DISCRETE MATHEMATICS

Results on degrees and the structure of 2-factors

Ronald J. Gould ${ }^{1}$
Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA

Received 15 August 1996; revised 30 June 1997; accepted 14 October 1999

Abstract

The object of this paper is to review the general problem of using degree conditions to determine the structure of 2-factors in graphs. We shall discuss open problems and developments in this area and to a very limited extent, provide examples of the proof techniques used. We shall also consider some of the corresponding questions and development for digraphs. This is not intended as a complete survey, but rather an overview, indicating some new directions and open problems. (c) 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple finite graphs unless otherwise stated. Let G be a graph. The minimum degree of G will be denoted by $\delta(G)$. A hamiltonian cycle of G is a cycle of G which spans $V(G)$, that is, it contains every vertex of G. The girth of G, denoted $g(G)$, is the length of a shortest cycle in G. We use the notation \bar{G} to denote the complement of the graph G. For any graph G, F is a 2 -factor of G if and only if F is a union of vertex disjoint cycles that span $V(G)$.

Throughout this paper we are motivated by the following natural questions.
Question 1. What conditions on $\delta(G)$ (or degree conditions in general) are sufficient to ensure that G contains a 2-factor? Further, from these conditions can we determine the number of cycles in the 2 -factor or the size of these cycles, or both?

Clearly, hamiltonian cycles are 2 -factors. Further, there are many results relating degree conditions and hamiltonian cycles. For example, two of the most well-known are stated below. Here, $\sigma_{2}(G)=\min \{\operatorname{deg} u+\operatorname{deg} v \mid u, v \in V(G), u v \notin E(G)\}$.

[^0]Theorem 1 (Ore [27]). Let G be a graph of order $n \geqslant 3$. If $\sigma_{2}(G) \geqslant n$, then G is hamiltonian.

Theorem 2 (Dirac [14]). Let G be a graph of order $n \geqslant 3$. If the minimum degree $\delta(G) \geqslant n / 2$, then G is hamiltonian.

However, we shall not concern ourselves here with hamiltonian results. The interested reader should see [22]. We shall instead concentrate on trying to determine the structure of general 2-factors. Terms not defined here can be found in [21].

2. More general conjectures and early results

The fundamental conjecture relating degree conditions and general subgraph containment is the following powerful conjecture due independently to Bollobás and Eldridge [7] and Catlin [9,10].

Conjecture 1. If G and H are graphs of order n such that $(\Delta(H)+1)(\Delta(\bar{G})+1) \leqslant n+1$, then H is a subgraph of G.

This conjecture has many interesting implications, however, we shall restrict our attention to the question at hand. For 2-factors, or more generally when $\Delta(H)=2$, this becomes:

Conjecture 2. If G and H are graphs of order n with $\Delta(H) \leqslant 2$ and $\Delta(\bar{G}) \leqslant(n-2) / 3$, then H is a subgraph of G.

The bound in Conjecture 2 corresponds to that given in the following well-known result due to Corrádi and Hajnal [13].

Theorem 3. Let G be a graph of order $n \geqslant 3 k$ with $\delta(G) \geqslant 2 k,(k \geqslant 1)$, then G contains the vertex disjoint union of k cycles.

A long-standing conjecture due to Erdős would generalize the Corrádi-Hajnal result. Using the Regularity Lemma, Komlós et al. [19] have shown this conjecture holds for large n.

Conjecture 3. Let H be a graph of order $4 k$ with $\delta(H) \geqslant 2 k$, then H contains k vertex disjoint 4-cycles.

Another beautiful conjecture due to Alon and Yuster [4] was recently solved by Komlós et al. [19]. Their solution of the Erdős Conjecture is a special case of this result.

Theorem 4. Let G be a graph of order n. For every graph H there is a constant K such that $\delta(G) \geqslant(1-1 / \chi(H)) n$ implies that there is a union of disjoint copies of H covering all but at most K vertices of G.

Note that when H is a 2 -factor, $\chi(H) \leqslant 3$ and the bound of $\delta(G) \geqslant 2 n / 3$ appears once again.

Catlin, in his Ph.D. thesis [9], investigated Conjecture 2 and in so doing bolstered the study of the structure of 2-factors. He announced the following more general result, also found independently by Sauer and Spencer [29]. The proof presented here is from Catlin's Thesis [9].

Theorem 5. If G and H are graphs of order n such that $2 \Delta(\bar{G}) \Delta(H)<n$, then H is a subgraph of G.

Proof. Given G and H satisfying the conditions of the statement, suppose H is an edge minimal graph that is not a subgraph of G. Then for any fixed edge $e=w w^{\prime}$ in $E(H), H-e$ is a subgraph of G. Let $\pi: V(H) \rightarrow V(G)$ be an embedding of $H-e$ into G. To find an embedding of H, we shall alter π by transposing $\pi(w)$ with another vertex z of G so that the resulting embedding still embeds $H-e$ and also maps e onto an edge of G, hence embedding H, a contradiction to our assumptions. The vertex z must preserve the adjacency structure of $\pi(w)$ and allow the missing edge e to also be embedded in G.
To find such a vertex, define $M(v)=\left\{v^{\prime \prime} \in V(G): \pi^{-1}(v) \pi^{-1}\left(v^{\prime \prime}\right) \in E(H-e)\right\}$. A successor of v is any vertex $v_{1} \in V(G)$ such that for each $v^{\prime \prime} \in M(v), v_{1}$ is adjacent to $v^{\prime \prime}$ in G and $v_{1} \neq v$. Let $S(v)$ be the set of all successors of v. We also define v to be a predecessor of v_{1} if $v_{1} \in S(v)$. Let $P\left(v_{1}\right)$ denote the set of all predecessors of v_{1}.
Let $v=\pi(w)$ and note that if $v_{1} \in S(v) \cap P(v)$ and if $v_{1} \neq v$, then v_{1} is a candidate for the vertex z. For each vertex $x \in V(H)$, the map

$$
\pi_{v_{1}}(x)= \begin{cases}\pi(x) & \text { if } \pi(x) \neq v \text { or } v_{1} \\ v_{1} & \text { if } \pi(x)=v, \\ v & \text { if } \pi(x)=v_{1} .\end{cases}
$$

A vertex x is not in $S(v)$ if x is adjacent in \bar{G} to a vertex x^{\prime} in $M(v)$. For any vertex $x^{\prime} \in M(v)$, there are at most $\Delta(\bar{G})$ choices for x. Since $\operatorname{deg}_{H-e}(w) \leqslant \Delta(H)-1$, we have $|M(v)| \leqslant \Delta(H)-1$ choices of x^{\prime}. Hence, at most $\Delta(\bar{G})[\Delta(H)-1]$ vertices x are not in $S(v)$. Neighbors (in H) of any nonneighbor (in G) of v cannot be exchanged with v. There are at most $\Delta(\bar{G}) \Delta(H)-1$ such neighbors possible, since $x^{\prime}=\pi\left(w^{\prime}\right)$ is a nonneighbor of v (in G) and w^{\prime} has at most $\Delta(H)-1$ neighbors in H different from v. Thus,

$$
\begin{aligned}
|P(v) \cap S(v)| & \geqslant|V(G)|-|V(G)-P(V)|-|V(G)-S(v)| \\
& \geqslant n-[\Delta(\bar{G}) \Delta(H)-1]-\Delta(\bar{G})[\Delta(H)-1]
\end{aligned}
$$

$$
\begin{aligned}
& =n-2 \Delta(H) \Delta(\bar{G})+\Delta(\bar{G})+1 \\
& \geqslant 2+\Delta(\bar{G}) .
\end{aligned}
$$

But at most $1+\Delta(\bar{G})$ vertices are not adjacent in G to $\pi\left(w^{\prime}\right)$ Therefore, there is a $v_{1} \in P(v) \cap S(v)$ that is adjacent to $\pi\left(w^{\prime}\right)$ in G. Thus, $\pi_{v_{1}}$ is an embedding of H into G.

The 2 -factor version of Theorem 5 is the following corollary.
Corollary 6. If G has order n and H is any 2 -factor on n vertices and $4 \Delta(\bar{G})<n$, then H is a subgraph of G.

We can conclude from this corollary that if G has minimum degree $\delta(G) \geqslant 3 n / 4$, then G contains any graph of order n and maximum degree two as a subgraph. Sauer and Spencer [29] also conjectured that the minimum degree condition could be lowered to $\delta(G) \geqslant 2 n / 3$. They also showed via a probabilistic argument that Theorem 5 is essentially best possible by proving the existence of graphs G and H of order n for which $\Delta(G) \Delta(H)$ is about $4 n \log n$ and for which H is not a subgraph of G.

Catlin [9] also gave a slight improvement of Theorem 5 for the case of interest here, however, this result is still not best possible. His proof technique was similar to that of Theorem 5.

Theorem 7. Let G and H be graphs of order n with $\Delta(H)=2$. If $\Delta(\bar{G}) \leqslant(2 n-11) / 7$, then H is a subgraph of G.

Catlin $[9,10]$ continued his assault on the 2 -factor problem with the following:
Theorem 8. If G has order $n=n_{1}+n_{2}+\cdots+n_{k}$ with $n_{i} \geqslant 3$ for each $i=1, \ldots, k$ and $\delta(G) \geqslant 2 n / 3+\mathrm{O}\left(n^{1 / 3}\right)$, then G contains k vertex disjoint cycles C_{1}, \ldots, C_{k} of lengths n_{1}, \ldots, n_{k}, respectively.

Catlin later improved this result by replacing $\mathrm{O}\left(n^{1 / 3}\right)$ by $\mathrm{O}(1)$. However, it would be many years before Conjecture 2 would be completely settled. In the meantime, other results would be obtained. For example, for the case $k=2$, the following strong result was obtained by El-Zahar [16].

Theorem 9. Let G be a graph of order n and let $n_{1} \geqslant 3$ and $n_{2} \geqslant 3$ be two integers such that $n_{1}+n_{2}=n$. If the minimum degree $\delta(G) \geqslant\left\lceil n_{1} / 2\right\rceil+\left\lceil n_{2} / 2\right\rceil$, then G has two vertex disjoint cycles C_{1} and C_{2} of length n_{1} and n_{2}, respectively.

The key to the proof of Theorem 9 is the following lemma.
Lemma 1 (El-Zahar [16]). Let G have order $n=n_{1}+n_{2}$ and $\delta(G) \geqslant\left\lceil n_{1} / 2\right\rceil+\left\lceil n_{2} / 2\right\rceil$. Then there is a partition of G into subgraphs G_{1} and G_{2} such that one of the following
conditions holds:
(1) $\left|V\left(G_{i}\right)\right|=n_{i}$ and $\delta\left(G_{i}\right) \geqslant n_{i} / 2, i=1,2$,
(2) G_{1} contains a path on $n_{i}-1$ vertices, $\left|V\left(G_{2}\right)\right|=n_{j}+1$ and $\delta\left(G_{2}\right) \geqslant n_{j} / 2+1$ where $\{i, j\}=\{1,2\}$.

Proof of Theorem 9 (Sketch, El-Zahar [16]). If G has a partition satisfying condition (1) of Lemma 1, then the result follows easily from the classic hamiltonian result of Dirac (Theorem 2).
If instead (2) holds with $\left|V\left(G_{1}\right)\right|=n_{1}+1$ and $\left|V\left(G_{2}\right)\right|=n_{2}+1$, the idea is to find a vertex $w \in V\left(G_{2}\right)$ such that $G_{1}+w$ is hamiltonian. Then again by Dirac's Theorem, $G_{2}-w$ will also be hamiltonian.
Thus, if G_{1} has a hamiltonian path from vertex a to vertex b and if

$$
\begin{equation*}
\operatorname{deg}_{G_{1}} a+\operatorname{deg}_{G_{1}} b<n_{1}-1 \tag{1}
\end{equation*}
$$

then $\operatorname{deg}_{G_{2}} a+\operatorname{deg}_{G_{2}} b>n_{2}+1$, and hence, $a w, b w \in E(G)$ for some $w \in V\left(G_{2}\right)$. Thus, $G_{1}+w$ is hamiltonian. Now we can assume Eq. (1) does not hold. Then by (1) of Lemma 1 and Ore's Theorem (Theorem 1), G_{1} contains a hamiltonian cycle, call it C.
Now let $X=\left\{x \in V\left(G_{1}\right) \mid \operatorname{deg}_{G_{1}} x<n_{1} / 2\right\}$. By considering the three cases: $|X| \geqslant 2$, $|X|=1$, and $X=\emptyset$, the proof is completed. We consider here only the first of these cases.

Thus, suppose that $|X| \geqslant 2$. For any $x_{1}, x_{2} \in V(X)$ we have that $\operatorname{deg}_{G_{2}} x_{1}+\operatorname{deg}_{G_{2}} x_{2} \geqslant$ $n_{2}+2$. Thus, $x_{1} w, x_{2} w \in E(G)$ for some $w \in V\left(G_{2}\right)$. If x_{1} and x_{2} were adjacent on C, then $G_{1}+w$ would be hamiltonian as required. Hence, assume no two vertices in X are adjacent on C and let p_{i} and s_{i} be the predecessor and successor of $x_{i}(i=1,2)$, respectively, according to some orientation of C. Then we get a path $p_{1} C^{-} s_{2} x_{2} w x_{1} s_{1} C^{+} p_{2}$ where $p_{1} C^{-} s_{2}$ and $s_{1} C^{+} p_{2}$ denote subpaths of C, respectively, opposite to and in the same direction as the orientation. Since p_{1}, p_{2} are not in X, this path contains a hamiltonian cycle by the proof of Theorem 1.

In the same paper, El-Zahar conjectured that if G is a graph of order $n=n_{1}+$ $n_{2}+\cdots+n_{k}\left(n_{i} \geqslant 3\right)$ with minimum degree

$$
\delta(G) \geqslant\left\lceil\frac{n_{1}}{2}\right\rceil+\left\lceil\frac{n_{2}}{2}\right\rceil+\cdots+\left\lceil\frac{n_{k}}{2}\right\rceil
$$

then contains k vertex disjoint cycles of length $n_{1}, n_{2}, \ldots, n_{k}$, respectively.
If El-Zahar's conjecture is true, then it follows that if G is a graph of order $n=n_{1}+n_{2}+\cdots+n_{k}\left(n_{i} \geqslant 3\right)$ with $\delta(G) \geqslant 2 n / 3$, then G contains k vertex disjoint cycles $C_{1}, C_{2}, \ldots, C_{k}$, of lengths $n_{1}, n_{2}, \ldots, n_{k}$, respectively. Recall Theorem 5 implies that El-Zahar's conjecture holds with $\delta(G) \geqslant 3 n / 4-1$.

Recently, Wang [31] has provided a slight strengthening to Theorem 9.
Theorem 10. Let G be a graph of order $n \geqslant 6$ with $\delta(G) \geqslant\lceil(n+1) / 2\rceil$. Then for any two integers s and t with $s \geqslant 3, t \geqslant 3$ and $s+t \leqslant n, G$ contains two vertex-disjoint
cycles of lengths s and t, respectively, unless n, s and t are odd and $G \cong K_{(n-1) / 2,(n-1) / 2}+K_{1}$.

Clearly $K_{(n-1) / 2,(n-1) / 2}+K_{1}$ does not contain two vertex disjoint odd cycles for any odd $n \geqslant 3$. If n is even, $K_{n / 2, n / 2}$ contains no odd cycles at all. Wang [31] also considered this situation.

Theorem 11. Let G be a graph of order $n \geqslant 8$ with n even and $\delta(G) \geqslant n / 2$. Then for any two even integers s and t with $s \geqslant 4, t \geqslant 4$ and $s+t \leqslant n, G$ contains two vertex disjoint cycles of lengths s and t, respectively.

In 1993, Aigner and Brandt [2] finally settled Conjecture 2.
Theorem 12. Let G be a graph of order n with $\delta(G) \geqslant(2 n-1) / 3$, then G contains any graph H of order at most n with $\Delta(H)=2$.

The degree condition of Theorem 12 is best possible. To see this consider the complete tripartite graph $G=K_{t+1, t+1, t-1}$. This graph has order $n=3 t+1$ and minimum degree $2 t=(2 n-2) / 3$, but it fails to contain t vertex disjoint triangles.

Alon and Fischer [3] independently proved that if G has sufficiently large order n and minimum degree at least $2 n / 3$, then G contains any graph H with $\Delta(H) \leqslant 2$.

3. Relaxing the problem

Theorem 12 is very powerful as it guarantees the graph H contains all possible 2-factors. But Theorem 12 also requires a very high minimum degree. It is now natural to ask if we can obtain a little less in graphs where the minimum degree is not as high. Our new problem becomes:

Problem 1. What minimum degree (or degree condition) is sufficient to guarantee a graph G contains a 2 -factor consisting of a specified number k of cycles.

In this study, both Theorem 3 and the following result on independent cycles have proven useful.

Theorem 13 (Justesen [17]). If G is a graph of order $n \geqslant 3 k$ such that $\sigma(G) \geqslant 4 k$, then G contains k vertex disjoint cycles.

Using Theorem 13 the following was shown in [8].
Theorem 14. Let k be a positive integer and let G be a graph of order $n \geqslant 4 k$. If $\sigma_{2}(G) \geqslant n$, then G has a 2 -factor with exactly k vertex disjoint cycles.

Note that Theorem 14 generalizes the classic hamiltonian result of Ore [27] for the case when $n \geqslant 4 k$. The complete bipartite graph $K_{n / 2, n / 2}$ shows that this result is best possible. The following generalization of Theorem 2 is also clear.

Corollary 15 (Brandt et al. [8]). Let k be a positive integer and let G be a graph of order $n \geqslant 4 k$. If $\delta(G) \geqslant n / 2$, then G has a 2 -factor with exactly k vertex disjoint cycles.

The next result gives a sufficient condition for a graph to have k disjoint cycles which are either triangles or 4 -cycles. This result is also from Brandt et al. [8].

Theorem 16. Let $s \leqslant k$ be two nonnegative integers and let G be a graph of order $n \geqslant 3 s+4(k-s)$. If $\sigma_{2}(G) \geqslant(n+s) / 2$, then G contains k vertex disjoint cycles $C_{1}, C_{2}, \ldots, C_{k}$ such that

$$
\begin{aligned}
& \left|V\left(C_{i}\right)\right|=3 \quad \text { for } 1 \leqslant i \leqslant s, \\
& \left|V\left(C_{i}\right)\right| \leqslant 4 \quad \text { for } s+1 \leqslant i \leqslant k,
\end{aligned}
$$

that is, the first s cycles are triangles and the others are either triangles or 4-cycles.

4. Special cases and restricted classes

In this section we consider some results on restricted classes of graphs. We say G is $\left\{H_{1}, \ldots, H_{k}\right\}$-free if G contains no subgraph isomorphic to any $H_{i}, i=1, \ldots, k$. Each graph H_{i} is said to be forbidden in G. We begin with a special case of a more general result from Egawa and Ota [15].

Theorem 17. If G is a connected $K_{1,3}$-free graph with $\delta(G) \geqslant 4$, then G contains a 2 -factor.

Egawa and Ota [15] extended this approach to $K_{1, r}$-free graphs.
Theorem 18. Let G be a connected $K_{1, r}$-free graph $(r \geqslant 3)$ with

$$
\delta(G) \geqslant\left\lceil\frac{r^{2}}{8(r-1)}+\frac{3 r-6}{2}+\frac{r-1}{8}\right\rceil,
$$

then G has a 2-factor.
Acree [1] found several results where the Corrádi-Hajnal condition (from Theorem 3) could be used in conjunction with forbidden subgraphs to obtain 2-factor results. The graph Z_{2} is formed by identifying a vertex of a triangle with an end vertex of a path of length 2 .

Theorem 19 (Acree [1]). If G is a 2 -connected $\left\{K_{1,3}, Z_{2}\right\}$-free graph of order $n \geqslant$ $3 k(k \geqslant 1)$ such that $\delta(G) \geqslant 2 k$, then G contains a 2 -factor consisting of exactly k disjoint cycles.

A graph G is said to be locally connected if for each vertex $x \in V(G)$, the graph induced by the neighborhood of $x, N(x)=\{w \in V(G) \mid x w \in E(G)\}$, is connected.

Theorem 20 (Acree [1]). If G is a connected, locally connected $K_{1,3}$-free graph of order $n \geqslant 3 k$ with $\delta(G) \geqslant 2 k$, then G contains a 2 -factor consisting of exactly k disjoint cycles.

Turning to another restricted class of graphs, let $G=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph. We say G is balanced if $\left|V_{1}\right|=\left|V_{2}\right|$. Amar [5] obtained the following:

Theorem 21. If G is a balanced bipartite graph of order $2 n$ with $\operatorname{deg} u+\operatorname{deg} v \geqslant n+2$ for any $u \in V_{1}$ and $v \in V_{2}$, then for any $n_{1} \geqslant 2, n_{2} \geqslant 2$ with $n_{1}+n_{2}=n, G$ contains two vertex disjoint cycles of lengths $2 n_{1}$ and $2 n_{2}$.

Wang [32] obtained a bipartite result reminiscent of El-Zahar's Theorem.
Theorem 22. If G is a balanced bipartite graph of order $2 n$ with $n=n_{1}+\cdots+n_{k}$ and $\delta(G) \geqslant n_{1}+n_{2}+\cdots+n_{k-1}+n_{k} / 2$, then G contains k disjoint cycles of lengths $2 n_{1}, 2 n_{2}, \ldots, 2 n_{k}$, respectively.

Moon and Moser [26] obtained the following well-known hamiltonian result.
Theorem 23. Let G be a balanced bipartite graph of order $2 n$. If $\delta(G) \geqslant(n+1) / 2$, then G is hamiltonian.

This result was generalized in [11].
Theorem 24. Let k be a positive integer and let G be a balanced bipartite graph of order $2 n$ where $n \geqslant \max \left\{52,2 k^{2}+1\right\}$. If $\delta(G) \geqslant(n+1) / 2$, then G contains a 2 -factor with exactly k cycles.

Finally, Las Vergnas [18] determined a condition sufficient to insure a hamiltonian cycle that contains all edges of a perfect matching.

Theorem 25. Let G be a balanced bipartite graph of order $2 n$. If $\operatorname{deg} u+\operatorname{deg} v \geqslant n+2$ for every pair of nonadjacent vertices u and v from different parts, then each perfect matching of G is contained in a hamiltonian cycle.

In [12], the following 2 -factor result related to Theorem 25 was obtained.

Theorem 26. Let k be a positive integer and G a balanced bipartite graph of order $2 n$ where $n \geqslant 9 k$. If $\delta(G) \geqslant(n+2) / 2$, then for every perfect matching M, G contains a 2 -factor with exactly k cycles including every edge of M.

5. Digraphs

It is natural to ask similar questions for digraphs. This has been done to some degree and a variety of results have been obtained. Kotzig [20] showed regular multidigraphs contain 2 -factors. A great deal of recent work has centered on special classes of digraphs where connectivity rather than degree conditions become critical. A very reasonable approach would be to consider the special class of tournaments, that is, complete graphs where each edge receives a direction. Thomassen (see [30]) raised the problem of finding a 2 -factor consisting of exactly two cycles. The cycles of such a 2 -factor are called complementary cycles. The following result is due to Reid [28].

Theorem 27. Every 2-connected tournament on $n \geqslant 6$ vertices contains two complementary cycles of lengths 3 and $n-3$, respectively, unless the tournament is T_{7}^{1} (see Fig. 2).

If for each integer $t, 3 \leqslant t \leqslant n-3$ a digraph D of order n contains two complementary cycles of lengths t and $n-t$, then we say that D is complementary pancyclic. Song [30] used induction to extend Reid's Theorem.

Theorem 28. Every 2-connected tournament on $n \geqslant 6$ vertices is complementary pancyclic unless it is isomorphic to T_{7}^{1}.

It is natural now to consider digraphs that are close to tournaments structurally. We say a digraph is semicomplete if for any two vertices x and y, there is at least one arc (directed edge) between them. Clearly tournaments are semicomplete. Recall that the out-neighbors of a vertex x are those vertices which receive a directed arc from x, while the in-neighbors of x are those vertices which send an arc into x. A digraph D is locally semicomplete if the graphs induced by both the out-neighbors, denoted $N^{+}(x)$, and in-neighbors, denoted $N^{-}(x)$, of every vertex x form a semicomplete digraph. The closed neighborhood of x is $N(x) \cup\{x\}=N[x]$. Let $\operatorname{deg}^{+} x=\left|N^{+}(x)\right|$ and $\operatorname{deg}^{-}(x)=$ $\left|N^{-}(x)\right|$. For convenience, let $T^{\prime}=\left\{T_{6}^{1}, T_{6}^{2}, T_{6}^{3}, T_{7}^{1}, T_{7}^{2}\right\}$ (see Figs. 1 and 2). Note that each digraph in T^{\prime} is 2-connected and locally semicomplete. Further, note that none is cycle complementary.
A digraph is termed round if we can label its vertices v_{0}, \ldots, v_{n-1} such that $N^{+}\left(v_{i}\right)=$ $\left\{v_{i+1}, v_{i+2}, \ldots, v_{i+\operatorname{deg}^{+}\left(v_{i}\right)}\right\}$ and $N^{-}\left(V_{i}\right)=\left\{v_{i-\operatorname{deg}^{-}\left(v_{i}\right)}, \ldots, v_{i-1}\right\}$, where all subscripts are taken modulo n. Let R_{n}^{2} be a 2 -regular round, local tournament on n-vertices. We define

$$
R^{\prime}=\left\{R_{n}^{2} \mid n \text { is odd and } n \geqslant 7\right\} .
$$

Fig. 1. Some exceptional digraphs.

Fig. 2. Other exceptional digraphs.

A digraph is strong if there is a directed path between any two vertices. Bang-Jensen [6] showed that strong locally semicomplete digraphs are hamiltonian, extending earlier work on tournaments. As a result of this, a semicomplete digraph D is cycle complementary if and only if it has a cycle C such that $D-V(C)$ is strong. Guo and Volkman [25] proved that even more is possible.

Theorem 29 (Guo and Volkman [25]). If D is a 2 -connected locally semicomplete digraph on $n \geqslant 6$ vertices, then D contains a $g(D)$ cycle C such that $D-V(C)$ is strong and the closed neighborhood of C is $V(D)$, unless D is a member of $T^{\prime} \cup T_{8}^{1} \cup R^{\prime}$.

Corollary 30 (Guo and Volkman [24]). Let D be a 2-connected locally semicomplete digraph on $n \geqslant 8$ vertices. Then D is not cycle complementary if and only if D is 2-regular (that is, each vertex has outdegree and indegree 2) and n is odd.

Guo [23] proposed a question similar to our original question on graphs.
Problem 2. Let k be a positive integer. What is the least integer $f(k)$ such that all but a finite number of $f(k)$-connected locally semicomplete digraphs contain a 2-factor with exactly k cycles?

Clearly, $f(1)=1$ from the result of Bang-Jensen mentioned earlier. Corollary 30 shows that $f(2)=2$. In fact, Guo [23] conjectures the following:

Conjecture 4. Let D be a k-connected locally semicomplete digraph on at least $3 k$ vertices. Then D contains a 2 -factor consisting of exactly k cycles, each of length at least 3 , unless D is a member of a finite family of k-connected locally semicomplete digraphs.

Guo and Volkman [25] continued to extend their earlier work on complementary cycles to complementary m-pancyclic digraphs. The next result also generalizes Song's Theorem.

Theorem 31. If D is a 2 -connected locally semicomplete digraph on $n \geqslant 6$ vertices, then D is complementary $g(D)$-pancyclic, unless D is isomorphic to a member of $T^{\prime} \cup\left\{T_{8}^{1}\right\} \cup R^{\prime}$.

Corollary 32 (Guo and Volkman [25]). If D is a 2-connected, chordal locally semicomplete digraph on at least six vertices, then D is complementary pancyclic unless D is isomorphic to one of $\left\{T_{6}^{1}, T_{6}^{2}, T_{6}^{3}, T_{7}^{1}\right\}$.

Corollary 33 (Guo and Volkman [25]). Let D be a 2-connected locally semicomplete digraph on at least six vertices. If D has a minimum separating set S such that $D-S$ is semicomplete, then D is complementary pancyclic unless D is isomorphic to a member of $\left\{T_{6}^{1}, T_{6}^{2}, T_{6}^{1}\right\}$.

Theorem 34 (Guo and Volkman [25]). Let D be a 2-connected locally semicomplete digraph on n vertices. If D has a k-cycle C with $3 \leqslant k \leqslant n / 2-1$, such that $D-V(C)$ is strong and the closed neighborhood of C is $V(D)$, then D is complementary k-pancyclic.

We conclude with a problem and conjecture both from Guo [23].
Problem 3. Let $k \geqslant 1$ be an integer. What is the least integer $h(k)$ such that all but a finite number of $h(k)$-connected locally semicomplete digraphs contain a 2-factor consisting of k vertex disjoint cycles of lengths n_{1}, \ldots, n_{k} where $n_{i} \geqslant g(D)$ for $i=$ $1, \ldots, k$ and $\sum_{i=1}^{k} n_{i}=n$?

Conjecture 5 (Guo [23]). For all $k, h(k)=f(k)$ where $f(k)$ is as defined in Problem 2.

Acknowledgements

This paper is dedicated to the memory of Paul Catlin.

References

[1] G. Acree, Hamiltonian problems and the forbidden subgraph method, Ph.D. Thesis, Emory University, 1994.
[2] M. Aigner, S. Brandt, Embedding arbitrary graphs of maximum degree two, J. London Math. Soc. (2) 48 (1993) 39-51.
[3] N. Alon, E. Fischer, 2-factors in dense graphs, Discrete Math. 152 (1996) 13-23.
[4] N. Alon, R. Yuster, Almost H-factors in dense graphs, Graphs Combin. 8 (1992) 95-102.
[5] D. Amar, Partition of a bipartite Hamiltonian graph into two cycles, Discrete Math. 58 (1986) 1-10.
[6] J. Bang-Jensen, Locally semicomplete digraphs: a generalization of tournaments, J. Graph Theory 14 (1990) 371-390.
[7] B. Bollobás, S.E. Eldridge, Packing of graphs and applications to computational complexity, J. Combin. Theory B 25 (1978) 105-124.
[8] S. Brandt, G. Chen, R.J. Faudree, R.J. Gould, L. Lesniak, On the number of cycles in a 2-factor, J. Graph Theory 24 (2) (1997) 165-173.
[9] P. Catlin, Embedding subgraphs and coloring graphs under extremal conditions, Ph.D. Dissertation, Ohio State University, 1976.
[10] P. Catlin, Embedding subgraphs under extremal degree conditions, Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing, Baton Rouge, 1977, pp. 139-145.
[11] G. Chen, R.J. Faudree, R.J. Gould, M.S. Jacobson, L. Lesniak, Cycles in 2-factors of balanced bipartite graphs, Graphs and Combinatorics 16 (2000) 67-80.
[12] G. Chen, R.J. Gould, M.S. Jacobson, On 2-factors containing 1-factors in bipartite graphs, Discrete Math. 197/198 (1999) 185-194.
[13] K. Corrádi, A. Hajnal, On the maximal number of independent circuits in graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439.
[14] G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
[15] Y. Egawa, K. Ota, Regular factors in $K_{1, n}$-free graphs, J. Graph Theory 15 (1991) 337-344.
[16] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227-230.
[17] P. Justesen, On independent circuits in finite graphs and a conjecture of Erdős and Pósa, Ann. Discrete Math. 41 (1989) 299-306.
[18] M. Las Vergnas, Ph.D. Thesis, University of Paris, 1972.
[19] J. Komlós, N. Sárközy, E. Szemerédi, Proof of the Alon-Yuster conjecture, preprint.
[20] A. Kotzig, The decomposition of a directed graph into quadratic factors consisting of cycles, Acta F.R.N. Univ. Comment. Math. XXII (1969) 27-29.
[21] R. Gould, Graph Theory, Benjamin/Cummings, Menlo Park, CA, 1988.
[22] R. Gould, Updating the Hamiltonian problem: a survey, J. Graph Theory 15 (2) (1991) 121-157.
[23] Y. Guo, Locally semicomplete digraphs, Aachener Beitr. Mathe. (1995).
[24] Y. Guo, L. Volkman, On complementary cycles in locally semicomplete digraphs, Discrete Math. 135 (1994) 121-127.
[25] Y. Guo, L. Volkman, Locally semicomplete digraphs that are complementary m-pancyclic, J. Graph Theory 21 (2) (1996) 121-136.
[26] J. Moon, L. Moser, On Hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 163-165.
[27] O. Ore, Note on Hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.
[28] K.B. Reid, Two complementary cycles in two-connected tournaments, Ann. Discrete Math. 27 (1985) 321-334.
[29] N. Sauer, J. Spencer, Edge disjoint placements of graphs, J. Combin. Theory B 25 (1978) 295-302.
[30] Z.M. Song, Complementary cycles of all lengths in tournaments, J. Combin. Theory B 57 (1993) 18-25.
[31] H. Wang, Two vertex-disjoint cycles in a graph, Graphs Combin. 11 (4) (1995) 389-396.
[32] H. Wang, Partition of a bipartite graph into cycles, Discrete Math. 117 (1993) 287-291.

[^0]: E-mail address: rg@mathcs.emory.edu (R.J. Gould).
 ${ }^{1}$ Research Supported by O.N.R. grant \# N00014-J-91-1085.

