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1. INTRODUCTION

Over the years Hamiltonian graphs have been widely studied. A variety of related
properties have also been considered. Some of the properties are weaker, for
example traceability in graphs, while others are stronger, for example
Hamiltonian connectedness. Recently a new strong Hamiltonian property was
introduced in [7].

We say a graph G on n vertices, n � 3 is k-ordered for an integer k; 1 � k � n,
if for every sequence S � �x1; x2; . . . ; xk� of k distinct vertices in G, there exists a
cycle that contains all the vertices of S in the designated order. A graph is k-
ordered Hamiltonian if for every sequence S of k vertices there exists a
Hamiltonian cycle which encounters S in its designated order. We will always let
S � �x1; x2; . . . ; xk� denote the ordered k-set. If we say a cycle C contains S, we
mean C contains S in the designated order under some orientation.

Ng and Schultz [7] showed the following:

Proposition 1 [7]. Let G be a Hamiltonian graph on n vertices, n � 3. If G is

k-ordered, 3 � k � n, then G is �k ÿ 1�-connected.

Theorem 2 [7]. Let G be a graph of order n � 3 and let k be an integer with

3 � k � n. If

deg u� deg v � n� 2k ÿ 6

for every pair u, v of nonadjacent vertices of G, then G is a k-ordered
Hamiltonian graph.

Corollary 3 [7]. Let G be a graph of order n � 3 and let k be an integer such

that 3 � k � n. If

deg v � n

2
� k ÿ 3

for every vertex v of G, then G is a k-ordered Hamiltonian graph.

The degree condition in the preceding corollary was improved by Kierstead,
Sarkozy, and Selkow as follows:

Theorem 4 [6]. Let k � 2 be a positive integer and let G be a graph of order n,
where n � 11k ÿ 3: Then G is k-ordered Hamiltonian if ��G� � dk

2
e � bn

2
c ÿ 1.

One goal of this paper is to improve upon the results obtained by Ng and
Schultz in [7]. We obtain a sharp lower bound on the degree sum of nonadjacent
vertices that imply a graph is k-ordered Hamiltonian. In particular, we prove the
following:

Theorem 5. Let k � 3 be a positive integer and let G be a graph of order

n � 53k2. If for any two nonadjacent vertices x and y, deg x� deg y � n� 3kÿ9
2

,
then G is k-ordered Hamiltonian.
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We can see that the degree sum condition in Theorem 5 is sharp by considering
the following example which was mentioned in [7]. The graph G on n vertices is
composed of the three parts: Kkÿ1;Kk ÿ Ck, and Knÿ2k�1 containing all the edges
between Kkÿ1 and Kk ÿ Ck and all edges between Kkÿ1 and Knÿ2k�1. Between
Knÿ2k�1 and Kk ÿ Ck;G contains only the edges incident to the even indexed
vertices of Ck. This graph is not k-ordered because there is no cycle containing
the vertices of Ck in order. For x 2 V�Knÿ2k�1� and y 2 V�Kk ÿ Ck�; y an odd
indexed vertex on Ck; deg x� deg y � n� 3kÿ10

2
for k even. Another interesting

characteristic in the graph G above is that for all nonadjacent pairs of vertices
x; y 2 V�G�; jN�x�[ N�y�j � nÿ 2. Thus, for a graph to be k-ordered, we need
jN�x�[ N�y�j > nÿ 2 which forces the graph to be complete. So there is no
nontrivial suf®cient condition on unions of neighborhoods of nonadjacent pairs of
vertices.

Further, we obtain the following result concerning neighborhood unions of
pairs of vertices. The bounds in this theorem are motivated by the following
example. Let G be a graph on n vertices with cut set K or order k ÿ 1 such that
Gÿ K has two connected components C1 � Kbnÿk�1

2
c, and C2 � Kdnÿk�1

2
e and G

contains all edges between K and Ci for i � 1 and 2. The sequence
S � fx1; x2; . . . ; x2lg where 2l � k and xi 2 C1 for i odd and xi 2 C2 for i even
shows that G is not k-ordered. The neighborhood of pairs of vertices in G is
bounded below by n�kÿ2

2
.

Theorem 6. Let k be a positive integer and let G be a k-connected graph of
order n � 18k2. If jN�x� [ N�y�j � n�k

2
for all pairs of distinct vertices

x; y 2 V�G�, then G is k-ordered Hamiltonian.

Before beginning the proofs of these theorems, we make one general
observation. If G is a Hamiltionian graph, then G is k-ordered Hamiltonian for
k � 1; 2, and 3. By a result in [8], we know the degree sum condition in Theorem
5 implies the graph is Hamiltionian. By results in [5] and [3], we know the
neighborhood condition in Theorem 6 implies the graph is Hamiltonian. Thus, in
the proofs of these theorems we will immediately assume k � 4.

2. DEGREE CONDITIONS

In this section we will prove Theorem 5. However, the following result and its
corollary, which give suf®cient conditions for k-ordered to imply k-ordered
Hamiltonian, will make the proof much easier. We say a vertex x is insertible in
the cycle C if N(x) contains consecutive vertices on C. We say a subgraph H � G
is insertible in the cycle C if there exists a Hamiltonian path P in H with
endpoints x and y such that there exist ax 2 N�x�; ay 2 N�y� and ax and ay are
consecutive vertices on C. If the cycle C is obvious, we say simply the vertex x (or
the subgraph H) is insertible. Also, we de®ne N�x; y� � N�x� [ N�y� and
N�x� � N�x� [ fxg.

ON k-ORDERED GRAPHS 71



Theorem 7. Let k be a positive integer and let G be a k-connected, k-ordered
graph of order n � 8k2. If for every pair of nonadjacent vertices u and v in V(G)

deg u� deg v � n;

then G is k-ordered Hamiltonian.

Proof. Let S � fx1; x2; . . . ; xkg be an ordered subset of the vertices of
G. Let C by a cycle of maximum order containing all vertices of S in appro-
priate order. The k-vertices of S split the cycle C into k intervals:
�x1; . . . ; x2�; �x2; . . . ; x3�; . . . ; �xk; . . . ; x1�. Let L � Gÿ C. Notice that no vertex
of L has more than jV�C�j=2 adjacencies to C. This implies that any nonadjacent
pair of vertices in L have degree sum at least jV�L�j in L. Thus L is Hamiltonian if
it has at least three vertices and complete otherwise. Assume there are vertices
x; y 2 L with distinct neighbors in one of the intervals of C determined by S, say
�xi; xi�1�. Note that we allow x � y. Let z1 and z2 be the immediate successor and
predecessor on C to the neighbors of x and y, respectively, according to the
orientation of C. (See Figure 1.) Observe that we can choose x and y and their
neighbors in C such that none of the vertices on the interval �z1; z2� have neighbors
in L. We can also assume that z1 6� z2, because z1 � z2 implies x � y or C is not
of maximal order. But neither z1 nor x can be adjacent to more than half the
vertices of C which forces

deg z1 � deg x � 2
jCj
2

� �
� jLj ÿ 1 � nÿ 1;

a contradiction.
Let s � j�z1; z2�j and t � jLj. Because x and y have no neighbors in �z1; z2�,

deg x� deg y � 2 �t ÿ 1� � nÿ sÿ t � 1

2

� �
:

Similarly, if z1 is adjacent to a vertex, say w, on C ÿ �z1; z2�; z2 cannot be adjacent
to the successor, w�, on C or else the segment �z1; z2� could be inserted between w

FIGURE 1.
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and w�, while replacing �z1; z2� with a path from x to y. Hence,

deg z1 � deg z2 � 2�sÿ 1� � nÿ sÿ t � 1:

Since x and y are both nonadjacent to z1 and z2, the initial degree condition forces
deg x� deg y� deg z1 � deg z2 � 2n. But, by the previous two inequalities

deg x� deg y� deg z1 � deg z2 � 2nÿ 2;

which is a contradiction. Thus on any interval �xi; xi�1� of C, there exists at most
one vertex with neighbors in L. The connectivity, then, requires each segment
�xi; xi�1� to have exactly one vertex with a neighbor in L. Also, we know
jCj � n=2 by observing that if y1 and y2 are adjacencies of L in consecutive
intervals on C, then the successors of these vertices, say w1 and w2, are not
adjacent (for otherwise C could be extended). Neither w1 nor w2 has any
adjacencies in L, but one of these vertices, say w1, has degree at least n=2 which
forces C to have at least n=2 vertices. This forces L to be Hamiltonian connected.
Thus, the order of at least one of these k intervals of C must be a function of n,
say f �n� � n

2k
. Assume the interval �x1; x2� is such a segment. Let z be the unique

vertex in this interval with a neighbor in L. Without loss of generality we can
assume the interval �x1; z� contains f �n�=2 vertices. Let y by the unique vertex in
�x2; x3� with a neighbor in L. The connectivity guarantees that if jLj � k we can
®nd distinct neighbors of z and y in L. Let y1 and z1 be the immediate
predecessors of y and z, respectively, on C. Note that if y1 and z1 are adjacent, L
can be inserted. (See Figure 2).

If jLj � n
2
ÿ k, then y1 has no neighbors in the interval �x1; z1� or C would not be

of maximum order. So deg y1 � deg z1 � 2�n=2� k ÿ 2� ÿ f �n�=2 < n, which is
a contradiction since n � 8k2.

If jLj < n=2ÿ k, then all the vertices in the interval �x1; z1� must have degree at
least nÿ �jLj ÿ 1� k� � jCj ÿ k � 1. Thus each is adjacent to all but possibly
k ÿ 1 of the vertices of C, and, therefore, are insertible. In particular, they are
insertible on C ÿ �x1; x2�. If y1 and z1 are not adjacent, we insert z1 and compare
y1 to the predecessor of z1, say z2. If an edge exists here, L can be inserted. If not,
we insert z2, and continue. Thus insertion process must end before reaching x1

since y1 also must be adjacent to all but at most k ÿ 2 vertices of C. &

An immediate corollary to Theorem 7 is the following:

FIGURE 2.
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Corollary 8. Let k be a positive integer and let G be a k-connected, k-ordered
graph of order n � 8k2. If ��G� � n

2
, then G is k-ordered Hamiltonian.

Before proving theorem 5, we restate it for reference.

Theorem 5. Let k � 3 be a positive integer and let G be a graph of order

n � 53k2. If for any two nonadjacent vertices x and y, deg x� deg y � n� 3kÿ9
2

,
then G is k-ordered Hamiltonian.

Proof. Let S � fx1; x2; . . . ; xkg be an ordered set of vertices of G. Note that
by Theorem 7 it is enough to show that G is k-ordered. The proof will be split into
cases according to the connectivity of the graph. Observe that the degree
condition forces K�G� � d3kÿ5

2
e for k � 4.

Case 1: K�G� � 5k.
Find a cycle in G by ®nding a shortest x1±x2 path P1, in Gÿ fx3; . . . ; xkg, then the
shortest x2±x3 path P2, in Gÿ fx4; . . . ; xkg ÿ P1, and continue this process to
generate k ÿ 1 internally disjoint paths Pi for i � 1; . . . ; k ÿ 1. Note that the
shortest length path from xi to xi�1 is no more than 5. If not, we can label a path of
minimum length as: xi � v1; v2; . . . ; vl � xi�1, where l � 7. Then v1; v4, and v7

are all mutually nonadjacent and have mutually disjoint neighborhoods in
Gÿ Sÿ fV�P1� [ � � � [ V�Piÿ1�g. Thus,

n � deg �v1� � deg �v4� � deg �v7� � 3

2
n� 3k ÿ 9

2

� �
ÿ 5iÿ �k ÿ i�;

which is a contradiction for n � 11k
2

. But n � 11k
2

, since we assume n � 53k2. By
the connectivity of G, and xkx1 path must exist.

Case 2: 3kÿ1
2
� K�G� < 5k.

Subcase A: � < 100k.
Without loss of generality, we can assume that G is edge-maximal with
respect to the property of not being k-ordered (i.e., the addition of any edge
makes G k-ordered). Let deg v � � and F � Gÿ N�v�. Also, let L �
fv 2 V�G�jdeg v < n=2g (or vertices of low degree) and H � V�G� ÿ L (or
vertices of high degree). We claim F is complete and that every w 2 N�v� \ H is
adjacent to every vertex in F. Note that for x 2 F; deg x > nÿ 100k. Let x and y
be nonadjacent vertices in F. Then the insertion of the edge xy makes G

k-ordered. Let C be the smallest cycle in G� fxyg that contains S in order. First,
we claim that the cycle C contains no more than half the vertices of G. Assume
otherwise, and let jV�C�j � �n where � > 1=2. Then there exists an interval, say
�xi; xi�1�, that contains at least �n=k vertices. Note that no interval can have more
than two vertices of L or a smaller cycle is possible. Further, nonadjacent vertices
a distance three or more apart on an interval can have no common neighbors off
the cycle. Thus, we can ®nd a subset of vertices of �xi; xi�1�, say M, such that
jMj � ��n=3k� ÿ 1;M is independent, and all vertices of M have degree greater
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than n=2. (One such M would be every third vertex on �xi; xi�1�.) The set M must
send at least �n

3k
ÿ 1

ÿ �
n
2

ÿ �ÿ �nÿ �n� � m edges to vertices of C. Thus, there
exists some interval different from �xi; xi�1� such that there are at least m=k edges
between the two intervals. By the results in ([2] page 311) there exists a K4;4

between the two intervals. But such a K4;4 can be used to produce a smaller cycle,
a contradiction (see Figure 3). Thus, the cycle C can contain at most n=2 vertices.

Let jV�C�j � c. Becuase c � n=2, both x and y have distinct neighbors off the
cycle. Let x� 2 N�x� ÿ C; y� 2 N�y� ÿ C. Then, x� and y� are nonadjacent, have
no common neighbors off the cycle, and can each have at most three adjacencies
in each interval of the cycle for otherwise the length of C will not be maximal. So,

n� 3k ÿ 9

2
� deg x� � deg y� � �nÿ c� � 6k:

This forces c < 6k. But this is impossible since

2�nÿ 100k� � deg x� deg y � n� c: ���

(This right hand side of the inequality follows from the fact that x and y can have
no common neighbors off the cycle.) We now have shown that F is complete.
Note that the same argument applies if we choose x 2 V�F� and y 2 N�v� \ H.
The only difference is the inequality (�) above becomes

�nÿ 100k� � n

2
� 3k ÿ 9

4
� deg x� deg y � n� c;

which produces the same contradiction.
Partition S into SL and SH where SH � S \ H and SL � Sÿ H. Note that

SL � N�v� and hSLi must be complete. Also note that every vertex in SH is either a
vertex in the complete subgraph F or is adjacent to every vertex of F. Assume
jSLj � l, so jSH j � k ÿ l. If l � k=2, then K�Gÿ SH� � 2l. For every xi 2 SL

create a vertex x�i such that N�x�i � � N�xi�. Let S�L � SL [ fx�i : i � 1; . . . ; lg. Add
a vertex v such that N�v� � S�L. Let G� be the graph that results from adding v and
fx�i : xi 2 SLg. Then G� ÿ SH is still 2l-connected. Let M be a set of 2l distinct

FIGURE 3.
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vertices of V�F ÿ SH� � V�G��. A generalization of Whitney's Theorem [4]
implies that there exist 2l internally vertex disjoint paths, each starting at the
vertex v and ending at a distinct vertex of M. But this implies that, if we return to
the graph G, for every vertex xi in SL, we can ®nd a pair of internally vertex
disjoint paths, starting at xi and ending at distinct vertices of M, say an xi±vi;1 path
and an xi±vi;2 path where vi;j 2 M and vi;j 6� vi0;j0 . Now all vertices of S are either
in the complete subgraph F of G or have two disjoint paths to F. Thus we can
construct a cycle containing S in the appropriate order using these paths to M and
edges in F.

If l � k
2
� t for t > 0, then K�Gÿ SH� � 3kÿ1

2
ÿ k

2
ÿ t

ÿ � � 2lÿ t ÿ 1
2
. Since SL

has over half the vertices of S, there are at least t consecutive pairs �xi; xi�1�. Paths
between these are made with edges in SL, leaving no more than 2lÿ 2t
`̀ endpoints'' of paths. Construct vertex disjoint paths in Gÿ SH just as was done
in the case l � k=2.

Subcase B: � � 100k.
Let K be a minimal cut set. Let A and B be the components of Gÿ K. Find P3's

from A to B through K with the least number of vertices from S. Because of the
minimum degree condition and jAj � jBj � 95k we know we can avoid a P3 that
is a triple. The number of free P3's is at least 3kÿ1

2
ÿ �k ÿ d� � 2d where d is the

number of doubles. (Observe that if k is even, K�G� � 3k=2 and if k is odd,
d � �k ÿ 1�=2.) Finally, for any x; y 2 V�A� (or respectively B), if x and y are
nonadjacent, jNA�x� \ NA�y�j � n� 3kÿ9

2
ÿ 10k

ÿ �ÿ �nÿ 100k� > 90k. In parti-
cular, there are more than k internally vertex disjoint x±y paths of length 2 in A.
Thus, if xi and xi�1 are both in A or both in B we can ®nd a path of length no more
than 2 connecting them. Otherwise, we use P3's ending both in A or both in B to
connect xi and xi�1. Thus, just as in the previous arguments, it is straightforward
to construct a cycle containing S.

Case 3: 3kÿ5
2
� K�G� � 3kÿ2

2
.

Pick a minimal cut set K. Let A and B be the components of Gÿ K. Then a
vertex x in A (or respectively in B) is adjacent to every other vertex of A�B� and K
except possibly one. To show this consider x 2 V�A� and y 2 V�B�, such that one
of them has two nonadjacencies. Then,

n� 3k ÿ 9

2
� deg x� deg y � �nÿK�G� ÿ 2� � 2K�G� ÿ 2

which forces K�G� � �3k ÿ 1�=2. Thus we can ®nd a cycle in G containing S. &

3. NEIGHBORHOOD CONDITIONS

In this section we will prove the result concerning neighborhood conditions. As
before, we will ®rst prove suf®cient conditions under which G is k-ordered
implies G is k-ordered Hamiltonian.
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Theorem 9. Let k be a positive integer and let G be a graph of order n � 10k
with jN�x; y�j � n�k

2
for all pairs of distinct vertices x and y and K�G� � k � 1. If

G is k-ordered, then G is also k-ordered Hamiltonian.

Proof. Let S � fx1; . . . ; xkg be an ordered set of vertices of G. Let C be a
maximal cycle containing S. (i.e., C cannot be extended by insertions of a vertex
or a path.) Let H be the largest component of Gÿ C; t � jGÿ C ÿ Hj, and let
jHj � r. We can think of the elements of S as splitting the cycle C into k intervals:
�x1; . . . ; x2�; . . . ; �xk; . . . ; x1�.

The proof consists of four cases that depend on the order of H and the
magnitude of t.

Case 1: jHj � r � k � 1.
By the connectivity, we know there exist k � 1 distinct vertices in H with k � 1

distinct neighbors in C. Thus there exists two vertices in H, say y1 and y2, with
distinct neighbors, say w1 and w2 in a single interval of C. We can pick y1 and y2

(and w1 and w2) so that w1 and w2 are as close as possible on C. Let z1; z2; . . . ; zs

be the vertices of C between w1 and w2. If z1 is insertible in C, insert it and
proceed to z2. If z2 is insertible, do so and proceed to z3. Do the same starting
at zs, then moving to zsÿ1, and so forth. If all of the zi are insertible or all
but one are insertible, we close the cycle with a �y1±y2�-path in H producing a
larger cycle. If a section remains, say zi; zi�1; . . . ; zj, then we know jN�zi; zj�j �
t� s� nÿrÿsÿt�1

2
. Also jN�y1; y2�j � r� nÿrÿsÿt�1

2
. Thus, jN�y1; y2�j� jN�zi; zj�j �

n� 1. But this is a contradiction, since by assumption jN�y1; y2�j�
jN�zi; zj�j � n� k.

Case 2: 2 � jHj � r � k.
Suppose H is not complete. Then we can select nonadjacent vertices x and y in

H. Thus n�k
2
� jN�x; y�j � jHj � nÿrÿt

2
� n�rÿt

2
which is a contradiction unless

t � 0; r � k, and H is complete. Without loss of generality assume the length, s,
of the segment of the circle from x1 to x2 is maximum. Then from the proof of
Case 1 we know at most one vertex along this segment has more than one
adjacency to H. Select two vertices in H, say y1 and y2, with degree at most one
relative to this segment. Then jN�y1; y2�j � k � 2� nÿkÿs�1

2
which is a contra-

diction since s � nÿk
k

and n � 7k.

Case 3: jHj � 1; t � 1.
Pair all the vertices in the segment of C from xi to xi�2 starting with xi. Let w

and z be in Gÿ C. Certainly, N�w� (and N�z�) can have at most one neighbor in
each pair. Also, N�w; z� contains at most one vertex from each pair with at most
two exceptions, and these two exceptions must have opposite orientation. (For
example, if z hit immediate successors of neighbors of w twice, the cycle could be
extended.) But now, of the pairs that sit between these two exceptional ones,
N�w; z� must miss one altogether or C can be enlarged. Thus, for every segment
P � �xi; xi�1�; jNP�w; z�j � jPj2 � 1. This forces jN�w; z�j < �n� k�=2, which is a
contradiction.
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Case 4: jHj � 1; t � 0.
Let x be the single vertex not in C. We will ®rst show that we can assume deg

x � n�k
4

. If this is not the case, then observe that x has at least k � 1 adjacencies in
C. Thus, there is one interval on C determined by S where x has two adjacencies.
Let W � fw1;w2; . . . wlg be a section of C between two such consecutive
adjacencies of x. Exchange the section W for the vertex x on the cycle C. Note
that all the vertices of W, and in fact all the vertices of G except for x, have degree
at least n�k

4
. Now insert as many of the vertices of W as possible. If all the vertices

of W can be inserted, we have found a Hamiltonian cycle containing S. If not, we
apply the methods of the previous three cases with the one restriction that the
unique vertex of small degree should always remain as a vertex on C.

For example, Case 1 applies directly unless there are precisely k � 1
independent edges from H to C, only one pair of these edges are in a single
interval on C, and the vertex x is between the endpoints of the two edges. If
jHj � k � 1, every vertex of H has at least �nÿ 3k�=4 neighbors on C. But at
most two of the vertices of H can have more than one neighbor in the same
interval. Thus jCj � �k ÿ 1��nÿ 3k�=2 > n since k � 4. If jHj > k � 1, then the
degree condition on vertices of H forces jHj � �nÿ 3k�=4. Thus pick two
vertices of H with the fewest neighbors to C. Such a pair forces
jHj � n�k

2
ÿ k � �nÿ k�=2 and jCj � �n� k�=2. This means every pair of

vertices on C without neighbors in H are adjacent. Speci®cally, if e1 and e2 are
independent edges from H to C with end vertices a1 and a2 on C, then their
successors a�1 and a�2 are adjacent and the cycle can be enlarged.

Because all the vertices of H have high degree, Case 2 occurs only if jHj � k.
Let wi;wj 2 V�H�. Then N�wi;wj� must include half the vertices of C but no
consecutive pairs of vertices on C or the cycle could be extended. Consider a
section of C labeled a1; b1; a2; b2; a3 where a1; a2; a3 2 N�wi;wj�. If b1 or b2 are
insertible, the cycle can be enlarged. If neither b1 or b2 are insertible, then the
path b1; a2; b2 must be insertible and C can be enlarged.

No alteration is necessary to apply Case 3. Thus we can assume that the single
vertex x not on the cycle C has degree at least �n� k�=4.

We can extend C to include x unless between every pair of consecutive
adjacencies of x on C there is at least one uninsertible vertex, say vertex yi,
between the ith consecutive pair of neighbors of x on C. We want to show that
there exists some yi such that deg yi >

2n
7

. Select l vertices from the set of yi's, and
assume that d1n � deg yi � d2n. Thus,

deg yi � deg yj � jN�yi; yj�j � jN�yi� \ N�yj�j � n=2� �i;jn

where �i;j � jN�yi� \ N�yj�j=n. Let E be the number of edges of G from the set of
yi's to the cycle C. Then,

1

lÿ 1

l

2

� �
n

2
�
X
8i;j

�i;jn

" #
� jEj � ld2n:
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We observe that the average degree of the vertices in Gÿ fy1; . . . ; ylg to the yi's
is at least ld1n

2
. Thus,

P
�i;jn � n�ld1

2
�, so

1

lÿ 1

l

2

� �
n

2
� n

ld1

2

� ��
� ld2n:

�
We simplify this to get,

1

4
� d1�ld1 ÿ 1�

2�lÿ 1� � d2:

Thus,

1

4
� 1

32
� 1

4
� d2

1

2
� d2:

Now repeat this again by culling the yi's to a possibly smaller set of vertices
whose degree is between d2n 9

32
n and d3. By the same argument, d3 � 1

4
�

�9=32�2
32

> 2
7
. Note that this implies we can always adjust the vertices of C so that the

single vertex not on C has degree n > 2n=7. At this point we need to show that
any vertex x � Gÿ C of degree at least n can be inserted into the cycle C. First
we claim that there must be three consecutive adjacencies of x within a single
interval of C, say �xi; xi�1�, such that there are at most ®ve vertices of C between
the ®rst and third adjacencies of x. If not, we know there must be deg xÿ 2k

triples of neighbors of x within a segment, each of which requires eight vertices.
Thus, taking into account vertices that are counted twice we ®nd

jCj � 7�nÿ 2k�
2

>
7n

2
ÿ 7k > n;

a contradiction.
So we can assume x has three consecutive adjacencies, a1; a2; a3, in �xi; xi�1�

with at most ®ve vertices between a1 and a3. The arguments applied to the case
where there are exactly ®ve vertices between a1 and a3 are easily applied to the
cases where there are fewer than ®ve vertices, so we prove the only case where
there are exactly ®ve.

First consider the subcase where there is one vertex between a1 and a2 and
three between a2 and a3. We label this segment: a1;w; a2; y3; y2; y1; a3. The single
vertex, w, must not be insertible or we could have added x to the cycle. Also w

and y1 are nonadjacent or x would have been inserted. Thus N�w; y1� includes at
most three of the ®ve vertices between a1 and a3. So N�w; y1� must include at
least �n� k ÿ 6�=2 of the nÿ 6 vertices on the cycle from a3 to a1. Since k � 3,
we know N�w; y1� must include a pair of vertices that are consecutive on C. If
N�w� and N�y1� hit a consecutive pair, then segment w; a2; y3; y2; y1 can be
inserted. If y1 is insertible, compare w and y2 as above. Note that inserting y1 does
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not effect the insertibility of w. Thus, we either ®nd a pair w and yi that allows us
to enlarge the cycle, or we exhaust the yi's by inserting them in another place on
the cycle.

Second, we consider the case where there are two vertices between each pair of
ai's. We label the segment: a1;w1;w2; a2; y2; y1; a3. One of y1 and y2, (and
respectively w1 and w2) must be insertible and the other not insertible. Assume w1

is not insertible. Then y1 is insertible or the degree condition would force y1 and
w1 to have consecutive neighbors. Insert y1. Consider w1 and y2. If they have
consecutive neighbors, the path w1;w2; a2; y1 is insertible. So it must be the case
where w1 is insertible as a result of the insertion of y1. Thus w1; y1 is an edge.
Now we add x to the cycle by inserting w2 and using the w1; y1 edge. By
symmetry, y1 and w1 must be insertible while y2 and w2 both are not. Insert w1. If
y1 is no longer insertible, it must be that w1 and y1 must have consecutive
neighbors and the path w1;w2; a2; y2; y1 is insertible. So, insert y1. Now, w2 and y2

are unaffected by these insertions (if w2; y1 or w1; y2 are edges, x can be inserted)
and by the degree condition must be insertible as a pair. &

Before beginning the proof of theorem 6, we restate it for reference.

Theorem 6. Let k be a positive integer and let G be a k-connected graph of

order n � 18k2. If jN�x; y�j � n�k
2

for all pairs of distinct vertices x; y 2 V�G�,
then G is k-ordered Hamiltonian.

Proof. Let S � fx1; x2; . . . ; xkg be a set of ordered vertices of G. We ®rst
consider the case where the connectivity is exactly k. In this case, let K be a
minimal cut set separating G into the two components A and B. By considering
any pair of distinct vertices in A (or respectively, B), the neighborhood condi-
tion forces jAj � jBj � nÿk

2
, both A and B to be complete, and every vertex in

K to be adjacent to all but at most one vertex in A and one vertex in B. Thus
it is easy to verify that G is k-ordered Hamiltonian. Thus, we can assume
K � k � 1.

By the previous theorem, for K�G� > k, we need only to show that under the
neighborhood condition, G is k-orderable. Again, we split the proof into cases
according to the connectivity of G.

Case 1: K > 7k.
We claim there exists a path from x1 to xk containing all elements of S in order

such that the path from xi and xi�1 contains at most eight vertices. We construct
this path by choosing the shortest x1±x2 path that avoids S, then the shortest x2±x3

path that avoids S and any vertices in the x1±x2 path, and so forth. Let
xi � a1; a2; . . . ; at � xi�1 be the shortest �xi±xi�1� path in G that avoids S and all
vertices used in previous paths. If t � 9, then we observe that jN�a1�j >
n=4; jN�a4; a5�j > n=2, and jN�a8; a9�j > n=2 and all these sets can intersect on
vertices of S or vertices used on previous paths. Thus,

n � jN�a1�j� jN�a4; a5�j� jN�a8; a9�jÿ2��7�iÿ1��1�ÿ�kÿ1��> 5n=4ÿ14k;
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which contradicts n � 18k2. Thus, we can ®nd an x1±xk path that contains S in
order and uses at most 7k � 1 vertices. The connectivity guarantees that we can
®nd an xk±x1 path to close the cycle.

Case 2: K�G� � k � t and t > 0.
Let K be a minimal cut set, A and B components of Gÿ K; jAj � n1 and

jBj � n2. By Hall's Theorem we can form a perfect matching of K into A and K
into B, which together form k � t P3's through K. If both end vertices on such a
path are in S, we call the path a triple. If the path has two vertices in S, one of
which is the center vertex, it is called a double; one vertex, a single; no vertices,
free. Pick matchings such that the paths contain the fewest number of vertices in
S. Assume no triples exist. Let r1�r2� be the number of doubles with an end vertex
in A�B� that is also in S. Let x; y 2 Aÿ S and w; z 2 Bÿ S. Then

jN�x; y�j � n1 � k � t ÿ r1

and

jN�z;w�j � n2 � k � t ÿ r2:

Thus,

n1 � n2 � 2k � 2t ÿ r1 ÿ r2 � n� k;

but

n1 � n2 � 2k � t � n� k:

So, t � r1 � r2. Let r � r1 � r2. Then there exists at least 2r free P3's to provide
paths between vertices in A and B. To ®nd paths in A and B we use the fact that
each of these graphs is k-linked. A graph is said to be k-linked if for every set of k
pairs of vertices of G, say vi;wi for 1 � i � k;G contains k internally disjoint
vi±wi paths for 1 � i � k. In [2] it was shown that every 22k-connected graphs is
k-linked. Thus, we want to show that A and B are 22k-connected. Without loss of
generality assume jAj � jBj. In order to satisfy the neighborhood condition,
jAj � �n� k�=2ÿ �k � t� which forces jBj � �nÿ k�=2. Let K 0 be a minimal cut
set of B and B0 a connected components of Bÿ K 0 of smallest order. Let
x; y 2 V�B0�. Then

�n� k�=2 � jN�x; y�j � jB0j � jK 0j � k � t � 1

2

nÿ k

2
ÿ jK 0j

� �
� jK 0j � k � t:

Thus, jK 0j � �nÿ k ÿ 4t�=2 � 22k since n � 18k2. The same argument holds for
A. Thus we construct the cycle containing S by using the linkage to build the
segments between consecutive vertices within A or in B and the P3's to build the
segments between A and B.
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If a triple occurs, say the middle vertex is v, we know v must have small degree
(a function of k) and consequently we can have at most one triple. Let
x; y 2 Aÿ S and w; z 2 Bÿ S. Then

jN�x; y�j � n1 � k � t ÿ �r1 � 1�
and

jN�w; z�j � n2 � k � t ÿ �r2 � 1�:
So,

n1 � n2 � 2k � 2t ÿ �r1 � r2 � 2� � n� k:

Thus t � r1 � r2 � 2, which provides two additional free P3's (relative to the
previous case of no triples) we can associate with v. If v is not an element of S, we
can identify the endvertices of the P3 containing v with the corresponding
endvertices of two free P3's and proceed as in the previous case. If v is in S, we
know v has t � 1 � 2 neighbors not in S. Let w be such a neighbor. If w is in A or
B, it must already be used in a P3 or the triple would not have occurred. Also, the
P3 using w must not have been able to exchange w for another vertex outside S.
But this forces its center to have a large degree to the side opposite w making it a
free P3 or a single P3. If w is in K it is either on a free P3 or on a single P3. If it is
a single with vertex xi, we assign to xi one of the two extra free P3's associated
with v and use this one for v. The paths from v will use the edges to the two
neighbors of v not in S. Thus we can always ®nd two paths from v to either A or B
avoiding vertices of S. This completes the proof of Theorem 6. &
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