Cycles in 2-Factors of Balanced Bipartite Graphs

Guantao Chen ${ }^{1 *}$, Ralph J. Faudree ${ }^{2 \dagger}$, Ronald J. Gould ${ }^{3 \ddagger}$, Michael S. Jacobson ${ }^{4 \S}$, and Linda Lesniak ${ }^{5 \boldsymbol{5}}$
${ }^{1}$ Georgia State University, Atlanta, GA 30303, USA
${ }^{2}$ University of Memphis, Memphis, TN 38152, USA
${ }^{3}$ Emory University, Atlanta GA 30322, USA
${ }^{4}$ University of Louisville, Louisville, KY 40292, USA
${ }^{5}$ Drew University, Madison NJ 07940, USA

Abstract

In the study of hamiltonian graphs, many well known results use degree conditions to ensure sufficient edge density for the existence of a hamiltonian cycle. Recently it was shown that the classic degree conditions of Dirac and Ore actually imply far more than the existence of a hamiltonian cycle in a graph G, but also the existence of a 2 -factor with exactly k cycles, where $1 \leq k \leq \frac{|V(G)|}{4}$. In this paper we continue to study the number of cycles in 2 -factors. Here we consider the well-known result of Moon and Moser which implies the existence of a hamiltonian cycle in a balanced bipartite graph of order $2 n$. We show that a related degree condition also implies the existence of a 2 -factor with exactly k cycles in a balanced bipartite graph of order $2 n$ with $n \geq \max \left\{51, \frac{k^{2}}{2}+1\right\}$.

1. Introduction

All graphs considered are simple, without loops or multiple edges. A 2-factor of a graph G is a 2-regular subgraph of G that spans the vertex set $V(G)$, that is, a 2 -factor is a collection of vertex disjoint cycles that cover all vertices of G. For years mathematicians have investigated results ensuring the existence of 2-factors in graphs. Hundreds of results exist concerning the special case when the graph is hamiltonian, that is, the 2-factor is a single cycle. Recently, there have been efforts to determine more about the structure of general 2-factors. Questions about the number of cycles possible in a 2 -factor or the lengths of the cycles forming the 2-factor have drawn interest.

[^0]Such a question was considered in [1], where the following generalization of Ore's Theorem [6] was shown.

Theorem 1. Let k be a positive integer and let G be a graph of order $n \geq 4 k$. If $\operatorname{deg} u+\operatorname{deg} v \geq n$ for every pair of nonadjacent vertices u and v in $V(G)$, then G has a 2-factor with exactly k vertex disjoint cycles.

An immediate Corollary to Theorem 1 generalizes the classic hamiltonian result of Dirac [3].

Corollary 2. If G is a graph of order $n \geq 4 k, k$ a positive integer, and $\delta(G) \geq \frac{n}{2}$, then G contains a 2 -factor with exactly k cycles.

The complete bipartite graph $K_{n / 2, n / 2}$ shows that the conclusion of Theorem 1 and that of Corollary 2 are best possible in the sense that any 2 -factor can contain at most $\left\lfloor\frac{n}{4}\right\rfloor$ cycles. Throughout this paper we let $G=(X \cup Y, E)$ be a balanced bipartite graph with vertex set $V=X \cup Y$, where $|X|=|Y|$, and edge set E which contains the edges with one vertex in X and the other one in Y. Corresponding to Dirac's Theorem, Moon and Moser [5] obtained the following result for balanced bipartite graphs.

Theorem 3. If $G=(X \cup Y, E)$ is a balanced bipartite graph of order $2 n,(n \geq 2)$ with deg $u+\operatorname{deg} v \geq n+1$ for each pair of nonadjacent vertices $u \in X$ and $v \in Y$, then G is hamiltonian.

In this paper we show the following result, which generalizes Theorem 3 in a manner similar to the generalization of Ore's Theorem shown in Theorem 1.

Theorem 4. Let k be a positive integer and let G be a balanced bipartite graph of order $2 n$ where $n \geq \max \left\{51, \frac{k^{2}}{2}+1\right\}$. If $\operatorname{deg} u+\operatorname{deg} v \geq n+1$ for every $u \in V_{1}$ and $v \in V_{2}$, then G contains a 2 -factor with exactly k cycles.

We will use the notation $P[u, v]$ to denote a path from u to v, while $C[u, v]$ shall mean the segment of the cycle C from vertex u to v (including u and v) under some orientation of C. We also let $\langle S\rangle$ denote the subgraph of G induced by the vertex set $S \subseteq V(G)$. We use the notation $\operatorname{deg} v$ for the degree of the vertex v and $\operatorname{deg}_{S} v$ for the degree of v relative to the subgraph S. Further, $N(x)$ represents the set of vertices adjacent to x and $N_{C}^{-}(x)$ and $N_{C}^{+}(x)$ represent the predecessors and successors of neighbors of x along some orientation of cycle C respectively.

Given a cycle C (or path P) with an orientation, we let v^{+}denote the successor of vertex v along C and v^{-}the predecessor of v along C, according to this orientation. For terms not defined here, see [2].

We have recently learned of a related result due to Wang [7] that provides a minimum degree condition (namely $\delta(G)>=\lceil n / 2\rceil+1$) for a balanced bipartite graph to have a 2 -factor with exactly k cycles.

2. Preliminary Lemmas

In this section we provide some preliminary lemmas that will be useful in the proof of Theorem 4.

Lemma 1. Let $G=(X \cup Y, E)$ be a bipartite graph and let C be a cycle of G and let $P[u, v]$ be a $u-v$ path in $G-V(C)$ such that $u \in X$ and $v \in Y$. If

$$
\operatorname{deg}_{C} u+\operatorname{deg}_{C} v \geq \frac{|V(C)|}{2},
$$

then $\langle V(C) \cup V(P[u, v])\rangle$ is hamiltonian, unless $\operatorname{deg}_{C} u=0$ or $\operatorname{deg}_{C} v=0$. If

$$
\operatorname{deg}_{C} u+\operatorname{deg}_{C} v \geq \frac{|V(C)|}{2}+1
$$

then $\langle V(C) \cup V(P[u, v])\rangle$ is hamiltonian. Furthermore, if in this case C also contains a 2-factor with exactly two cycles, then so does $\langle V(C) \cup V(P[u, v])\rangle$.

Proof. Since $\operatorname{deg}_{C} u+\operatorname{deg}_{C} v \geq \frac{|V(C)|}{2}$ and G is bipartite with $u \in X$ and $v \in Y$, either the cycle C has two consecutive vertices such that one is adjacent to u and the other is adjacent to v, and hence we obtain the desired hamiltonian cycle, or $\operatorname{deg}_{C} u=0$ or $\operatorname{deg}_{C} v=0$.

Now, if

$$
\operatorname{deg}_{C_{1}} u+\operatorname{deg}_{C_{1}} v \geq \frac{|V(C)|}{2}+1,
$$

then we cannot have the situation that $\operatorname{deg}_{C} u=0$ or $\operatorname{deg}_{C} v=0$. Thus, again $\langle V(C) \cup V(P[u, v])\rangle$ is hamiltonian.

Now suppose that C also contains a 2 -factor with exactly two cycles, say C_{11} and C_{12}. Then we have that either $\operatorname{deg}_{C_{11}} u+\operatorname{deg}_{C_{11}} v \geq \frac{|V(C)|}{2}+1$ or $\operatorname{deg}_{C_{12}} u+$ $\operatorname{deg}_{C_{12}} v \geq \frac{|V(C)|}{2}+1$. Thus, either $\left\langle C_{11} \cup\{u, v\}\right\rangle$ or $\left\langle C_{12} \cup\{u, v\}\right\rangle$ is hamiltonian. In either case, we have the desired 2-factor of $\langle V(C) \cup V(P[u, v])\rangle$ with 2 cycles.

Lemma 2. Let $G=(X \cup Y, E)$ be a bipartite graph and let $C=u_{1} v_{1} u_{2} v_{2} \ldots u_{n} v_{n} u_{1}$ be a cycle in G. If $u \in X$ and $v \in Y$ are two vertices of $G-V(C)$ and if

$$
\operatorname{deg}_{C} u+\operatorname{deg}_{C} v \geq \frac{|V(C)|}{2}+1
$$

then $\langle V(C) \cup\{u, v\}\rangle$ is hamiltonian unless equality holds and, up to renumbering, we have that v is adjacent to u_{1}, \ldots, u_{k} and u is adjacent to v_{k}, \ldots, v_{n}, for some k.

Fig. 1

Proof. Suppose, to the contrary, $\langle V(C) \cup\{u, v\}\rangle$ is not hamiltonian. Since $\operatorname{deg}_{C} u+\operatorname{deg}_{C} v \geq \frac{|V(C)|}{2}+1$, there are two consecutive vertices on C, say x and x^{+}, with $x \in N(u)$ and $x^{+} \in N(v)$. Then, for any $w \neq x, w \in N(u)$ implies that $w^{+} \notin N(v)$.

Now let y be the next neighbor of u along C from x following the orientation given to C. Because of the degree sum condition, $v y^{-} \in E(G)$ (note that y^{-}and x^{+} may be the same vertex). Recall $u \in X$ and $v \in Y$. If there is a vertex $z \in C(y, x] \cap$ Y such that $z^{--} \notin N(u)$ and $z \in N(u)$, then $v z^{-} \in E(G)$, (or the degree condition would fail) which implies that $\langle V(C) \cup\{u, v\}\rangle$ is hamiltonian (see Figure 1a). Thus, $N(u) \cap V(C)=C[y, x] \cap Y$, which implies that $\langle V(C) \cup\{u, v\}\rangle$ is hamiltonian or $N(v) \cap C[y, x]=\varnothing$. Since

$$
\operatorname{deg}_{C} u+\operatorname{deg}_{C} v \geq \frac{|V(C)|}{2}+1
$$

we have that $N(v) \cap V(C)=C[x, y] \cap X$, that is, up to renumbering, v is adjacent to precisely u_{1}, \ldots, u_{k} for some k and u is adjacent to precisely v_{k}, \ldots, v_{n} (see Figure 1b), and hence equality holds in the degree sum.

Lemma 3. Let $G=(X \cup Y, E)$ be a bipartite graph and C a cycle in G with $|V(C)| \geq 6$. Let $u \in X, v \in Y$ and $u, v \in V(G)-V(C)$. If

$$
\operatorname{deg}_{C} u+\operatorname{deg}_{C} v \geq \frac{|V(C)|}{2}+2
$$

then $\langle V(C) \cup\{u, v\}\rangle$ has a 2-factor with exactly two cycles.
Proof. Since $\operatorname{deg}_{C} u+\operatorname{deg}_{C} v \geq \frac{|V(C)|}{2}+2$, then $\left|N_{C}(u) \cap\left(N_{C}^{-}(v)\right)\right| \geq 2$ and $\left|N_{C}(u) \cap\left(N_{C}^{+}(v)\right)\right| \geq 2$. Thus, there are two distinct vertices $x, x_{1} \in N_{C}(u)$ such that $x^{+} \neq x_{1}^{-}$and $\left\{x^{+}, x_{1}^{-}\right\} \subseteq N_{C}(v)$ (see Figure 2). A 2-factor is easily found.

Fig. 2

3. Proof of Main Theorem

We now present the proof of our main result, Theorem 4.
Proof of Theorem 4. Assume that G does not contain a 2-factor with exactly k cycles. Since $\operatorname{deg} u+\operatorname{deg} v \geq n+1$ for every $u \in X$ and $v \in Y$, we assume, without loss of generality, that $\operatorname{deg} x \geq \frac{n+1}{2}$ for each $x \in X$.

We would fail to have a $K_{4,4}$ in G, if for each possible set of 4 vertices (in say X), there were at most 3 common neighbors (in Y). However, from our degree condition and since $n \geq 51$, we see that $\binom{\frac{n+1}{2}}{4} n>3\binom{n}{4}$ and hence, that G contains a $K_{4,4}$.

Let C_{1} be an 8 -cycle in $K_{4,4}$. Clearly, $K_{4,4}$ also contains two vertex disjoint 4 -cycles, call them C_{11} and C_{12}. Now we claim that in $G-V\left(C_{1}\right)$, there must exist at least $k-2$ vertex disjoint 4 -cycles. To see this, suppose that the claim fails to hold. Then there are at most $k-3$ vertex disjoint 4 -cycles in $G-V\left(C_{1}\right)$. Call a largest collection of 4-cycles F and say it contains s vertex disjoint 4-cycles. Let $X_{R}=X-V\left(C_{1}\right)-V(F)$ and $Y_{R}=Y-V\left(C_{1}\right)-V(F)$ and $t=\left|X_{R}\right|=\left|Y_{R}\right|=$ $n-2 s-4$. By our degree condition, we have $t \geq n-2(k-3)-4 \geq n-2 k+2>$ 0 . Since there are no 4 -cycles in $\left\langle X_{R} \cup Y_{R}\right\rangle$, by counting the number of pairs of distinct vertices in Y_{R} which have the same neighbor in X_{R}, we see that

$$
\binom{\frac{n+1}{2}-2 s-4}{2} t \leq\binom{ t}{2}
$$

Since $s \leq k-3$, to reach a contradiction, we only need to show that

$$
((n+1) / 2-2 k+2)((n+1) / 2-2 k+1) \geq n
$$

Note that $n \geq \max \left\{51, k^{2} / 2+1\right\}$. Thus, if $51 \geq k^{2} / 2+1$, then $k \leq 10$ and

$$
\begin{aligned}
((n+1) / 2-2 k+2)((n+1) / 2-2 k+1) & \geq((n+1) / 2-8)((n+1) / 2-9) \\
& \geq 7((n+1) / 2-8) \geq n
\end{aligned}
$$

Hence, we assume that $k^{2} / 2+1>51$, and so, $k \geq 11$. Thus,

$$
(n+1) / 2-2 k+1 \geq k^{2} / 4-2 k+2 \geq 10 .
$$

Hence,

$$
\begin{align*}
((n+1) / 2-2 k+2)((n+1) / 2-2 k+1) & \geq 10((n+1) / 2-2 k+2) \tag{1}\\
& =n+1+4(n+1)-20(k+1) \tag{2}\\
& \geq n+1+4\left(k^{2} / 2+2\right)-20(k+1) \\
& >n . \tag{3}
\end{align*}
$$

Hence, we have shown what we needed and the inequality is established. In particular, we have shown the following:

Claim 1. The bipartite graph G contains $k-1$ vertex disjoint cycles $C_{1}, C_{2}, C_{3}, \ldots$, C_{k-1} such that there are two vertex disjoint cycles, C_{11} and C_{12}, with $V\left(C_{1}\right)=$ $V\left(C_{11}\right) \cup V\left(C_{12}\right)$.

Now, among all collections of $k-1$ vertex-disjoint cycles in G, choose one that covers the largest possible number of vertices and in addition, has the property that $V\left(C_{1}\right)$ can be partitioned into two parts that each contain a spanning cycle. Since G does not contain a 2 -factor with exactly k cycles, the graph $H=$ $G-\bigcup_{i=1}^{k-1} V\left(C_{i}\right) \neq \varnothing$, in fact, H has at least 2 vertices since it has even order.

Claim 2. The graph H does not contain two nontrivial components.
Suppose that H does contain two nontrivial components, say H_{1} and H_{2}. Without loss of generality suppose that $\left|V\left(H_{1}\right)\right| \geq\left|V\left(H_{2}\right)\right|$ and let $u v \in E\left(H_{2}\right)$. Note that

$$
\operatorname{deg}_{H} u+\operatorname{deg}_{H} v \leq\left|V\left(H_{2}\right)\right| \leq \frac{|V(H)|}{2}
$$

Thus, there is a cycle $C_{i}(1 \leq i \leq k-1)$ such that

$$
\operatorname{deg}_{C_{i}} u+\operatorname{deg}_{C_{i}} v \geq \frac{\left|V\left(C_{i}\right)\right|}{2}+1
$$

and hence, by Lemma $1,\left\langle V\left(C_{i}\right) \cup\{u, v\}\right\rangle$ is hamiltonian. But this contradicts the maximality of the original collection of cycles, a contradiction to our assumptions. Thus, H_{2} must be trivial if it exists.

We now note that if B is a connected bipartite graph with partite sets W_{1} and W_{2}, where $\left|W_{1}\right| \leq\left|W_{2}\right|$, then B has a balanced connected subgraph.

If H has a nontrivial connected component H_{1}, let F_{1} be a balanced connected subgraph of H_{1}. Further, we select F_{1} such that $\left|V\left(F_{1}\right)\right|$ is maximum under the above restrictions. Then as before, all other components are trivial.

Claim 3. The graph $F_{1} \neq K_{2}$.

Suppose to the contrary that $F_{1}=K_{2}$. Let $V\left(F_{1}\right)=\{u, v\}$ where $u v \in E(G)$. Then,

$$
\begin{equation*}
\operatorname{deg}_{H} u+\operatorname{deg}_{H} v \leq \frac{|V(H)|}{2}+1 \tag{4}
\end{equation*}
$$

Note that equality holds in equation (4) if, and only if, H_{1} is a star centered either at u or v. Without loss of generality, we assume that H_{1} is a star centered at v.

By Lemma 1, we have that

$$
\operatorname{deg}_{C_{i}} u+\operatorname{deg}_{C_{i}} v \leq \frac{\left|V\left(C_{i}\right)\right|}{2}
$$

for each $i=1,2, \ldots, k-1$ or our cycle system could be enlarged, a contradiction. Since $\operatorname{deg} u+\operatorname{deg} v \geq n+1$, we have that

$$
\operatorname{deg}_{C_{i}} u+\operatorname{deg}_{C_{i}} v=\frac{\left|V\left(C_{i}\right)\right|}{2}
$$

for each i. Then, again by Lemma 1, we have that either $\operatorname{deg}_{C_{i}} u=\frac{\left|V\left(C_{i}\right)\right|}{2}$ and $\operatorname{deg}_{C_{i}} v=0$ or $\operatorname{deg}_{C_{i}} v=\frac{\left|V\left(C_{i}\right)\right|}{2}$ and $\operatorname{deg}_{C_{i}} u=0$, for each $i=2, \ldots, k-1$.

We shall show that $H=F_{1}=K_{2}$. Suppose, to the contrary, $H-F_{1} \neq \varnothing$. Now suppose there is a cycle $C_{i}(i \geq 2)$ such that $\operatorname{deg}_{C_{i}} u=\frac{\left|V\left(C_{i}\right)\right|}{2}$. Let $u^{*} \in$ $V\left(C_{i}\right) \cap X$. We interchange u and u^{*} to get a new cycle C_{i}^{*}. Then replacing C_{i} by C_{i}^{*} in our cycle system (and renaming C_{i}^{*} to C_{i}) preserves the properties of the system. Now let $H^{*}=\left\langle H-u+u^{*}\right\rangle$ and select a vertex $u_{1} \neq u^{*}$ with $u_{1} \in V(H) \cap$ X. Note here that u_{1} is adjacent to v. Then we have

$$
\operatorname{deg}_{H^{*}} u_{1}+\operatorname{deg}_{H^{*}} v \leq \frac{|V(H)|}{2}
$$

But then there is a cycle C_{j} such that

$$
\operatorname{deg}_{C_{j}} u_{1}+\operatorname{deg}_{C_{j}} v \geq \frac{\left|V\left(C_{j}\right)\right|}{2}+1 .
$$

Thus, by Lemma $1,\left\langle C_{j}^{*} \cup\left\{u_{1}, v\right\}\right\rangle$ has a hamiltonian cycle $C_{j}^{* *}$ which preserves the properties of C_{j}. But then replacing C_{j} by $C_{j}^{* *}$ contradicts the maximality of our cycle system. Thus, $\operatorname{deg}_{C_{i}} u=0$ for each $i \geq 2$. Since $\operatorname{deg} u \geq 2$, then $\operatorname{deg}_{C_{1}} u \neq$ 0 . If $\operatorname{deg}_{C_{1}} v=0$, then $\operatorname{deg}_{C_{1}} u=\frac{\left|V\left(C_{1}\right)\right|}{2}$. Therefore,

$$
\operatorname{deg}_{C_{11}} u=\left|V\left(C_{11}\right)\right| / 2 \quad \text { and } \quad \operatorname{deg}_{C_{12}} u=\left|V\left(C_{12}\right)\right| / 2
$$

since $V\left(C_{1}\right)=V\left(C_{11}\right) \cup V\left(C_{12}\right)$. Let $u^{*} \in V\left(C_{11}\right) \cap X$. Since both the successor (on C_{11}) and the predecessor of u^{*} on C_{11} are neighbors of $u,\left\langle V\left(C_{11}\right) \cup\{u\}-\right.$ $\left.\left\{u^{*}\right\}\right\rangle$ has a hamiltonian cycle C_{11}^{*}. For the same reason, $\left\langle V\left(C_{1}\right) \cup\{u\}-\left\{u^{*}\right\}\right\rangle$ has a hamiltonian cycle C_{1}^{*}. Then, replacing C_{1} by C_{1}^{*} in our cycle system preserves the properties of the system. Let $H^{*}=\left\langle H \cup\{u\}-\left\{u^{*}\right\}\right\rangle$ and select a
vertex $u_{1} \neq u^{*}$ in $V(H) \cap X$. Then, again

$$
\operatorname{deg}_{H^{*}} u_{1}+\operatorname{deg}_{H^{*}} v \leq \frac{|V(H)|}{2}
$$

Then, there is a cycle C_{j} such that

$$
\operatorname{deg}_{C_{j}} u_{1}+\operatorname{deg}_{C_{j}} v \geq \frac{\left|V\left(C_{j}\right)\right|}{2}+1
$$

which, by Lemma 1, yields a contradiction.
Thus, $\operatorname{deg}_{C_{1}} v \neq 0$. If for some $j=1,2$, we have that $\operatorname{deg}_{C_{1 j}} u \neq 0$ and $\operatorname{deg}_{C_{1 j}} v$ $\neq 0$, then by Lemma $1,\left\langle V\left(C_{1 j}\right) \cup\{u, v\}\right\rangle$ is hamiltonian, and $\left\langle V\left(C_{1}\right) \cup\{u, v\}\right\rangle$ is hamiltonian, a contradiction. Therefore, since $\operatorname{deg}_{C_{1}} u+\operatorname{deg}_{C_{1}} v=\frac{\left|V\left(C_{1}\right)\right|}{2}$, we may assume without loss of generality that

$$
\operatorname{deg}_{C_{11}} u=\left|V\left(C_{11}\right)\right| / 2 \quad \text { and } \quad \operatorname{deg}_{C_{12}} v=\left|V\left(C_{12}\right)\right| / 2
$$

that is, $N(u) \supseteq V\left(C_{11}\right) \cap Y$ and $N(v) \supseteq V\left(C_{12}\right) \cap X$. For each $u^{*} \in V\left(C_{11}\right) \cap X$, if its successor and predecessor on C_{1} are both in $V\left(C_{11}\right) \cap Y$, we interchange u and u^{*}. In the same manner as above, we again obtain a contradiction. Thus, u^{*} must have a neighbor in $V\left(C_{12}\right) \cap Y$ for each $u^{*} \in V\left(C_{11}\right) \cap X$. It is readily seen that $V\left(C_{1}\right) \cup\{u, v\}$ is hamiltonian and has a 2-factor with exactly two cycles (see Figure 3), unless $\left|V\left(C_{11}\right)\right|=\left|V\left(C_{12}\right)\right|=4$. However, the later case can happen only when $\left\langle V\left(C_{1}\right)\right\rangle$ is a $K_{4,4}$ by our choice of C_{1}. Clearly, in this case, we can enlarge the cycle system by inserting u and v to C_{1}, a contradiction. Therefore, we can conclude that $H-F_{1}=\varnothing$ and that $H=F_{1}=K_{2}$.

We now relabel the cycles $C_{11}, C_{12}, C_{2}, \ldots, C_{k-1}$ as $C_{1}^{*}, \ldots, C_{k}^{*}$. The cycle C_{i}^{*} is called a u-type cycle if $\operatorname{deg}_{C_{i}^{*}} u=\frac{\left|V\left(C_{i}^{*}\right)\right|}{2}$ and C_{i}^{*} is called a v-type cycle if $\operatorname{deg}_{C_{i}^{*}} v$ $=\frac{\left|V\left(C_{i}^{*}\right)\right|}{2}$. Note that each C_{i}^{*} is either a v-type or u-type cycle and the degree sum condition implies there are both types of cycles. Assume without loss of generality that $C_{1}^{*}, \ldots, C_{m}^{*}$ are u-type cycles and $C_{m+1}^{*}, \ldots, C_{k}^{*}$ are v-type cycles.

If $\delta(G) \geq \frac{n+1}{2}$ and $\operatorname{deg} u+\operatorname{deg} v=n+1$, we have that $\operatorname{deg} u=\operatorname{deg} v=\frac{n+1}{2}$. Thus, the total number of vertices in u-type cycles is $n-1$ and the total number of vertices in v-type cycles is $n-1$. Since $n \geq \frac{k^{2}}{2}+1 \geq 2 m(k-m)+1$. Note that equality holds throughout if and only if $m=k / 2$ and $n=k^{2} / 2+1$. Now $\frac{n-1}{m} \geq 2(k-m)$. Let C_{r}^{*} be the longest cycle among the u-type cycles. Thus, $\left|V\left(C_{r}^{*}\right)\right| \geq 2(k-m)$. Note that if equality holds above, each u-type cycle has the same length, k. Since $\sum_{i=1}^{m}\left|V\left(C_{i}^{*}\right)\right|=n-1$, each $u^{*} \in X \cap\left(\bigcup_{i=1}^{m} V\left(C_{i}^{*}\right)\right)$ must have a neighbor in $\bigcup_{i=m+1}^{k} V\left(C_{i}^{*}\right)$. If either $\left|V\left(C_{r}^{*}\right)\right|>2(k-m)$ or there is a vertex of C_{r}^{*} with at least two neighbors in $\bigcup_{m+1}^{k} V\left(C_{i}^{*}\right)$, then, by the pigeon hole principle, there are two vertices $u^{*}, u^{* *} \in X \cap V\left(C_{r}^{*}\right)$ so that both u^{*} and $u^{* *}$ have a

Fig. 3
neighbor in some cycle $C_{s}^{*},(s>m)$. Then the configuration of Figure 3 shows that $\left\langle C_{1}^{*} \cup C_{s}^{*} \cup\{u, v\}\right\rangle$ has a 2-factor with exactly 2 cycles, namely

$$
u^{*}, v^{*}, \ldots, v^{* *}, u^{* *}, b, \ldots, a, u, c, \ldots, u^{*}
$$

and

$$
v, d, \ldots, e, v
$$

Thus, the longest u-type cycle has length exactly $2(k-m)$ (which implies each u-type cycle is a longest such cycle) and has exactly one neighbor in $\bigcup_{m+1}^{k} V\left(C_{i}^{*}\right)$. Thus, the subgraph induced by the u-type (or v-type) cycles are complete bipartite graphs. Further, there is a perfect matching between the vertices in the u-type cycles and the vertices in the v-type cycles. It is easy then to construct a 2 -factor with exactly k cycles in this graph. Thus G has a 2 -factor with exactly k cycles.

Now if $\operatorname{deg} u \geq \frac{n+1}{2}$ and $\operatorname{deg} v<\frac{n+1}{2}$ (a similar argument applies if these conditions are reversed), then as before, there is a u-type cycle, say C_{d}^{*}, of length greater than $2(k-m)$. Since $\operatorname{deg} v<\frac{n+1}{2}$, we see that for any $u^{*} \in V\left(C_{d}^{*}\right) \cap X$, $\operatorname{deg} u^{*} \geq \operatorname{deg} u \geq \frac{n+1}{2}$. Further, u^{*} is not adjacent to v or we could extend our cycle system. Thus, each $u^{*} \in V\left(C_{d}^{*}\right) \cap X$ must have at least one adjacency to the v-type cycles $C_{m+1}^{*}, \ldots, C_{k}^{*}$. We now proceed as before to obtain a contradiction. Hence, we conclude that $F_{1} \neq K_{2}$.

Claim 4. If $E\left(F_{1}\right) \neq \varnothing$, then F_{1} is hamiltonian.
By Claim 3, if $E\left(F_{1}\right) \neq \varnothing$, then $\left|V\left(F_{1}\right)\right| \geq 4$. If F_{1} is not hamiltonian, then there are two nonadjacent vertices $u, v \in V\left(F_{1}\right)$ such that $u \in X$ and $v \in Y$ and

$$
\operatorname{deg}_{F_{1}} u+\operatorname{deg}_{F_{1}} v \leq \frac{\left|V\left(F_{1}\right)\right|}{2}
$$

and so, by our choice of F_{1},

$$
\operatorname{deg}_{H} u+\operatorname{deg}_{H} v \leq \frac{|V(H)|}{2}
$$

Let $P[u, v]$ be a path in F_{1} from u to v. Then from the above inequality we know that there is some $C_{i}, i \geq 1$, such that

$$
\operatorname{deg}_{C_{i}} u+\operatorname{deg}_{C_{i}} v \leq \frac{\left|V\left(C_{i}\right)\right|}{2}+1 .
$$

Thus, by Lemma 1, $\left\langle V\left(C_{i}\right) \cup V(P[u, v])\right\rangle$ has a hamiltonian cycle C_{i}^{*} and as before, C_{i}^{*} preserves the properties of C_{i}. But then the cycles $C_{1}, \ldots, C_{i-1}, C_{i}^{*}$, C_{i+1}, \ldots, C_{k-1} contradict the maximality of $\sum_{i=1}^{k-1}\left|V\left(C_{i}\right)\right|$. Thus, F_{1} must contain a hamiltonian cycle.

Since G does not contain a 2 -factor with k cycles, it must be the case that $H-F_{1} \neq \varnothing$, or we could add the cycle in F_{1} to our cycle system and obtain a 2 -factor with exactly k cycles, contradicting our assumptions.

Claim 5. $E\left(F_{1}\right)=\varnothing$.
Assume that $E\left(F_{1}\right) \neq \varnothing$, then by Claim $4, F_{1}$ is hamiltonian. Let C be a hamiltonian cycle of F_{1} and let $u \in X \cap V\left(H-F_{1}\right)$ and $v \in Y \cap V\left(H-F_{1}\right)$. Then, by our choice of F_{1},

$$
\operatorname{deg}_{H} u+\operatorname{deg}_{H} v \leq \frac{\left|V\left(F_{1}\right)\right|}{2} \leq \frac{|V(H)|}{2}-1 .
$$

Thus,

$$
\sum_{i=1}^{k-1}\left(\operatorname{deg}_{C_{i}} u+\operatorname{deg}_{C_{i}} v\right) \geq \sum_{i=1}^{k-1} \frac{\left|V\left(C_{i}\right)\right|}{2}+2
$$

Thus, by Lemma 2 and Lemma 3, there is some $i \geq 2$ such that

$$
\operatorname{deg}_{C_{i}} u+\operatorname{deg}_{C_{i}} v \geq \frac{\left|V\left(C_{i}\right)\right|}{2}+1
$$

Without loss of generality, we assume that $i=k-1$. Since $\left\langle V\left(C_{k-1}\right) \cup\{u, v\}\right\rangle$ is not hamiltonian, we have, by Lemma 2, the configuration with adjacencies up to renumbering, as shown in Figure 1b.

If $x=y$, replace C_{k-1} by the cycle $v C_{k-1}\left[x^{+}, y^{-}\right] v$. Then, note that $H^{*}=$ $\langle(H-v) \cup\{x\}\rangle$. Let F_{1}^{*} be the largest component in H^{*}. Then, F_{1}^{*} is the only possible nontrivial component in H^{*} as we have shown before. Since $u x \in E(G)$, then $V\left(F_{1}^{*}\right) \supseteq V\left(F_{1}\right) \cup\{u, x\}$, a contradiction to the maximality of F_{1}.

Thus, $x \neq y$ and similarly, $x^{+} \neq y^{-}$. Now select y^{+}and $w=y^{--}$and form two paths $P[u, v]=u C_{k-1}\left[y^{++}, w^{-}\right] v$ and $P^{*}\left[w, y^{+}\right]=w y^{-} y y^{+}$. Since $N(u) \cap$ $C_{k-1}\left[x^{+}, w^{-}\right]=\varnothing$ and $N(v) \cap C_{k-1}\left[(y)^{++}, x\right]=\varnothing$, we have that

$$
\operatorname{deg}_{P} u+\operatorname{deg}_{P} v \leq \frac{|V(P)|}{2}
$$

Fig. 4
and similarly,

$$
\operatorname{deg}_{P^{*}} y^{+}+\operatorname{deg}_{P^{*}} w \leq \frac{\left|V\left(P^{*}\right)\right|}{2}
$$

Also note that either $N\left(y^{+}\right) \cap V(H)=\varnothing$ or $N(w) \cap V(H)=\varnothing$. Otherwise, swapping $\left\{y^{+}, w\right\}$ and $\{u, v\}$, we obtain a set of $k-1$ cycles preserving the properties of C_{1}, \ldots, C_{k-1} and the remaining graph H^{*} obtained by deleting these cycles either contains two nontrivial components or the balanced component in H^{*} is larger than that in H, in either case a contradiction.

Hence, there is a cycle $C_{t}(t \neq i-1)$ such that

$$
\operatorname{deg}_{C_{t}} u+\operatorname{deg}_{C_{t}} v \geq \frac{\left|V\left(C_{t}\right)\right|}{2}+1
$$

which, by Lemma 1, implies that $\left\langle V\left(C_{t}\right) \cup P[u, v]\right\rangle$ has a hamiltonian cycle C_{t}^{*} and (again by Lemma 1) it preserves the properties of $C_{1}, C_{2}, \ldots, C_{k-1}$.

Let $C_{1}^{*}=C_{1}, C_{2}^{*}=C_{2}, \ldots, C_{t}^{*}, \ldots, C_{k-2}^{*}=C_{k-2}$. Since deg $y^{+}+\operatorname{deg} w \geq n+1$, there is a cycle C_{j}^{*} such that

$$
\operatorname{deg}_{C_{j}^{*}} y^{+}+\operatorname{deg}_{C_{j}^{*}} w \geq \frac{\left|V\left(C_{j}^{*}\right)\right|}{2}+1 .
$$

Then, by Lemma $1,\left\langle C_{j}^{*} \cup P^{*}\left[y^{+}, w\right]\right\rangle$ has a hamiltonian cycle, say $C_{j}^{* *}$. Replacing C_{j}^{*} by $C_{j}^{* *}$ produces a collection of $k-2$ cycles, which, along with the hamiltonian cycle C in F_{1}, provides a collection of $k-1$ cycles which contradicts the maximality of $\sum_{i=1}^{k-1}\left|V\left(C_{i}\right)\right|$. Thus, we conclude that $F_{1}=\varnothing$.

We now note that since $E\left(F_{1}\right)=\varnothing, H$ is an empty graph.
Claim 6. The graph H has order two.
Suppose to the contrary that $|V(H)| \geq 4$ (recall H has even order), and say $u_{1}, u_{2} \in V(H) \cap X$ and $v_{1}, v_{2} \in V(H) \cap Y$. Since $\operatorname{deg} u_{1}+\operatorname{deg} v_{1} \geq n+1$ and by Lemma 2, $\operatorname{deg}_{C_{i}} u_{1}+\operatorname{deg}_{C_{i}} v_{1} \leq \frac{\left|V\left(C_{i}\right)\right|}{2}+1$, a direct count shows us that there

Fig. 5
are at least three cycles $C_{i_{1}}, C_{i_{2}}, C_{i_{3}}$ such that

$$
\operatorname{deg}_{C_{i s}} u_{1}+\operatorname{deg}_{C_{i s}} v_{1}=\frac{\left|V\left(C_{i_{s}}\right)\right|}{2}+1
$$

$(s=1,2,3)$. Similarly, there are three cycles $C_{j_{1}}, C_{j_{2}}, C_{j_{3}}$ such that

$$
\operatorname{deg}_{C_{j_{t}}} u_{2}+\operatorname{deg}_{C_{j_{t}}} v_{2}=\frac{\left|V\left(C_{j_{t}}\right)\right|}{2}+1
$$

$(t=1,2,3)$. Without loss of generality, assume $i_{1} \neq j_{1}$ and $i_{1} \geq 2, j_{1} \geq 2$. Let $i=i_{1}$ and $j=j_{1}$.

By Lemma 3 we have the following two configurations of Figure 5.
If $x_{1}=y_{1}$, then operating as before, we exchange v_{1} with x_{1} and obtain $k-1$ cycles $C_{1}^{*}, \ldots, C_{k-1}^{*}$ and $H=G-\bigcup_{i=1}^{k-1} V\left(C_{i}^{*}\right)$ where H now contains an edge, contradicting our previous claim. Similarly, $x_{1}^{+}=y_{1}^{-}, x_{2}=y_{2}$ and $x_{2}^{+}=y_{2}^{-}$all lead to contradictions.

But now, $u_{2} C_{j}\left[y_{2}, x_{2}\right] u_{2}$ and $v_{2} C_{j}\left[x_{2}^{+}, y_{2}^{-}\right] v_{2}$ provide a 2 -factor of $\left\langle C_{j} \cup\left\{u_{2}, v_{2}\right\}\right\rangle$.

Assign one of these two cycles to C_{i}^{*} and the other one to C_{j}^{*}. These two cycles along with all other cycles $C_{l}, l \neq i, j$ gives a collection of $k-1$ cycles C_{1}^{*}, \ldots, C_{k-1}^{*} with $C_{1}^{*}=C_{1}$.

Let $y_{1}^{+}=z$ and $y_{1}^{--}=w$. Also let

$$
P\left[u_{1}, v_{1}\right]=u_{1} C\left[z^{+}, w^{-}\right] v_{1}
$$

and

$$
P^{*}[w, z]=w y_{1}^{-} y_{1} z .
$$

Clearly, $N(w) \cap V(H)=\varnothing$ and $N(z) \cap V(H)=\varnothing$. Otherwise, we may exchange u and z or v and w and then H^{*} will have at least one edge, contradicting our earlier claims.

Note that $\operatorname{deg}_{P} u_{1}+\operatorname{deg}_{P} v_{1} \leq \frac{|V(P)|}{2}$ and $\operatorname{deg}_{P^{*}} z+\operatorname{deg}_{P^{*}} w \leq \frac{\left|V\left(P^{*}\right)\right|}{2}$. Since $\operatorname{deg} u_{1}+\operatorname{deg} v_{1} \geq n+1$, there is a cycle C_{s}^{*} such that $\operatorname{deg}_{C_{s}^{*}} u_{1}+\operatorname{deg}_{C_{s}^{*}} v_{1} \geq$ $\frac{\left|V\left(C_{s}^{*}\right)\right|}{2}+1$.

Then $\left\langle V\left(C_{s}^{*}\right) \cup V\left(P\left[u_{1}, v_{1}\right]\right)\right\rangle$ has a hamiltonian cycle, say $C_{s}^{* *}$ and by Lemma 1 it preserves the properties of C_{s}^{*}. Let $C_{1}^{* *}=C_{1}^{*}, \ldots, C_{s}^{* *}=C_{s}^{* *}, \ldots, C_{k-1}^{* *}=$ C_{k-1}^{*}. Since $\operatorname{deg} z+\operatorname{deg} w \geq n+1$ and $\operatorname{deg}_{P^{*}} z+\operatorname{deg}_{P^{*}} w \leq \frac{\left|V\left(P^{*}\right)\right|}{2}$, and $N(z) \cap$ $V(H)=\varnothing$ and $N(w) \cap V(H)=\varnothing$, there is a cycle $C_{t}^{* *}$ such that

$$
\operatorname{deg}_{C_{t}^{* *}} z+\operatorname{deg}_{C_{t}^{* *}} w \geq \frac{\left|V\left(C_{t}^{* *}\right)\right|}{2}+1
$$

By Lemma 1, $\left\langle V\left(C_{t}^{* *}\right) \cup V(P[w, z])\right\rangle$ is hamiltonian and the cycle preserves the properties of $C_{t}^{* *}$, which again allows us to contradict the maximality of $\sum\left|V\left(C_{i}\right)\right|$, completing the proof of the claim.

Thus, $|V(H)|=2$, say $V(H)=\{u, v\}$. Since, by Lemma 2,

$$
\operatorname{deg}_{C_{1}} u+\operatorname{deg}_{C_{1}} v=\frac{\left|V\left(C_{1}\right)\right|}{2}+1
$$

and $\operatorname{deg} u+\operatorname{deg} v \geq n+1$, there is an $i \geq 2$ such that

$$
\operatorname{deg}_{C_{i}} u+\operatorname{deg}_{C_{i}} v=\frac{\left|V\left(C_{i}\right)\right|}{2}+1 .
$$

By Lemma 2, $\left\langle V\left(C_{i}\right) \cup\{u, v\}\right\rangle$ has the subgraph of Figure 1b, or we would be able to again contradict the maximality of our collection of cycles.

Note that if $x=y$, we could swap v with x to obtain the cycles

$$
C_{1}^{*}=C_{1}, \quad C_{2}^{*}=C_{2}, \ldots, C_{i}^{*}=v C\left[x^{+}, y^{-}\right] v, \quad C_{i+1}^{*}, \ldots, C_{k-1}^{*}
$$

But these $k-1$ cycles preserve the properties of C_{1}, \ldots, C_{k-1}. However, then $G-\bigcup_{i=1}^{k-1} V\left(C_{i}^{*}\right)=K_{2}$, a contradiction to Claim 4. Similarly, we have $x^{+} \neq y^{-}$. Thus, the graph $\left\langle V\left(C_{i}\right) \cup\{u, v\}\right\rangle$ has two cycles,

$$
C_{i_{1}}=u C[y, x] u
$$

and

$$
C_{i_{2}}=v C\left[x^{+}, y^{-}\right] v .
$$

Now, $C_{1}, \ldots, C_{i_{1}}, C_{i_{2}}, \ldots, C_{k-1}$ forms a 2-factor of G with exactly k cycles, a contradiction.

This contradiction completes the proof of the theorem.
The following Corollary is immediate.

Corollary 5. If G is a balanced bipartite graph of order $2 n$ with $n \geq$ $\max \left\{51, \frac{k^{2}}{2}+1\right\}$ and $\delta(G) \geq \frac{n+1}{2}$, then G contains a 2 -factor with exactly k cycles.

References

1. Brandt, S., Chen, G., Faudree, R.J., Gould, R.J., Jacobson, M.S., Lesniak, L.: On the Number of Cycles in a 2-Factor, J. Graph Theory, 24(2), 165-173 (1997)
2. Chartrand, G., Lesniak, L.: Graphs \& Digraphs, Chapman and Hall, London (1996)
3. Dirac, G.: Some theorems on abstract graphs, Proc. Lond. Math. Soc. 2, 69-81 (1952)
4. Justesen, P.: On independent circuits in finite graphs and a conjecture of Erdös and Pósa, Ann. Discrete Math. 41, 299-306 (1989)
5. Moon, J., Moser, L.: On hamiltonian bipartite graphs, Isr. J. Math. 1, 163-165 (1963)
6. Ore, O.: Note on hamiltonian circuits, Am. Math. Mon. 67, 55 (1960)
7. Wang, H.: On 2-factors of bipartite graphs, J. Graph Theory, to appear

[^0]: * Supported by N.S.A. Grant MDA904-97-1-0101
 \dagger Supported by O.N.R. Grant N00014-91-J-1085
 \ddagger Supported by O.N.R. Grant N00014-97-1-0499
 § Supported by O.N.R. Grant N00014-91-J-1098
 - Supported by O.N.R. Grant N00014-J-93-1-0050

