On 2-factors containing 1-factors in bipartite graphs

Guantao Chen ${ }^{\text {a }}$, Ronald J. Gould ${ }^{\text {b. *.1 }}$, Michael S. Jacobson ${ }^{\text {c. } 2}$
${ }^{\text {a }}$ Department of Math and Computer Science, Georgia State University, Atlanta, GA 30303. USA
${ }^{\mathrm{b}}$ Department of Math and Computer Science, Emory University, Atlanta, GA 30322. USA
"Department of Math, Louisville University, Louisville, KY 40292, USA

Received 9 July 1997; revised 20 March 1998; accepted 3 August 1998

Abstract

Moon and Moser (Israel J. Math. 1 (1962) 163-165) showed that if G is a balanced bipartite graph of order $2 n$ and minimum degree $\delta \geqslant(n+1) / 2$, then G is hamiltonian. Recently, it was shown that their well-known degree condition also implies the existence of a 2 -factor with exactly k cycles provided $n \geqslant \max \left\{52,2 k^{2}+1\right\}$. In this paper, we show that a similar degree condition implies that for each perfect matching M, there exists a 2 -factor with exactly k cycles including all edges of M. (c) 1999 Published by Elsevier Science B.V. All rights reserved

1. Introduction

All graphs considered are simple, without loops or multiple edges. An m-factor of a graph G is an m-regular subgraph of G that spans the vertex set $V(G)$. From time to time, we call a 1 -factor a perfect matching. It is readily seen that a 1 -factor of G is a collection of independent edges that covers all vertices of G and a 2 -factor is a collection of independent cycles that covers all vertices of G. In 1952, Dirac [4] determined how large the minimum degree must be to guarantee the existence of a hamiltonian cycle, a 2 -factor with exactly one cycle.

Theorem 1 (Dirac [4]). Let G be a graph of order $n(n \geqslant 3)$. If the minimum degree $\delta(G) \geqslant n / 2$, then G has a hamiltonian cycle.

Häggkvist [5] showed that when n is even, a similar hypothesis implies something much stronger.

[^0]0012-365X/99/\$ - see front matter (c) 1999 Published by Elsevier Science B.V. All rights reserved PII: S0012-365X(98)00233-7

Theorem 2 (Häggkvist [5]). Let G be a graph on n vertices, in which the degree sum of any two nonadjacent vertices is at least $n+1$, where $n \geqslant 3$. Then each perfect matching is contained in a hamiltonian cycle.

Later, stronger results were obtained by Berman [1] and Jackson and Wormald [6]. Recently, Dirac's result has been generalized as follows.

Theorem 3 (Brandt et al. [2]). Let k be a positive integer and G be a graph of order $n(n \geqslant 4 k)$. If the minimum degree $\delta(G) \geqslant n / 2$, then G contains a 2 -factor with exactly k components.

We believe that similar hypothesis can also imply that each perfect matching is contained in a 2 -factor with exactly k components, for every $k \leqslant n / 4$. The purpose of this paper is to support this thought by proving a similar result for bipartite graphs. A bipartite graph $(X, Y ; E)$ is called balanced if $|X|=|Y|$. A bipartite graph has a 2 -factor only if it is balanced. Moon and Moser [7] obtained the following hamiltonian result for balanced bipartite graphs using a degree sum condition.

Theorem 4 (Moon and Moser [7]). Let G be a balanced bipartite graph on $2 n$ vertices. If $d(u)+d(v)>n$ for every two nonadjacent vertices u and v in different parts of G, then G is hamiltonian. Hence, if $\delta(G) \geqslant(n+1) / 2$, then G is hamiltonian.

Theorem 4 was recently generalized in [3].
Theorem 5 (Chen et al., preprint). Let k be a positive integer and let G be a balanced bipartite graph of order $2 n$ where $n \geqslant \max \left\{52,2 k^{2}+1\right\}$. Then, if $\delta(G) \geqslant$ $(n+1) / 2$, G contains a 2 -factor with exactly k cycles.

Las Vergnas proved the following in [8].
Theorem 6 (Las Vergnas [8]). Let G be a balanced bipartite graph of order $2 n$. If

$$
d(u)+d(v) \geqslant n+2
$$

for every pair of nonadjacent vertices u and v (in different parts), then each perfect matching of G is contained in a hamiltonian cycle.

The purpose of this paper is to prove the following related result.
Theorem 7. Let k be a positive integer and let G be a balanced bipartite graph of order $2 n$ where $n \geqslant 9 k$. If $\delta(G) \geqslant(n+2) / 2$, then for every perfect matching M, G has a 2 -factor with exactly k components including every edge of M.

Remark. Since the conclusion is that G contains at least k vertex-disjoint cycles, it is readily seen that $n \geqslant 2 k$ is necessary. The condition $n \geqslant 9 k$ comes from our proof techniques. The following example shows that $n>3 k$ is necessary.

Example. Form a bipartite graph H as follows: Take independent sets of vertices of cardinality $k=\left|V_{i}\right|=\left|W_{i}\right|$ for $i=0,1,2$. Now place all edges between V_{i} and W_{i+1} as well as between V_{i} and W_{i} (subscripts taken mod 3). In addition place a matching between the sets V_{1} and W_{0}, V_{2} and W_{1}, and between V_{0} and W_{2}. These edges form the matching M. It is now easily seen that any cycle containing alternating matching and nonmatching edges must have length at least 6 . Thus, the full range of possible cycles is not available, hence $n>3 k$.

It is not difficult to see that the minimum condition $\delta \geqslant(n+2) / 2$ is best possible for $k=1$. However, for $k \geqslant 2$, the minimum degree $\delta \geqslant n / 2$ is necessary. When $k>2$, $\delta=n / 2$ is not sufficient. For example, the graph $G=2 K_{r, r}$ (for r odd) fails to have a 2 -factor with exactly r cycles. It is unknown whether $(n+1) / 2$ is sufficient when $k \geqslant 2$.

In the following we will reserve the graph $G=(X, Y ; E)$ to be a balanced bipartite graph of order $2 n$. Let G be a balanced bipartite graph and M a perfect matching of G. A cycle C is called an M-cycle if every other edge of C belongs to M, a path $P[u, v]$ is called an M-path if the cycle $P[u, v] u$ is an M-cycle, and a 2 -factor of G is called an M-2-factor if every component of the 2-factor is an M-cycle. For any two disjoint subgraphs A and B of G, let $E(A, B)$ denote the set of edges with one endvertex in A and the other endvertex in B and set $e(A, B)=|E(A, B)|$. In the case $A \subseteq X$ and M is a matching, we define

$$
\underline{A}=\{y \in Y: x y \in M \text { and } x \in A\} .
$$

If $A \subset Y$ then \underline{A} is defined analogously. Further, for any $W \subseteq V(G)$, we let $\langle W\rangle$ denote the subgraph induced by W. For each vertex $v \in V(G)$, we let $N_{t i}(v)=N(v) \cap$ $V(H)$ and $d_{H}(v)=\left|N_{H}(v)\right|$.

2. The proof of Theorem 7

The proof will be divided into lemmas. It is readily seen that the main theorem follows from Lemmas 1 and 5.

Lemma 1. Let k be a positive integer. If $n \geqslant 9 k$ and the minimum degree $\delta(G) \geqslant n / 2$, then for every perfect matching M, G contains k vertex-disjoint M-cycles.

Lemma 2. Let M be a perfect matching in G and suppose $C_{1}=x_{1} y_{1} x_{2} y_{2} \ldots x_{s} y_{s} x_{1}$ is a longest M-cycle in G with $x_{i} y_{i} \in M$ for $i=1,2, \ldots, s$ and $G-V(C)$ has hamiltonian cycle $C_{2}=u_{1} v_{1} u_{2} v_{2} \ldots u_{t} v_{i} u_{1}$ with $u_{j} v_{j} \in M$ for $j=1,2, \ldots$, . If $N\left(u_{i}\right) \cap V\left(C_{1}\right) \neq \emptyset$ and
$N\left(v_{i-1}\right) \cap V\left(C_{1}\right) \neq \emptyset$, then

$$
d\left(u_{i}\right)+d\left(v_{i-1}\right) \leqslant n+1 .
$$

Lemma 3. Let M be a perfect matching of G and let C be a longest M-cycle and let $P=u_{1} v_{1} u_{2} v_{2} \ldots u_{t} v_{t}$ be an M-path in $G-V(C)$, then

$$
d_{C}\left(u_{1}\right)+d_{C}\left(v_{t}\right) \leqslant|V(C)| / 2 .
$$

Lemma 4. Let M be a perfect matching in G. If for every M-path $u_{1} v_{1} u_{2} v_{2} \ldots u_{t} v_{t}$, we have $d\left(u_{1}\right)+d\left(v_{t}\right) \geqslant n+2$, then G has a hamiltonian cycle which includes every edge of M.

Lemma 5. Let M be a perfect matching of G. If the minimum degree $\delta \geqslant(n+2) / 2$ and G contains k vertex-disjoint M-cycles, then G contains an $M-2$-factor with exactly k cycles.

2.1. Proof of Lemma 1

In fact, we will show that G has k vertex-disjoint M-cycles, which are either 4 -cycles or 6 -cycles. To the contrary, we assume that G has t vertex-disjoint M-cycles of length 4 or 6 with $t \leqslant k-1$ and G does not contain $t+1$ vertex-disjoint M-cycles of lengths 4 or 6 . Note that t may be zero. Let $C_{1}, C_{2}, \ldots, C_{t}$ be t vertex-disjoint cycles such that $\sum\left|V\left(C_{i}\right)\right|$ is minimum under the constraint $\left|V\left(C_{i}\right)\right| \leqslant 6$. Without loss of generality, we assume that $C_{1}, C_{2}, \ldots, C_{s}$ are 4 -cycles and C_{s+1}, \ldots, C_{t} are 6 -cycles. Let $H=G-\bigcup_{i=1}^{t} V\left(C_{i}\right)$.

Claim 1. Let uv be an edge of M in H and $C_{i}(s+1 \leqslant i \leqslant t)$ a 6 -cycle, then $e(\{u, v\}$, $\left.C_{i}\right) \leqslant 3$.

Proof. Let $C_{i}=u_{1} v_{1} u_{2} v_{2} u_{3} v_{3} u_{1}$ with $u_{1} v_{1}, u_{2} v_{2}, u_{3} v_{3} \in M$. For each $j(j=1,2,3)$, we cannot have both $u v_{j} \in E$ and $v u_{j} \in E$, otherwise we can use the 4 -cycle $u_{j} v_{j} u v u_{j}$ to replace C_{i}, which contradicts the minimality of $\sum_{j=1}^{t}\left|V\left(C_{i}\right)\right|$.

Claim 2. There is an edge $u_{0} v_{0} \in M \cap H$ such that

$$
e\left(\left\{u_{0}, v_{0}\right\}, V\left(C_{i}\right)\right) \leqslant 3 \quad \text { for each } i=1,2, \ldots, s .
$$

Proof. To the contrary, assume that for every edge $u v \in M \cap H$ there is a cycle C_{i}, $i=1,2, \ldots, s$ such that $e\left(\{u, v\}, C_{i}\right) \geqslant 4$, that is, $V\left(C_{i}\right) \cup\{u, v\}$ induces a complete bipartite graph $K_{3,3}$ (or we could swap cycles to find the needed edge). Since

$$
|M \cap H| \geqslant|V(H)| / 2 \geqslant \frac{2 n-6 t}{2} \geqslant \frac{9 k-6 t}{2} \geqslant 3 k>t
$$

by the Pigeonhole principle, $M \cap H$ contains two edges $u_{1} v_{1}$ and $u_{2} v_{2}$ and there is a 4 -cycle $C_{i}(i \leqslant s)$ such that

$$
e\left(\left\{u_{1}, v_{1}\right\}, C_{i}\right)=4 \quad \text { and } \quad e\left(\left\{u_{2}, v_{2}\right\}, C_{i}\right)=4 .
$$

Then, it is readily seen that the induced subgraph $\left\langle\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\} \cup V\left(C_{i}\right)\right\rangle$ contains two M-cycles of length 4 in H, which contradicts the maximality of the number of 4 -cycles (M-cycles) and 6 -cycles (M-cycles). This contradiction completes the proof of the claim.

Now suppose $u_{0} v_{0} \in M \cap H$ such that

$$
e\left(\left\{u_{0}, v_{0}\right\}, C_{i}\right) \leqslant 3 \quad \text { for } i=1,2, \ldots, t .
$$

For convenience, let

$$
n_{1}=\left(\sum_{i=1}^{1}\left|V\left(C_{i}\right)\right|\right) / 2
$$

and

$$
n_{2}=\left|N_{H}\left(u_{0}\right)-\left\{v_{0}\right\}\right|
$$

and

$$
n_{3}=\left|N_{H}\left(v_{0}\right)-\left\{u_{0}\right\}\right|
$$

and

$$
n_{4}=\frac{|V(H)|}{2}-\left|N_{H}\left(u_{0}\right) \cup N_{H}\left(v_{0}\right)\right| .
$$

Since H contains no M-cycle of length $4, N_{H}\left(u_{0}\right) \cap N_{H}\left(v_{0}\right)=\left\{u_{0}\right\}$. In particular, $n=n_{1}+n_{2}+n_{3}+n_{4}+1$. Note that $n_{1}=3 t-s$ and $n_{2}+n_{3}+2=d_{H}\left(u_{0}\right)+d_{H I}\left(v_{0}\right) \geqslant n-3 t$, that is, $n_{2}+n_{3} \geqslant n-3 t-2$. Thus,

$$
n_{1}+n_{4} \leqslant n-(n-3 t-2)-1=3 t+1 .
$$

Without loss of generality, in the remainder of the proof we assume that $n_{2} \leqslant n_{3}$.
Claim 3. For every $x \in \underline{N_{H}\left(u_{0}\right)}$, the inequality $\left|N(x) \cap N_{H}\left(u_{0}\right)-\left\{u_{0}\right\}\right| \geqslant\left(n_{2}+2\right) / 2$ holds.

Proof. To the contrary, we assume $\left|N(x) \cap N_{H}\left(u_{0}\right)-\left\{c_{0}\right\}\right| \leqslant\left(n_{2}+1\right) / 2$. Since H contains no M-cycle of length $6, N_{H}(x) \cap\left(N\left(v_{0}\right)-\left\{v_{0}\right\}\right)=\emptyset$, which implies

$$
\left|N_{l /}(x) \cap N_{H}\left(u_{0}\right)-\left\{v_{0}\right\}\right| \geqslant d(x)-\left(n_{1}+n_{4}+1\right) \geqslant \frac{n+2}{2}-\left(n_{1}+n_{4}+1\right) .
$$

Thus,

$$
\begin{equation*}
(n+2) / 2-\left(n_{1}+n_{4}+1\right) \leqslant\left(n_{2}+1\right) / 2 . \tag{1}
\end{equation*}
$$

Since $n_{2} \leqslant n_{3}$, we have

$$
\begin{equation*}
n_{2} \leqslant\left(\left(n-\left(n_{1}+n_{4}+1\right)\right) / 2 .\right. \tag{2}
\end{equation*}
$$

Substituting Eq. (2) into Eq. (1) we obtain $n \leqslant\left(n-\left(n_{1}+n_{4}+1\right)\right) / 2+2\left(n_{1}+n_{4}\right)+1$. Upon solving we see that

$$
n \leqslant 3\left(n_{1}+n_{4}\right)+2<9 t+5<9 k,
$$

which contradicts the assumption $n \geqslant 9 k$, completing the proof of Claim 3 .
We consider the subgraph $G\left(X_{1} \cup Y_{1}\right)$ induced by the union of $Y_{1}=N_{H}\left(u_{0}\right)-\left\{v_{0}\right\}$ and $X_{1}=\underline{Y_{1}}$. Clearly, $\left|X_{1}\right|=\left|Y_{1}\right|=n_{2}$. Then Claim 3 shows that $\left|N(x) \cap Y_{1}\right| \geqslant\left(\left|Y_{1}\right|+\right.$ 2) $/ 2=\left(n_{2}+2\right) / 2$ for each $x \in X_{1}$. By the Pigeonhole principle, there is a $y_{0} \in Y_{1}$ such that $\left|N\left(y_{0}\right) \cap X_{1}\right| \geqslant\left(\left|X_{1}\right|+2\right) / 2=\left(n_{2}+2\right) / 2$. Assume $x_{0} y_{0} \in M$. Then, $\left|N\left(x_{0}\right) \cap N\left(y_{0}\right)\right|$ $\geqslant 2$. Thus, $G\left(X_{1} \cup Y_{1}\right)$ contains an M-cycle of length 4 in H, a contradiction to our choice of C_{1}, \ldots, C_{t}. This contradiction completes the proof of Lemma 1.

2.2. Proof of Lemma 2

First we note that $s+t=n$. Now, without loss of generality, we assume that $i=1$ (and in this case that $i-1$ is s). Since $N\left(u_{1}\right) \cap V\left(C_{1}\right) \neq \emptyset$ and $N\left(v_{t}\right) \cap V\left(C_{1}\right) \neq \emptyset$, we may assume that $u_{1} y_{s} \in E$ and that the closest neighbor of y_{s} along C_{1} from v_{t} is x_{r+1}. That is, we assume that $u_{1} y_{s}, v_{t} x_{r+1} \in E$ and that

$$
\begin{aligned}
& N\left(u_{1}\right) \cap\left\{y_{1}, \ldots, y_{r}\right\}=\emptyset, \\
& N\left(v_{s}\right) \cap\left\{x_{1}, \ldots, x_{r}\right\}=\emptyset .
\end{aligned}
$$

Since C_{1} is a longest M-cycle, $u_{1} y_{i} \in E$ implies that $v_{t} x_{i+1} \notin E$ or a longer cycle is formed. For that same reason, we have $r \geqslant t$. Thus,

$$
d_{C_{1}}\left(v_{t}\right) \leqslant \frac{\left|V\left(C_{1}\right)\right|}{2}-r-\left(d_{C_{1}}\left(u_{1}\right)-1\right)
$$

or

$$
d_{C_{i}}\left(u_{1}\right)+d_{C_{1}}\left(v_{t}\right) \leqslant\left|V\left(C_{1}\right)\right| / 2-(r-1) \leqslant n-2 t+1,
$$

which implies that

$$
d\left(u_{1}\right)+d\left(v_{t}\right) \leqslant(n-2 t+1)+2 t=n+1 .
$$

2.3. Proof of Lemma 3

Assume $C=x_{1} y_{1} x_{2} y_{2} \ldots x_{s} y_{s} x_{1}$ with $x_{i} y_{i} \in M$ for $i=1,2, \ldots, s$. Since C is one of the longest M-cycles, $u_{i} y_{i} \in E$ implies $v_{t} x_{i+1} \notin E$. Then, $d_{C}\left(u_{i}\right)+d_{C}\left(v_{t}\right) \leqslant s=$ $|V(C)| / 2$.

2.4. Proof of Lemma 4

We prove Lemma 4 by induction on n. Since $d\left(u_{1}\right)+d\left(v_{t}\right) \geqslant n+2$ implies $n \geqslant 2$, and for $n=2, G=K_{2.2}$, Lemma 4 is clearly true when $n=2$. Assume that Lemma 4 is true for balanced bipartite graphs with order less than $2 n$. Let $G=(X, Y ; E)$ be a balanced bipartite graph of order $2 n$ and let $C_{1}=x_{1} y_{1} x_{2} y_{2} \ldots x_{s} y_{s} x_{1}$ be a longest M-cycle of G. Further, we assume that $s<n$. Now let $H=G-V\left(C_{1}\right)$. For every M-path $u_{1} v_{1} \ldots u_{t} v_{t}$ in H, by Lemma $3, d_{H}\left(u_{1}\right)+d_{H}\left(v_{t}\right) \geqslant(n+2)-s=|V(H)| / 2+2$. By the induction hypothesis, H has a hamiltonian cycle $C_{2}=u_{1} v_{2} u_{2} v_{2} \ldots u_{m} v_{m} u_{1}$ with $u_{i} v_{1} \in M$ for each $i=1,2, \ldots, m$. By Lemma 2, either we have $N\left(u_{i}\right) \cap V\left(C_{1}\right)=\emptyset$ or $N\left(v_{i-1}\right) \cap V\left(C_{1}\right)=\emptyset$. Also, since C is a longest M-cycle in $G, s \geqslant m$. Furthermore, for any two vertices u_{i} and v_{j}, either $N\left(u_{i}\right) \cap V\left(C_{1}\right) \neq \emptyset$ or $N\left(u_{j}\right) \cap V\left(C_{1}\right) \neq \emptyset$. Otherwise

$$
n+2 \leqslant d\left(u_{i}\right)+d\left(v_{j}\right) \leqslant|V(H)| \leqslant n
$$

a contradiction to our degree condition. Therefore, either

$$
N\left(u_{i}\right) \cap V\left(C_{1}\right) \neq \emptyset \text { and } N\left(v_{j}\right) \cap V\left(C_{1}\right)=\emptyset \quad \text { for all } i \text { and } j
$$

or

$$
N\left(u_{i}\right) \cap V\left(C_{1}\right)=\emptyset \text { and } N\left(v_{j}\right) \cap V\left(C_{1}\right) \neq \emptyset . \quad \text { for all } i \text { and } j .
$$

Without loss of generality, assume $u_{1} y_{1} \in E$, then $N\left(x_{1}\right) \cap N(H)=\emptyset$ or a cycle longer than C is formed and $N\left(v_{1}\right) \cap V\left(C_{1}\right)=\emptyset$ follows by the above conditions. This implies that $d\left(x_{1}\right)+d\left(v_{1}\right) \leqslant n$, a contradiction.

2.5. Proof of Lemma 5

Let $C_{1}, C_{2}, \ldots, C_{k}$ be k vertex-disjoint M-cycles in G such that $\sum_{i=1}^{k}\left|V\left(C_{i}\right)\right|$ is maximum over all such possible choices. Assume $\left|V\left(C_{i}\right)\right|=2 n_{i}$ for each $i=1,2, \ldots, k$ and $n_{1} \geqslant n_{2} \geqslant \cdots \geqslant n_{k}$. Let $n_{k+1}=n-\sum_{i=1}^{k} n_{i}$, that is, $\left|V\left(G-\bigcup_{i=1}^{k} V\left(C_{i}\right)\right)\right|=2 n_{k+1}$. Let $H=G-V\left(\bigcup_{i=1}^{k} C_{i}\right)$. By Lemma 3, for each M-path $P[u, v]$ in H and each cycle C_{i}, we have that $d_{C_{i}}(u)+d_{C_{i}}(v) \leqslant n_{i}$. In particular then,

$$
d_{H}(u)+d_{H}(v) \geqslant n_{k+1}+2 .
$$

By Lemma $4, H$ has a hamiltonian cycle C_{k+1} which is also an M-cycle. From the choice of $C_{1}, C_{2}, \ldots, C_{k}$, we can assume that $n_{1} \geqslant n_{2} \geqslant \cdots \geqslant n_{k+1}$. Let $C_{k+1}=u_{1} v_{1} u_{2} v_{2}$ $\ldots u_{n_{k+1}} v_{n_{k+1}} u_{1}$ with $u_{i} v_{i} \in M$ for each $i=1,2, \ldots, n_{k+1}$. By Lemma 3, for any two vertices u_{l} and v_{m}, we have that

$$
d_{C_{i}}\left(u_{i}\right)+d_{C_{i}}\left(v_{m}\right) \leqslant n_{i}
$$

for each $i=1,2, \ldots, k$. Thus, from our minimum degree condition, for each $i=1,2, \ldots, k$,

$$
\left.\left|N\left(u_{l}\right) \cap\left(V\left(C_{i} \cup C_{k+1}\right)\right)\right|+\mid N\left(v_{m}\right) \cap V\left(C_{i} \cup C_{k+1}\right)\right) \mid \geqslant n_{i}+n_{k+1}+2 .
$$

Since C_{k} is the longest M-cycle in $\left\langle V\left(C_{k} \cup C_{k+1}\right)\right\rangle$, by Lemma 2, we have that either $N\left(v_{j}\right) \cap V\left(C_{k}\right)=\emptyset$ or $N\left(u_{j+1}\right) \cap V\left(C_{k}\right)=\emptyset$ for each $j=1,2, \ldots, t$. Since the above statements are true for all $j=1,2, \ldots, n_{k+1}$, without loss of generality, we assume that

$$
N_{C_{k}}\left(u_{j}\right) \neq \emptyset \text { and } N_{C_{k}}\left(v_{l}\right)=\emptyset \quad \text { for all } j \text { and } l .
$$

Claim 4. We have that $n_{k+1}=2$ and for each $C_{m}(1 \leqslant m \leqslant k)$, either $N\left(u_{i}\right) \supseteq$ $V\left(C_{m}\right) \cap Y$ for both $i=1$ and 2 or $N\left(v_{j}\right) \supseteq V\left(C_{m}\right) \cap X$ for both $j=1$ and 2 , but, not both.

Proof. To the contrary, we assume $n_{k+1} \geqslant 3$. Then, $d_{H}\left(u_{1}\right)+d_{H}\left(v_{1}\right) \geqslant n_{k+1}+2 \geqslant 5$. Without loss of generality, we assume $d_{H}\left(u_{1}\right) \geqslant 3$. Assume $u_{1} v_{s} \in E$ with $1<s<n_{k+1}$. Then, $V(H)$ can be partitioned into an M-cycle $C^{*}=u_{1} v_{1} u_{2} v_{2} \ldots u_{s} v_{s} u_{1}$ and an M-path $P=u_{s+1} v_{s+1} \ldots u_{n_{k+1}} v_{n_{k-1}}$.

Assume $C_{k}=x_{1} y_{1} x_{2} y_{2} \ldots x_{n_{k}} y_{n_{k}} x_{1}$ with $x_{i} y_{i} \in M$ and, without loss of generality, assume $u_{s+1} y_{n_{k}} \in E$ (or we would relabel vertices). We consider the M-path

$$
Q=x_{1} y_{1} x_{2} y_{2} \ldots x_{n_{k}} y_{n_{k}} u_{s+1} v_{s+1} \ldots u_{n_{k+1}} v_{n_{k+1}} .
$$

Since $N\left(x_{1}\right) \cap V\left(C_{k+1}\right)=\emptyset$ (or we contradict our choice of cycles C_{1}, \ldots, C_{k}) and $N\left(v_{n_{k+1}}\right) \cap V\left(C_{k}\right)=\emptyset$, we have

$$
\left|N\left(x_{1}\right) \cap V\left(C_{k} \cup C_{k+1}\right)\right|+\left|N\left(v_{k+1}\right) \cap V\left(C_{k} \cup C_{k+1}\right)\right| \leqslant n_{k}+n_{k+1} .
$$

However, since $d\left(x_{1}\right)+d\left(v_{n_{k-1}}\right) \geqslant n+2$, there must exist a cycle C_{i} such that

$$
d_{C_{i}}\left(x_{1}\right)+d_{C_{i}}\left(v_{n_{k+1}}\right) \geqslant n_{i}+2
$$

By Lemma 2, C_{i} can be extended to a hamiltonian M-cycle in $\left\langle V\left(C_{i} \cup Q\right)\right\rangle$, which implies that G has an M-2-factor with exactly k cycles, a contradiction to our assumptions. Hence, $n_{k+1}=2$.

Now, for each M-path $x_{1} y_{1} \ldots x_{j} y_{j}$ in $\left\langle V\left(C_{k}\right)\right\rangle$, we have

$$
d_{G-V\left(C_{k+1}\right)}\left(x_{1}\right)+d_{G-V\left(C_{k+1}\right)}\left(y_{j}\right) \geqslant\left(n-n_{k+1}\right)+2
$$

In the same manner as above, we can show that $n_{k}=2$ and for each C_{m} with $1 \leqslant m \leqslant k-1$ either

$$
N\left(V\left(C_{k}\right)\right) \cap V\left(C_{i}\right) \cap X=\emptyset
$$

or

$$
N\left(V\left(C_{k}\right)\right) \cap V\left(C_{i}\right) \cap Y=\emptyset .
$$

Continuing in this manner, we can show that $n_{3}=n_{4}=\cdots=n_{k}=n_{k+1}=2$ and for all $i=1,2$ and $j=3,4, \ldots, k+1$, either

$$
N\left(V\left(C_{j}\right)\right) \cap V\left(C_{i}\right) \cap X=\emptyset \quad \text { or } N\left(V\left(C_{j}\right)\right) \cap V\left(C_{i}\right) \cap Y=\emptyset, \quad \text { but not both hold. }
$$

Further, we assume that

$$
\begin{aligned}
& C_{1}=x_{1} y_{1} x_{2} y_{2} \ldots x_{n_{1}} y_{n_{1}} x_{1}, \quad \text { where } x_{i} y_{i} \in M \text { for each } i \\
& C_{2}=u_{1} v_{1} u_{2} v_{2} \ldots u_{n_{2}} v_{n_{2}} u_{1}, \quad \text { where } u_{j} v_{j} \in M \text { for each } j
\end{aligned}
$$

For any two vertices $u_{i} \in V\left(C_{2}\right)$ and $v_{j} \in V\left(C_{2}\right)$, since for each $m \geqslant 3$ either $d_{C_{n}}\left(u_{i}\right)=0$ or $d_{C_{m}}\left(v_{j}\right)=0$ holds, we have

$$
d_{C_{1} \cup C_{2}}\left(u_{i}\right)+d_{C_{1} \cup C_{2}}\left(v_{j}\right) \geqslant n_{1}+n_{2}+2
$$

In particular, we obtain that either $d_{C_{1}}\left(u_{i}\right) \neq 0$ or $d_{C_{1}}\left(v_{j}\right) \neq 0$. Now by Lemma 2, either $d_{C_{1}}\left(u_{i+1}\right)=0$ or $d_{C_{1}}\left(v_{i}\right)=0$ for each $i=1,2, \ldots, n_{2}$. Combining the above two statements, we obtain that either

$$
N_{C_{1}}\left(V\left(C_{2}\right) \cap X\right) \neq \emptyset \quad \text { and } \quad N_{C_{1}}\left(V\left(C_{2}\right) \cap Y\right)=\emptyset
$$

or

$$
N_{C_{1}}\left(V\left(C_{2}\right) \cap X\right)=\emptyset \quad \text { and } \quad N_{C_{1}}\left(V\left(C_{2}\right) \cap Y\right) \neq \emptyset
$$

Without loss of generality, assume

$$
N_{C_{1}}\left(V\left(C_{2}\right) \cap X\right) \neq \emptyset \quad \text { and } \quad N_{C_{1}}\left(V\left(C_{2}\right) \cap Y\right)=\emptyset .
$$

Note that for each $x_{i} \in V\left(C_{1}\right) \cap X$ and each $y_{j} \in V\left(C_{2}\right) \cap Y, d_{C_{2}}\left(x_{i}\right)=0$ and $d_{C_{i}}\left(y_{j}\right)=0$, which gives

$$
d_{G-F\left(C_{1} \cup C_{2}\right)}\left(x_{i}\right)+d_{G-V\left(C_{1} \cup C_{2}\right)}\left(v_{j}\right) \geqslant n_{3}+n_{4}+\cdots n_{k+1}+2
$$

Without loss of generality, we assume that $C_{3}=w_{1} z_{1} w_{2} z_{2} w_{1}$ and assume $N\left(x_{i}\right) \supseteq\left\{z_{1}, z_{2}\right\}$ for every $x_{i} \in V\left(C_{1}\right) \cap X$ and $N\left(v_{j}\right) \supseteq\left\{w_{1}, w_{2}\right\}$ for each $v_{j} \in V\left(C_{2}\right) \cap Y$. Since $N\left(v_{j}\right) \cap$ $V\left(C_{1}\right)=\emptyset$ for each $v_{j} \in V\left(C_{2}\right) \cap Y$ and $d_{C_{1} \cup C_{2}}\left(u_{j}\right)+d_{C_{1} \cup C_{2}}\left(v_{j}\right) \geqslant n_{1}+n_{2}+2$, we obtain $d_{C_{1}}\left(u_{j}\right) \geqslant 2$. Without loss of generality, we assume $u_{1} y_{s} \in E\left(s \neq n_{1}\right)$ and $u_{2} y_{n_{1}} \in E$. Then, $\left\langle V\left(C_{1} \cup C_{2} \cup C_{3}\right)\right\rangle$ contains the following 2 -factor with two M-cycles:

$$
\begin{aligned}
& C_{1}^{*}=x_{1} y_{1} x_{2} y_{2} \ldots x_{s} y_{s} u_{1} v_{1} w_{1} z_{1} x_{1} \\
& C_{2}^{*}=x_{s+1} y_{s-1} x_{s+2} y_{s-2} \ldots x_{n_{1}} y_{n_{1}} u_{2} v_{2} u_{3} v_{3} \ldots u_{n_{2}} v_{n_{2}} w_{2} z_{2} x_{s \cdots 1}
\end{aligned}
$$

Then, $C_{1}^{*}, C_{2}^{*}, C_{4}, C_{5}, \ldots, C_{k+1}$ form a 2-factor of G with exactly $k M$-cycles.

References

[1] K.A. Berman. Proof a conjecture of Häggkvist on cycles and independent edges. Discrete Math. 46 (1983) 9-13.
[2] S. Brandt, G. Chen, R.J. Faudree, R.J. Gould, L. Lesniak. Cycles in 2-factors of balanced bipartite graphs, J. Graph Theory 24 (2) (1997) 165-173.
[3] G. Chen, R.J. Faudree, R.J. Gould, M.S. Jacobson, Linda Lesniak, Cycles in 2 -factors of balanced bipartite graphs, preprint.
[4] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
[5] R. Häggkvist, On F-hamiltonian graphs, in: J.A. Bondy, U.S.R. Murty (Eds.), Graph Theory and Related Topics, Academic Press, New York, 1979, pp. 219-231.
[6] B. Jackson, N.C. Wormald, Cycles containing matching and pairwise compatible Euler tours, J. Graph Theory 14 (1990) 127-138.
[7] J. Moon, L. Moser, On hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 163-165.
[8] M. Las Vergnas, Ph.D. Thesis, University of Paris, 1972.

[^0]: * Corresponding author. E-mail: rg@mathcs.emory.edu.
 ${ }^{1}$ Research partially supported under O.N.R. grant \# N00014-97-1-0499.
 ${ }^{2}$ Research partially supported under O.N.R. grant \# N00014-88-J-2222.

