Forbidden triples and traceability: a characterization

Ronald J. Gould ${ }^{\mathrm{a}, 1}$, John M. Harris ${ }^{\mathrm{b}, ~ * ~}$
${ }^{\text {a }}$ Emory University, Atlanta, GA 30322, USA
${ }^{\mathrm{b}}$ Appalachian State University, Boone, NC 28608, USA

Received 11 June 1997; revised 24 November 1998; accepted 7 December 1998

Abstract

Given a connected graph G, a family \mathscr{F} of connected graphs is called a forbidden family if no induced subgraph of G is isomorphic to any graph in \mathscr{F}. If this is the case, G is said to be \mathscr{F}-free. In earlier papers the authors identified four distinct families of triples of subgraphs that imply traceability when they are forbidden in sufficiently large graphs. In this paper the authors introduce a fifth family and show these are all such families. (c) 1999 Elsevier Science B.V. All rights reserved.

1. Background and notation

The graphs discussed here are simple graphs. For terms not defined here, see [3].
Let G be a connected graph and let \mathscr{F} be a family of connected graphs. We say that \mathscr{F} is a family of forbidden subgraphs (or a forbidden family) if no induced subgraph of G is isomorphic to any graph in \mathscr{F}. If this is the case, G is said to be \mathscr{F}-free. If \mathscr{F} consists of a single graph, say H, we say that G is H-free. A graph is said to be traceable if it contains a path that spans the vertex set.

In two previous papers [4,5] four distinct families of triples of subgraphs were shown to imply traceability when forbidden in sufficiently large graphs. The families are as follows (refer to Fig. 1 for the graphs themselves):

1. $\left\{K_{1, m}, Y_{l}, Z_{1}\right\} \quad(m \geqslant 4, l \geqslant 4)$.
2. $\left\{K_{1, m}, P_{4}, V_{r}\right\} \quad(m \geqslant 4, r \geqslant 3)$.
3. $\left\{K_{1,3}, E_{r}, Z_{2}\right\} \quad(r \geqslant 4)$.
4. $\left\{K_{1, m}, P_{l}, Q_{r}\right\} \quad(m \geqslant 4, l \geqslant 5, r \geqslant 3)$.

[^0]

Fig. 1. Graphs involved in forbidden triples.

Characterizations have been discovered for all the single graphs and all the pairs of graphs that imply traceability when forbidden in connected graphs (see [2]). It should be noted that if any of these graphs (the single or the pairs) are contained in a triple $\mathscr{T}=\{A, B, C\}$, then certainly a connected graph that is \mathscr{T}-free will be traceable. The single and the pairs are described in Section 3 of this paper.

In Section 2 we identify an additional family, $\left\{K_{1,3}, Q_{r}, N_{k}\right\}$, that enjoys the property of implying traceability in sufficiently large graphs. In Section 3 we show that this family, along with the previous four, are the only nontrivial families of triples do this (that is, the only families not containing the single graph or one of the pairs mentioned above).

Regarding notation, given two vertices v and w of a graph G, we let $d_{G}(v, w)$ denote the distance (the length of a shortest path) in G from v to w. If A is a subset of the vertices of G, we let $\langle A\rangle$ denote the subgraph of G induced by A. Also, given a vertex v, we let $N_{A}(v)$ denote the set of vertices in A that are adjacent to v. Finally, in a graph G, suppose we have internally disjoint paths $P_{1}: a_{1}, a_{2}, \ldots, a_{i}$ and $P_{2}: b_{1}, b_{2}, \ldots, b_{j}$. If the edge $a_{i} b_{1}$ exists, then the path P in G described by $P: a_{1}, \ldots, a_{i}, b_{1}, \ldots, b_{j}$ will be denoted as $\left[a_{1}, a_{i}\right]_{P_{1}},\left[b_{1}, b_{j}\right]_{P_{2}}$. In a similar fashion, if $a_{i}=b_{1}$, then the notation given by $\left[a_{1}, a_{i}\right]_{P_{1}},\left(b_{1}, b_{j}\right]_{P_{2}}$ will represent the path S in G given by $S: a_{1}, \ldots, a_{i}, b_{2}, \ldots, b_{j}$.

2. The family: $\left\{K_{1,3}, Q_{r}, N_{k}\right\}(r \geqslant 4, k \geqslant 2)$

We begin this section by stating a result from Sumner (see [6, p. 142]) that we will use later. Note that $\kappa(G)$ represents the connectivity of G.

Theorem \mathbf{A} (Sumner [6]). If G is a claw-free graph of order n, and if $\kappa(G) \geqslant n / 4$, then G is hamiltonian.

Theorem 2.1. Let $r \geqslant 4$ and $k \geqslant 2$ be fixed integers. Let G be a connected graph of order n that is $\left\{K_{1,3}, Q_{r}, N_{k}\right\}$-free. If n is sufficiently large, then G is traceable.

Proof. Let T be a minimum cut set of G, let $v \in T$, and let $S=T \backslash\{v\}$. (It is possible that $S=\emptyset$.) We know that $\langle V(G) \backslash T\rangle$ is either disconnected or a single vertex. If $\langle V(G) \backslash T\rangle$ is a single vertex, then $|T|=|V(G)|-1$, and hence G is a complete graph, and is certainly traceable. Therefore, assume that $\langle V(G) \backslash T\rangle$ is disconnected.

Since T is minimum, it must be that $\langle V(G) \backslash S\rangle$ is 1-connected and has v as a cut vertex. Now, if $\langle V(G) \backslash T\rangle$ has more than two components, then there exist vertices $a, b, c \in N(v)$ that are pairwise nonadjacent, and then we will have a claw: $\langle\{a, b, c, v\}\rangle$. Thus, $\langle V(G)-T\rangle$ must have exactly two components, say A and B.

We partition the vertices of A and B as follows. For $i=1,2, \ldots$, define $A_{i}=\{u \in V(A)$: $d(u, v)=i\}$ and $B_{i}=\{u \in V(B): d(u, v)=i\}$. Further, define $A_{0}=B_{0}=\{v\}$. Note that since G is finite, there exists an integer $l \geqslant 1$ such that $A_{l} \neq \emptyset$ and $A_{i}=\emptyset$ for $i>l$. Also, there must exist an integer $m \geqslant 1$ such that $B_{m} \neq \emptyset$ and $B_{i}=\emptyset$ for $i>m$.

We now make several Notes, each of which is easily verified:
Note (a): Each vertex of S is adjacent to at least one vertex of A and to at least one vertex of B.

Note (b): No vertex of A is adjacent to any vertex of B.
Note (c): (i) $N\left(A_{i}\right) \cap A_{j}=\emptyset$ for each $i \in 1, \ldots, l$ and for each $j \neq i-1, i, i+1$; (ii) $N\left(B_{i}\right) \cap B_{j}=\emptyset$ for each $i \in 1, \ldots, m$ and for each $j \neq i-1, i, i+1$.

Note (d): For $i \geqslant 1$, if $x \in A_{i}$ (resp. B_{i}), then x is adjacent to some vertex of A_{i-1} (resp. B_{i-1}).

Note (e): If x and y are nonadjacent vertices of A_{i} (resp. B_{j}), then x and y have no common neighbors in A_{i-1} (resp. B_{j-1}).

Note (f): The subgraphs $\left\langle A_{1}\right\rangle$ and $\left\langle B_{1}\right\rangle$ are complete.
Note (g): If x is a vertex of A_{i}, then there exists an induced path $P: x, a_{i-1}, a_{i-2}, \ldots$, a_{1}, v where x and v are the endpoints and $a_{j} \in A_{j}$ for $j=1,2, \ldots, i-1$.

We make a definition: given $i \in\{1, \ldots, l-1\}$, some vertices of A_{i} are adjacent to vertices of A_{i+1}, while some vertices may not be. That is, some vertices of A_{i} "continue on" to A_{i+1}, and some do not continue. We will call a vertex $x \in A_{i}$ a continuer if it is adjacent to some vertex of A_{i+1}. Otherwise, we call x a noncontinuer. The terms continuer and noncontinuer will have similar meanings in B.

Note (h): Each of $A_{0}, A_{1}, A_{2}, \ldots, A_{l-1}, B_{1}, B_{2}, \ldots, B_{m-1}$ contains at least one continuer.

Claim 2.1. For each $i \in\{1,2, \ldots, l\},\left|A_{i}\right|<(r-1)^{i}$, and for each $j \in\{1,2, \ldots, m\}$, $\left|B_{j}\right|<(r-1)^{j}$.

Proof. We will prove the bound on $\left|A_{i}\right|$ by induction. The argument for $\left|B_{j}\right|$ is almost identical.

From Note (f) above we know that $\left\langle A_{1}\right\rangle$ is complete. If we suppose that $\left|A_{1}\right| \geqslant r-1$, and we let b_{1} be a vertex of B_{1}, then we see that $\left\langle A_{1} \cup\{v\} \cup\left\{b_{1}\right\}\right\rangle$ contains an induced Q_{r}. Thus, $\left|A_{1}\right|<r-1$.

Now, suppose the claim is true for A_{i-1} where $i \geqslant 2$. Let a_{i-1} be a vertex of A_{i-1}, let $a_{i-2} \in A_{i-2}$ be a neighbor of a_{i-1}, and consider the vertices of $N_{A_{i}}\left(a_{i-1}\right)$.

If vertices $a_{i}, a_{i}^{\prime} \in N_{A_{i}}\left(a_{i-1}\right)$ are nonadjacent, then $\left\langle\left\{a_{i}, a_{i}^{\prime}, a_{i-1}, a_{i-2}\right\}\right\rangle$ is an induced $K_{1,3}$. Therefore, a_{i} and a_{i}^{\prime} must be adjacent, and we can then conclude that $\left\langle N_{A_{i}}\left(a_{i-1}\right)\right\rangle$ must be complete. Thus, if $\left|N_{A_{i}}\left(a_{i-1}\right)\right| \geqslant r-1$, we again have a subgraph $\left(\left\langle N_{A_{i}}\left(a_{i-1}\right) \cup\right.\right.$ $\left.\left\{a_{i-1}\right\} \cup\left\{a_{i-2}\right\}\right\rangle$) which contains an induced Q_{r}. Hence $\left|N_{A_{i}}\left(a_{i-1}\right)\right|<r-1$. Thus we have that

$$
\left|A_{i}\right| \leqslant\left|\bigcup_{x \in A_{i-1}} N_{A_{i}}(x)\right|<(r-1)(r-1)^{i-1}=(r-1)^{i},
$$

and the claim is proved.

Given the integers r and k, we let

$$
\gamma=2 \sum_{i=1}^{2 k}(r-1)^{i},
$$

and we take $n \geqslant \frac{4}{3} \gamma$. If we suppose that $|V(A)|+|V(B)| \leqslant \gamma$, then we have that $|T|=$ $|V(G)|-|V(A)|-|V(B)| \geqslant|V(G)|-\gamma=n-\gamma \geqslant n-\frac{3}{4} n=\frac{1}{4} n$. Therefore $\kappa(G) \geqslant n / 4$, and by Theorem A, G is Hamiltonian, and thus clearly traceable.

Thus, we can assume that $|V(A)|+|V(B)|>\gamma$. By the definition of γ, this implies that one of l or m is at least $2 k+1$. We suppose without loss of generality that $l \geqslant 2 k+1$.

Claim 2.2. Each of $\left\langle A_{1}\right\rangle, \ldots,\left\langle A_{l}\right\rangle,\left\langle B_{1}\right\rangle, \ldots,\left\langle B_{m}\right\rangle$ is complete.

Proof. From Note (f) we know that $\left\langle A_{1}\right\rangle$ and $\left\langle B_{1}\right\rangle$ are both complete. Let i be the least integer such that $\left\langle A_{i}\right\rangle$ is not complete ($i \geqslant 2$), and suppose $a_{i}, a_{i}^{\prime} \in A_{i}$ are nonadjacent. From Note (e) above, a_{i} and a_{i}^{\prime} have distinct neighbors in A_{i-1}. Let them be a_{i-1} and a_{i-1}^{\prime}, respectively. Since $\left\langle A_{i-1}\right\rangle$ is complete, a_{i-1} and a_{i-1}^{\prime} are adjacent. Furthermore, let $a_{i-2} \in A_{i-2}$ be a neighbor of a_{i-1}. If $a_{i-1}^{\prime} a_{i-2} \notin E(G)$, then $\left\langle\left\{a_{i}, a_{i-1}, a_{i-1}^{\prime}, a_{i-2}\right\}\right\rangle$ would be an induced claw, so $a_{i-1}^{\prime} a_{i-2} \in E(G)$. Let $a_{i-3} \in A_{i-3}$ be a neighbor of a_{i-2} (if $i=2$, then let a_{i-3} be some vertex of B_{1}).

Suppose that $i>k$. We know there exists a path $a_{i-3}, a_{i-4}, \ldots, a_{2}, a_{1}, v, b_{1}$ such that $a_{j} \in A_{j}$ for $j=1,2, \ldots, i-3$ and $b_{1} \in B_{1}$. This, however, produces an induced N_{k} (see Fig. 2): $\left\langle\left\{a_{i}, a_{i}^{\prime}, a_{i-1}, a_{i-1}^{\prime}, a_{i-2}, a_{i-3}, \ldots, a_{1}, v, b_{1}\right\}\right\rangle$.

Fig. 2.

Fig. 3.

Therefore, let us assume that $i \leqslant k$. Since $A_{l} \neq \emptyset$, there must exist a path $a_{l}, a_{l-1}, \ldots, a_{i+1}$ where for each $j \in\{i+1, \ldots, l\}, a_{j} \in A_{j}$.

If both a_{i} and a_{i}^{\prime} are adjacent to a_{i+1}, then $\left\langle\left\{a_{i+2}, a_{i+1}, a_{i}, a_{i}^{\prime}\right\}\right\rangle$ forms an induced claw. Further, if exactly one of a_{i} and a_{i}^{\prime} (say a_{i}) is adjacent to a_{i+1}, then since $i \leqslant k$ and $l \geqslant 2 k+1$, the subgraph $\left\langle\left\{a_{i+1}, a_{i+2}, \ldots, a_{l}, a_{i}, a_{i}^{\prime}, a_{i-1}, a_{i-1}^{\prime}, a_{i-2}, a_{i-3}\right\}\right\rangle$ contains an induced N_{k}.

Therefore we assume that neither a_{i} nor a_{i}^{\prime} is adjacent to a_{i+1}. If this is true, then there must exist some other vertex, say $a_{i}^{\prime \prime}$, in A_{i} that is adjacent to a_{i+1} (see Fig. 3).
Now, if either of a_{i} or a_{i}^{\prime} is nonadjacent to $a_{i}^{\prime \prime}$, then the argument in the preceding paragraph applies, and it produces a contradiction. Further, if both a_{i} and a_{i}^{\prime} are adjacent to $a_{i}^{\prime \prime}$, then, again, we have an induced $K_{1,3}:\left\langle\left\{a_{i+1}, a_{i}^{\prime \prime}, a_{i}, a_{i}^{\prime}\right\}\right\rangle$. Hence, no such integer i exists, and it must be that each of $\left\langle A_{1}\right\rangle, \ldots,\left\langle A_{l}\right\rangle$ is complete.

Now, suppose that j is the least integer such that $\left\langle B_{j}\right\rangle$ is not complete $(j \geqslant 2)$, and let $b_{j}, b_{j}^{\prime} \in B_{j}$ be nonadjacent vertices. Again from Note (e) we see that b_{j} and b_{j}^{\prime} must have distinct neighbors in B_{j-1}. Let these neighbors be b_{j-1} and b_{j-1}^{\prime}, respectively. Further, let $b_{j-2} \in B_{j-2}$ be a neighbor of b_{j-1}. Since G is claw-free, it must be that $b_{j-2} b_{j-1}^{\prime} \in E(G)$. Moreover, due to the nature of the partitions of A and B, there must exist a path $b_{j-2}, b_{j-3}, \ldots, v, a_{1}, a_{2}, \ldots, a_{l}$ in G such that $b_{t} \in B_{t}$ and $a_{t} \in A_{t}$ for each t. This provides an induced subgraph that contains an induced N_{k}. Therefore, it must be that no such integer j exists. Thus, each of $\left\langle B_{1}\right\rangle,\left\langle B_{2}\right\rangle, \ldots,\left\langle B_{m}\right\rangle$ is complete, and so is the proof of the claim.

Given $i \in\{1,2, \ldots, l-1\}$, suppose a_{i} is some continuer in A_{i}, and let P be a path that satisfies the following conditions:
(i) $V(P) \subseteq V(A)$;
(ii) $V(P) \cap A_{i}=\left\{a_{i}\right\}$;

Fig. 4. The two kinds of continuing paths.
(iii) $1 \leqslant\left|V(P) \cap A_{i+1}\right| \leqslant 2$;
(iv) $\left|V(P) \cap A_{j}\right|=1$ for $j=i+2, i+3, \ldots, l$;
(v) $\left|V(P) \cap A_{j}\right|=0$ for $j<i$;
(vi) P is an induced path.

We will call such a path a continuing path from a_{i}. Fig. 4 shows examples of continuing paths.

Claim 2.3. If $a_{i} \in A_{i}$ is a continuer, then there exists a continuing path from a_{i} in G.

Proof. Given $a_{l} \in A_{l}$, let $P^{\prime}: a_{l}, a_{l-1}, \ldots, a_{i+1}$ be a path where $a_{j} \in A_{j}$ for each $j=i+$ $1, \ldots, l$. If a_{i} is adjacent to a_{i+1}, then the path P given by $a_{i},\left[a_{i+1}, a_{l}\right]_{P^{\prime}}$ is the desired continuing path.

Suppose then that a_{i} is not adjacent to a_{i+1}. Then since a_{i} is a continuer, there exists some $a_{i+1}^{\prime} \in A_{i+1}$ such that $a_{i} a_{i+1}^{\prime} \in E(G)$. Further, $a_{i+1} a_{i+1}^{\prime} \in E(G)$ since $\left\langle A_{i+1}\right\rangle$ is complete. If a_{i+1}^{\prime} is adjacent to a_{i+2}, then the continuing path is given by $a_{i}, a_{i+1}^{\prime},\left[a_{i+2}, a_{l}\right]_{P^{\prime}}$. If a_{i+1}^{\prime} is not adjacent to a_{i+2}, then the desired continuing path is $a_{i}, a_{i+1}^{\prime},\left[a_{i+1}, a_{l}\right]_{P^{\prime}}$.

We now turn our attention to the vertices of $S=T \backslash\{v\}$. If $S=\emptyset$ then some of the claims that follow will be vacuous.

Let $s \in S$. From Note (a) we know that s is incident with at least one of $A_{1}, A_{2}, \ldots, A_{l}$, and at least one of $B_{1}, B_{2}, \ldots, B_{m}$. Suppose that s is adjacent to $a_{i} \in A_{i}$ and $a_{j} \in A_{j}$, and suppose that $|i-j|>1$. If b is a vertex of B adjacent to s, then $\left\langle\left\{a_{i}, a_{j}, s, b\right\}\right\rangle$ is an induced $K_{1,3}$, a contradiction. Therefore, the following claim holds:

Claim 2.4. If $s \in S$ is incident with two distinct sets A_{i} and A_{j}, then $|i-j|=1$. Consequently, s is incident with at most two sets from $A_{1}, A_{2}, \ldots, A_{l}$.

Claim 2.5. If p is the greatest integer such that $s \in S$ is incident with A_{p}, then $p \in\{1,2, l\}$.

Proof. Suppose the claim is false and consider two cases.
Case 1: Suppose $3 \leqslant p \leqslant k+1$.

Fig. 5.

Subcase 1.1: Suppose s is adjacent to some continuer, say a_{p}, in A_{p}.
Let $a_{p-1} \in A_{p-1}$ be a neighbor of a_{p}, let $a_{p-2} \in A_{p-2}$ be a neighbor of a_{p-1}, and let $b \in V(B)$ be a neighbor of s. From Claim 2.3 we know there is a continuing path P from the continuer a_{p}. Let a_{p+1} be the vertex of A_{p+1} that is adjacent to a_{p} on P. Because of the maximality of p, s is not adjacent to a_{p+1}, and since G is claw-free, the edge $s a_{p-1}$ must be present. Then from Claim $2.4 s$ is incident with A_{p} and A_{p-1}, and s is not incident with A_{i} for $i \neq p, p-1$.

On our continuing path P, let $\left\{a_{j}\right\}=V(P) \cap A_{j}$ for $j=p+2, p+3, \ldots, l$. Then, depending on the value of $\left|V(P) \cap A_{p+1}\right|$ (recall that it can be 1 or 2), we have one of the two situations depicted in Fig. 5.

Since $3 \leqslant p \leqslant k+1$ and since $l \geqslant 2 k+1$, each of these possibilities contains an induced N_{k}, which provides a contradiction for this Subcase.

Subcase 1.2: Suppose s is not adjacent to any continuer of A_{p}.
Let $a_{p} \in A_{p}$ be a neighbor (necessarily a non-continuer) of s. The set A_{p} must contain a continuer, so let a_{p}^{\prime} be a continuer in A_{p}. Further, let $a_{p-1} \in A_{p-1}$ be a neighbor of a_{p}^{\prime}, and let $a_{p-2} \in A_{p-2}$ be a neighbor of a_{p-1}. From Claim 2.3, there exists a continuing path P from the continuer a_{p}^{\prime}. Let a_{p+1} be the vertex of A_{p+1} that is adjacent to a_{p}^{\prime} on P. Again, for $j \in\{p+2, p+3, \ldots, l\}$, let $\left\{a_{j}\right\}=V(P) \cap A_{j}$.

Now, since a_{p} is not a continuer, $a_{p} a_{p+1} \notin E(G)$. Thus, since G is claw-free, a_{p} must be adjacent to a_{p-1}. Furthermore, since $s a_{p-2}, s a_{p}^{\prime} \notin E(G), s$ cannot be adjacent

Fig. 6.
to a_{p-1}, or else $\left\langle\left\{a_{p}^{\prime}, a_{p-1}, a_{p-2}, s\right\}\right\rangle$ would be an induced $K_{1,3}$. Therefore, again depending on the value of $\left|V(P) \cap A_{p+1}\right|$, we have one of the two situations shown in Fig. 6. Since $3 \leqslant p \leqslant k+1$ and since $l \geqslant 2 k+1$, we see that each of these possibilities leads to an induced N_{k}, providing a contradiction in this Subcase. Thus p is not in the interval $3 \leqslant p \leqslant k+1$.

Case 2: Suppose $k+2 \leqslant p \leqslant l-1$.
Let a_{p} be a continuer in A_{p}, let $a_{p+1} \in A_{p+1}$ and $a_{p-1} \in A_{p-1}$ be neighbors of a_{p}, and let $b \in V(B)$ be some neighbor of s. Further, let $a_{p-2}, a_{p-3}, \ldots, a_{1}$ be vertices such that $a_{i} \in A_{i}$ for each i, and such that the subgraph induced by the vertices $a_{p-1}, a_{p-2}, \ldots, a_{1}$ is a path.

Suppose first that s is adjacent to a_{p}. If this is the case, then s must also be adjacent to a_{p-1}, since otherwise $\left\langle\left\{a_{p+1}, a_{p}, a_{p-1}, s\right\}\right\rangle$ would be a claw. But if s is adjacent to a_{p-1}, we get an induced N_{k}, which is a contradiction.

Therefore it cannot be that s is adjacent to a_{p}. By a similar argument, we can show that s is nonadjacent to all continuers in A_{p}. Let $a_{p}^{\prime} \in A_{p}$ be a neighbor of s (a_{p}^{\prime} is necessarily a noncontinuer). The vertex a_{p}^{\prime} must be adjacent to a_{p-1}, since otherwise $\left\langle\left\{a_{p-1}, a_{p}, a_{p+1}, a_{p}^{\prime}\right\}\right\rangle$ would be an induced $K_{1,3}$. Now, if $s a_{p-1} \in E(G)$, then $\left\langle\left\{a_{p-1}, a_{p}, a_{p-2}, s\right\}\right\rangle$ is an induced claw, which is a contradiction. Further, if $s a_{p-1} \notin E(G)$, then we obtain an induced N_{k}, another contradiction.

Fig. 7. Examples of each type.

We have contradicted the assumption that $k+2 \leqslant p \leqslant l-1$, and we conclude that $p \in\{1,2, l\}$.

In the previous claim, s was an arbitrary element of S. It follows, then, that each vertex of S can be classified as one of five types, according to its adjacencies in A :

$$
\begin{aligned}
& S_{1}=\left\{v \in S: N_{A_{l}}(v) \neq \emptyset, \text { and } N_{A_{j}}(v)=\emptyset \text { for } j \neq l\right\}, \\
& S_{2}=\left\{v \in S: N_{A_{i}}(v) \neq \emptyset \text { for } i=l, l-1 ; N_{A_{j}}(v)=\emptyset \text { for } j \neq l, l-1\right\}, \\
& S_{3}=\left\{v \in S: N_{A_{2}}(v) \neq \emptyset, \text { and } N_{A_{j}}(v)=\emptyset \text { for } j \neq 2\right\}, \\
& S_{4}=\left\{v \in S: N_{A_{i}}(v) \neq \emptyset \text { for } i=1,2, \text { and } N_{A_{j}}(v)=\emptyset \text { for } j \neq 1,2\right\}, \\
& S_{5}=\left\{v \in S: N_{A_{1}}(v) \neq \emptyset, \text { and } N_{A_{j}}(v)=\emptyset \text { for } j \neq 1\right\} .
\end{aligned}
$$

A typical vertex of each type is shown in Fig. 7.
The following claims (2.6-2.10) are now straightforward to prove.
Claim 2.6. Each vertex of S_{2} is adjacent to every vertex of A_{l}.
Claim 2.7. Each vertex of S_{3} is adjacent to v and to every vertex of B_{1}.
Claim 2.8. Each vertex of S_{5} that is not adjacent to v is adjacent to every vertex of B_{1}.

Now, define the set

$$
S_{5}^{B}=\left\{s \in S_{5}: s v \notin E(G)\right\} .
$$

From Claim 2.8 we know that each vertex of S_{5}^{B} is adjacent to all of B_{1}.
Claim 2.9. Each vertex of S_{5}^{B} is adjacent to all vertices of B_{2}.
We now partition the set

$$
S_{5} \backslash S_{5}^{B}=\left\{s \in S_{5}: s v \in E(G)\right\}
$$

into two sets $S_{5 c}, S_{5 n}$ where
$S_{5 c}=\left\{w \in S_{5} \backslash S_{5}^{B}: w\right.$ is adjacent to some continuer in $\left.A_{1}\right\}$,
$S_{5 n}=\left\{w \in S_{5} \backslash S_{5}^{B}: w\right.$ is nonadjacent to all continuers in $\left.A_{1}\right\}$.
Clearly then, S_{5} is the disjoint union of sets $S_{5}^{B}, S_{5 c}$, and $S_{5 n}$.
Also, let us partition the vertices of S_{4} into two sets $S_{4 c}, S_{4 n}$ where
$S_{4 c}=\left\{w \in S_{4}: w\right.$ is adjacent to some continuer in $\left.A_{2}\right\}$,
$S_{4 n}=\left\{w \in S_{4}: w\right.$ is nonadjacent to all continuers in $\left.A_{2}\right\}$.

Claim 2.10. (a) Each vertex of $S_{4 c}$ is adjacent to all noncontinuers in A_{2}.
(b) Each vertex of $S_{5 c}$ is adjacent to all noncontinuers in A_{1}.

Claim 2.11. Each of the sets $S_{1}, S_{2}, S_{3}, S_{4 c}, S_{4 n}, S_{5 c}, S_{5 n}$, and S_{5}^{B} induces a complete subgraph of G.

Proof. (I) Consider S_{1} and S_{2} : In order to prove that $\left\langle S_{1}\right\rangle$ and $\left\langle S_{2}\right\rangle$ are complete, it will be helpful for us to generalize, since the proofs are very similar. Let the ordered pair (i, j) be one of the members of the set $\{(1, l),(2, l-1)\}$. We will prove that $\left\langle S_{i}\right\rangle$ is complete.

Let s_{i} and s_{i}^{\prime} be nonadjacent vertices of S_{i}. If s_{i} and s_{i}^{\prime} have a common neighbor in A_{j}, say a_{j}, then $\left\langle\left\{a_{j}, a_{j-1}, s_{i}, s_{i}^{\prime}\right\}\right\rangle$ is an induced $K_{1,3}$, where $a_{j-1} \in A_{j-1}$ is a neighbor of a_{j}.

Thus, we suppose that s_{i} and s_{i}^{\prime} have no common neighbors in A_{j}. Say that a_{j} and a_{j}^{\prime} in A_{j} are neighbors of s_{i} and s_{i}^{\prime}, respectively. Then if we let $a_{j-1} \in A_{j-1}$ be a neighbor of a_{j}, we must have that a_{j}^{\prime} is adjacent to a_{j-1}, or else $\left\langle\left\{a_{j}, a_{j}^{\prime}, s_{i}, a_{j-1}\right\}\right\rangle$ is an induced claw.

Let $a_{j-2} \in A_{j-2}$ be a neighbor of a_{j-1}. By Note (g), there is an induced path with k vertices in A beginning from a_{j-2}. Hence we have an induced N_{k}. Thus, we have a contradiction, and so s_{i} and s_{i}^{\prime} are adjacent. We therefore can conclude that $\left\langle S_{i}\right\rangle$ is complete for both $i=1$ and $i=2$.
(II) Consider S_{3} : Let s_{3}, s_{3}^{\prime} be nonadjacent vertices of S_{3}. Again, if they have a common neighbor in A_{2}, say a_{2}, we get an induced claw: $\left\langle s_{3}, s_{3}^{\prime}, a_{2}, a_{1}\right\rangle$, where $a_{1} \in N_{A_{1}}\left(\left\{a_{2}\right\}\right)$. Thus assume they have distinct neighbors in A_{2}, say a_{2} and a_{2}^{\prime}, respectively. Note here that a_{2} is not a continuer. If it were, then $\left\langle\left\{s_{3}, a_{2}, a_{1}, a_{3}\right\}\right\rangle$ would be an induced $K_{1,3}$ (where $a_{1} \in N_{A_{1}}\left(\left\{a_{2}\right\}\right)$ and $a_{3} \in N_{A_{3}}\left(\left\{a_{2}\right\}\right)$. Similarly, a_{2}^{\prime} is not a continuer.

So, neither a_{2} nor a_{2}^{\prime} is a continuer. Let $a_{2}^{\prime \prime}$ be a continuer in A_{2}. From Claim 2.3, there is a continuing path P from the continuer $a_{2}^{\prime \prime}$. Let a_{3} be the vertex of A_{3} that is adjacent to $a_{2}^{\prime \prime}$ on P. Since s_{3} and s_{3}^{\prime} have no common neighbors in A_{2}, at most one of them is adjacent to $a_{2}^{\prime \prime}$. But if we suppose for the moment that s_{3} is adjacent to $a_{2}^{\prime \prime}$, we see that $\left\langle\left\{a_{3}, a_{2}^{\prime \prime}, s_{3}, a_{2}^{\prime}\right\}\right\rangle$ is an induced $K_{1,3}$. We reach a similar conclusion if s_{3}^{\prime} is
adjacent to $a_{2}^{\prime \prime}$. Thus, it must be that neither of s_{3}, s_{3}^{\prime} is adjacent to $a_{2}^{\prime \prime}$. But then we have an induced N_{k}, which is a contradiction.
(III) Consider $S_{4 c}$ and $S_{5 c}$: Once again, the proofs for these two sets are very similar, so we generalize: let the ordered pair (i, j) be one of the members of the set $\{(4,2),(5,1)\}$. We show that $\left\langle S_{i c}\right\rangle$ is complete.

Let $s_{i c}, s_{i c}^{\prime} \in S_{i c}$ be nonadjacent. By definition, both of these vertices are adjacent to continuers in A_{j}. If there is a continuer in A_{j}, say a_{j}, that is adjacent to both $s_{i c}$ and $s_{i c}^{\prime}$, then $\left\langle\left\{s_{i c}, s_{i c}^{\prime}, a_{j}, a_{j+1}\right\}\right\rangle$ is a claw (where $a_{j+1} \in A_{j+1}$ is a neighbor of a_{j}).

So, it must be that $s_{i c}$ and $s_{i c}^{\prime}$ are adjacent to distinct continuers in A_{j}; call them a_{j} and a_{j}^{\prime}, respectively.

We now claim that a_{j} and a_{j}^{\prime} must have identical adjacencies in A_{j+1}. If this were not true, then there would exist an $x \in A_{j+1}$ which was adjacent to one of a_{j}, a_{j}^{\prime} (say a_{j}) and nonadjacent to the other. This, though, would imply the existence of an induced claw: $\left\langle\left\{x, a_{j}, a_{j}^{\prime}, s_{i c}\right\}\right\rangle$. Thus we can conclude that $N_{A_{j+1}}\left(a_{j}\right)=N_{A_{j+1}}\left(a_{j}^{\prime}\right)$.

Case 1: Suppose there exists a vertex $a_{j+1} \in A_{j+1}$ which is a continuer and which is adjacent to a_{j} (and a_{j}^{\prime}).

From Claim 2.3, there is a continuing path from a_{j+1}, and this yields an induced N_{k} (see Fig. 8(a)).

Case 2: Suppose that a_{j} and a_{j}^{\prime} are only adjacent to noncontinuers in A_{j+1}.
Let $a_{j+1} \in A_{j+1}$ be a noncontinuer that is a neighbor of a_{j} and a_{j}^{\prime}, and let a_{j+1}^{\prime} be a continuer in A_{j+1}. Once again, from Claim 2.3, there is a continuing path from a_{j+1}^{\prime}, and this also produces an induced N_{k} (Fig. 8(b)), again a contradiction.
(IV) Consider $S_{4 n}$ and $S_{5 n}$: Again, we handle these cases simultaneously. Let the ordered pair (i, j) be one of the members of the set $\{(4,2),(5,1)\}$, and suppose that vertices $s_{i n}, s_{i n}^{\prime} \in S_{\text {in }}$ are nonadjacent.

If $s_{i n}, s_{i n}^{\prime}$ have a common adjacency in A_{j}, say a_{j}, then

$$
\left\langle\left\{a_{j}^{\prime}, a_{j}, s_{i n}, s_{i n}^{\prime}\right\}\right\rangle
$$

is an induced claw, where a_{j}^{\prime} is any continuer in A_{j}.
So it must be that $s_{i n}$ and $s_{i n}^{\prime}$ have distinct neighbors in A_{j}. Let two such neighbors be a_{j} and a_{j}^{\prime}, respectively (they are both necessarily noncontinuers, since $s_{i n}, s_{i n}^{\prime} \in S_{i n}$). If $a_{j}^{\prime \prime}$ is a continuer in A_{j}, then we know there is a continuing path from $a_{j}^{\prime \prime}$, and therefore we have an induced N_{k}.

Again, we have reached a contradiction, and so it must be that $s_{i n}$ is adjacent to $s_{i n}^{\prime}$. Therefore, $\left\langle S_{i n}\right\rangle$ is complete for both $i=4$ and $i=5$.
(V) Consider S_{5}^{B} : Recall that S_{5}^{B} is the set of vertices of Type 5 that are not adjacent to v.

Suppose that $s_{5}, s_{5}^{\prime} \in S_{5}^{B}$ are nonadjacent. If these two vertices have a common neighbor in A_{1}, say a_{1}, then $\left\langle\left\{s_{5}, s_{5}^{\prime}, a_{1}, v\right\}\right\rangle$ is an induced claw. Therefore we will assume that they have distinct adjacencies in A_{1}. Let two such neighbors be a_{1} and a_{1}^{\prime}, respectively.

Suppose that neither a_{1} nor a_{1}^{\prime} is a continuer, and let $a_{1}^{\prime \prime}$ be a continuer in A_{1}. Let P be a continuing path from $a_{1}^{\prime \prime}$ and let a_{2} be the vertex of A_{2} that is

Fig. 8.
adjacent to $a_{1}^{\prime \prime}$ on P. Since s_{5}, s_{5}^{\prime} do not share a neighbor in A_{1}, at most one of them is adjacent to $a_{1}^{\prime \prime}$. However, if s_{5} is adjacent to $a_{1}^{\prime \prime}$, then $\left\langle\left\{a_{2}, a_{1}^{\prime \prime}, a_{1}^{\prime}, s_{5}\right\}\right\rangle$ is an induced claw. We reach a similar conclusion if s_{5}^{\prime} is adjacent to $a_{1}^{\prime \prime}$. Thus neither s_{5} nor s_{5}^{\prime} is adjacent to $a_{1}^{\prime \prime}$. But this implies that we have an induced N_{k}, which is a contradiction.

Therefore we must assume that at least one of a_{1} or a_{1}^{\prime} is a continuer. We claim now that a_{1} and a_{1}^{\prime} have identical neighbors in A_{2} (so, in fact, they are both continuers). If we suppose that this is not the case, and we let $x \in A_{2}$ be a neighbor of one of them, say a_{1} and a non-neighbor of the other, a_{1}^{\prime}, then we will have an induced claw: $\left\langle\left\{x, a_{1}, a_{1}^{\prime}, s_{5}\right\}\right\rangle$. It must be, then that a_{1}, a_{1}^{\prime} have identical neighbors in A_{2}. We now consider two cases.

Case 1: Suppose there is a continuer a_{2} in A_{2}, which is adjacent to a_{1} and a_{1}^{\prime}.
From Claim 2.3, there is a continuing path from a_{2}, and so we have an induced N_{k} (Fig. 9(a)).

Case 2: Suppose that a_{1}, a_{1}^{\prime} are only adjacent to noncontinuers in A_{2}.
Let $a_{2} \in A_{2}$ be such a noncontinuer, and let a_{2}^{\prime} be a continuer in A_{2}. Again, from Claim 2.3, there is a continuing path from a_{2}^{\prime} and this produces an induced N_{k} (Fig. 9(b)).

Having reached a contradiction in each case, we can conclude that s_{5} and s_{5}^{\prime} must be adjacent. Thus $\left\langle S_{5}^{B}\right\rangle$ is also complete.

We have therefore completed the proof of Claim 2.11.

We have now established enough structure to be able to show that G is in fact traceable. The vertices of G have been partitioned into several subsets:

$$
A_{1}, A_{2}, \ldots, A_{l}, B_{1}, B_{2}, \ldots, B_{m},\{v\}, S_{1}, S_{2}, S_{3}, S_{4 c}, S_{4 n}, S_{5 c}, S_{5 n}, S_{5}^{B},
$$

each of which induces a complete subgraph of G. Each of these complete subgraphs is clearly traceable, so all that remains is to demonstrate a way to "trace through" these complete subgraphs, forming a Hamiltonian path in G. To accomplish this we will establish a series of claims, each of which will provide a Hamiltonian path through a portion of G. Once these paths are established, we will then attach them end-to-end to

Fig. 9.

Fig. 10. General order of the tracing.
form the Hamiltonian path for G. Claims $2.12-2.14$ can be easily verified, and so the proofs are omitted.

Fig. 10 gives a general idea of the order in which we will trace through the complete subgraphs. In the claims that follow, we consider the possibilities that one or more of the sets is empty.

Claim 2.12. There exists a path W_{1} in G such that $V\left(W_{1}\right)=A_{l} \cup S_{1}$ and such that at least one of the end vertices of W_{1} is in A_{l}.

Claim 2.13. Let a_{l} be a vertex of A_{l}. There exists a path W_{2} in G such that $V\left(W_{2}\right)=$ $\left\{a_{l}\right\} \cup A_{l-1} \cup S_{2}$ and such that the end vertices of W_{2} are a_{l} and some vertex of A_{l-1}.

Claim 2.14. Let a_{l-1} be a vertex of A_{l-1}. There exists a path W_{3} in G such that

$$
V\left(P_{3}\right)=\left\{a_{l-1}\right\} \cup A_{l-2} \cup A_{l-3} \cup A_{l-4} \cup \cdots \cup A_{3}
$$

and such that the end vertices of W_{3} are a_{l-1} and some vertex of A_{3}.

The proofs of the next two claims are conceptually quite simple. However, due to the various possible sizes of the sets involved, there are a number of cases and subcases. For this reason, we include only the proof of Claim 2.16 for the case where $S_{5 c}$ and
$S_{5 n}$ are both nonempty. The proof of this case is typical of those of the other cases in these two claims.

For notational convenience let us partition the set A_{1} into two disjoint sets A_{1}^{c} and A_{1}^{n}, where A_{1}^{c} is the set of all continuers in A_{1}, and A_{1}^{n} is the set of all noncontinuers in A_{1}. Since $\left\langle A_{1}\right\rangle$ is complete, it is clear that both A_{1}^{c} and A_{1}^{n} induce complete subgraphs. Also, given a complete induced subgraph $\langle R\rangle$ of G, and given vertices $a, b \in R$, let $H_{R}[a, b]$ denote a Hamiltonian path for $\langle R\rangle$ which has end vertices a and b, and let $H_{R}[a, \star]$ denote a Hamiltonian path for $\langle R\rangle$ that has a as one of its end vertices.

Claim 2.15. Let a_{3} be a vertex of A_{3}. There exists a path W_{4} in G such thatV $\left(W_{4}\right)=$ $\left\{a_{3}\right\} \cup A_{2} \cup S_{4 c} \cup S_{4 n}$ and such that the end vertices of W_{4} are a_{3} and some vertex of $A_{2} \cup S_{4}$.

Claim 2.16. Let p be a vertex in $A_{2} \cup S_{4}$. There exists a path W_{5} in G such that $V\left(W_{5}\right)=\{p\} \cup A_{1} \cup S_{5 c} \cup S_{5 n} \cup\{v\}$ and such that the end vertices of W_{5} are p and v.

Proof. Suppose $S_{5 c} \neq \emptyset$ and $S_{5 n} \neq \emptyset$.
Note that this case implies that $A_{1}^{n} \neq \emptyset$ (and we know already that $A_{1}^{\mathrm{c}} \neq \emptyset$).
Case 1: Suppose that p is adjacent to a vertex, say $s_{5 n}$, of $S_{5 n}$.
Let $s_{5 c}$ be a vertex of $S_{5 c}$ and let $a_{1} \in A_{1}^{\mathrm{c}}$ be a neighbor of $s_{5 c}$. Further, let T be a Hamiltonian path for $\left\langle S_{5 n}\right\rangle$ with end vertices $s_{5 n}$ and some x, and let $a_{1}^{\prime} \in A_{1}^{n}$ be a neighbor of x.

Let the path W_{5} (Fig. 11(a)) be described as follows:

$$
p,\left[s_{5 n}, x\right]_{T}, H_{A_{1}}\left[a_{1}^{\prime}, a_{1}\right], H_{S_{5 c}}\left[s_{5 c}, \star\right], v .
$$

Case 2: Suppose that p is adjacent to a vertex, say $s_{5 c}$, of $S_{5 c}$. (Note that Cases 1 and 2 may both be true. If this is the case, though, then either argument will suffice to give us the desired path.)

Let $s_{5 n}$ be a vertex of $S_{5 n}$, and let $a_{1} \in A_{1}^{n}$ be a neighbor of $s_{5 n}$. If $\left|S_{5 c}\right|>1$, then let $s_{5 c}^{\prime}$ be a vertex of $S_{5 c}$ that is different from $s_{5 c}$. Otherwise, let $s_{5 c}^{\prime}=s_{5 c}$. Further, let $a_{1}^{\prime} \in A_{1}^{\mathrm{c}}$ be a neighbor of $s_{5 c}^{\prime}$.

Let W_{5} (Fig. 11(b)) be described by

$$
p, H_{S_{5 c}}\left[s_{5 c}, s_{5 c}^{\prime}\right], H_{A_{1}}\left[a_{1}^{\prime}, a_{1}\right], H_{S_{5 n}}\left[s_{5 n}, \star\right], v .
$$

Case 3: Suppose p is nonadjacent to all of $S_{5 c}$ and $S_{5 n}$.
Subcase 3.1. Suppose that p and a vertex of $S_{5 n}$, say $s_{5 n}$, share a neighbor in A_{1}, say a_{1}. Note that a_{1} is necessarily in A_{1}^{n}.

Let x be an arbitrary element of $S_{5 c}$. We know from Claim 2.10 that x is adjacent to a_{1}. We also know that neither the edge $p x$ nor the edge $p s_{5 n}$ is present. Therefore, since G is claw-free, it must be that the edge $x s_{5 n}$ is present. Therefore, since $x \in S_{5 c}$ was arbitrary, we can conclude that $s_{5 n}$ is adjacent to every member of $S_{5 c}$.

Fig. 11.

Fig. 12.

If we let $s_{5 c}$ be a vertex of $S_{5 c}$, and we let $a_{1}^{\prime} \in A_{1}^{\mathrm{c}}$ be one of its neighbors, then let the path W_{5} (Fig. 12) be represented by

$$
p, H_{A_{1}}\left[a_{1}, a_{1}^{\prime}\right], H_{S_{5 c}}\left[s_{5 c}, \star\right], H_{S_{S_{n}}}\left[s_{5 n}, \star\right], v .
$$

Subcase 3.2. Suppose that p does not share a neighbor in A_{1} with any vertex of $S_{5 n}$.

Let $a_{1} \in A_{1}$ be a neighbor of p, and let $a_{1}^{\prime} \in A_{1}^{\mathrm{n}}$ be a neighbor of $s_{5 n} \in S_{5 n}$ (thus, $a_{1} \neq a_{1}^{\prime}$).

Subcase 3.2.1. Suppose there exists a vertex $s_{5 c} \in S_{5 c}$ such that $\left|N_{A_{1}^{\mathrm{c}}}\left(s_{5 c}\right) \cup\left\{a_{1}\right\}\right|>1$.
Let $a_{1}^{\prime \prime} \in A_{1}^{\mathrm{c}}$ be a neighbor of $s_{5 c}$ that is different from a_{1}, and let W_{5} be the following path: $p, H_{A_{1} \backslash\left\{a_{1}^{\prime}\right\}}\left[a_{1}, a_{1}^{\prime \prime}\right], H_{S_{S_{c}}}\left[s_{5 c}, \star\right], a_{1}^{\prime}, H_{S_{5 n}}\left[s_{5 n}, \star\right], v$.

Subcase 3.2.2. Suppose that $\left|N_{A_{1}^{c}}(x) \cup\left\{a_{1}\right\}\right|=1$ for all $x \in S_{5 c}$. That is, a_{1} is necessarily a continuer, and it is the only one adjacent to an element of $S_{5 c}$.

Let $s_{5 c} \in S_{5 c}$ be a neighbor of a_{1}.
Subcase 3.2.2.1. Suppose that $\left|A_{1}^{\mathrm{c}}\right|=1$ and that $\left|A_{1}^{\mathrm{n}}\right|=1$. That is, $A_{1}^{\mathrm{c}}=\left\{a_{1}\right\}$ and $A_{1}^{\mathrm{n}}=\left\{a_{1}^{\prime}\right\}$.

Fig. 13.

Let W_{5} (Fig. 13(a)) be as follows:

$$
p, a_{1}, H_{S_{5 c}}\left[s_{5 c}, \star\right], a_{1}^{\prime}, H_{S_{5_{n}}}\left[s_{5 n}, \star\right], v .
$$

Subcase 3.2.2.2. Suppose that $\left|A_{1}^{\mathrm{c}}\right|=1$ and that $\left|A_{1}^{\mathrm{n}}\right|>1$.
Let $a_{1}^{\prime \prime} \in A_{1}^{\mathrm{n}}$ be a vertex different from a_{1}^{\prime}, and let W_{5} (Fig. 13(b)) be

$$
p, a_{1}, H_{S_{5 c}}\left[s_{5 c}, \star\right], H_{A_{1} \backslash\left\{a_{1}\right\}}\left[a_{1}^{\prime \prime}, a_{1}^{\prime}\right], H_{S_{5 n}}\left[s_{5 n}, \star\right], v
$$

Subcase 3.2.2.3. Suppose that $\left|A_{1}^{\mathrm{c}}\right|>1$.
Let $a_{1}^{\prime \prime \prime} \in A_{1}^{\mathrm{c}}$ be a vertex different from a_{1}. Since $p s_{5 c}$ and $a_{1}^{\prime \prime \prime} s_{5 c}$ are not edges of G, it must be that $p a_{1}^{\prime \prime \prime}$ is an edge of G, since otherwise $\left\langle\left\{a_{1}, p, s_{5 c}, a_{1}^{\prime \prime \prime}\right\}\right\rangle$ would be an induced claw.

Let the path W_{5} be as follows: $p, H_{A_{1} \backslash\left\{a_{1}^{\prime}\right\}}\left[a_{1}^{\prime \prime \prime}, a_{1}\right], H_{S_{5 c}}\left[s_{5 c}, \star\right], a_{1}^{\prime}, H_{S_{5 n}}\left[s_{5 n}, \star\right], v$.
Thus the proof of this case is complete. The other cases are similar.
Claim 2.17. There exists a path W_{6} in G such that

$$
V\left(W_{6}\right)=\{v\} \cup S_{3} \cup B_{1} \cup S_{5}^{B} \cup B_{2} \cup B_{3} \cup \cdots \cup B_{m}
$$

and such that v is an end vertex of W_{6}.

Proof. Again we present a proof for a particular case, namely the case where both S_{3} and S_{5}^{B} are nonempty. The other cases can be easily verified.

Let W_{6}^{m} be a Hamiltonian path for $\left\langle B_{m}\right\rangle$, and suppose its end vertices are b_{m} and b_{m}^{\prime}. Let b_{m-1}^{\prime} be a vertex of B_{m-1} which is adjacent to b_{m}, and let W_{6}^{m-1} be a Hamiltonian path for $\left\langle B_{m-1}\right\rangle$ that has b_{m-1}^{\prime} as an end vertex. Let b_{m-1} be the other end vertex of W_{6}^{m-1}.

We continue in this fashion to obtain paths W_{6}^{i} and pairs of vertices b_{i}, b_{i}^{\prime} where for each $i \in\{1,2, \ldots, m\}$, the path W_{6}^{i} is a Hamiltonian path for $\left\langle B_{i}\right\rangle$ with end vertices b_{i} and b_{i}^{\prime} and where for each $i \in\{2,3, \ldots, m\}, b_{i}$ is adjacent to b_{i-1}^{\prime}.

Let W_{6}^{\prime} be a Hamiltonian path for $\left\langle S_{5}^{B}\right\rangle$, say with endpoints s_{5} and $s_{5}^{\prime}\left(s_{5}=s_{5}^{\prime}\right.$ if $\left|S_{5}^{B}\right|=1$), and let $W_{6}^{\prime \prime}$ be a Hamiltonian path for $\left\langle S_{3}\right\rangle$, with endpoints s_{3} and s_{3}^{\prime}.

From Claim 2.9, we know that $s_{5}^{\prime} \in S_{5}^{B}$ is adjacent to $b_{2} \in B_{2}$. Further, it follows from the definition of the set S_{5}^{B} and from Claim 2.8 that s_{5} is adjacent to b_{1}^{\prime}. Moreover, it follows from Claim 2.7 that b_{1} is adjacent to s_{3}^{\prime} and that s_{3} is adjacent to v.

Let the path W_{6} be described by

$$
W_{6}: v,\left[s_{3}, s_{3}^{\prime}\right]_{W_{6}^{\prime \prime}},\left[b_{1}, b_{1}^{\prime}\right]_{W_{6}^{1}},\left[s_{5}, s_{5}^{\prime}\right]_{W_{6}^{\prime}},\left[b_{2}, b_{2}^{\prime}\right]_{W_{6}^{2}}, \ldots,\left[b_{m}, b_{m}^{\prime}\right]_{W_{6}^{m}} .
$$

This path W_{6} is the path we seek for this case.

Having completed this series of claims, we can now proceed to "piece together" our Hamiltonian path for G.

Let W_{1} be a path as described in Claim 2.12. Let a_{l} be an end vertex that is in A_{l}, and let x be the other end vertex. Given this $a_{l} \in A_{l}$, let W_{2} be a path that satisfies the statement of Claim 2.13, and let $a_{l-1} \in A_{l-1}$ be the other end vertex of W_{2}. Given this $a_{l-1} \in A_{l-1}$, let W_{3} be a path with the properties given in Claim 2.14, and let $a_{3} \in A_{3}$ be the other end vertex of W_{3}. Next, given this $a_{3} \in A_{3}$, let W_{4} be a path that fits the description given in Claim 2.15, and let $p \in A_{2} \cup S_{4}$ be the other end vertex of W_{4}. Applying Claim 2.16 to this vertex p, let W_{5} be a path as described in the statement of the claim. Finally, let W_{6} be a path with the properties given in Claim 2.17, with end vertices v and some y.

A Hamiltonian path for G is then given by

$$
\left[x, a_{l}\right]_{W_{1}},\left(a_{l}, a_{l-1}\right]_{W_{2}},\left(a_{l-1}, a_{3}\right]_{W_{3}},\left(a_{3}, p\right]_{W_{4}},(p, v]_{W_{5}},(v, y]_{W_{6}} .
$$

G is therefore traceable, and the proof of the theorem is complete.
Note here that

$$
n \geqslant \frac{4}{3}\left(2 \sum_{i=1}^{2 k}(r-1)^{i}\right)
$$

suffices in the theorem. Also note that if $r<4$ and/or $k<2$, the result follows from the pairs work in [2].

Corollary 2.2. Let $r \geqslant 4$ and $k \geqslant 2$ be fixed integers. Let R, S and T be connected induced subgraphs of $K_{1,3}, Q_{r}$, and N_{k}, respectively. If G is a connected graph of order n that is $\{R, S, T\}$-free, and if n is sufficiently large, then G is traceable.

3. The characterization

In this section we give a characterization of the triples of subgraphs that imply traceability when forbidden. Note here that since being P_{3}-free implies completeness (and thus traceability), any pair or triple that involves P_{3} will of course also imply traceability. In [2] five other pairs are shown to imply traceability when forbidden. Each pair consists of the claw and one of the five following graphs: $N_{1}, B, Z_{1}, K_{3}, P_{4}$ (see Fig. 1). If a triple contains any of these pairs then that triple will also (trivially)

Fig. 14. Infinite families of nontraceable graphs.
imply the existence of a Hamiltonian path. In view of this, the theorem in this section gives a characterization of all "nontrivial" families of triples that enjoy this property.

In what follows, $\mathrm{CI}(G)$ denotes the set of connected induced subgraphs of a given graph G.

Theorem 3.1. Let $R, S, T\left(\neq P_{3}\right)$ be connected graphs such that no forbidden pair of them implies traceability. If being $\{R, S, T\}$-free implies traceability, then one of the following is true (up to the ordering of R, S, and T):

1. $R=K_{1, m}, S=Y_{l}, T \in \mathrm{CI}\left(Z_{1}\right)$ for some $m \geqslant 4, l \geqslant 4$;
2. $R=K_{1, m}, S=P_{4}, T \in \mathrm{CI}\left(V_{r}\right)$ for some $m \geqslant 4, r \geqslant 3$;
3. $R=K_{1, m}, S=P_{l}, T \in \mathrm{CI}\left(Q_{r}\right)$ for some $m \geqslant 4, l \geqslant 5, r \geqslant 3$;
4. $R=K_{1,3}, S \in \mathrm{CI}\left(Q_{r}\right), T \in \mathrm{CI}\left(N_{k}\right) \quad$ for some $r \geqslant 4, k \geqslant 2$;
5. $R=K_{1,3}, S \in \mathrm{CI}\left(E_{r}\right), T=Z_{2} \quad$ for some $r \geqslant 4$.

Proof. Suppose that being $\{R, S, T\}$-free implies traceability, and consider the infinite families of nontraceable graphs in Fig. 14.

Case 1: Suppose that none of R, S, or T is isomorphic to $K_{1,3}$.

Consider the graph G_{0}. It is nontraceable, and so it must be that G_{0} contains one of R, S, or T as an induced subgraph. Suppose, without loss of generality, that G_{0} contains R.

Then $R=K_{1, r}$ for some $r \geqslant 4$ (if $r=2$ or $r=3$, then $R=P_{3}$ or $R=K_{1,3}$, respectively, and each of these is a contradiction to our assumptions).

We see that the graph G_{5} is nontraceable and R-free, and so G_{5} must contain either S or T as an induced subgraph. Assume without loss that G_{5} contains T. Therefore $T \in \mathrm{CI}\left(V_{m}\right)$ for some $m \geqslant 3$ (again, if $m<3$ we get contradictions).

At this point we can see that the graph G_{4} is nontraceable and $\{R, T\}$-free, and so it must be that G_{4} contains S. Thus, $S \in \mathrm{CI}\left(G_{4}\right)$. That is, either $S=Y_{l}$ or $S=P_{l}$ for some $l \geqslant 4(l<4$ again contradicts our assumptions).

Subcase 1.1: Suppose $S=Y_{l}$ for some $l \geqslant 4$.
The graph G_{1} is also nontraceable and $\{R, S\}$-free, and so it must be that T is contained in G_{1}. This means that $T \in \mathrm{CI}\left(E_{m}\right)$ for some $m \geqslant 3$. Since it is also true that $T \in \mathrm{CI}\left(V_{m}\right)$ for some $m \geqslant 3$, we can conclude that $T \in \mathrm{CI}\left(Q_{m}\right)$ for some $m \geqslant 3$.

Since G_{2} is also nontraceable and $\{R, S\}$-free, T must also be an induced subgraph of G_{2}. Therefore it must be that $T \in \mathrm{CI}\left(Z_{1}\right)$.

So, in this subcase we have

$$
R=K_{1, r}, S=Y_{l}, T \in \mathrm{CI}\left(Z_{1}\right) .
$$

Subcase 1.2: Suppose $S=P_{l}$ for some $l \geqslant 4$.
Subcase 1.2.1: Suppose $S=P_{4}$.
In this case, we simply have

$$
R=K_{1, r}, S=P_{4}, T \in \mathrm{CI}\left(V_{m}\right)
$$

Subcase 1.2.2: Suppose that $S=P_{l}$ for some $l \geqslant 5$.
Consider the graph G_{1}. It is both nontraceable and $\{R, S\}$-free. Therefore T must be an induced subgraph of G_{1}. Since we also know that T is an induced subgraph of V_{m} for some $m \geqslant 3$, it must be that $T \in \mathrm{CI}\left(Q_{m}\right)$ for some $m \geqslant 3$.

Thus in this subcase we have

$$
R=K_{1, r}, S=P_{l}, T \in \mathrm{CI}\left(Q_{m}\right)
$$

Case 2: Suppose that one of R, S, or T is $K_{1,3}$.
Suppose without loss that $R=K_{1,3}$.
Consider the graph G_{1}. It is nontraceable and $K_{1,3}$-free, so it must be that G_{1} contains one of S or T. Suppose, again without loss, that G_{1} contains S. Then $S \in \operatorname{CI}\left(E_{r}\right)$ for some $r \geqslant 4$ (note that $r \neq 3$ since then $E_{r}=N$, and then R, S would be a forbidden pair that implied traceability). More specifically, we can say that $S \in \mathrm{CI}\left(E_{r}\right) \backslash \mathrm{CI}(N)$ for some $r \geqslant 4$.

Now consider the graph G_{2}. G_{2} is nontraceable and $\{R, S\}$-free. Thus G_{2} must contain T as an induced subgraph. Hence, $T \in \mathrm{CI}\left(N_{k}\right) \backslash \mathrm{CI}(N)$ for some $k \geqslant 2$ (note that $k=1$ would again yield an N).

Subcase 2.1: Suppose $T \neq Z_{2}$.

Consider the graph $G_{3} . G_{3}$ is nontraceable and $\{R, T\}$-free, so S must be an induced subgraph of G_{3}. But we know from before that $S \in \mathrm{CI}\left(E_{r}\right) \backslash \mathrm{CI}(N)$ for some $r \geqslant 4$. Thus, S is an induced subgraph of both G_{1} and G_{3}. Hence we can conclude that $S \in \mathrm{CI}\left(Q_{r}\right)$ for some $r \geqslant 4$.

Therefore, in this subcase, we have

$$
R=K_{1,3}, S \in \mathrm{CI}\left(Q_{r}\right), T \in \mathrm{CI}\left(N_{k}\right)
$$

Subcase 2.2: Suppose $T=Z_{2}$.
In this case, we simply have

$$
R=K_{1,3}, S \in \mathrm{CI}\left(E_{r}\right), T=Z_{2}
$$

The proof of the theorem is complete.

4. For further reading

The following reference is also of interest to the reader: [1]

Acknowledgements

The authors wish to thank the referees of this paper for their time, their careful consideration, and their helpful suggestions.

References

[1] D. Duffus, R.J. Gould, M.S. Jacobson, Forbidden subgraphs and the Hamiltonian theme, in: Chartrand et al. (Eds.), The Theory and Applications of Graphs, Wiley-Interscience, New York, 1981, pp. 297-316.
[2] R.J., Faudree, R.J. Gould, Characterizing forbidden pairs for Hamiltonian properties, Discrete Math., to appear.
[3] R.J. Gould, Graph Theory. Benjamin/Cummings Pub., Menlo Park, CA, 1988.
[4] R.J. Gould, J.M. Harris, Forbidden triples of subgraphs and traceability, Congressus Numerantium 108 (1995) 183-192.
[5] R.J. Gould, J.M. Harris, Traceability in graphs with forbidden triples of subgraphs, preprint.
[6] M.M. Matthews, D.P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory 8 (1984) 139-146.

[^0]: ${ }^{*}$ Corresponding author. Tel.: +1-828-262-2374; fax: +1-828-265-8617.
 E-mail address: jmh@math.appstate.edu (J.M. Harris)
 ${ }^{1}$ Research supported in part by O.N.R. Grant N00014-97-1-0499.

