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Let k be a positive integer. A strong digraph G is termed k-connected if the
removal of any set of fewer than k vertices results in a strongly connected digraph.
The purpose of this paper is to show that every k-connected tournament with at
least 8k vertices contains k vertex-disjoint directed cycles spanning the vertex set.
This result answers a question posed by Bolloba� s. � 2001 Elsevier Science

This article will generally follow the notation and terminology defined in
[1]. A digraph is called strongly connected or strong if for every pari of
vertices u and v there exists a directed path from u to v and a directed path
from v to u. Let k be a positive integer. A digraph G is k-connected if the
removal of any set of fewer than k vertices results in a strong digraph.
A tournament with n vertices will also be called an n-tournament.

It is well-known that every tournament contains a hamiltonian path and
every strong tournament contains a hamiltonian cycle. Reid [2] proved
that if T is a 2-connected n-tournament, n�6, that is, T is not the 7-tour-
nament that contains no transitive subtournament with 4 vertices (i.e., the
quadratic residue 7-tournament), then T contains two vertex-disjoint cycles
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spanning V(T ). In fact, he showed that one cycle can be taken to be a tri-
angle. This result established an affirmative answer (for r=s=1) to the
following problem asked by Thomassen (see [3]): If r and s are positive
integers, does there exist a (least) positive integer m=m(r, s) so that all but
a finite number of m-connected tournaments can be partitioned into an
r-connected subtournament and an s-connected subtournament? Song [4]
was able to show that if T is a 2-connected n-tournament with n�6 then
the vertices of T can be partitioned into two cycles of lengths s and n&s
for any integer s with 3�s�n&3, unless T is the 7-tournament described
above. The following problem was posed by Bolloba� s (see [2]) for tour-
naments.

Problem 1. If k is a positive integer, what is the least integer g(k) so
that all but a finite number of g(k)-connected tournaments contain k
vertex-disjoint cycles that span V(T )?

Reid observed that g(k) exists and g(k)�3k&4 for k�2 as follows:
Recall that g(1)=1 and g(2)=m(1, 1)=2. If T is (g(k&1)+3)-connected,
then the removal of a triangle leaves a g(k&1)-connected tournament that
can be expressed as k&1 nontrivial vertex-disjoint cycles; that is, g(k)�
g(k&1)+3. Thus, g(3)�5, and, in general, g(k)�3k&4. The following
example shows that g(k)�k.

Let n�3k. Let T be an n-tournament with V(T )=[v1 , v2 , ..., vn], where
vi dominates vj for all 1�i� j�n except when 1�i�k and n&k+1� j
�n (in which case vj dominates vi). If S is any set of fewer than k vertices,
then T&S is strongly connected; that is, T is k-connected. Clearly, any
nontrivial cycle in T must use an arc vjvi

� for some 1�i�k and some
n&k+1� j�n, so that T contains at most k vertex-disjoint cycles.

The main result of this article, stated below, shows that g(k)=k.

Theorem 1. Every k-connected n-tournament T with n�8k contains k
vertex-disjoint cycles that span V(T ).

In [4], Song posed the following problem.

Problem 2. If k is a positive integer, what is the least integer f (k) so
that all but a finite number of f (k)-connected tournaments contain k
vertex-disjoint cycles of lengths n1 , n2 , ..., nk where n=n1+n2+ } } } +nk

and ni�3 for all i=1, 2, ..., k?

Clearly, f (1)= g(1)=1. Song showed that f (2)= g(2)=2. Clearly,
f (k)� g(k) holds for every k. Song conjectured that f (k)= g(k).
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Let T be a tournament. The arc set of T will be denoted by E(T ). If uv�

is an arc in T, then udominates v and v is dominated by u. A set A�V(T )
dominates a set B�V(T ) if every vertex of A dominates every vertex of B.
If A=[x], we say that x dominates B. For any X�V(T ), let T[X] denote
the subtournament induced by X.

Let T be a tournament and let C be a cycle in T. For every vertex
v # V(C), let v+

C denote the successor of v on C and let v&
C denote the

predecessor of v on C. If no confusion arises, v+ and v& will be used to
denote v+

C and v&
C , respectively. Let X be a cycle or a path of T and let u

and v be two vertices on X (u, v are in that order along X if X is a path).
We define X[u, v] as the subpath of X from u to v. For any u � V(C), if
u is dominated by a vertex x # V(C) and u dominates x+, then ux+C[x+,
x] xu is a cycle longer than C. In this case, we say that u can be inserted
into C. So, if u cannot be inserted into a cycle C, then either u dominates
V(C) or V(C) dominates u. In the case, we call C an out-cycle of u while
in the second case we call C an in-cycle of u. The following lemma will be
used in the proof of Theorem 1.

Lemma 1. Every k-connected tournament with n�5k&3 vertices and
k�2 contains k vertex-disjoint cycles.

Proof. To the contrary, let k (�2) be the smallest positive integer such
that there is a k-connected tournament T with n�5k&3 vertices, which
does not contain k vertex-disjoint cycles. By the minimality of k and the
fact that every strong tournament has a cycle, T contains k&1 vertex-
disjoint cycles. Since every cycle of length at least 4 contains a chord,
T contains k&1 vertex-disjoints triangles, say, T1 , T2 , ..., Tk&1 . Let H=
T&�k&1

i=1 V(Ti). Since H does not contain a cycle, H is a transitive tourna-
ment. Let P=v1 v2 } } } vm be the unique hamiltonian path in H. Since H is
transitive, then vivj

� # E(T ) for any 1�i< j�m.
Let F=[v1 , v2 , ..., vk] and B=[vm&k+1 , vm&k+2 , ..., vm]. Since m�

(5k&3)&3(k&1)=2k, then F & B=<. Since T is k-connected, there
exist k vertex-disjoint paths P1 , P2 , ..., Pk from B to F. Clearly, these paths
plus the appropriate arcs from F to B form k vertex-disjoint cycles. K

Proof of Theorem 1. Let T be a k-connected tournament with n�8k
vertices. Since 8k�5k&3, T contains k vertex-disjoint cycles by Lemma 1.
Let C1 , C2 , ..., Ck be k vertex-disjoint cycles of T such that �k

i=1 |V(C i)|
is maximum. Let C=[C1 , C2 , ..., Ck]. To the contrary, then, we may
assume that �k

i=1 |V(Ci)|<n. Let H=T&�k
i=1 V(Ci). Since H is a tour-

nament, H has a hamiltonian path. Let P=v1v2 } } } vm be a hamiltonian
path in H. The linear order of v1 , v2 , ..., vm will play a role in our proof.
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For each vi # V(H) (1�i�m) and each Cl # C (1�l�k), since vi can-
not be inserted into Cl , Cl is either an in-cycle of vi or an out-cycle of vi .
We partition C into two sets Ii and Oi for each i=1, 2, ..., m as

Ii =[Cl | Cl is an in-cycle of vi],

Oi=[Cl | Cl is an out-cycle of vi].

For any two vertices vi , vj # V(H) and a cycle Cl # C, if i< j and Cl is
an out-cycle of vj , then Cl is also an out-cycle of vi ; otherwise, let x and
x+ be two consecutive vertices on Cl . The cycle P[vi , vj] Cl[x+, x] vi is
longer than Cl which leads to a contradiction of the maximality of
�k

s=1 |V(Cs)|. Thus, Oj �Oi . As a consequence,

Om �Om&1 � } } } �O1 and Im $Im&1 $ } } } $I1 .

Claim 1. If S is a strong subtournament of H, then Ii=Ij and Oi=Oj

for any two vertices vi and vj # V(S).

Proof. Suppose, to the contrary, that there is a cycle Cl # C such that
Cl # Ii and Cl # Oj . Let P[vi , vj] be a path in S connecting vi and vj and
let x be an arbitrary vertex on Cl . Then, the cycle P[vi , vj] C[x+, x] v i is
longer than C, a contradiction. K

We will show that there exist k vertex disjoint cycles which contain all
vertices of �k

i=1 V(Ci) and vm , which produces a contradiction. For con-
venience, let I=Im , O=Om , and H*=H&vm .

Claim 2. �Ci # O |V(Ci)|�k and �Cj # I |V(C j)|�k.

Proof. Let S be the strong component containing vm in H. (Note that
S could be [vl].) Since P=v1v2 } } } vm is a hamiltonian path in H,
V(H)&V(S) dominates V(S). By Claim 1, �Ci # I V(Ci) dominates V(S).
Also, S is the strong component of vm in T[V(H) _ (�Cj # I V(C j))]=
T&�Ci # O V(Ci). Thus, �C # Om

|V(C)|�k is k-connected.
Since vm dominates �Ci # OV(C i), V(H) dominates �Ci # O V(Ci). As S is the

strong component of vm in T[V(H) _ (�Cj # O V(Cj))]=T&�Ci # I V(Ci),
we see that �Ci # Im

|V(Ci)|�k. K

Without loss of generality, we may assume that �Ci # I |V(Ci)|�
�Cj # O |V(Cj)|. Otherwise, we may reverse the directions of all arcs of T and
exchange the roles of v1 and vm and consider O1 . Since O1 $Om ,
�Ci # O1

|V(Ci)|��Cj # I1
|V(Cj)|.
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Since |V(T )|=n�8k, we have that

:
Ci # I

|V(Ci)|+|V(H*)|�4k.

Define

R={ y # .
Ci # I

V(C i) : xy� # E(T ) for some x # .
Cj # O

V(Cj)=
and

U= .
Ci # I

V(Ci)&R.

That is, any y # R is dominated by some vertices in �Cj # O V(Cj) and any
u # U dominates all vertices in �Cj # O V(Cj) for all u # U.

Claim 3. For each Ci # I, |V(Ci) & R|�3 and equality holds only when
Ci is a triangle.

Proof. Let x # Cs # O and y # V(Ct) & R such that xy� # E(T ). If y&z� #
E(T ) for some z # V(Ct)&[ y, y&], the cycles vm Cs[x+, x] Ct[ y, z&] vm

and Ct[z, y&] z plus the remaining k&2 cycles of C contradict the maxi-
mality of �k

i=1 |V(Ci)|. Hence, V(Ct)&[ y, y&] dominates y&. Suppose w
is another vertex in R & V(Ct). Similarly, we have that V(Ct)&[w, w&]
dominates w&. If w and y are not two consecutive vertices on Ct , then w&

and y& dominate each other, a contradiction. Thus, every two vertices in
R & V(Ct) must be consecutive vertices on Ct . Consequently, |R & V(Ct)|
�3 and the equality holds only when Ct is a triangle. K

Since �C # I |V(C )|+|H*|�4k and |R & V(Ci)|�3 for each Ci # I,
then |U _ H*|=|U|+|V(H*)|�k follows. Since T is k-connected and

O=Om �Om&1 } } } �O1 ,

there exist k vertex-disjoint paths, Pi[xi , yi] (i=1, 2, ..., k), such that xi is
in some cycle in O and yi # U _ V(H*) and all internal vertices of the path
are in R _ [u]. Furthermore, we can assume that all internal vertices of the
path Pi[xi , yi] are in R. Otherwise, suppose that vm # V(Pi[xi , yi]) for
some i=1, ..., k. Let u be the predecessor of vm on Pi[x i , y i] and w be the
successor of vm on Pi[x i , y i]. We can suppose that u is in I and b is in
H*. So the arc uw belongs to T, and thus vm can be omitted in the path
Pi[xi , yi].
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For each Pi[xi , yi], we define a hop to be two consecutive vertices u and
u+ on Pi[xi , y i] such that u and u+ are not consecutive vertices on the
same cycle of I. Let hi be the number of hops on Pi[xi , y i]. We choose
k vertex-disjoint paths P1[x1 , y1], P2[x2 , y2], ..., Pk[xk , yk] such that:

1. For each i, xi # �Ci # O V(Ci), yi # U _ V(H*), and all internal ver-
tices are in R.

2. Under Condition 1, �k
i=1 hi is minimum.

3. Under Conditions 1 and 2, �k
i=1 |V(Pi[xi , yi])| is maximum.

A cycle Ci # I is called a used in-cycle with respect to P1[x1 , xk], ...,
Pk[xk , yk] if Ci contains some vertices in �k

l=1 V(Pl(xl , yl]), otherwise
it is called an unused in-cycle. Similarly, a cycle Ci # O is called a used out-
cycle if it contains some vertices in [x1 , x2 , ..., xk], otherwise it is called an
unused out-cycle. All used in-cycles and out-cycles are called used cycles and
all unused in-cycles and out-cycles are called unused cycles.

Claim 4. For each used in-cycle Cj , V(Cj)&�k
i=1 V(Pi[x i , y i])�R.

Proof. Suppose, to the contrary, that there is a vertex u # U & (V(Cj)&
�k

i=1 V(Pi[xi , yi])). Let u* be the first vertex in �k
i=1 V(Pi (xi , yi]) along

Cj in the reverse direction from u. Suppose that u* # V(Pi (xi , yi]). Let
Pi*=Pi[xi , u*] Cj[u*, u]. If u*{ yi , the number of hops on Pi* is less
than hi , a contradiction to the minimality of �k

i=1 hi . If u*= yi , the
number of hops on Pi*=h i , but Pi* is longer than Pi[xi , yi], a contradic-
tion to the maximality of �k

i=1 |V(Pi[xi , yi])|. K

For each i=1, ..., k, let C in
i be the cycle in I containing yi and C out

i be
the cycle in O containing xi . Starting from xi , let xi* be the first vertex
along cycle C out

i in the reverse direction from xi , such that (x i*)& #
[x1 , x2 , ..., xk]. For each i=1, 2, ..., k, let

Qi=C out
i [xi*, xi] Pi[xi , y i].

Clearly, all vertices in used out-cycles are in �k
i=1 V(Qi[xi*, y i]). By

Claim 4, we choose k vertex-disjoint paths Q1[x1 , y1], Q2[x2 , y2], ...,
Qk[xk , yk] such that

1. For each i=1, 2, ..., k, xi # �Ci # O V(Ci), yi # U _ V(H*), and all
internal vertices are in �Cj # C V(Cj).

2. For each used in-cycle Cj , V(Cj)&�k
i=1 V(Qi[xi , yi])�R.

3. For each used out-cycle Cj , V(Cj)��k
i=1 V(Qi[xi , yi]).

4. Under the above three conditions, �k
i=1 |V(Qi[xi , yi])| is maxi-

mum.
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Let r be the number of unused cycles with respect to Q1[x1 , y1],
Q2[x2 , y2], ..., Qk[xk , yk]. Let S be the set of vertices in used cycles but
not in �k

i=1 V(Qi (x i , yi]). Then, from Statements 2 and 3 above, S�R.
Note that [ y1 , y2 , ..., yk]�U _ V(H*) dominates �Ci # O V(Ci). In par-
ticular, we have yi xj

� # E(T ) for all i=1, 2, ..., k and j=1, 2, ..., k.
If S=<, let

C1* =Q1[x1 , y1] y1vmx1 ,

C i*=Q i[xi , yi], for i=2, ..., k&r&1,

and

C*k&r =Qk&r[xk&r , yk&r] Qk&r+1[xk&r+1 , yk&r+1] } } }

} } } Qk&1[xk&1 , yk&1] Qk[xk , yk] xk&r .

Let C* be the set containing the above cycles and all unused cycles.
Clearly, C* contains exactly k vertex-disjoint cycles, and the union of the
vertex sets of these cycles contains all vertices in �k

i=1 V(Ci) and vm , a con-
tradiction to the maximality of �k

i=1 |V(Ci)|.
Thus, we conclude that S{<. Let Q[w1 , wq]=w1 w2 } } } wq be a

hamiltonian path in T[S].

Claim 5. w1 dominates [ y1 , y2 , ..., yk].

Proof. Suppose, to the contrary and without loss of generality, that
y1 w1

� # E(T ). Let

C1* =Q1*[x1 , y1] Q[w1 , wq] vmx1 ,

C2*=Q i[x i , yi] xi , for i=2, ..., k&r&1,

and

C*k&r =Qk&r[xk&r , yk&r] Qk&r+1[xk&r+1 , yk&r+1] } } }

} } } Qk&1[xk&1 , yk&1] Qk[xk , yk] xk&r .

In the same manner as before, these cycles lead to a contradiction of the
maximality of �k

i=1 |V(Ci)|. K

Claim 6. w1 dominates �k
i=1 V(Qi[xi , y i]).
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Proof. Suppose, to the contrary, that there is a vertex u # V(Qi[xi , yi])
such that uw1

� # E(T ). Since w1 yi
� # E(T ), there are two consecutive vertices

ui and u+
i on Qi[xi , yi] such that ui w1

� # E(T ) and w1u+
i
� # E(T ). Path

Qi[xi , ui] w1Q i[u+
i , y i] plus the other k&1 paths contradict the maxi-

mality of �k
i=1 |V(Qi[xi , yi])|. K

Since w1 # R, there is a vertex x # �Cj # O V(Cj) which dominates w1 . From
Claim 6, x must be on an unused out-cycle Cs since �k

i=1 V(Q i[xi , yi])
contains all vertices in all used out-cycles. Let x+ be the successor of x on
Cs . We construct k&r+1 cycles as follows.

C 1* =Q1[x1 , y1] Cs[x+, x] Q[w1 , wq] vm x1 ,

C i*=Q i[xi , yi] xi , for i=2, ..., k&r,

and

C*k&r+1 =Qk&r+1[xk&r+1 , yk&r+1] Qk&r+2[xk&r+2 , yk&r+2] } } }

} } } Qk[xk , yk] x*k&r+1 .

These k&r+1 cycles and r&1 remaining unused cycles lead to a con-
tradiction of the maximality of �k

i=1 |V(Ci)|, which completes the proof of
Theorem 1.
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