Two-factors with few cycles in claw-free graphs

Ronald J. Gould ${ }^{\mathrm{a}, *, 1}$, Michael S. Jacobson ${ }^{\mathrm{b}, 2}$
${ }^{\text {a Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA }}$
${ }^{\mathrm{b}}$ Department of Mathematics, University of Louisville, Louisville, KY 40292, USA

Received 14 July 1999; revised 22 May 2000; accepted 7 August 2000

Abstract

Let G be a graph of order n. Define $f_{k}(G)\left(F_{k}(G)\right)$ to be the minimum (maximum) number of components in a k-factor of G. For convenience, we will say that $f_{k}(G)=0$ if G does not contain a k-factor. It is known that if G is a claw-free graph with sufficiently high minimum degree and proper order parity, then G contains a k-factor. In this paper we show that $f_{2}(G) \leqslant n / \delta$ for n and δ sufficiently large and G claw-free. In addition, we consider $F_{2}(G)$ for claw-free graphs and look at the potential range for the number of cycles in a 2-factor. (C) 2001 Elsevier Science B.V. All rights reserved.

Keywords: Graph; 2-factor; k-factor; Cycle; Claw-free

1. Introduction

The study of k-factors, i.e. k-regular spanning subgraphs, has long been fundamental in graph theory. Especially well studied are 2-factors, the disjoint union of cycles that span the vertex set. Historically, two questions have been at the forefront of this study. Under what conditions will a 2 -factor exist? Is this 2 -factor a single cycle (the hamiltonian problem)? However, harder questions about the actual structure of general 2 -factors have also been considered. For example, Corrádi and Hajnal [5] showed that if a graph G has order $n=3 t$ and minimum degree $\delta(G) \geqslant 2 t$ then G has a 2 -factor composed of triangles. In [2] it was shown that the classic hamiltonian condition of Dirac [6] (G satisfies $\delta(G) \geqslant|V(G)| / 2$) not only implies the graph is hamiltonian, but in fact, G must contain 2 -factors with t cycles, for each integer t satisfying $1 \leqslant t \leqslant|V(G)| / 4$. The complete bipartite graph $K_{n / 2, n / 2}$ shows this result is best possible.

[^0]The class of claw-free graphs (no induced $K_{1,3}$) has played a major role in a number of different studies. This broad class admits many interesting graph properties, often under somewhat weaker conditions than those for arbitrary graphs. For example, Matthews and Sumner [10] showed that if G is a 2-connected claw-free graph of order n with $\delta(G) \geqslant(n-2) / 3$, then G is hamiltonian. The graph of Fig. 1 shows this result is best possible. This result was extended in [3] when the same conditions were shown to imply the existence of a 2 -factor with t cycles for each t in the range $1 \leqslant t \leqslant(n-24) / 3$. Acree and Leist [1] studied the number of cycles in 2-factors for several classes of graphs obtained by forbidding the claw and another graph.
Independently, results of Egawa and Ota [7] and Choudum and Paulraj [4] imply the following.

Theorem 1. A connected claw-free graph with minimum degree at least 4 contains a 2-factor.

Thus, 2 -factors exist in claw-free graphs under very weak conditions. Since a hamiltonian cycle is only guaranteed if G is 2 -connected and $\delta(G) \geqslant(n-2) / 3$, it is natural to ask what is the minimum number of cycles in a 2 -factor of a claw-free graph G of order n with $\delta(G) \geqslant 4$? Hence, we define $f_{k}(G)\left(F_{k}(G)\right)$ to be the minimum (maximum) number of components in a k-factor of G. For convenience, we will say that $f_{k}(G)=0$ if G does not contain a k-factor. Faudree et al. [8] investigated the question and showed the following.

Theorem 2. If G is a connected claw-free graph of order n and minimum degree $\delta(G)$ then $f_{2}(G) \leqslant 6 n /(\delta(G)+2)-1$.

In this paper we prove the following result which improves the last result from roughly $6 n / \delta(G)$ to $n / \delta(G)$.

Theorem 3. Let $k \geqslant 2$ be a fixed positive integer. If G is a claw-free graph of order $n \geqslant 16 k^{3}$ and $\delta(G) \geqslant n / k$, then G has a 2 -factor with at most k cycles.

Let H be a 2-factor of a graph G. Let $s(H, G)$ denote the number of cycles in H and $S_{2}(G)=\bigcup_{H \subset G}\{s(H, G) \mid H$ is a 2-factor of $G\}$ be the set of values assumed by the number of cycles in a 2 -factor of G. The purpose of this paper is to improve the Faudree, Flandrin, Liu bound when $\delta(G)$ is large and develop more information about the set $S_{2}(G)$ and the function $f_{2}(G)$.

In what follows, all graphs are finite with no loops or multiple edges. We let $V(G)$ denote the vertex set of G and $\alpha(G)$ denote the independence number of G, that is, the maximum cardinality of an independent set of vertices. Given a cycle C and a vertex $x \in V(C)$, we let x^{+}and x^{-}denote the successor and predecessor of x under some orientation of C. We use the notation $C[a, b]$ to denote a segment of the cycle C from the vertex a to the vertex b following the orientation of C. Let $C^{-}[a, b]$ denote the
segment traversing the vertices of C under the reverse of the orientation of C. Also, C^{-}will denote traversing C in the reverse direction.

2. Proof of the main result

In this section we prove Theorem 3 and to do this we need the following consequence of a result in [9].

Theorem 4. If G is a claw-free graph of order n, then $\alpha(G) \leqslant 2 n /(\delta(G)+2)$.
Proof of Theorem 3. Clearly by Theorem 1, G contains a 2 -factor. Suppose the result fails to hold, then G contains a 2 -factor with at least $k+1$ components. Now suppose over all 2 -factors with the minimum number of components, we choose one with a smallest cycle C_{1}. Further, note by Theorem 4 that $\alpha(G) \leqslant 2 n /(\delta(G)+2)<2 k$.

Claim 1. The cycle C_{1} is K_{3}.
Proof. Suppose not, say that $\left|V\left(C_{1}\right)\right| \geqslant 4$. Since $\left|V\left(C_{1}\right)\right| \leqslant n /(k+1)$, we see that any vertex $x \in V\left(C_{1}\right)$ must send at least $n /\left(k^{2}+k\right)$ edges to $V(G)-V\left(C_{1}\right)$. Further, $n /\left(k^{2}+k\right) \geqslant 8 k$ since $n \geqslant 16 k^{3}$.

We now consider the structure of adjacencies from $x \in V\left(C_{1}\right)$ to vertices on the other cycles $C_{2}, C_{3}, \ldots, C_{t},(t \geqslant k+1)$. In order to complete the proof of Claim 1, we make the following claim.

Claim 2. The set of successors of neighbors of x on C_{2}, \ldots, C_{t} form an independent set.

Proof. Suppose $x \in V\left(C_{1}\right)$ is adjacent to vertex $x_{2} \in V\left(C_{2}\right)$ and $x_{3} \in V\left(C_{3}\right)$. Further, suppose that x_{2}^{+}and x_{3}^{+}are the successors of x_{2} and x_{3} under some orientation of the cycles C_{2} and C_{3}, respectively. Suppose that x_{2}^{+}and x_{3}^{+}are adjacent. Then by considering the claw centered at x with x_{2}, x_{3} and $x^{-} \in V\left(C_{1}\right)$, we see that either x_{2} is adjacent to x_{3} or x^{-}is adjacent to one of x_{2} or x_{3}. However, if x_{2} is adjacent to x_{3}, then cycles C_{2} and C_{3} can easily be combined into one cycle, contradicting our assumption that our cycle system had the least number of cycles. Now without loss of generality, suppose that x^{-}is adjacent to x_{2}. Then $x^{-}, x_{2}, C_{2}^{-}, x_{2}^{+}, x_{3}^{+}, C_{3}^{-}, x_{3}, x, C_{1}, x^{-}$is a cycle that combines all three of C_{1}, C_{2}, and C_{3}, contradicting our assumptions again. Thus, we conclude that x_{2}^{+}and x_{3}^{+}are nonadjacent.
Next we suppose that x_{2} and x_{3} are both on the same cycle, say C_{2}. Then again suppose that x_{2}^{+}and x_{3}^{+}are adjacent. Now note that on C_{1}, the vertices x^{-}and x^{+} are not adjacent, for otherwise, since $\left|V\left(C_{1}\right)\right| \geqslant 4$ we could remove x from C_{1} leaving a cycle C_{1}^{*} and we could incorporate the vertex x into C_{2} forming the cycle C_{2}^{*} as $x, x_{2}, \ldots, x_{3}^{+}, x_{2}^{+}, \ldots, x_{3}, x$. However, this produces a cycle system with the same number
of cycles and a cycle smaller that C_{1}, contradicting our assumptions. Now the claw centered at x with x^{+}, x^{-}and x_{2} implies that (without loss of generality) $x^{-} x_{2} \in$ $E(G)$. Then $x^{-}, x_{2}, x_{2}^{-}, \ldots, x_{3}^{+}, x_{2}^{+}, \ldots, x_{3}, x, C_{1}, x^{-}$is a cycle incorporating $V\left(C_{1}\right)$ and $V\left(C_{2}\right)$ again producing a 2 -factor with fewer cycles, contradicting our assumptions. This proves Claim 2.

But, x has at least $2 k$ neighbors on C_{2}, \ldots, C_{t} whose successors, by Claim 2, form an independent set, while $\alpha(G)$ is less than $2 k$, a contradiction. This completes the proof of the Claim 1.

Thus, C_{1} must be K_{3} and let $V\left(C_{1}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$.
Claim 3. The number of different cycles in C_{2}, \ldots, C_{t} containing neighbors of $V\left(C_{1}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$ is less than $2 k$.

Proof. Suppose the claim fails to hold so that $V\left(C_{1}\right)$ has neighbors on at least $2 k$ other cycles. Again using $\alpha(G)<2 k$, we know that the set of successors of neighbors of $\left\{u_{1}, u_{2}, u_{3}\right\}$ cannot be an independent set. Thus, either for one vertex of C_{1}, say u_{1} the set of successors of neighbors on C_{2}, \ldots, C_{t} are not independent, or for two vertices of C_{1}, without loss of generality say u_{1} and u_{2}, the set of successors of neighbors on C_{2}, \ldots, C_{t} are not independent.
In the first case, a method of proof similar to that used in Claim 2 may be applied to produce a smaller cycle system, contradicting our assumptions. In the second case, suppose that u_{1} is adjacent to $x_{1} \in V\left(C_{i}\right)$ and u_{2} is adjacent to $x_{2} \in V\left(C_{j}\right)(i \neq j)$. Then if x_{1}^{+}and x_{2}^{+}are adjacent, we see that $u_{1}, x_{1}, C_{i}^{-}, x_{1}^{+}, x_{2}^{+}, C_{j}, x_{2}, u_{2}, u_{3}, u_{1}$ is a cycle that combines all the vertices of C_{1}, C_{2} and C_{3}, contradicting our assumptions. Thus, in either case, the vertices of C_{1} have adjacencies to at most $2 k-1$ other cycles as claimed.
Now, we note that each vertex of C_{1} must have at least $n / k-2$ adjacencies to vertices off of C_{1}. Thus each vertex of C_{1} has $n / 2 k^{2}$ neighbors on some one cycle other than C_{1}. Say that u_{i} has these adjacencies to cycle $C_{j_{i}}, i=1,2,3$. As $n / 2 k^{2} \geqslant 8 k>4 \alpha(G)$, the set of all successors of neighbors of u_{i} cannot form an independent set. If the cycles $C_{j_{i}}, i=1,2,3$, are all distinct, then each of the vertices $u_{j_{i}}$ can be absorbed into $C_{j_{i}}$, and a 2-factor with fewer cycles results. Thus, at least two of the vertices of C_{1} have their $n / 2 k^{2}$ adjacencies to the same cycle, say C_{j}. Without loss of generality, say that u_{1} and u_{2} are these two vertices.

Now over all possible pairs of neighbors of either u_{1}, or u_{2} we select a closest pair along C_{j} with the property that their successors along C_{j} are adjacent. Without loss of generality, say that $x_{1}, x_{2} \in N\left(u_{1}\right) \cap V\left(C_{j}\right)$ is such a pair. Let $S_{1}=C\left[x_{1}, x_{2}\right]$. Note that u_{2} can have at most $2 k$ neighbors in S_{1} or we could find a pair closer along C_{j} than x_{1} and x_{2} with adjacent successors, contradicting our choice. Thus, u_{2} has at least $6 k$ neighbors to C_{j} outside S_{1}. Among these neighbors select a pair y_{1}, y_{2} such that $y_{1}^{+} y_{2}^{+} \in E(G)$. Thus, we can find $x_{1}, x_{2} \in N\left(u_{1}\right) \cap V\left(C_{j}\right)$ with $x_{1}^{+} x_{2}^{+} \in E(G)$ and $y_{1}, y_{2} \in N\left(u_{2}\right) \cap V\left(C_{j}\right)$ with $y_{1}^{+} y_{2}^{+} \in E(G)$ and such that $C\left[x_{1}, x_{2}\right] \cap C\left[y_{1}, y_{2}\right]=\emptyset$. Then the cycle $u_{1}, x_{2}, \ldots, x_{1}^{+}, x_{2}^{+}, \ldots, y_{1}, u_{2}, y_{2}, \ldots, y_{1}^{+}, y_{2}^{+}, \ldots, x_{1}, u_{1}$ incorporates both u_{1}
and u_{2} into C_{j}. The vertex u_{3} may then be incorporated into $C_{j_{3}}$ and we will have a 2 -factor with fewer cycles, a contradiction.

Finally, we consider the case when each $u_{i},(i=1,2,3)$ has all of its $n / 2 k^{2}$ neighbors on the same cycle, say C_{j}. As before over all possible pairs of neighbors of either u_{1}, u_{2} or u_{3} we select a closest pair along C_{j} with the property that their successors along C_{j} are adjacent. Without loss of generality, let $x_{1}, x_{2} \in N\left(u_{1}\right) \cap V\left(C_{j}\right)$ be such a pair. Let $S_{1}=C\left[x_{1}, x_{2}\right]$. Again, note that u_{2} and u_{3} each have at most $2 k$ neighbors in S_{1} or we could find a pair closer along C_{j} than x_{1} and x_{2} with adjacent successors, contradicting our choice. Thus, u_{2} and u_{3} each have at least $6 k$ neighbors to C_{j} outside S_{1}. Now repeat the above argument on these neighbors of u_{2} and u_{3}. Without loss of generality, suppose that $y_{1}, y_{2} \in N\left(u_{2}\right) \cap V\left(C_{j}\right)-S_{1}$ are a closest pair with the property that $y_{1}^{+} y_{2}^{+} \in E(G)$. Let $S_{2}=C\left[y_{1}, y_{2}\right]$. Now the deletion of S_{1} and S_{2} from C_{j} partitions the remaining vertices of C_{j} into at most two segments. The vertex u_{3} has at most $2 k$ neighbors into either S_{1} or S_{2}. Thus, it has at least $4 k$ neighbors into the remaining vertices, and hence at least $2 k$ neighbors into one of these segments. Thus, in this segment we may select a pair $z_{1}, z_{2} \in N\left(u_{3}\right)$ such that $z_{1}^{+} z_{2}^{+} \in E(G)$. Let $S_{3}=C\left[z_{1}, z_{2}\right]$. Now it is clear that $S_{i} \cap S_{j}=\emptyset$ for $i, j \in\{1,2,3\}$ and $i \neq j$. Hence, each of u_{1}, u_{2} and u_{3} can be incorporated into C_{j}. Once again we have a 2 -factor with fewer cycles and a contradiction. This completes the proof.

3. Examples

We now turn our attention to several examples that are key to our investigation. These examples illustrate the behavior of $f_{2}(G)$ as well as that of $S_{2}(G)$.

Example 1. Sharpness of Sumner's result.

The graph H contains three copies of $K_{n / 3}$ with distinct vertices x_{i} and $y_{i}(i=1,2,3)$ in each copy joined by an edge to the corresponding vertices in the other two copies (Fig. 1). That is, x_{1} is joined to x_{2} and x_{3} and similarly for y_{1}. The graph H has many 2 -factors, but $f_{2}(H)=2$.

Example 2. Increasing values for $f_{2}(G)$.
Consider the graph R obtained by replacing the vertices of a P_{t} with copies of K_{d+1}, where there is exactly one edge between consecutive copies of K_{d+1} (see Fig. 2). Clearly, R has order $n=t(d+1)$ and $\delta(R)=d$. Finally, it is easy to see that $f_{2}(R)=t$. Thus, for fixed n as $\delta(G)$ decreases, clearly $f_{2}(G)$ must increase.

Example 3. The sharpness of the bound on $f_{2}(G)$.

Fig. 1.

Fig. 3.

Fig. 2.

Fig. 4.

Consider the graph W composed of one central copy of K_{d+1} and $d-1$ other copies of K_{d+1} where one vertex from each of the $d-1$ copies of K_{d+1} is identified with a distinct vertex of the central K_{d+1}. Note that two vertices of the central K_{d+1} are unused in this process (see Fig. 3). Then W has order $n=(d-1)(d+1)+2=d^{2}+1$ and minimum degree d. Further, $f_{2}(W)=d$. Also note that $\lfloor n / \delta(W)\rfloor=d$.

Example 4. A graph where $S_{2}(G)$ does not assume consecutive values.
Finally, consider the graph M composed of k copies of the graph $L_{i}=K_{5}-e$ ($e=x_{i} y_{i}, i=0, \ldots, k-1$) where the graphs L_{i} are connected by placing an edge between x_{i} and y_{i+1}, (subscripts mod k). (See Fig. 4.) This graph has order $n=5 k$ and $\delta(M)=4$. Further, M is hamiltonian and $F_{2}(M)=k$, but there are no other 2-factors of M. Hence, $S_{2}(M)=\{1, k\}$ and is not a set of consecutive integers.

4. Conclusions and problems

For claw-free graphs we have established a new bound on $f_{2}(G)$. However, we wonder about the values of $f_{2}(G)$, especially as $\delta(G)$ decreases.

As we have seen, when the minimum degree of a claw-free graph is sufficiently high, there is a wide range of 2 -factors. In fact, as shown by the result in [3] mentioned earlier, $S_{2}(G)=\{1,2, \ldots,(n-24) / 3\}$. This set of consecutive integers is nearly best possible. But the interesting feature is that the set $S_{2}(G)$ is a set of consecutive integers. We wonder if $S_{2}(G)$ is a set of consecutive integers whenever G is claw-free and $\delta(G) \geqslant n / k$, for some integer k ? Recall the graph of Fig. 4 shows that this need not be the case for small values of $\delta(G)$. What is the maximum $\delta(G)$ such that $S_{2}(G)$ (G claw-free) is not a set of consecutive integers?

Finally, we note the case when $\delta(G) \geqslant(n-2) / 3$ but G has connectivity one can be considered. A straightforward but tedious analysis of the structure of G based on the number of cut vertices in G, the values of the orders of the blocks of $G \bmod 3$ and applications of the result from [3] to these blocks shows that large G will have 2 -factors with t cycles for $3 \leqslant t \leqslant n / 3-17$.

References

[1] G. Acree, A. Leist, Disjoint cycles, 2-factors and the forbidden subgraph method, Congr. Numer. 118 (1996) 23-32.
[2] S. Brandt, G. Chen, R.J. Faudree, R.J. Gould, L. Lesniak, On the number of cycles in a 2-factor, J. Graph Theory 24 (2) (1997) 165-173.
[3] G. Chen, J.R. Faudree, R.J. Gould, A. Saito, Cycles in 2-factors of claw-free graphs preprint.
[4] S.A. Choudum, M.S. Paulraj, Regular factors in $K_{1,3}$-free graphs, J. Graph Theory 15 (3) (1991) 259-265.
[5] K. Corrádi, A. Hajnal, On the maximal number of independent circuits in graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439.
[6] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
[7] Y. Egawa, K. Ota, Regular factors in $K_{1, n}$-free graphs, J. Graph Theory 15 (3) (1991) 337-344.
[8] R.J. Faudree, O. Favaron, E. Flandrin, H. Li, Z. Liu, On 2-factors in claw-free graphs, Discrete Math. 206 (1-3) (1999) 131-137.
[9] R.J. Faudree, M.S. Jacobson, R.J. Gould, T.E. Lindquester, L. Lesniak, On independent generalized degrees and independence numbers in $K(1,3)$-free graphs, Discrete Math. 103 (1992) 17-24.
[10] M.M. Matthews, D.P. Sumner, Longest paths and cycles in $K_{1,3}$-free graphs, J. Graph Theory 9 (1985) 269-277.

[^0]: * Corresponding author.

 E-mail address: rg@mathcs.emory.edu (R.J. Gould).
 ${ }^{1}$ Research Supported by O.N.R. Grant no. N00014-97-1-0499.
 ${ }^{2}$ Research Supported by O.N.R. Grant no. N00014-J-91-1098.

