1}^{*}= & Q_{k-r+1}\left[x_{k-r+1}, y_{k-r+1}\right] Q_{k-r+2}\left[x_{k-r+2}, y_{k-r+2}\right] \cdots \\
& \cdots Q_{k}\left[x_{k}, y_{k}\right] x_{k-r+1}^{*} .
\end{aligned}
$$

These $k-r+1$ cycles and $r-1$ remaining unused cycles lead to a contradiction of the maximality of $\sum_{i=1}^{k}\left|V\left(C_{i}\right)\right|$, which completes the proof of Theorem 1.

REFERENCES

1. J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications," Macmillan, London/ New York, 1976.
2. K. B. Reid, Two complementary circuits in two-connected tournaments, in "Cycles in Graphs" (B. R. Alspach and C. D. Godsil, Eds.), Annals of Discrete Mathematics, Vol. 27, pp. 321-334, North-Holland, Amsterdam, 1985.
3. K. B. Reid, Three problems on tournaments, in "Graph Theory and Its Applications: East and West," Annals of the New York Academy Science, Vol. 576, pp. 466-473, New York Academy of Science, New York, 1989.
4. Z. Song, Complementary cycles of all lengths in tournaments, J. Combin. Theory Ser. B $\mathbf{5 7}$ (1993), 18-25.

[^0]: ${ }^{1}$ Research partially supported under N.S.F. Grant DMS 0070059.
 ${ }^{2}$ Research partially supported under O.N.R. Grant N00014-97-1-0499.

