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Abstract 

Moon and Moser (Israel J. Math. 1 (1962) 163-165) showed that if G is a balanced bipartite 
graph of order 2n and minimum degree 0>~(n + 1)/2, then G is hamiltonian. Recently, it was 
shown that their well-known degree condition also implies the existence of a 2-factor with exactly 
k cycles provided n~> max{52,2k -~ + 1}. In this paper, we show that a similar degree condition 
implies that for each perfect matching M, there exists a 2-factor with exactly k cycles including 
all edges of M. @ 1999 Published by Elsevier Science B.V. All rights reserved 

1. Introduction 

All graphs considered are simple, without loops or multiple edges. An m-factor of 

a graph G is an m-regular subgraph of G that spans the vertex set V(G) .  From time 

to time, we call a 1-factor a perJect matching.  It is readily seen that a 1-factor of 

G is a collection of independent edges that covers all vertices of G and a 2-factor 

is a collection of independent cycles that covers all vertices of G. In 1952, Dirac 

[4] determined how large the minimum degree must be to guarantee the existence of 

a hamiltonian cycle, a 2-factor with exactly one cycle. 

Theorem 1 (Dirac [4]). Le t  G be a graph o f  order n (n>~3). 1.1 the m in imum de¢]ree 

6 ( G ) ) n / 2 ,  then G has a hamil tonian c3,cle. 

Hfiggkvist [5] showed that when n is even, a similar hypothesis implies something 

much stronger. 
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Theorem 2 (H~iggkvist [5]). Let G be a graph on n vertices, in which the degree 

sum of  any two nonadjacent vertices is at least n + 1, where n >~ 3. Then each perfect 
matching is contained in a hamiltonian cycle. 

Later, stronger results were obtained by Berman [1] and Jackson and Wormald [6]. 
Recently, Dirac's result has been generalized as follows. 

Theorem 3 (Bran& et al. [2]). Let k be a positive integer and G be a graph o f  order 
n (n ~>4k). I f  the minimum degree 6(G)>>-n/2, then G contains a 2-factor with exactly 

k components. 

We believe that similar hypothesis can also imply that each perfect matching is 
contained in a 2-factor with exactly k components, for every k <~n/4. The purpose 
of this paper is to support this thought by proving a similar result for bipartite 
graphs. A bipartite graph (X ,Y ;E)  is called balanced if IxI--IYI. A bipartite 
graph has a 2-factor only if it is balanced. Moon and Moser [7] obtained the 
following hamiltonian result for balanced bipartite graphs using a degree sum 
condition. 

Theorem 4 (Moon and Moser [7]). Let G be a balanced bipartite graph on 2n 

vertices. I f  d(u) + d (v )>n  for every two nonadjacent vertices u and v in different 
parts of  G, then G is hamiltonian. Hence, if  6(G)>~(n + l)/2, then G is 
hamiltonian. 

Theorem 4 was recently generalized in [3]. 

Theorem 5 (Chen et al., preprint). Let k be a positive integer and let G be a bal- 
anced bipartite graph of  order 2n where n>>, max{52,2k 2 + 1}. Then, i f  6(G) >>, 
(n + 1)/2, G contains a 2-factor with exactly k cycles. 

Las Vergnas proved the following in [8]. 

Theorem 6 (Las Vergnas [8]). Let G be a balanced bipartite graph o f  order 2n. I f  

d(u) + d(v)>~n + 2 

for every pair of  nonadjacent vertices u and v (in different parts), then each perfect 
matching of  G is contained in a hamiltonian cycle. 

The purpose of this paper is to prove the following related result. 

Theorem 7. Let k be a positive integer and let G be a balanced bipartite graph o f  
order 2n where n ~9k.  I f  ~ (G)~(n  + 2)/2, then for every perfect matching M, G has 
a 2-factor with exactly k components including every edge o f  M. 
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Remark. Since the conclusion is that G contains at least k vertex-disjoint cycles, it 

is readily seen that n ~>2k is necessary. The condition n>~9k comes from our proof 
techniques. The following example shows that n >3k  is necessary. 

Example. Form a bipartite graph H as follows: Take independent sets of vertices of 

cardinality k = I~l = I~l  for i = 0 , 1 . 2 .  Now place all edges between V, and W,~ j as 
well as between Vi and ~ (subscripts taken mod3). In addition place a matching 
between the sets VL and W0, V2 and /411, and between ~ and W2. These edges form 
the matching M. It is now easily seen that any cycle containing alternating matching 
and nonmatching edges must have length at least 6. Thus, the full range of possible 
cycles is not available, hence n > 3k. [] 

It is not difficult to see that the minimum condition 6>~(n + 2),/2 is best possible 
for k = 1. However, for k>~2, the minimum degree 6>>,n/2 is necessary. When k >2,  
6=n /2  is not sufficient. For example, the graph G=2K,.,,. (for r odd) fails to have 
a 2-factor with exactly r cycles. It is unknown whether (n + 1 ),/2 is sufficient when 
k~>2. 

In the following we will reserve the graph G = ( X ,  Y;E)  to be a balanced bipartite 

graph of order 2n. Let G be a balanced bipartite graph and M a perfect matching of G. 
A cycle C is called an M-cycle if every other edge of C belongs to M, a path P[u, t] 
is called an M-path if the cycle P[u, v]u is an M-cycle, and a 2-factor of  G is called 
an M-2-factor if  every component of  the 2-factor is an M-cycle. For any two disjoint 
subgraphs A and B of G, let E(A,B) denote the set of  edges with one endvertex in ,4 
and the other endvertex in B and set e(A ,B)= IE(A,B)I . In the case A CA" and M is 
a matching, we define 

A_= {yE Y: x y E M  and x E A } .  

If  A C Y then A is defined analogously. Further, for any W C_ V(G), we let (W / de- 
note the subgraph induced by W. For each vertex vE V(G), we let Nt t (v ) :N(~ : )N 

V(H) and d n ( v ) =  INH(v)l . 

2. The proof of Theorem 7 

The proof will be divided into lemmas. It is readily seen that the main theorem 
follows from Lemmas 1 and 5. 

Lemma 1. Let k be a positive integer. [f  n>~9k and the minimum degree 6(G)>-n/2, 
then .for every perfect matchin9 M, G contains k vertex-disjoint M-cycles. 

Lemma 2. Let M be a perfect matchin9 in G and suppose Cl :xtylx2y2. . .x~.y,xl  is 
a longest M-cycle in G with xiYi E M f o r  i=  1,2 . . . . .  s and G -  V(C) has hamiltonian 
cycle C2 = ul vl u2v2.., utvtUl with ujvj E M for j = 1,2 . . . . .  t. I f  N(ui) N V(CB ) # ~ and 
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N ( v i - t ) n  V(Cj) ¢ O, then 

d(ui) + d(vi-1 ) ~ n  + 1. 

Lemma 3. Let M be a perfect matching of  G and let C be a longest M-cycle and 
let P=ulvlu2v2. . .utvt  be an M-path in G -  V(C), then 

dc(ul ) + dc(vt ) <<, IV( C)I/2. 

L e m m a  4. Let M be a perfect matching in G. I f  for every M-path ulvlU2Vz...utvt, 
we have d(ul) + d(vt)>>-n + 2, then G has a hamilton/an cycle which includes every 
edge of M. 

Lemma 5. Let M be a perfect matching of G. I f  the minimum degree ~ >~ ( n + 2 ) / 2  and 
G contains k vertex-disjoint M-cycles, then G contains an M-2-factor with exactly k 
cycles. 

2.1. Proof of  Lemma 1 

In fact, we will show that G has k vertex-disjoint M-cycles ,  which are either 

4-cycles or 6-cycles. To the contrary, we assume that G has t vertex-disjoint M-cycles  

o f  length 4 or 6 with t<~k - 1 and G does not contain t + 1 vertex-disjoint M-cyc les  

o f  lengths 4 or 6. Note that t may be zero. Let C1, C2 . . . .  , Ct be t vertex-disjoint cy- 

cles such that ~ IV(Ci)l is minimum under the constraint IV(fe)t~6. Without loss 

o f  generality, we assume that C1, C2 . . . . .  C~. are 4-cycles and C,+I . . . . .  Ct are 6-cycles. 

Let H = G - Ui_l V(G) .  

Cla im 1. Let uv be an edge of M in H and Ci (s + l <~i<~t) a 6-cycle, then e({u,v}, 
G)~<3. 

Proof .  Let Ci=ulvlu2v2u3v3ul with ulVl,UzV2,U3V3 EM. For each j ( j = 1 , 2 , 3 ) ,  we 

cannot have both uvj E E and vuj E E, otherwise we can use the 4-cycle u/I~iuvuj to 
t 

replace C~, which contradicts the minimali ty o f  ~i=~[V(Ci)[. [] 

Claim 2. There is an edge uovo E M N H such that 

e({uo, vo}, V(G))~<3 f o r  each i= 1,2 . . . . .  s. 

Proof .  To the contrary, assume that for every edge u v E M A H  there is a cycle Ci, 

i = 1 , 2  . . . . .  s such that e ({u ,v} ,G)~>4 ,  that is, V ( C i ) U  {u,v} induces a complete 

bipartite graph K3,3 (or we could swap cycles to find the needed edge). Since 

2n - 6t 9k - 6t 
[Mf3H[>~]V(H)]/2>~ 2 >~ 2 >-3k>t, 
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by the Pigeonhole principle, M ~ H  contains two edges b/iU I and u2v2 and there is 

a 4-cycle Ci (i<~s) such that 

e({u, ,v ,} ,C~)=4 and e({u2, v2} ,C , ) -4 .  

Then, it is readily seen that the induced subgraph {{ul, vl,u2, v2} U V(C,)) contains 

two M-cycles of  length 4 in H, which contradicts the maximality of  the number of  

4-cycles (M-cycles) and 6-cycles (M-cycles). This contradiction completes the proof 

o f  the claim. 

Now suppose uovo E M N H  such that 

e({uo, co},Ci)~<3 for i = 1 , 2  . . . . .  t. 

For convenience, let 

and 

.2  = I N . ( u o )  - (vo}l  

and 

and 

n3 = I N ~ (  ~'o ) - {uo)l  

IV(H) 
/7 4 - -  - -  2 IN.(uo)UX.(~,o)l. 

Since H contains no M-cycle o f  length 4, Nlt(Uo)NNlt(ro)-{uo}.  In particular, 

n = n l + n 2 + n 3 + n 4 + l .  Note that nl = 3 t - s  and n2+n3+2=dH(Uo)+dtt(vo)>~n 3t, 
that is, n2 + n3 ~>n - 3t - 2. Thus, 

nl + n 4 < ~ n - ( n - 3 t - 2 )  - l = 3 t +  1. 

Without loss o f  generality, in the remainder of  the proof we assume that n2 ~< n~. 

Claim 3. For every xENH(UO), the inequality IN(x)AN~t(uo) {u0}l~>(n2 + 2)/2 
holds. 

Proof.  To the contrary, we assume I N ( x ) A N H ( u o ) -  {v0}l~<(n2 + 1)/2. Since 
H contains no M-cycle of  length 6, NH(x)~(N(t~0) - {v0}) 0, which implies 

n + 2  
INN(x) f~NH(Uo) - -  { V 0 } l  >~d(x) - (nl + n4 + 1 ) > ~ -  - (nt + n4 + 1). 

2 

Thus, 

(n + 2 ) / 2 - ( n l  + n4 -+- 1)~<(n2 + 1)/2. (1) 
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Since n2 ~<n3, w e  have 

n2 ~ < ( ( n -  (nl + n4 + 1))/2. (2) 

Substituting Eq. (2) into Eq. (1) we obtain n ~< (n - (nl + n4 + 1 ))/2 + 2(nl + n4 ) + 1. 
Upon solving we see that 

n<~3(nl + n4) + 2 <9t + 5<9k, 

which contradicts the assumption n/> 9k, completing the proof  of  Claim 3. [] 

We consider the subgraph G(XI tA Y1) induced by the union of  Yl = N H ( u 0 ) -  {v0} 

and X1 = Y_LI. Clearly, [Xl[: lYl[=n2.  Then Claim 3 shows that [N(x)NYll>~([Yll + 
2)/2 = (n2 + 2)/2 for each x EX1. By the Pigeonhole principle, there is a Y0 C Yl such 

that IN(To) NXII >~(IXI[ + 2)/2 = (n2 + 2)/2. Assume xoYo E M. Then, [N(x0) NN(y0)I  
t> 2. Thus, G(X1 U YI ) contains an M-cycle  of  length 4 in H ,  a contradiction to our 

choice of  C1 . . . . .  Ct. This contradiction completes the proof  of  Lemma 1. [] 

2.2. Proof of  Lemma 2 

First we note that s + t = n. Now, without loss of  generality, we assume that i = 1 

(and in this case that i -  1 is s). Since N(u l )N  V ( C 1 ) ¢ 0  and N(vt)N V(CI)~:O, we 
may assume that uly~. EE and that the closest neighbor of  ys along C1 from vt is xr+l. 
That is, we assume that ulys, vtxr+l c E  and that 

N(ul)  N {yl . . . . .  y,.} = O, 

N(vs) A {xl . . . . .  Xr} = O. 

Since C1 is a longest M-cycle,  ulYi EE implies that vtxi+l ~ E  or a longer cycle is 
formed. For that same reason, we have r/> t. Thus, 

I V(C,)l 
dcl(vt)<~ ~ r - ( d c l ( u l ) -  1) 

or  

dc~ (ut )  + dc, (vt) ~ I V(C1)1/2 - (r  - 1) ~<n - 2t + 1, 

which implies that 

d(ul) + d(vt)<~(n - 2t + 1) + 2 t=n  + 1. [] 

2.3. Proof of  Lemma 3 

Assume C=Xlylx2yz...XsYsXl with xiYi@M for i = 1 , 2  . . . . .  s. Since C is one 
of  the longest M-cycles,  uiYiCE implies vtxi+l q~E. Then, dc(ui) + dc(vt)<~s = 
IV(C)l/2. [] 
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2.4. Proof o f  Lemma 4 

We prove Lemma 4 by induction on n. Since d(Ul )+d(vt)>~n+2 implies n >/2, and 

for n = 2, G =/£2.2, Lemma 4 is clearly true when n = 2. Assume that Lemma 4 is true 

for balanced bipartite graphs with order less than 2n. Let G = (X ,  Y;E)  be a balanced 

bipartite graph of  order 2n and let C1 =xlylx2Y2...x.~.y~xl be a longest M-cyc le  of  G. 

Further, we assume that s<n.  Now let H = G -  V(C1 ). For every M-path UlVt... utter 
in H ,  by Lemma 3, dH(ul) + dn(vt)>~(n + 2) - s =  ]V(H)I/2 + 2. By the induction 

hypothesis, H has a hamilton/an cycle C2 = ulv2u2w_... UmVmUl with uiv, E M for each 

i = 1,2 . . . . .  m. By Lemma 2, either we have N ( u i ) n  V(CI ) = ~3 or N(vi_ 1)N V(CI ) = O. 
Also, since C is a longest M-cyc le  in G, s ~>m. Furthermore, for any two vertices ug 

and v/, either N ( ui ) n V ( C 1 ) ¢ 0 or N ( Uj ) N V ( C1 ) # O. Otherwise 

n 4. 2 <,d(ui) 4. d(vj) <,IV(H)I <, n, 

a contradiction to our degree condition. Therefore, either 

N(ui)N V(CI) # 0 and N(v j )N  V ( C 1 ) = 0  for all i a n d j  

o r  

N ( u i ) N V ( C I ) = O  and N ( v i ) N V ( C 1 ) ¢ O .  for all i a n d j .  

Without loss o f  generality, assume u l yl  C E, then N(xl )N N ( H ) =  0 or a cycle longer 

than C is formed and N(vl ) N V(C1 ) = 0 follows by the above conditions. This implies 

that d(xl)  + d(Vl) ~<n, a contradiction. [] 

2.5. Proof  o f  Lemma 5 

Let CI,C2 . . . . .  Ck be k vertex-disjoint  M-cyc les  in G such that ~--]~k_ I IV(C~)I is 
maximum over all such possible choices. Assume I V(G)I  = 2hi for each i = 1,2 . . . . .  k 

and n, ~>n2>~...  >~nk. Let n~+, = n  - y ~ ,  hi, that is, tV(G - U/k=, V(Ci))I =2nk+ , .  

Let H = G  - V(Uik=l Ci). By Lemma 3, for each M-path  P[u,v] in H and each cycle 

C~, we have that d c ; ( u ) +  dc,(V)<~n~. In particular then, 

dH(u) -4- dH(v)>~nk+l 4- 2. 

By Lemma 4, H has a hamilton/an cycle Ck+~ which is also an M-cycle .  From the 

choice o f  C1, C2 . . . . .  Ck, we can assume that n l ~> n2 7> ' "  >~ nk+l. Let C k + l =  U l v l u2l'2 

...bln~..lVnk+tU 1 with u/l) i E M  for each i =  1,2 . . . . .  nk+l. By Lemma 3, for any two ver- 

tices u/ and Vm, we have that 

dc, (ul) 4. de, (Vm) <~ ni 

for each i = 1, 2 . . . . .  k. Thus, from our minimum degree condition, for each i = 1,2 . . . . .  k, 

tN(ul)N(V(C~UCk+~))I + IN(vm)n V(C~UCk+,))l>~ni + nk+l + 2 .  
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Since Ck is the longest M-cyc le  in (V(Ck t5 Ck+l )), by Lemma 2, we have that ei- 

ther N(v i) N V(Ck ) = 0 or N(uj+~ ) A V(Ck ) = 0 for each j = l,  2 . . . . .  t. Since the above 

statements are true for all j = 1,2 . . . . .  nk+l, without loss o f  generality, we assume that 

Nca(Ui) # ~ and Nck(vt) = 0 for all j and l. 

C l a i m 4 .  We have that n k + l = 2  and for each Cm (l~<m~<k),  either N (u i )~  
V ( C m)AY  for both i = 1  and 2 or N(v / )D_V(Cm)AX for both j = l  and 2, but, 
not both. 

Proof .  To the contrary, we assume nk+l >~3. Then, dH(Ut)+ dH(Vl)>~nk+l + 2>~5. 

Without loss o f  generality, we assume dH(ul)>~3. Assume ulv~ EE with 1 < s < n k + t .  

Then, V(H) can be parti t ioned into an M-cyc le  C* = ul vl uzv2... U~VsUl and an M-path  

P = u~+l v~ - i . . ,  u,,,+, Vnx_l, 

Assume Ck = xl yjx2Y2.. .x, ,yn, xl with xiYi C M and, without loss o f  generality, as- 

sume u~+l yn, C E (or we would relabel vertices). We consider the M-pa th  

Q = Xl ylx2 y2 • • • xnt yn, Us+ 1Vs+ ! . . .  Un,+~ Vn,+~ • 

Since N ( x l ) A  V ( C k + l ) = 0  (or we contradict our choice o f  cycles G , . . . , C k )  and 

N(v,,,+, )N V(Ck) = 0 ,  we have 

[N(xt ) N V(Ck tO Ck+l )[ + ]N(vk+l) N V(Ck U Ck~l )] <,nk + nk+l. 

However,  since d ( x l ) +  d(v,,,_~ )~>n + 2, there must exist a cycle Ci such that 

dci(xl ) + dc,(Vn,+i ) ~ ni + 2. 

By Lemma 2, Ci can be extended to a hamilton/an M-cyc le  in (V(C/U Q)),  which 

implies that G has an M-2-factor  with exactly k cycles, a contradiction to our assump- 

tions. Hence, nk+l = 2. 

Now, for each M-path  xlyl  . . .Xjyj in <V(Ck)), we have 

dG-v(c',+,)(Xl ) + de; v(ck+,)(yi)>~(n - nk+t ) + 2. 

In the same manner as above, we can show that n k = 2  and for each Cm with 

l~<m-G<k- 1 either 

N(V(Ck) )N V(C,.) N X  = {0 

or  

N( V(Ck )) A V(C~) N Y = O. 

Continuing in this manner, we can show that n3 = n 4  . . . . .  nk = n k + l  = 2 and for 

all i = 1,2 and j = 3, 4 . . . . .  k + 1, either 

N(V(Cj ) )N  V ( C i ) A X = 0  or N ( V ( C j ) ) ~  V(Ci)A Y=(3, but not both hold. 
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Further, we assume that 

Cl =xly~x2y,_...X,,ly,,~Xl, where xiy i c M  for each ~, 

C2:ldllJlld2[t2...bln2Un~Ul, where t( iviEM for each j .  

For any two vertices ui C V(C2) and t,/C V(C2), since for each m>~3 either d< ( u i ) = O  

or d(. ( v / ) =  0 holds, we have 

dc, uq(ui) + dc, uq(vi)>-nl + n2 + 2. 

In particular, we obtain that either d(,, (ui) ¢ 0 or dq (~!j) #; 0. Now by Lemma 2, either 

dq(Ui+l)=O or dcl(Vi)=O for each i =  1,2 . . . . .  n~. Combining the above two state- 

ments, we obtain that either 

N~.,(V(C2)NX)¢13 and N~.~(V(C2)NY)=13 

or 

Nc,(V(C2)~X)=13 and N(,,(V(C2)NY)¢13. 

Without loss of generality, assume 

NG(V(C2)NX)¢13 and N~,,(V(C,)NY)=13. 

Note that for each xi E V(CI ) N X  and each yi E V(C2 ) A Y, d( ,(xi)= 0 and dq (vj) O, 
which gives 

dG i'tClUC'~_t(xi)+dG t(c, uc~_)(vil)n3 +n4 +...n/,.4l + 2 .  

Without loss of generality, we assume that C3 = w lzlw2z2wl and assume N(x~) D {zl, z, } 
for every x, E V(C1 ) N X  and N(vi) D {w i, w2} for each v/E V(C2)N Y. Since N(t,/)/q 

V(C1 )=13 for each vi C V(C2)n  Y and dc uq(Ui)+dc  ,x,:(v/)~>nl + n :  + 2 ,  we obtain 

dc (u¢)>~2. Without loss of generality, we assume ul) ' ,  CE ( s e n 1 )  and u2.t',,, ¢E.  
Then, {V(CI U C2 U C3)} contains the following 2-factor with two M-cycles: 

C~ XlYlX2y 2 ...xs.yszlIUIWIZIXI, 

C~ xsi I.}'~- lXs+2Ys-2 • . .xnl 3'~/u2u2/d3U3 • " " I, tnz l-!~>_w2z2x . I. 

Then, C*, C*, C4, Cs . . . . .  Ck+l form a 2-factor of G with exactly k M-cycles. 
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