Cycles in 2-Factors of Balanced Bipartite Graphs

Guantao Chen^{1*}, Ralph J. Faudree^{2†}, Ronald J. Gould^{3‡}, Michael S. Jacobson^{4§}, and Linda Lesniak^{5¶}

¹ Georgia State University, Atlanta, GA 30303, USA

² University of Memphis, Memphis, TN 38152, USA

³ Emory University, Atlanta GA 30322, USA

⁴ University of Louisville, Louisville, KY 40292, USA

⁵ Drew University, Madison NJ 07940, USA

Abstract. In the study of hamiltonian graphs, many well known results use degree conditions to ensure sufficient edge density for the existence of a hamiltonian cycle. Recently it was shown that the classic degree conditions of Dirac and Ore actually imply far more than the existence of a hamiltonian cycle in a graph G, but also the existence of a 2-factor with

exactly k cycles, where $1 \le k \le \frac{|V(G)|}{4}$. In this paper we continue to study the number of

cycles in 2-factors. Here we consider the well-known result of Moon and Moser which implies the existence of a hamiltonian cycle in a balanced bipartite graph of order 2n. We show that a related degree condition also implies the existence of a 2-factor with exactly k

cycles in a balanced bipartite graph of order 2*n* with $n \ge max\left\{51, \frac{k^2}{2} + 1\right\}$.

1. Introduction

All graphs considered are simple, without loops or multiple edges. A 2-factor of a graph G is a 2-regular subgraph of G that spans the vertex set V(G), that is, a 2-factor is a collection of vertex disjoint cycles that cover all vertices of G. For years mathematicians have investigated results ensuring the existence of 2-factors in graphs. Hundreds of results exist concerning the special case when the graph is hamiltonian, that is, the 2-factor is a single cycle. Recently, there have been efforts to determine more about the structure of general 2-factors. Questions about the number of cycles possible in a 2-factor or the lengths of the cycles forming the 2-factor have drawn interest.

^{*} Supported by N.S.A. Grant MDA904-97-1-0101

[†] Supported by O.N.R. Grant N00014-91-J-1085

[‡] Supported by O.N.R. Grant N00014-97-1-0499

[§] Supported by O.N.R. Grant N00014-91-J-1098

[¶] Supported by O.N.R. Grant N00014-J-93-1-0050

Such a question was considered in [1], where the following generalization of Ore's Theorem [6] was shown.

Theorem 1. Let k be a positive integer and let G be a graph of order $n \ge 4k$. If $\deg u + \deg v \ge n$ for every pair of nonadjacent vertices u and v in V(G), then G has a 2-factor with exactly k vertex disjoint cycles.

An immediate Corollary to Theorem 1 generalizes the classic hamiltonian result of Dirac [3].

Corollary 2. If G is a graph of order $n \ge 4k$, k a positive integer, and $\delta(G) \ge \frac{n}{2}$, then G contains a 2-factor with exactly k cycles.

The complete bipartite graph $K_{n/2,n/2}$ shows that the conclusion of Theorem 1 and that of Corollary 2 are best possible in the sense that any 2-factor can contain at most $\lfloor \frac{n}{4} \rfloor$ cycles. Throughout this paper we let $G = (X \cup Y, E)$ be a balanced bipartite graph with vertex set $V = X \cup Y$, where |X| = |Y|, and edge set *E* which contains the edges with one vertex in *X* and the other one in *Y*. Corresponding to Dirac's Theorem, Moon and Moser [5] obtained the following result for balanced bipartite graphs.

Theorem 3. If $G = (X \cup Y, E)$ is a balanced bipartite graph of order $2n, (n \ge 2)$ with $\deg u + \deg v \ge n + 1$ for each pair of nonadjacent vertices $u \in X$ and $v \in Y$, then G is hamiltonian.

In this paper we show the following result, which generalizes Theorem 3 in a manner similar to the generalization of Ore's Theorem shown in Theorem 1.

Theorem 4. Let k be a positive integer and let G be a balanced bipartite graph of order 2n where $n \ge max\left\{51, \frac{k^2}{2}+1\right\}$. If deg $u + deg v \ge n+1$ for every $u \in V_1$ and $v \in V_2$, then G contains a 2-factor with exactly k cycles.

We will use the notation P[u, v] to denote a path from u to v, while C[u, v] shall mean the segment of the cycle C from vertex u to v (including u and v) under some orientation of C. We also let $\langle S \rangle$ denote the subgraph of G induced by the vertex set $S \subseteq V(G)$. We use the notation deg v for the degree of the vertex v and $deg_S v$ for the degree of v relative to the subgraph S. Further, N(x) represents the set of vertices adjacent to x and $N_C^-(x)$ and $N_C^+(x)$ represent the predecessors and successors of neighbors of x along some orientation of cycle C respectively.

Given a cycle C (or path P) with an orientation, we let v^+ denote the successor of vertex v along C and v^- the predecessor of v along C, according to this orientation. For terms not defined here, see [2].

We have recently learned of a related result due to Wang [7] that provides a minimum degree condition (namely $\delta(G) \ge \lfloor n/2 \rfloor + 1$) for a balanced bipartite graph to have a 2-factor with exactly k cycles.

2. Preliminary Lemmas

In this section we provide some preliminary lemmas that will be useful in the proof of Theorem 4.

Lemma 1. Let $G = (X \cup Y, E)$ be a bipartite graph and let C be a cycle of G and let P[u, v] be a u - v path in G - V(C) such that $u \in X$ and $v \in Y$. If

$$\deg_C u + \deg_C v \ge \frac{|V(C)|}{2},$$

then $\langle V(C) \cup V(P[u,v]) \rangle$ is hamiltonian, unless deg_C u = 0 or deg_C v = 0. If

$$\deg_C u + \deg_C v \ge \frac{|V(C)|}{2} + 1,$$

then $\langle V(C) \cup V(P[u,v]) \rangle$ is hamiltonian. Furthermore, if in this case C also contains a 2-factor with exactly two cycles, then so does $\langle V(C) \cup V(P[u,v]) \rangle$.

Proof. Since $deg_C u + deg_C v \ge \frac{|V(C)|}{2}$ and *G* is bipartite with $u \in X$ and $v \in Y$, either the cycle *C* has two consecutive vertices such that one is adjacent to *u* and the other is adjacent to *v*, and hence we obtain the desired hamiltonian cycle, or $deg_C u = 0$ or $deg_C v = 0$.

Now, if

$$deg_{C_1} u + deg_{C_1} v \ge \frac{|V(C)|}{2} + 1,$$

then we cannot have the situation that $deg_C u = 0$ or $deg_C v = 0$. Thus, again $\langle V(C) \cup V(P[u,v]) \rangle$ is hamiltonian.

Now suppose that C also contains a 2-factor with exactly two cycles, say C_{11} and C_{12} . Then we have that either $deg_{C_{11}}u + deg_{C_{11}}v \ge \frac{|V(C)|}{2} + 1$ or $deg_{C_{12}}u + deg_{C_{12}}v \ge \frac{|V(C)|}{2} + 1$. Thus, either $\langle C_{11} \cup \{u,v\} \rangle$ or $\langle C_{12} \cup \{u,v\} \rangle$ is hamiltonian. In either case, we have the desired 2-factor of $\langle V(C) \cup V(P[u,v]) \rangle$ with 2 cycles.

Lemma 2. Let $G = (X \cup Y, E)$ be a bipartite graph and let $C = u_1v_1u_2v_2...u_nv_nu_1$ be a cycle in G. If $u \in X$ and $v \in Y$ are two vertices of G - V(C) and if

$$\deg_C u + \deg_C v \ge \frac{|V(C)|}{2} + 1,$$

then $\langle V(C) \cup \{u, v\} \rangle$ is hamiltonian unless equality holds and, up to renumbering, we have that v is adjacent to u_1, \ldots, u_k and u is adjacent to v_k, \ldots, v_n , for some k.

Proof. Suppose, to the contrary, $\langle V(C) \cup \{u, v\} \rangle$ is not hamiltonian. Since $\deg_C u + \deg_C v \geq \frac{|V(C)|}{2} + 1$, there are two consecutive vertices on *C*, say *x* and x^+ , with $x \in N(u)$ and $x^+ \in N(v)$. Then, for any $w \neq x$, $w \in N(u)$ implies that $w^+ \notin N(v)$.

Now let y be the next neighbor of u along C from x following the orientation given to C. Because of the degree sum condition, $vy^- \in E(G)$ (note that y^- and x^+ may be the same vertex). Recall $u \in X$ and $v \in Y$. If there is a vertex $z \in C(y, x] \cap$ Y such that $z^{--} \notin N(u)$ and $z \in N(u)$, then $vz^- \in E(G)$, (or the degree condition would fail) which implies that $\langle V(C) \cup \{u, v\} \rangle$ is hamiltonian (see Figure 1a). Thus, $N(u) \cap V(C) = C[y, x] \cap Y$, which implies that $\langle V(C) \cup \{u, v\} \rangle$ is hamiltonian or $N(v) \cap C[y, x] = \emptyset$. Since

$$\deg_C u + \deg_C v \ge \frac{|V(C)|}{2} + 1$$

we have that $N(v) \cap V(C) = C[x, y] \cap X$, that is, up to renumbering, v is adjacent to precisely u_1, \ldots, u_k for some k and u is adjacent to precisely v_k, \ldots, v_n (see Figure 1b), and hence equality holds in the degree sum.

Lemma 3. Let $G = (X \cup Y, E)$ be a bipartite graph and C a cycle in G with $|V(C)| \ge 6$. Let $u \in X$, $v \in Y$ and $u, v \in V(G) - V(C)$. If

$$\deg_C u + \deg_C v \ge \frac{|V(C)|}{2} + 2,$$

then $\langle V(C) \cup \{u, v\} \rangle$ has a 2-factor with exactly two cycles.

Proof. Since $\deg_C u + \deg_C v \ge \frac{|V(C)|}{2} + 2$, then $|N_C(u) \cap (N_C^-(v))| \ge 2$ and $|N_C(u) \cap (N_C^+(v))| \ge 2$. Thus, there are two distinct vertices $x, x_1 \in N_C(u)$ such that $x^+ \ne x_1^-$ and $\{x^+, x_1^-\} \subseteq N_C(v)$ (see Figure 2). A 2-factor is easily found. \square

3. Proof of Main Theorem

We now present the proof of our main result, Theorem 4.

Proof of Theorem 4. Assume that G does not contain a 2-factor with exactly k cycles. Since $deg u + deg v \ge n + 1$ for every $u \in X$ and $v \in Y$, we assume, without loss of generality, that $deg x \ge \frac{n+1}{2}$ for each $x \in X$.

We would fail to have a $K_{4,4}$ in G, if for each possible set of 4 vertices (in say X), there were at most 3 common neighbors (in Y). However, from our degree

condition and since $n \ge 51$, we see that $\binom{n+1}{2}{4}n > 3\binom{n}{4}$ and hence, that G contains a $K_{4,4}$.

Let C_1 be an 8-cycle in $K_{4,4}$. Clearly, $K_{4,4}$ also contains two vertex disjoint 4-cycles, call them C_{11} and C_{12} . Now we claim that in $G - V(C_1)$, there must exist at least k - 2 vertex disjoint 4-cycles. To see this, suppose that the claim fails to hold. Then there are at most k - 3 vertex disjoint 4-cycles in $G - V(C_1)$. Call a largest collection of 4-cycles F and say it contains s vertex disjoint 4-cycles. Let $X_R = X - V(C_1) - V(F)$ and $Y_R = Y - V(C_1) - V(F)$ and $t = |X_R| = |Y_R| =$ n - 2s - 4. By our degree condition, we have $t \ge n - 2(k - 3) - 4 \ge n - 2k + 2 >$ 0. Since there are no 4-cycles in $\langle X_R \cup Y_R \rangle$, by counting the number of pairs of distinct vertices in Y_R which have the same neighbor in X_R , we see that

$$\binom{n+1}{2} - 2s - 4}{2}t \le \binom{t}{2}.$$

Since $s \le k - 3$, to reach a contradiction, we only need to show that

$$((n+1)/2 - 2k + 2)((n+1)/2 - 2k + 1) \ge n$$

Note that $n \ge \max\{51, k^2/2 + 1\}$. Thus, if $51 \ge k^2/2 + 1$, then $k \le 10$ and

$$\begin{aligned} ((n+1)/2 - 2k + 2)((n+1)/2 - 2k + 1) &\geq ((n+1)/2 - 8)((n+1)/2 - 9) \\ &\geq 7((n+1)/2 - 8) \geq n. \end{aligned}$$

Hence, we assume that $k^2/2 + 1 > 51$, and so, $k \ge 11$. Thus,

$$(n+1)/2 - 2k + 1 \ge k^2/4 - 2k + 2 \ge 10.$$

Hence,

$$((n+1)/2 - 2k + 2)((n+1)/2 - 2k + 1) \ge 10((n+1)/2 - 2k + 2)$$
(1)

$$= n + 1 + 4(n + 1) - 20(k + 1)$$
(2)

$$\geq n + 1 + 4(k^2/2 + 2) - 20(k+1)$$

> n. (3)

Hence, we have shown what we needed and the inequality is established. In particular, we have shown the following:

Claim 1. The bipartite graph G contains k - 1 vertex disjoint cycles C_1, C_2, C_3, \ldots , C_{k-1} such that there are two vertex disjoint cycles, C_{11} and C_{12} , with $V(C_1) = V(C_{11}) \cup V(C_{12})$.

Now, among all collections of k-1 vertex-disjoint cycles in G, choose one that covers the largest possible number of vertices and in addition, has the property that $V(C_1)$ can be partitioned into two parts that each contain a spanning cycle. Since G does not contain a 2-factor with exactly k cycles, the graph $H = G - \bigcup_{i=1}^{k-1} V(C_i) \neq \emptyset$, in fact, H has at least 2 vertices since it has even order.

Claim 2. *The graph H does not contain two nontrivial components.*

Suppose that *H* does contain two nontrivial components, say H_1 and H_2 . Without loss of generality suppose that $|V(H_1)| \ge |V(H_2)|$ and let $uv \in E(H_2)$. Note that

$$\deg_H u + \deg_H v \le |V(H_2)| \le \frac{|V(H)|}{2}$$

Thus, there is a cycle C_i $(1 \le i \le k - 1)$ such that

$$\deg_{C_i} u + \deg_{C_i} v \ge \frac{|V(C_i)|}{2} + 1$$

and hence, by Lemma 1, $\langle V(C_i) \cup \{u, v\} \rangle$ is hamiltonian. But this contradicts the maximality of the original collection of cycles, a contradiction to our assumptions. Thus, H_2 must be trivial if it exists.

We now note that if B is a connected bipartite graph with partite sets W_1 and W_2 , where $|W_1| \le |W_2|$, then B has a balanced connected subgraph.

If *H* has a nontrivial connected component H_1 , let F_1 be a balanced connected subgraph of H_1 . Further, we select F_1 such that $|V(F_1)|$ is maximum under the above restrictions. Then as before, all other components are trivial.

Claim 3. The graph $F_1 \neq K_2$.

Cycles in 2-Factors of Balanced Bipartite Graphs

Suppose to the contrary that $F_1 = K_2$. Let $V(F_1) = \{u, v\}$ where $uv \in E(G)$. Then,

$$deg_H u + deg_H v \le \frac{|V(H)|}{2} + 1.$$

$$\tag{4}$$

Note that equality holds in equation (4) if, and only if, H_1 is a star centered either at u or v. Without loss of generality, we assume that H_1 is a star centered at v.

By Lemma 1, we have that

$$\deg_{C_i} u + \deg_{C_i} v \le \frac{|V(C_i)|}{2}$$

for each i = 1, 2, ..., k - 1 or our cycle system could be enlarged, a contradiction. Since $deg u + deg v \ge n + 1$, we have that

$$deg_{C_i} u + deg_{C_i} v = \frac{|V(C_i)|}{2}$$

for each *i*. Then, again by Lemma 1, we have that either $deg_{C_i} u = \frac{|V(C_i)|}{2}$ and $deg_{C_i} v = 0$ or $deg_{C_i} v = \frac{|V(C_i)|}{2}$ and $deg_{C_i} u = 0$, for each i = 2, ..., k - 1.

 $\deg_{C_i} v = 0$ or $\deg_{C_i} v = \frac{1}{2}$ and $\deg_{C_i} u = 0$, for each i = 2, ..., k - 1. We shall show that $H = F_1 = K_2$. Suppose, to the contrary, $H - F_1 \neq \emptyset$.

Now suppose there is a cycle C_i $(i \ge 2)$ such that $deg_{C_i} u = \frac{|V(C_i)|}{2}$. Let $u^* \in V(C_i) \cap X$. We interchange u and u^* to get a new cycle C_i^* . Then replacing C_i by C_i^* in our cycle system (and renaming C_i^* to C_i) preserves the properties of the system. Now let $H^* = \langle H - u + u^* \rangle$ and select a vertex $u_1 \ne u^*$ with $u_1 \in V(H) \cap X$. Note here that u_1 is adjacent to v. Then we have

$$deg_{H^*} u_1 + deg_{H^*} v \le \frac{|V(H)|}{2}$$

But then there is a cycle C_j such that

$$deg_{C_j} u_1 + deg_{C_j} v \ge \frac{|V(C_j)|}{2} + 1.$$

Thus, by Lemma 1, $\langle C_j^* \cup \{u_1, v\} \rangle$ has a hamiltonian cycle C_j^{**} which preserves the properties of C_j . But then replacing C_j by C_j^{**} contradicts the maximality of our cycle system. Thus, $deg_{C_i} u = 0$ for each $i \ge 2$. Since $deg u \ge 2$, then $deg_{C_1} u \ne 0$. If $deg_{C_1} v = 0$, then $deg_{C_1} u = \frac{|V(C_1)|}{2}$. Therefore,

$$deg_{C_{11}} u = |V(C_{11})|/2$$
 and $deg_{C_{12}} u = |V(C_{12})|/2$

since $V(C_1) = V(C_{11}) \cup V(C_{12})$. Let $u^* \in V(C_{11}) \cap X$. Since both the successor (on C_{11}) and the predecessor of u^* on C_{11} are neighbors of $u, \langle V(C_{11}) \cup \{u\} - \{u^*\}\rangle$ has a hamiltonian cycle C_{11}^* . For the same reason, $\langle V(C_1) \cup \{u\} - \{u^*\}\rangle$ has a hamiltonian cycle C_1^* . Then, replacing C_1 by C_1^* in our cycle system preserves the properties of the system. Let $H^* = \langle H \cup \{u\} - \{u^*\}\rangle$ and select a vertex $u_1 \neq u^*$ in $V(H) \cap X$. Then, again

$$deg_{H^*} u_1 + deg_{H^*} v \leq \frac{|V(H)|}{2}.$$

Then, there is a cycle C_j such that

$$deg_{C_j} u_1 + deg_{C_j} v \ge \frac{|V(C_j)|}{2} + 1$$

which, by Lemma 1, yields a contradiction.

Thus, $deg_{C_1} v \neq 0$. If for some j = 1, 2, we have that $deg_{C_{1j}} u \neq 0$ and $deg_{C_{1j}} v \neq 0$, then by Lemma 1, $\langle V(C_{1j}) \cup \{u, v\} \rangle$ is hamiltonian, and $\langle V(C_1) \cup \{u, v\} \rangle$ is hamiltonian, a contradiction. Therefore, since $deg_{C_1} u + deg_{C_1} v = \frac{|V(C_1)|}{2}$, we may assume without loss of generality that

$$deg_{C_{11}} u = |V(C_{11})|/2$$
 and $deg_{C_{12}} v = |V(C_{12})|/2$,

that is, $N(u) \supseteq V(C_{11}) \cap Y$ and $N(v) \supseteq V(C_{12}) \cap X$. For each $u^* \in V(C_{11}) \cap X$, if its successor and predecessor on C_1 are both in $V(C_{11}) \cap Y$, we interchange u and u^* . In the same manner as above, we again obtain a contradiction. Thus, u^* must have a neighbor in $V(C_{12}) \cap Y$ for each $u^* \in V(C_{11}) \cap X$. It is readily seen that $V(C_1) \cup \{u, v\}$ is hamiltonian and has a 2-factor with exactly two cycles (see Figure 3), unless $|V(C_{11})| = |V(C_{12})| = 4$. However, the later case can happen only when $\langle V(C_1) \rangle$ is a $K_{4,4}$ by our choice of C_1 . Clearly, in this case, we can enlarge the cycle system by inserting u and v to C_1 , a contradiction. Therefore, we can conclude that $H - F_1 = \emptyset$ and that $H = F_1 = K_2$.

We now relabel the cycles $C_{11}, C_{12}, C_2, \ldots, C_{k-1}$ as C_1^*, \ldots, C_k^* . The cycle C_i^* is called a *u*-type cycle if $deg_{C_i^*} u = \frac{|V(C_i^*)|}{2}$ and C_i^* is called a *v*-type cycle if $deg_{C_i^*} v = \frac{|V(C_i^*)|}{2}$. Note that each C_i^* is either a *v*-type or *u*-type cycle and the degree sum condition implies there are both types of cycles. Assume without loss of generality that C_1^*, \ldots, C_m^* are *u*-type cycles and C_{m+1}^*, \ldots, C_k^* are *v*-type cycles.

If
$$\delta(G) \ge \frac{n+1}{2}$$
 and $\deg u + \deg v = n+1$, we have that $\deg u = \deg v = \frac{n+1}{2}$.

Thus, the total number of vertices in *u*-type cycles is n-1 and the total number of vertices in *v*-type cycles is n-1. Since $n \ge \frac{k^2}{2} + 1 \ge 2m(k-m) + 1$. Note that equality holds throughout if and only if m = k/2 and $n = k^2/2 + 1$. Now $\frac{n-1}{m} \ge 2(k-m)$. Let C_r^* be the longest cycle among the *u*-type cycles. Thus, $|V(C_r^*)| \ge 2(k-m)$. Note that if equality holds above, each *u*-type cycle has the same length, *k*. Since $\sum_{i=1}^{m} |V(C_i^*)| = n-1$, each $u^* \in X \cap (\bigcup_{i=1}^{m} V(C_i^*))$ must have a neighbor in $\bigcup_{i=m+1}^{k} V(C_i^*)$. If either $|V(C_r^*)| > 2(k-m)$ or there is a vertex of C_r^* with at least two neighbors in $\bigcup_{m+1}^{k} V(C_i^*)$, then, by the pigeon hole principle, there are two vertices $u^*, u^{**} \in X \cap V(C_r^*)$ so that both u^* and u^{**} have a

neighbor in some cycle C_s^* , (s > m). Then the configuration of Figure 3 shows that $\langle C_1^* \cup C_s^* \cup \{u, v\} \rangle$ has a 2-factor with exactly 2 cycles, namely

$$u^*, v^*, \ldots, v^{**}, u^{**}, b, \ldots, a, u, c, \ldots, u^*$$

and

 $v, d, \ldots, e, v.$

Thus, the longest *u*-type cycle has length exactly 2(k - m) (which implies each *u*-type cycle is a longest such cycle) and has exactly one neighbor in $\bigcup_{m+1}^{k} V(C_i^*)$. Thus, the subgraph induced by the *u*-type (or *v*-type) cycles are complete bipartite graphs. Further, there is a perfect matching between the vertices in the *u*-type cycles and the vertices in the *v*-type cycles. It is easy then to construct a 2-factor with exactly *k* cycles in this graph. Thus *G* has a 2-factor with exactly *k* cycles.

Now if $\deg u \ge \frac{n+1}{2}$ and $\deg v < \frac{n+1}{2}$ (a similar argument applies if these conditions are reversed), then as before, there is a *u*-type cycle, say C_d^* , of length greater than 2(k-m). Since $\deg v < \frac{n+1}{2}$, we see that for any $u^* \in V(C_d^*) \cap X$, $\deg u^* \ge \deg u \ge \frac{n+1}{2}$. Further, u^* is not adjacent to v or we could extend our cycle system. Thus, each $u^* \in V(C_d^*) \cap X$ must have at least one adjacency to the *v*-type cycles C_{m+1}^*, \ldots, C_k^* . We now proceed as before to obtain a contradiction. Hence, we conclude that $F_1 \neq K_2$.

Claim 4. If $E(F_1) \neq \emptyset$, then F_1 is hamiltonian.

By Claim 3, if $E(F_1) \neq \emptyset$, then $|V(F_1)| \ge 4$. If F_1 is not hamiltonian, then there are two nonadjacent vertices $u, v \in V(F_1)$ such that $u \in X$ and $v \in Y$ and

$$deg_{F_1} u + deg_{F_1} v \le \frac{|V(F_1)|}{2}$$

and so, by our choice of F_1 ,

$$deg_H u + deg_H v \le \frac{|V(H)|}{2}.$$

Let P[u, v] be a path in F_1 from u to v. Then from the above inequality we know that there is some $C_i, i \ge 1$, such that

$$deg_{C_i}u + deg_{C_i}v \le \frac{|V(C_i)|}{2} + 1.$$

Thus, by Lemma 1, $\langle V(C_i) \cup V(P[u,v]) \rangle$ has a hamiltonian cycle C_i^* and as before, C_i^* preserves the properties of C_i . But then the cycles $C_1, \ldots, C_{i-1}, C_i^*$, C_{i+1}, \ldots, C_{k-1} contradict the maximality of $\sum_{i=1}^{k-1} |V(C_i)|$. Thus, F_1 must contain a hamiltonian cycle.

Since G does not contain a 2-factor with k cycles, it must be the case that $H - F_1 \neq \emptyset$, or we could add the cycle in F_1 to our cycle system and obtain a 2-factor with exactly k cycles, contradicting our assumptions.

Claim 5. $E(F_1) = \emptyset$.

Assume that $E(F_1) \neq \emptyset$, then by Claim 4, F_1 is hamiltonian. Let *C* be a hamiltonian cycle of F_1 and let $u \in X \cap V(H - F_1)$ and $v \in Y \cap V(H - F_1)$. Then, by our choice of F_1 ,

$$deg_H u + deg_H v \le \frac{|V(F_1)|}{2} \le \frac{|V(H)|}{2} - 1.$$

Thus,

$$\sum_{i=1}^{k-1} (deg_{C_i} u + deg_{C_i} v) \ge \sum_{i=1}^{k-1} \frac{|V(C_i)|}{2} + 2.$$

Thus, by Lemma 2 and Lemma 3, there is some $i \ge 2$ such that

$$\deg_{C_i} u + \deg_{C_i} v \ge \frac{|V(C_i)|}{2} + 1$$

Without loss of generality, we assume that i = k - 1. Since $\langle V(C_{k-1}) \cup \{u, v\} \rangle$ is not hamiltonian, we have, by Lemma 2, the configuration with adjacencies up to renumbering, as shown in Figure 1b.

If x = y, replace C_{k-1} by the cycle $vC_{k-1}[x^+, y^-]v$. Then, note that $H^* = \langle (H-v) \cup \{x\} \rangle$. Let F_1^* be the largest component in H^* . Then, F_1^* is the only possible nontrivial component in H^* as we have shown before. Since $ux \in E(G)$, then $V(F_1^*) \supseteq V(F_1) \cup \{u, x\}$, a contradiction to the maximality of F_1 .

Thus, $x \neq y$ and similarly, $x^+ \neq y^-$. Now select y^+ and $w = y^{--}$ and form two paths $P[u, v] = uC_{k-1}[y^{++}, w^-]v$ and $P^*[w, y^+] = wy^-yy^+$. Since $N(u) \cap C_{k-1}[x^+, w^-] = \emptyset$ and $N(v) \cap C_{k-1}[(y)^{++}, x] = \emptyset$, we have that

$$\deg_P u + \deg_P v \le \frac{|V(P)|}{2}$$

and similarly,

$$deg_{P^*} y^+ + deg_{P^*} w \leq \frac{|V(P^*)|}{2}.$$

Also note that either $N(y^+) \cap V(H) = \emptyset$ or $N(w) \cap V(H) = \emptyset$. Otherwise, swapping $\{y^+, w\}$ and $\{u, v\}$, we obtain a set of k - 1 cycles preserving the properties of C_1, \ldots, C_{k-1} and the remaining graph H^* obtained by deleting these cycles either contains two nontrivial components or the balanced component in H^* is larger than that in H, in either case a contradiction.

Hence, there is a cycle C_t ($t \neq i - 1$) such that

$$\deg_{C_t} u + \deg_{C_t} v \ge \frac{|V(C_t)|}{2} + 1$$

which, by Lemma 1, implies that $\langle V(C_t) \cup P[u,v] \rangle$ has a hamiltonian cycle C_t^* and (again by Lemma 1) it preserves the properties of $C_1, C_2, \ldots, C_{k-1}$.

Let $C_1^* = C_1, C_2^* = C_2, ..., C_t^*, ..., C_{k-2}^* = C_{k-2}$. Since $\deg y^+ + \deg w \ge n+1$, there is a cycle C_i^* such that

$$\deg_{C_j^*} y^+ + \deg_{C_j^*} w \ge \frac{|V(C_j^*)|}{2} + 1$$

Then, by Lemma 1, $\langle C_j^* \cup P^*[y^+, w] \rangle$ has a hamiltonian cycle, say C_j^{**} . Replacing C_j^* by C_j^{**} produces a collection of k - 2 cycles, which, along with the hamiltonian cycle *C* in *F*₁, provides a collection of k - 1 cycles which contradicts the maximality of $\sum_{i=1}^{k-1} |V(C_i)|$. Thus, we conclude that $F_1 = \emptyset$.

We now note that since $E(F_1) = \emptyset$, *H* is an empty graph.

Claim 6. The graph H has order two.

Suppose to the contrary that $|V(H)| \ge 4$ (recall *H* has even order), and say $u_1, u_2 \in V(H) \cap X$ and $v_1, v_2 \in V(H) \cap Y$. Since $\deg u_1 + \deg v_1 \ge n+1$ and by Lemma 2, $\deg_{C_i} u_1 + \deg_{C_i} v_1 \le \frac{|V(C_i)|}{2} + 1$, a direct count shows us that there

are at least three cycles $C_{i_1}, C_{i_2}, C_{i_3}$ such that

$$deg_{C_{i_s}}u_1 + deg_{C_{i_s}}v_1 = \frac{|V(C_{i_s})|}{2} + 1,$$

(s = 1, 2, 3). Similarly, there are three cycles $C_{j_1}, C_{j_2}, C_{j_3}$ such that

$$deg_{C_{j_t}} u_2 + deg_{C_{j_t}} v_2 = \frac{|V(C_{j_t})|}{2} + 1,$$

(t = 1, 2, 3). Without loss of generality, assume $i_1 \neq j_1$ and $i_1 \geq 2, j_1 \geq 2$. Let $i = i_1$ and $j = j_1$.

By Lemma 3 we have the following two configurations of Figure 5.

If $x_1 = y_1$, then operating as before, we exchange v_1 with x_1 and obtain k - 1 cycles C_1^*, \ldots, C_{k-1}^* and $H = G - \bigcup_{i=1}^{k-1} V(C_i^*)$ where H now contains an edge, contradicting our previous claim. Similarly, $x_1^+ = y_1^-, x_2 = y_2$ and $x_2^+ = y_2^-$ all lead to contradictions.

But now, $u_2C_j[y_2, x_2]u_2$ and $v_2C_j[x_2^+, y_2^-]v_2$ provide a 2-factor of $\langle C_j \cup \{u_2, v_2\} \rangle$.

Assign one of these two cycles to C_i^* and the other one to C_j^* . These two cycles along with all other cycles $C_l, l \neq i, j$ gives a collection of k - 1 cycles C_1^*, \ldots, C_{k-1}^* with $C_1^* = C_1$.

Let $y_1^+ = z$ and $y_1^{--} = w$. Also let

$$P[u_1, v_1] = u_1 C[z^+, w^-]v_1$$

and

$$P^*[w,z] = wy_1^- y_1 z.$$

Clearly, $N(w) \cap V(H) = \emptyset$ and $N(z) \cap V(H) = \emptyset$. Otherwise, we may exchange u and z or v and w and then H^* will have at least one edge, contradicting our earlier claims.

Note that $deg_P u_1 + deg_P v_1 \le \frac{|V(P)|}{2}$ and $deg_{P^*} z + deg_{P^*} w \le \frac{|V(P^*)|}{2}$. Since $deg u_1 + deg v_1 \ge n + 1$, there is a cycle C_s^* such that $deg_{C_s^*} u_1 + deg_{C_s^*} v_1 \ge \frac{|V(C_s^*)|}{2} + 1$.

Then $\langle V(C_s^*) \cup V(P[u_1, v_1]) \rangle$ has a hamiltonian cycle, say C_s^{**} and by Lemma 1 it preserves the properties of C_s^* . Let $C_1^{**} = C_1^*, \ldots, C_s^{**} = C_s^{**}, \ldots, C_{k-1}^{**} = C_{k-1}^*$. Since $\deg z + \deg w \ge n+1$ and $\deg_{P^*} z + \deg_{P^*} w \le \frac{|V(P^*)|}{2}$, and $N(z) \cap V(H) = \emptyset$ and $N(w) \cap V(H) = \emptyset$, there is a cycle C_t^{**} such that

$$deg_{C_{t}^{**}} z + deg_{C_{t}^{**}} w \ge \frac{|V(C_{t}^{**})|}{2} + 1.$$

By Lemma 1, $\langle V(C_t^{**}) \cup V(P[w,z]) \rangle$ is hamiltonian and the cycle preserves the properties of C_t^{**} , which again allows us to contradict the maximality of $\sum |V(C_i)|$, completing the proof of the claim.

Thus, |V(H)| = 2, say $V(H) = \{u, v\}$. Since, by Lemma 2,

$$\deg_{C_1} u + \deg_{C_1} v = \frac{|V(C_1)|}{2} + 1$$

and $deg u + deg v \ge n + 1$, there is an $i \ge 2$ such that

$$deg_{C_i} u + deg_{C_i} v = \frac{|V(C_i)|}{2} + 1.$$

By Lemma 2, $\langle V(C_i) \cup \{u, v\} \rangle$ has the subgraph of Figure 1b, or we would be able to again contradict the maximality of our collection of cycles.

Note that if x = y, we could swap v with x to obtain the cycles

$$C_1^* = C_1, \quad C_2^* = C_2, \dots, C_i^* = vC[x^+, y^-]v, \quad C_{i+1}^*, \dots, C_{k-1}^*$$

But these k-1 cycles preserve the properties of C_1, \ldots, C_{k-1} . However, then $G - \bigcup_{i=1}^{k-1} V(C_i^*) = K_2$, a contradiction to Claim 4. Similarly, we have $x^+ \neq y^-$. Thus, the graph $\langle V(C_i) \cup \{u, v\} \rangle$ has two cycles,

$$C_{i_1} = uC[y, x]u$$

and

$$C_{i_2} = vC[x^+, y^-]v.$$

Now, $C_1, \ldots, C_{i_1}, C_{i_2}, \ldots, C_{k-1}$ forms a 2-factor of G with exactly k cycles, a contradiction.

This contradiction completes the proof of the theorem.

The following Corollary is immediate.

Corollary 5. If G is a balanced bipartite graph of order 2n with $n \ge max\left\{51, \frac{k^2}{2}+1\right\}$ and $\delta(G) \ge \frac{n+1}{2}$, then G contains a 2-factor with exactly k cycles.

References

- 1. Brandt, S., Chen, G., Faudree, R.J., Gould, R.J., Jacobson, M.S., Lesniak, L.: On the Number of Cycles in a 2-Factor, J. Graph Theory, **24**(2), 165–173 (1997)
- 2. Chartrand, G., Lesniak, L.: Graphs & Digraphs, Chapman and Hall, London (1996)
- 3. Dirac, G.: Some theorems on abstract graphs, Proc. Lond. Math. Soc. 2, 69-81 (1952)
- 4. Justesen, P.: On independent circuits in finite graphs and a conjecture of Erdös and Pósa, Ann. Discrete Math. 41, 299–306 (1989)
- 5. Moon, J., Moser, L.: On hamiltonian bipartite graphs, Isr. J. Math. 1, 163–165 (1963)
- 6. Ore, O.: Note on hamiltonian circuits, Am. Math. Mon. 67, 55 (1960)
- 7. Wang, H.: On 2-factors of bipartite graphs, J. Graph Theory, to appear

Received: October 29, 1997 Revised: May 7, 1999