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Abstract

Moon and Moser (Israel J. Math. 1 (1962) 163-165) showed that if G is a balanced bipartite
graph of order 27 and minimum degree 0= (n + 1)/2, then G is hamiltonian. Recently, it was
shown that their well-known degree condition also implies the existence of a 2-factor with exactly
k cycles provided n > max{52, 26 + 1}. In this paper, we show that a similar degree condition
implies that for each perfect matching M, there exists a 2-factor with exactly & cycles including
all edges of M. © 1999 Published by Elsevier Science B.V. All rights reserved

1. Introduction

All graphs considered are simple, without loops or multiple edges. An m-factor of
a graph G is an m-regular subgraph of G that spans the vertex set V(G). From time
to time, we call a 1-factor a perfect matching. It is readily seen that a 1-factor of
G is a collection of independent edges that covers all vertices of G and a 2-factor
is a collection of independent cycles that covers all vertices of G. In 1952, Dirac
[4] determined how large the minimum degree must be to guarantee the existence of
a hamiltonian cycle, a 2-factor with exactly one cycle.

Theorem 1 (Dirac [4]). Let G be a graph of order n (n=3). If the minimum degree
o(G)=n/2, then G has a hamiltonian cycle.

Haggkvist [5] showed that when # is even, a similar hypothesis implies something
much stronger.
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Theorem 2 (Héaggkvist [5]). Let G be a graph on n vertices, in which the degree
sum of any two nonadjacent vertices is at least n+ 1, where n=3. Then each perfect
matching is contained in a hamiltonian cycle.

Later, stronger results were obtained by Berman [1] and Jackson and Wormald [6].
Recently, Dirac’s result has been generalized as follows.

Theorem 3 (Brandt et al. [2]). Let k be a positive integer and G be a graph of order
n (n=4k). If the minimum degree 6(G)=n/2, then G contains a 2-factor with exactly
k components.

We believe that similar hypothesis can also imply that each perfect matching is
contained in a 2-factor with exactly k& components, for every k<n/4. The purpose
of this paper is to support this thought by proving a similar result for bipartite
graphs. A bipartite graph (X,Y;E) is called balanced if |X|=|Y|. A bipartite
graph has a 2-factor only if it is balanced. Moon and Moser [7] obtained the
following hamiltonian result for balanced bipartite graphs using a degree sum
condition.

Theorem 4 (Moon and Moser [7]). Let G be a balanced bipartite graph on 2n
vertices. If d(u) + d(v)>n for every two nonadjacent vertices u and v in different
parts of G, then G is hamiltonian. Hence, if (G)=(n + 1)/2, then G is
hamiltonian.

Theorem 4 was recently generalized in [3].

Theorem 5 (Chen et al.,, preprint). Let k be a positive integer and let G be a bal-
anced bipartite graph of order 2n where n> max{52,2k* + 1}. Then, if §(G) =
(n+1)/2, G contains a 2-factor with exactly k cycles.

Las Vergnas proved the following in [8].

Theorem 6 (Las Vergnas [8]). Let G be a balanced bipartite graph of order 2n. If
duy+dw)=zn+2

for every pair of nonadjacent vertices u and v (in different parts), then each perfect
matching of G is contained in a hamiltonian cycle.

The purpose of this paper is to prove the following related result.
Theorem 7. Let k be a positive integer and let G be a balanced bipartite graph of

order 2n where n=9k. If 8(G)=(n+2)/2, then for every perfect matching M, G has
a 2-factor with exactly k components including every edge of M.
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Remark. Since the conclusion is that G contains at least k vertex-disjoint cycles, it
is readily seen that n>2k is necessary. The condition n>9k comes from our proof
techniques. The following example shows that n>3k is necessary.

Example. Form a bipartite graph H as follows: Take independent sets of vertices of
cardinality &k = |V}| =|W| for i=0,1,2. Now place all edges between ¥, and W,., as
well as between V; and W (subscripts taken mod3). In addition place a matching
between the sets V| and W, V> and Wi, and between ¥ and W,. These edges form
the matching M. It is now easily seen that any cycle containing alternating matching
and nonmatching edges must have length at least 6. Thus, the full range of possible
cycles is not available, hence n>3k. [

It is not difficult to see that the minimum condition 0= (n + 2)/2 is best possible
for k =1. However, for k=2, the minimum degree é>n/2 is necessary. When k> Z,
0=n/2 is not sufficient. For example, the graph G =2K, , (for r odd) fails to have
a 2-factor with exactly » cycles. It is unknown whether (n + 1)/2 is sufficient when
k=2

In the following we will reserve the graph G =(X,Y;E) to be a balanced bipartite
graph of order 2n. Let G be a balanced bipartite graph and M a perfect matching of G.
A cycle C is called an M-cycle if every other edge of C belongs to M, a path Plu, v]
is called an M -path if the cycle P[u, v]u is an M-cycle, and a 2-factor of G is called
an M-2-factor if every component of the 2-factor is an M-cycle. For any two disjoint
subgraphs 4 and B of G, let E(4, B) denote the set of edges with one endvertex in 4
and the other endvertex in B and set e(4,B)=|E(4,B)|. In the case ACX and M is
a matching, we define

A={ye€Y: xyeM and x€ 4}.

If ACY then 4 is defined analogously. Further, for any W C V(G), we let (W) de-
note the subgraph induced by W. For each vertex ve V(G), we let Ny(v)=N(t)N
V(H) and dy(v)=|Ny(v)|.

2. The proof of Theorem 7

The proof will be divided into lemmas. It is readily seen that the main theorem
follows from Lemmas 1 and 5.

Lemma 1. Ler k be a positive integer. If n 29k and the minimum degree 6(G)=n/2.
then for every perfect matching M, G contains k vertex-disjoint M-cycles.

Lemma 2. Let M be a perfect matching in G and suppose C, =x\y1X2y1... X, ¥,X; IS
a longest M-cycle in G with x;y; €M for i=1,2,...,5s and G~V (C) has hamiltonian
cycle Cy =uivyuavy .. Uy with wjo; €M for j=12,....t. If Nui))NV(C\)#0 and
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N(u_)NV{(Cy) # 0, then
d(u;) +d(vi-1)<n+ 1.

Lemma 3. Let M be a perfect matching of G and let C be a longest M-cycle and
let P=uv1uav; ... .00, be an M-path in G — V(C), then

de(uy) +dce(v)<|V(C)|/2.

Lemma 4. Let M be a perfect matching in G. If for every M-path ujviuv; ... uv;,
we have d(u;) + d(v,)=n + 2, then G has a hamiltonian cycle which includes every
edge of M.

Lemma 5. Let M be a perfect matching of G. If the minimum degree 6 =z (n+2)/2 and
G contains k vertex-disjoint M-cycles, then G contains an M-2-factor with exactly k
cycles.

2.1. Proof of Lemma 1

In fact, we will show that G has & vertex-disjoint M-cycles, which are either
4-cycles or 6-cycles. To the contrary, we assume that G has ¢ vertex-disjoint M-cycles
of length 4 or 6 with t<k — | and G does not contain ¢ + | vertex-disjoint M-cycles
of lengths 4 or 6. Note that + may be zero. Let Cy,Cs,...,C, be ¢ vertex-disjoint cy-
cles such that Y~ |V(C;)| is minimum under the constraint |V (C;)| <6. Without loss
of generality, we assume that Cy,(,,...,C, are 4-cycles and Cqy,,...,C, are 6-cycles.
Let H=G — J;_, V(C)).

Claim 1. Let uv be an edge of M in H and C; (s + 1 <i<t) a 6-cycle, then e({u,v},
C)<3.

Proof. Let C; = u vjuavuzvzu; with uy v, ua05, u3v3 € M. For each j (j=1,2,3), we
cannot have both uv; € E and vu; € E, otherwise we can use the 4-cycle w;vuvu; to
replace C;, which contradicts the minimality of Z;Zl [V(C)H|. O

Claim 2. There is an edge ugvg € M NH such that
e({uo,vo}, V(C)I<3  for each i=1,2,..., 5.

Proof. To the contrary, assume that for every edge uv €M NH there is a cycle C,,
i=1,2,...,s such that e({u,v},C;)=4, that is, V(C;) U {u, v} induces a complete
bipartite graph K3 (or we could swap cycles to find the needed edge). Since

2n — 6t _ 9k — 6t
P

= = ,
5 > k>t

\MOH| = |V(H)|/2>
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by the Pigeonhole principle, M NH contains two edges u;v; and wu2v2 and there is
a 4-cycle C; (i <s) such that

€({M1,l71},C,‘)=4 and e({ug,vg},C,-):4.

Then, it is readily seen that the induced subgraph {{u,,v(,u2,v2}UV(C;)} contains
two M-cycles of length 4 in A, which contradicts the maximality of the number of
4-cycles (M-cycles) and 6-cycles (M-cycles). This contradiction completes the proof
of the claim. ]
Now suppose ugvy € M N H such that
€({M(),l7()},C,')<3 for i=1,2,..., ¢

For convenience, let

" = (i} [V(C,»)|)/2

and
ny =[Ny (up) — {vo}
and
ny = [Ny (vg) — {uo}|
and
ny— ”(2_"”‘ — [Ny (o) U N (o).

Since H contains no M-cycle of length 4, Ny(uo) N Ny(ve)={up}. In particular,
n=ny+n>+n3+ns+1. Note that ny =3r—s and no +n3+2 =dy(ug)+dp{ve) =n—3t,
that is, ny + ny=n — 3t — 2. Thus,

moFng<n—(n—3t—2)—1=3¢+ 1.

Without loss of generality, in the remainder of the proof we assume that n> <n;.

Claim 3. For every x € Ny(ug), the inequality [IN(x)OWNy(up) — {up} =(n2 + 2)/2
holds.

Proof. To the contrary, we assume |N(x)NNy{ug) — {vo}|<(n2 + 1)/2. Since
H contains no M-cycle of length 6, Ny (x)N(N(vo) — {re}) =0, which implies

2
INp(x) YNy () — {vo} Zd(x) — (1) + nq + 1)2%— —(ny +ng + 1)

Thus,

(n+2)2—(n +ns+1)<(ny +1)/2. (1)
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Since ny <nz, we have
ny <((n — (n + ns + 1))/2. 2)

Substituting Eq. (2) into Eq. (1) we obtain n<(n—(n; +n4+1))/24+2(n; +n4)+ 1.
Upon solving we see that

n<3(n +n4) +2<9 + 5 <9k,

which contradicts the assumption n > 9k, completing the proof of Claim 3. O

We consider the subgraph G(X; UY;) induced by the union of ¥; =Ny(up) — {vo}
and X; =Y. Clearly, |X;|=|Y,|=n,. Then Claim 3 shows that [N(x)NY|=(|Y\| +
2)/2 =(ny + 2)/2 for each x € X;. By the Pigeonhole principle, there is a yg € ¥ such
that [N(»0) N X1 | = (X1 +2)/2 = (n2 +2)/2. Assume xgyo € M. Then, [N(xo) N N(30)|
=2. Thus, G(X; UY) contains an M-cycle of length 4 in H, a contradiction to our
choice of Ci,...,C,. This contradiction completes the proof of Lemma 1. [

2.2. Proof of Lemma 2

First we note that s + ¢ =n. Now, without loss of generality, we assume that i=1
(and in this case that i — 1 is s). Since N(u,)NV(C1)# 0 and N(v,)NV(C|) #0, we
may assume that u; y; € E and that the closest neighbor of y, along C; from v, is x,..
That is, we assume that u; y;,v,x,, | € E and that

N(“I)H{J’I’---a)’r}zw,
N@w)N{x,....,x}=0.

Since C; is a longest M-cycle, u)y; € E implies that v,x; ) ¢ E or a longer cycle is
formed. For that same reason, we have r>¢. Thus,

de <N ey 1)

or
do(u)+de,(w)SVICDI2 - —-1D)<n -2t +1,
which implies that

du))+dw)<(n—2t+ ) +2t=n+1. 0O

2.3. Proof of Lemma 3

Assume C=x;yX2ys...x:yex; Wwith x;y;€M for i=1,2,...,s5. Since C is one
of the longest M-cycles, u;y; € E implies vx; 1 € E. Then, de(u;) + de(v)<s=
Vo2 O
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2.4. Proof of Lemma 4

We prove Lemma 4 by induction on #n. Since d(u)+d(v,)=n+2 implies n=2, and
forn=2, G=K,,, Lemma 4 is clearly true when n=2. Assume that Lemma 4 is true
for balanced bipartite graphs with order less than 2n. Let G=(X,Y;E) be a balanced
bipartite graph of order 2n and let C; =x;y;x2y2 ... x,¥:x; be a longest M-cycle of C.
Further, we assume that s <n. Now let H =G — V(C)). For every M-path u v, ...uv,
in H, by Lemma 3, dy(u;) + dy(v,)=(n+2) —s=|V(H)|/2 + 2. By the induction
hypothesis, H has a hamiltonian cycle Cy = uyvaus05 ... u,v,u; with w,v; € M for each
i=1,2,...,m. By Lemma 2, either we have N(u;) NV (C,)=0 or N(v; 1 )NV (C;)=10.
Also, since C is a longest M-cycle in G, s 2m. Furthermore, for any two vertices u;
and v;, either N(u;)NV(C\)#® or N(u; )NV (Cy)#P. Otherwise

n+2<d(u;) + d(v;)<|V(H) <n,
a contradiction to our degree condition. Therefore, either

Nu)NV(C)#0 and N(v;)NV(C)=0 for all i and j
or

N@u)NV(C)=0 and N(v,)NV(C,)#0. for all i and j.

Without loss of generality, assume u, y; € E, then N(x;) N N(H)=10 or a cycle longer
than C is formed and N(v,)NV(C;) =0 follows by the above conditions. This implies
that d(x,)+ d(v;)<n, a contradiction. [

2.5. Proof of Lemma 5

Let C,,C,,...,Cy be k vertex-disjoint M-cycles in G such that Zf:l [V(C})| is
maximum over all such possible choices. Assume [V(C;)|=2n; for each i=1,2,... k
and ny=zny =2 --- =ng. Let npyy=n — ZLI n;, that is, V(G — Uf;, V(G| =2n4..
Let H=G — V(Uf;l C;). By Lemma 3, for each M-path P[u,v] in H and each cycle
Ci, we have that d¢,(u) + d¢.(v)<n;. In particular then,

du(u)+du(v)Zne + 2.

By Lemma 4, A has a hamiltonian cycle C;., which is also an M-cycle. From the
choice of Cy, C,,...,C;, we can assume that n; 2 ny = - Zmyy. Let Gy =wi01u010
wo Uy, U, uy With u;0, €M for each i=1,2,...,m . By Lemma 3, for any two ver-
tices u; and v,,, we have that

dC,(ul) + d(‘,(vm)sni
for each i=1,2,...,k. Thus, from our minimum degree condition, for eachi=1,2.....%,

INGu ) NV (V(Ci U Crs 1)) + INn) N V(G UG D =15 + mipy + 2.
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Since C; is the longest M-cycle in (V' (Cy U Cy11)), by Lemma 2, we have that ei-
ther N(v; )NV (Ci)=0 or N(ujs1)NV(Cr)=0 for each j=1,2,...,t. Since the above
statements are true for all j=1,2,...,n,1,, without loss of generality, we assume that

Ne(u;) # 0 and Ng,(v;)=0 for all j and /.

Claim 4. We have that ny.. =2 and for each C, (1<m<k), either N(u;)D
V(Cn)NY for both i=1 and 2 or N(v;)2V(C,)NX for both j=1 and 2, but,
not both.

Proof. To the contrary, we assume #;;>3. Then, dy(u;) + dy(v))=niy + 225.
Without loss of generality, we assume dy(u;)>=>3. Assume u v, € E with 1 <s<myg.
Then, V(H) can be partitioned into an M-cycle C* =u v1uy0 ... u,0,u; and an M -path
P= Us 1 Vst oo Uy Uy

Assume Cp =Xy (X232 ... Xn, Yu, X1 With x;; € M and, without loss of generality, as-
sume usq) Vo, € E (or we would relabel vertices). We consider the M-path

O=X1Y1X2Y2 .. Xy, Yn Us 1 Vsl -+ Uy, Unp

Since N(x\)NV(Cyy1)=0 (or we contradict our choice of cycles Cj,...,C;) and
N(v,,, )NV(Cy) =10, we have

ING) NV (Cr U Cr )]+ N 1) N V(G U Cro) Sy + 1.
However, since d(x;)+ d(v,,_, )=n + 2, there must exist a cycle C; such that
d(]-(xl ) + dC,(UI1k+1 ) = n; + 2.

By Lemma 2, C; can be extended to a hamiltonian M -cycle in (V(C; U Q)), which
implies that G has an M-2-factor with exactly £ cycles, a contradiction to our assump-
tions. Hence, n; =2.

Now, for each M-path x,y,...x;y; in (V(Ci)), we have

do-vic,,nxX1) +devc, (¥ =m—my )+ 2.

In the same manner as above, we can show that #, =2 and for each C,, with
1<m<k — 1 either

NV (CHNV(CHNX =0

or
NV (COHOHNV(CHNY =0

Continuing in this manner, we can show that n; =nys=--- =ny =n;,; =2 and for
all i=1,2 and j=3,4, ..., k + 1, either

NV(CHHNV(CHNX =0 or N(¥(C;))NV(C)NY =@, but not both hold.
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Further, we assume that
C| =X ¥1X2)2 ... Xy Y, X1, Where x; 3, €M for each i,
Cy =wiviuaty .. Uy Uy, where u;v; € M for each .

For any two vertices u; € V(C>) and v; € V(C>), since for cach m >3 either d¢ (u;) =0
or de,(v;)=0 holds, we have

dece(up) +deyue,(v))zn + o+ 2.

In particular, we obtain that either di (u;)# 0 or d¢,(v;)#0. Now by Lemma 2, cither
de(uip1)=0 or de(v;)=0 for each i=1,2..... ny. Combining the above two state-
ments, we obtain that either

Ney(V(C)NX)#£D and N (V(C)NY)=0
or

Ne,(V(CH)NX)=0 and N, (V(Co)NY)Z0.
Without loss of generality, assume
Ne (V(COHNX)#£D and N (V(CHNY)Y=0.

Note that for each x; € V(C)NX and each y, € V(Co)NY. de(x)=0and d¢ (v,)=0,
which gives

d_ricuex) +do_yicuen(t))zny + g+ - g + 2.

Without loss of generality, we assume that Cs =w z wazzw and assume N(x;) D {z/.22}
for every x; € V(Cy)NX and N(v;) 2 {w;. w2} for each v; € V(C>)N Y. Since N(r;)N
V(Cy)=0 for each ¢v; € V(C2)NY and de,ue(u)+de, e (vy)=n +n2+2, we obtain
de (u;)=2. Without loss of generality, we assume u;y, €E (s#n) and u>y,, €E.
Then, (V(C)UC;UCs)) contains the following 2-factor with two M-cycles:

*
Cl =x1y1X2)2 ... Xe YU VW 21X,
CF—x . s N
2 T X 1 Ve=1X542 Vo2 oo Xy YV U2 DU U3 oL Uy, Uy WD X

Then, Cf, C¥, Cs, Cs,....Cryy form a 2-factor of G with exactly & M-cycles.
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