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Abstract

We consider the pair of graphs S and T such that every 3-connected {S, T}-free graph is
hamiltonian connected. Such pairs are called hamiltonian connected pairs. We show three new
hamiltonian connected pairs. Combing our results and a result of Shepherd, we conclude that
if {S, T} is a pair of graphs such that every 2-connected {S, T}-free graph is hamiltonian then
every 3-connected {S, T}-free graph is hamiltonian connected.

1 Introduction

Let H be a graph. A graph G is said H-free if G does not contain H as an induced subgraph.
More generally, given a family F = {H1,H2, . . . , Hk} of graphs, we say that a graph G is F-free
if G contains no induced subgraph isomorphic to any Hi, i = 1, 2, . . . , k. We call the graphs in
F forbidden subgraphs. The use of forbidden subgraphs to obtain classes of graphs possessing
special properties has long been a common graphical technique, especially for hamiltonicity. If P
is a hamiltonian property (like traceable, hamiltonian, pancyclic, etc.), let κ(P ) denote the least
connectivity possible in a graph with property P . In the last few years, the problem of determine
the all pairs of connected graphs {H1, H2} such that any κ(P )-connected {H1, H2} -free graph will
possess hamiltonian property P has been investigated. The idea was introduced by Bedrossian
in[1] who considered it for Hamiltonian and pancyclic graphs. Following him, Faudree, Gould,
Ryjacek, Schiermeyer [5, 6, 7]investigated it for traceable, panconnected, and cycle extendable.
They also consider the problem when P is hamiltonian connected. However, only little progress
has been made along this line. The purpose of this paper is to show that three important pairs
for hamiltonian graphs are also pairs for hamiltonian connected graphs. Some of the graphs most
commonly involving in forbidden families for hamiltonian properties are shown in Figure 1. It has
been pointed out [5] that the star K1,3, called the claw, must be a part of these forbidden families.

Figure 1

One of the earliest forbidden subgraph results dealing with hamiltonian properties is the fol-
lowing result due to Duffus, Gould, and Jacobson [4]. The graph K1,3 and N are shown in Figure
1.

Theorem 1 Let G be a {K1,3, N}-free graph. Then
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1. if G is connected , then G is traceable and

2. if G is 2-connected, then G is hamiltonian.

Shepherd [9] showed that a result similar to Theorem 1 holds.

Theorem 2 If G is a 3-connected {K1,3, N}-free graph, then G is hamiltonian connected.

Regarding hamiltonian graphs, the following results have also been obtained.

Theorem 3 [3] If G is a 2-connected {K1,3, P6}-free graph, then G is hamiltonian.

Theorem 4 [8] If G is a 2-connected {K1,3, Z2}-free graph, then G is hamiltonian.

Theorem 5 [1] If G is a 2-connected {K1,3,W}-free graph, then G is hamiltonian.

Theorem 6 [6] If G is a 2-connected {K1,3, Z3}-free graph of order n ≥ 10, then G is hamiltonian.

A characterization of all pairs that imply a 2-connected graph is hamiltonian was accomplished
in [1]. However, graphs of small order were used in the proof to eliminate certain graphs, namely
Z3. Later Theorem 6 was verified and the following result was obtained by Faudree and Gould.

Theorem 7 [5] Let R and S be connected graphs (R,S 6= P3) and G a 2-connected graph of order
n ≥ 10. Then G is (R,S) -free implies G is hamiltonian if, and only if, R = K1,3 and S is a
subgraph of N , P6, W , Z3.

Inspired by the above results, we obtain the following three results in this paper.

Theorem 8 If G is a 3-connected {K1,3, P6}-free graph, then G is hamiltonian connected.

Theorem 9 If G is a 3-connected {K1,3,W}-free graph, then G is hamiltonian connected.

Theorem 10 If G is a 3-connected {K1,3, Z3}-free graph, then G is hamiltonian connected.

We place the three proofs of these ressults in sections 3, 4, and 5 after we prove a useful lemma.
The terminology and notation of this paper will generally follow closely that of [2]. All graphs

considered here are simple and undirected. The vertex set of a graph G will be denoted by V (G)
while the edge set is denoted by E(G). Let v ∈ V (G) and H be a subgraph (or a vertex subset) of
G. The neighborhood of v in H, denoted by NH(v), is the set of vertices in H adjacent to v in G.
If A ⊆ V (G), we define NH(A) = ∪v∈ANH(v). Let A and B be two disjoint vertex sets (or vertex
disjoint subgraphs) of G. We define E(A,B) be the set of edges with one endvertex in A and the
other one in B. If H is a connected induced subgraph of G and x, y ∈ N(H) ∪ V (H), then we use
xHy to denote a shortest x− y path in G with all internal vertices in H.

Let P = P [u, v] be a path in G from u to v including both u and v. We define P (x, y], P [x, y),
P (x, y) in the obvious manner. For any w ∈ V (P [u, v]), we use w+i to denote the i−th successor
of w (when it exists) along P in the direction from u to v while w−i for the i-th predecessor of
w along P (when it exists) along P in the reversed direction. When i = 1, we write w+ = w+1

and w− = w−1. For any two vertices x and y of P which are in that order along the path P ,
we let P [x, y] denote the subpath from x to y while P [y, x] denote the same path with a reversed
orientation. If H is a connected component of G − V (P ) and there is a u − v path Q[u, v] which
is longer than P [x, y] and V (Q[x, y]) ⊆ V (P [x, y]) ∪ V (H), we say P [x, y] can be extended by H.
The path P [u, v] is called a maximal x − y path if there does not exist a path Q[u, v] such that
V (Q[u, v]) ⊃ V (P [u, v]). Clearly, any longest u− v path is a maximal x− y path.
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2 A Lemma

Lemma 2.1 Let G be a 3-connected K1,3-free graph and let x and z be two vertices of G. If for every
maximal x−z path P [x, z] and every component H of G−V (P [x, z]) the equality N(H)∩V (P [x, z]) =
{x, y, z} holds, where y is uniquely determined by P [x, z] and H, then G has an x− z hamiltonian
path.

Proof: Suppose, to the contrary, G does not contain an x− y hamiltonian path. Let P [x, z] be a
maximal x−z path and H be a component of G−V (P [x, z]) . Then, N(H)∩V (P [x, z]) = {x, y, z},
where y ∈ V (P (x, z)). Let z∗ ∈ V (H) such that zz∗ ∈ E(G). By the maximality of P [x, z],
z∗z− /∈ E(G). SinceG isK1,3-free, for each a ∈ V (P (x, y)) if az ∈ E(G) then az− ∈ E(G). Hence, if
a, b ∈ V (P (x, y)) such that az, bz ∈ E(G) then the path z−P [a, b]z contains a and b. For this reason,
let Z[z−, z] be a path such that V (Z(z−, z)) ⊆ V (P (x, y)) and V (Z(z−, z)) ⊇ N(z) ∩ V (P (x, y)).
Let x∗ ∈ NH(x) and y∗ ∈ NH(y) and

Q[x, z] = xx∗Hy∗yy−P [y+, z−]Z[z−, z].

Let Q∗[x, z] be a maximal path contaiting all vertices of Q[x, z]. Since P [x, z] is a maximal x − z
path, W = V (P (x, y)) − V (Q∗(x, z)) 6= ∅. By our hypothesis, z ∈ N(W ) ∩ V (Q∗[x, z]) which
contradicts the choice of the path Z[z−, z]. 2

3 Proof of Theorem 8

Suppose that to the contrary there exists a 3-connected {K1,3, P6} -free graph such that there are
two vertices x, z so that G does not contain an x − z hamiltonian path. By Lemma 2.1, we only
need to show that N(H) ∩ V (P [x, z]) = {x, y, z} for each maximal x − z path P [x, z] and each
component H of G− V (P [x, z]), where y ∈ V (P (x, z)) . Suppose, to the contrary and without
loss of generality, there exists a maximal x − z path P [x, z] and a component H such that there
are three vertices u, v, w ∈ N(H) ∩ V (P [x, z]) with u, v ∈ V (P (x, z)) and u, v, w are in that order
along P [x, z].

Since G is K1,3-free, u−u+, v−v+ ∈ E(G). Since P [x, z] is a maximal x − z path, there exists
a vertex in P (u, v) which is not adjacent to u. Let u2 be the first such vertex along P (u, v) and
let u1 = u−2 . We define v1, v2 in the same way except in P (v, w) not in P (u, v). Since P cannot be
extended by H, the following holds.

• For each j = 1, 2, uvj /∈ E(G). Otherwise, if vj 6= v+, the path

P [x, u−]P [u+, v−]P [v+, v−j ]vHuvjP [vj , z]

gives a contradiction to the maximality of P [x, z]; if vj = v+, the path

P [x, u−]P [u+, v]HuP [vj , z]

is longer than P , a contradiction to the maximality of P [x, z]. Similarly, we have

• For each j = 1, 2, ujv /∈ E(G). And,

• For each i = 1, 2 and j = 1, 2, uivj /∈ E(G).

Summarizing the above results, we obtain that

E({u, u1, u2}, {v, v1, v2}) = ∅.

Thus, u2u1uHvv1v2 is an induced path of at least 6 vertices, a contradiction. 2
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4 Proof of Theorem 10

Suppose that to the contrary there exists a 3-connected {K1,3, Z3} -free graph such that there are
two vertices x, z so that G does not contain an x − z hamiltonian path. By Lemma 2.1, we only
need to show that N(H) ∩ V (P [x, z]) = {x, y, z} for each maximal x − z path P [x, z] and each
component H of G− V (P [x, z]), where y ∈ V (P (x, z)) . Suppose, to the contrary and without
loss of generality, there exist a maximal x− z path P [x, z] and a component H such that there are
three vertices u, v, w ∈ N(H)∩V (P [x, z]) with u, v ∈ V (P (x, z)) and u, v, w are in the order along
P [x, z]. Furthermore, we assume that |V (P [x, u])| is maximum under the above conditions.

Since G is claw-free, then u−u+, v−v+ ∈ E(G) and w−w+ ∈ E(G) if w 6= z. We will devote the
remainder of the proof into two cases. Since P [x, z] is a maximal x− z path, the following hold.

E({u, u+, u+2}, {v, v+, v+2}) ⊆ {uv}, and

E({u, u−1, u−2}, {v, v−1, v−2}) ⊆ {uv}.

Case 4.1 The edge uv is not present.

Since u+2u+uHvv+ does not induce a Z3, uu
+2 /∈ E(G). Similarly, uu−2(if u 6= x+), vv+2,

vv−2 /∈ E(G). By the maximality of P [x, z], |V (P (u+1, v−1))| ≥ 1. Since u−u+uHvv− does not
induce a Z3, then u+v− ∈ E(G). Since u, u+2, v− ∈ N(u+) and uu+2, uv− /∈ E(G), u+2v− ∈ E(G).
If |V (P (u+, v−))| ≥ 2, then u+2v−2 ∈ E(G) since u+2, v−2, v ∈ N(v+) and u+2v, v−2v /∈ E(G).
Then, u+2v−2v−1vHu induces a Z3, a contradiction. Thus, u+2 = v−2.

Since P [x, z] is a maximal x − z path, uw−, vw− /∈ E(G) and G is K1,3-free, N(w) 6⊇ {u, v}
holds.

If w 6= z, then N(w) ∩ {u−, u+, u+2, v−, v+} = ∅ since w−w+ ∈ E(G) and P [x, z] is a maximal
x−z path. Since u+u+2v−vHw does not induce a Z3, vw ∈ E(G). For the same reason, uw ∈ E(G),
which contradicts N(w) 6⊇ {u, v}. Therefore, w = z.

Since w = z, N(z−) ∩ {u−, u+2 = v−2, v−1} = ∅. Since G is K1,3-free and NH(z) 6= ∅,
N(y) ∩ {u−, u+2, v−} = ∅. If uz /∈ E(G), that the subgraph induced by v−u+2u+uHz is not
Z3 implies that u+z ∈ E(G). If vz /∈ E(G), that the subgraph induced by u+u+2v−vHz is not
Z3 implies that u+z ∈ E(G). Thus, u+z ∈ E(G) holds. Then, {u+, u+2, u−, z} induces an K1,3

centered at u+, a contradiction.

Case 4.2 The edge uv is present.

Since G is K1,3-free, NH(u) = NH(v). Let u∗ ∈ NH(u).
Since u+2u+uvv+v+2 does not induce a Z3, uu

+2 /∈ E(G). Similarly, uu−2(if u 6= x+), vv+2,
vv−2 /∈ E(G). By the maximality of P [x, z], |V (P (u+1, v−1)| ≥ 1.

Since u−u+uvv+v+2 does not induce a Z3, either u−v+ ∈ E(G) or u−v+2 ∈ E(G). If u−v+ ∈
E(G), then u−v+2 ∈ E(G) since vv+2, u−v /∈ E(G) and G is K1,3 -free. Thus, u−v+2 ∈ E(G) holds.

We claim that u+u+3 ∈ E(G). Suppose, to the contrary, that u+u+3 /∈ E(G). Considering
the subgraph induced by u∗vuu+u+2u+3, we have either uu+3 ∈ E(G) or u+3v ∈ E(G) since G
is Z3-free. If uu+3 ∈ E(G), then u+u+3 ∈ E(G) since u∗, u+, u+3 ∈ N(u) and u+, u+3 /∈ N(u∗),
a contradiction. Thus, u+3v ∈ E(G). Since G is K1,3-free, Note that u+4 ∈ V (P [u, v]). If
u+2u+4 ∈ E(G), the path P [x, u−]u+uu∗P [v, u+4]u+2u+3P [v+, z] is an extension of P by H, a con-
tradiction. Thus, u+2u+4 /∈ E(G). Similarly, u+u+4 /∈ E(G). Considering the subgraph induced by
u−uu+u+2u+3u+4, we have either u−u+4 ∈ E(G) or uu+4 ∈ E(G). Clearly, that uu+4 ∈ E(G) im-
plies that u−u+4 ∈ E(G). Thus, u−u+4 ∈ E(G) holds. The path P [x, u−]P [u+4, v]u∗P [u, u+3]P [u+, z]
shows that P is not a maximal x− z path, a contradiction.
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We claim that |V (P (u+1, v−1))| = 1. Suppose, to the contrary, |V (P (u+1, v−1))| ≥ 2. Consider-
ing the Z3-free subgraph induced by u+3u+2u+uvv+, we have either u+3v ∈ E(G) or u+3v+ ∈ E(G).
Since u+3v ∈ E(G) implies that u+3v+ ∈ E(G), u+3v+ ∈ E(G) holds. Considering the sub-
graph induced by u−u+uvv−v−2, we have either u−v− ∈ E(G) or u−v−2 ∈ E(G). Clearly, that
u−v− ∈ E(G) implies that u−v−2 ∈ E(G). Thus, u−v−2 ∈ E(G) holds. Similarly, we can show that
u+2v− ∈ E(G). Then, the path, P [x, u]u∗vv−u+2u+P−[v−2, u+3]P [v+, z], contains all vertices of
P [x, z] and vertex u∗, a contradiction to the maximality of P [x, z]. Hence, |V (P (u+, v−)| = 1.

If w 6= z, in the same manner, we can show that |V (P (v+1, w−1))| = 1 . Since u−v+2 ∈ E(G)
and v+2 = w−2, the path, P [x, u−]P−[v+2, u]u∗P [w, z], shows that P [x, z] is not a maximal path,
a contradiction. Thus, w = z.

Consider the path P [x, u−]u+uu∗vv−P [v+, z] and extend it to a maximal path Q[x, z]. Clearly,
u+2 is not on Q[x, z] otherwise P [x, z] is not a maximal path and u+2 forms a component of
G − V (Q[x, z]). In the same manner as the above, we see that u+2z ∈ E(G). Since P [x, z] is a
maximal path, u+2z− /∈ E(G) and z∗z− /∈ E(G), where z∗ ∈ NH(z). Then, {z, z−, u+2, z∗} induces
a K1,3, a contradiction. 2

5 Proof of Theorem 9

Suppose that to the contrary there exists a 3-connected {K1,3,W} -free graph such that there are
two vertices x, z so that G does not contain an x − z hamiltonian path. By Lemma 2.1, we only
need to show that N(H) ∩ V (P [x, z]) = {x, y, z} for each maximal x − z path P [x, z] and each
component H of G− V (P [x, z]), where y ∈ V (P (x, z)) . Suppose, to the contrary and without loss
of generality, there exists a path P [x, z] and a component of G − V (P [x, z]) such that there are
three vertices u, v, w ∈ N(H)∩V (P [x, z]) with u, v ∈ V (P (x, z)) and u, v, w are in that order along
P [x, z].

Since G is K1,3-free, u−u+, v−v+ ∈ E(G) and w−w+ ∈ E(G) if w 6= z. Since P [x, z] is a
maximal path,

E({u−2, u−, u}, {v−2, v−, v}) ⊆ {uv}, ( if u−2 exists) and

E({u, u+, u+2}, {v, v+, v+2}) ⊆ {uv}, and

E{u−1, u, v−2, v−1, v}, {w−1}) = ∅.

If uv ∈ E(G), then NH(u) = NH(v) since G is K1,3-free. Let u∗ ∈ NH(u). From the above
inequalities, we see that uv−, u−v−, uv−2, u−v−2 /∈ E(G). Therefore, u−uu∗vv−v−2 induces a
W , a contradiction. Thus, uv /∈ E(G). Similarly, we can show that vw /∈ E(G). If uw ∈ E(G)
, then NH(u) = NH(w) since G is K1,3-free. Let u∗ ∈ NH(u) = NH(w) such that dist(u∗, v) is
minimum. Let R[v, u∗] be the shortest path from v to u∗ in the subgraph induced by V (H) ∪ {v},
then N(V (R[v, u∗)) ∩ {u,w} = ∅. The subgraph induced by v+R[v, u∗]wuu+ contains an induced
W , a contradiction. Therefore, uw /∈ E(G).

Let Q[u,w] be a shortest path from u to w in the subgraph induced by V (H) ∪ {u,w}. Let
R[v, v∗] be a path from v to Q[u,w] such that

1. |R[v, v∗]| is minimum;

2. |Q[u, v∗]| is minimum under the above condition.

By the minimalities above, Q[u, v∗]R−[v∗, v] is an induced path. Let a be the predecessor of v∗

and b be the successor of v∗ on the path Q[u,w] and let c be the predecessor of v∗ on the path of
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P [v, v∗]. Since G is K1,3-free, bc ∈ E(G). Then, the subgraph induced by Q[u, v∗]bcR−[c, v]v−v−2

contains an induced W , a contradiction. 2
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