Traceability in graphs with forbidden triples of subgraphs

Ronald J. Gould ${ }^{\mathrm{a}, 1}$, John M. Harris ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Emory University, Atlanta, GA 30322, USA
${ }^{\text {b }}$ Department of Mathematical Sciences, Appalachian State University, Boone, NC 28608, USA

Received 7 November 1995; revised 6 November 1996; accepted 2 September 1997

Abstract

If \mathscr{F} is a collection of connected graphs, and if a graph G does not contain any member of \mathscr{F} as an induced subgraph, then G is said to be \mathscr{F}-free. The members of \mathscr{F} in this situation are called forbidden subgraphs. In a previous paper (Gould and Harris, 1995) the authors demonstrated two families of triples of subgraphs which imply traceability when forbidden. In this paper the authors identify two additional families that enjoy this same property. © 1998 Elsevier Science B.V. All rights reserved

Keywords: Graph; Traceable; Forbidden subgraph; Triples

1. Background and definitions

All graphs considered in this paper are simple graphs - no loops or multiple edges. For definitions of terms not defined here, see [3].

If G and S are connected graphs, and if no induced subgraph of G is isomorphic to S, then G is said to be S-free. Moreover, if \mathscr{F} is a family of connected graphs, and if no induced subgraph of G is isomorphic to any graph in \mathscr{F}, then G is said to be \mathscr{F}-free. In these cases, the graph S and the graphs in \mathscr{F} are called forbidden subgraphs. Several common forbidden subgraphs are shown in Fig. 1.

Several results are known regarding the relationship of forbidden subgraphs to traceability, the existence of a Hamiltonian path. For instance, a connected, P_{3}-free graph is complete, and therefore traceable. For this reason, in this paper we will only consider forbidden subgraphs that are neither P_{3} nor any subgraph of P_{3}.

Another result of this type is from Duffus et al. [1]. The graphs $K_{1,3}$ (often called the 'claw') and N are seen in Fig. 1.

Theorem A (Duffus [1]). If G is a connected $\left\{K_{1,3}, N\right\}$-free graph, then G is traceable.

[^0]

Fig. 1. Common forbidden subgraphs.

It is clear that if G is $\left\{K_{1,3}, X\right\}$-free, where X is a connected induced subgraph of N, then G is also $\left\{K_{1,3}, N\right\}$-free, and thus traceable. Thus, each of the pairs $\left\{K_{1,3}, N\right\}$, $\left\{K_{1,3}, B\right\},\left\{K_{1,3}, Z_{1}\right\},\left\{K_{1,3}, K_{3}\right\}$, and $\left\{K_{1,3}, P_{4}\right\}$ imply traceability when forbidden in connected graphs.
In [2], Faudree and Gould demonstrate that P_{3} is the only single graph, and that the five pairs listed above are the only pairs of graphs, that imply traceability when forbidden. Therefore, since the singles and pairs have been characterized, it is natural to consider triples of subgraphs.

In [4] two families of triples of subgraphs were considered.

Theorem B (Gould and Harris [4]). Let $r \geqslant 4$ and $l \geqslant 4$ be fixed integers. Let G be a connected graph of order n which is $\left\{K_{1, r}, Y_{l}, Z_{1}\right\}$-free. Then if n is sufficiently large, G is traceable.

Theorem \mathbf{C} (Gould and Harris [4]). Let $r \geqslant 4$ and $m \geqslant 3$ be fixed intergers. Let G be a connected graph of order n that is $\left\{K_{1, r}, P_{4}, V_{m}\right\}$-free. If n is sufficiently large, then G is traceable.

In this paper we will prove similar results for two additional families.

Theorem 1. Let $r \geqslant 4$ be a fixed integer. If G is a connected graph of order $n \geqslant 2 r$ which is $\left\{K_{1,3}, E_{r}, Z_{2}\right\}$-free, then G is traceable.

Theorem 2. Let $r \geqslant 4, l \geqslant 5$, and $m \geqslant 3$ be fixed integers. Let G be a connected graph of order n which is $\left\{K_{1, r}, P_{l}, Q_{m}\right\}-$-free. Then if n is sufficiently large, G is traceable.

Before beginning, let us review some of the notation that will be used. This notation is consistent with that used in [4]. First of all, if S is a subset of the vertices of a graph G, then $\langle S\rangle$ will denote the subgraph of G that is induced by S. Furthermore, if T is a subgraph of G and $v \in V(G)$, then the set $N_{T}(v)$ is described by $N_{T}(v)=\{x \in V(T): x v \in E(G)\}$. Let P_{1} and P_{2} be internally disjoint paths with end vertices $\left\{x_{1}, y_{1}\right\}$ and $\left\{x_{2}, y_{2}\right\}$, respectively. If $y_{1} x_{2} \in E(G)$, then the path P obtained by joining P_{1} to P_{2} in the natural way will be denoted by $P:\left[x_{1}, y_{1}\right]_{P_{1}},\left[x_{2}, y_{2}\right]_{P_{2}}$. If $y_{1}=x_{2}$, then the notation given by $\left[x_{1}, y_{1}\right]_{P_{1}},\left(x_{2}, y_{2}\right]_{R_{2}}$ will represent the path formed by joining the two paths at the common end vertex.

2. Proof of Theorem 1

Lemma 1. Suppose G is a connected, nontraceable, $\left\{K_{1,3}, Z_{2}\right\}$-free graph. Let u and v be distinct vertices of G satisfying at least one of the following conditions:
(i) u, v are the end vertices of a longest path in G;
(ii) either $\operatorname{deg}(u)=1$ and v is the end vertex of a longest path extending from u, or $\operatorname{deg}(v)=1$ and u is the end vertex of a longest path extending from v;
(iii) both u and v have degree 1 .

If P is a longest path joining u to v, and if $Q=V(G) \backslash V(P)$, then there exists a vertex in Q that has degree 1 in G.

Proof. Order the vertices of P from u to v. For $c \in V(P),(c \neq u, v)$, let c^{-1} and c^{+1} refer to the predecessor and successor of c on P, respectively. Similarly, let c^{-i} be the i th vertex previous to c, and let c^{+i} be the i th vertex following c.

Since G is nontraceable, there exists a vertex $q \in Q$ which is adjacent to a vertex c on P. Since G is claw-free and since P is maximal, the edge $c^{-1} c^{+1}$ must be present. The maximality of P also implies that $c \neq u, v$. Suppose for the moment that $c^{-1}=u$. This implies that $u c^{+1} \in E(G)$, so condition (iii) is immediately contradicted. Further, if condition (ii) holds, it must be that $\operatorname{deg}(v)=1$ and u is the endpoint of a longest path extending from v. Our path P is one such path. But we see that the path P^{\prime} given by $q, c, u, c^{+1},\left[c^{+2}, v\right]_{P}$ is a longer such path. So condition (ii) cannot hold, and neither can condition (i). We have therefore proved the following claim.

Claim 2.1. If $q \in Q$ is adjacent to $c \in V(P)$, then $c \notin\{u, v\}, c^{-1} c^{+1} \in E(G), c^{-1} \neq u$, and $c^{+1} \neq v$.

Fig. 2.

Claim 2.2. No vertex of Q is simultaneously adjacent to a vertex of P and another vertex of Q.

Proof. Suppose that $a \in Q$ is adjacent to $c \in V(P)$ and $b \in Q$. Now, since $\left\langle\left\{b, a, c, c^{-1}\right.\right.$, $\left.\left.c^{+1}\right\}\right\rangle$ is a potential induced Z_{2}, one of the edges $b c, b c^{-1}, b c^{+1}, a c^{-1}, a c^{+1}$ must be present. Each of $b c^{-1}, b c^{+1}, a c^{-1}, a c^{+1}$ would produce a longer $u-v$ path, so it must be that $b c \in E(G)$. Now $\left\langle\left\{b, a, c, c^{+1}, c^{+2}\right\}\right.$) is a potential Z_{2}, so at least one of the edges $b c^{+1}, b c^{+2}, a c^{+1}, a c^{+2}, c c^{+2}$ must be present. Each of the first four produce longer $u-v$ paths, so the edge $c c^{+2}$ must be present. Now, by considering the potential Z_{2} induced by $\left\{b, a, c, c^{+2}, c^{+3}\right\}$, we see (through a similar argument) that $c c^{+3} \in E(G)$. Continuing in this fashion we obtain that c is adjacent to each c^{+i}, including v. A similar argument shows that c is adjacent to each c^{-i}, including u. From Claim 2.1, we know that $u \neq c^{-1}$ and $v \neq c^{+1}$, so the fact that both u and v are adjacent to c immediately contradicts both conditions (ii) and (iii). Further, the path $P^{\prime}=a, b, c, u,\left(u, c^{-1}\right]_{P},\left[c^{+1}, v\right]_{P}$ is a longer path than P, contradicting condition (i). Hence, no such vertex a can exist.

Claim 2.3. No vertex of Q is adjacent to more than one vertex of P.
Proof. Suppose $a \in Q$ is adjacent to vertices c and d on P. We can suppose, without loss, that c is between u and d on P, and that a is nonadjacent to all vertices that are between c and d on P. Recall from Claim 2.1 that $c^{-1} c^{+1}$ and $d^{-1} d^{+1}$ must both be edges of G. Let i be such that $d=c^{+i}$.

If $i \leqslant 3$, then the $u-v$ path can be easily lengthened, which is a contradiction. So we suppose that $i>3$ (see Fig. 2).

Our strategy at this point is to examine several potential induced Z_{2} 's, and to reveal the edges that must be present to prevent them from existing.

First, consider the vertices $\left\{c^{-1}, c^{+1}, c, a, d\right\}$. They form a potential induced Z_{2}, and so one of the edges $a c^{-1}, a c^{+1}, d c^{-1}, d c^{+1}, c d$ must be present. Each of the first two trivially produces a longer $u-v$ path, while for the second two the paths are

$$
\begin{aligned}
& d c^{-1}:\left[u, c^{-1}\right], d, a, c, c^{+1},\left[c^{+2}, d^{-1}\right]_{P},\left[d^{+1}, v\right]_{P} \\
& d c^{+1}:\left[u, c^{-1}\right], c, a, d, c^{+1},\left[c^{+2}, d^{-1}\right]_{P},\left[d^{+1}, v\right]_{P}
\end{aligned}
$$

Hence, the edge $c d$ must be present.

Now, consider the vertices $\left\{a, d, c, c^{+1}, c^{+2}\right\}$. They, too, form a potential induced Z_{2}. We know from above that $a c^{+1}, d c^{+1} \notin E(G)$, so one of $a c^{+2}, d c^{+2}$, or $c c^{+2}$ must be present. It can be shown that both $a c^{12}$ and $d c^{\dagger 2}$ yield longer $u-v$ paths, and so the edge $c c^{+2}$ must be present.

Finally, consider the potential Z_{2} formed by the vertices c^{+1}, c^{+2}, c, d, and d^{+1}. We know from above that $d c^{+1}, d c^{+2} \notin E(G)$, so one of $c^{+1} d^{+1}, c^{+2} d^{+1}$, or $c d^{+1}$ must be present. The edge $c^{+1} d^{+1}$ yields a longer $u-v$ path: $\left[u, c^{-1}\right]_{P}, c, a, d,\left[d^{-1}, c^{+2}\right]_{P}, c^{+1}$, $\left[d^{+1}, v\right]_{P}$. The other two edges produce longer paths as well. This being a contradiction, we see that no vertex of Q can be adjacent to more than one vertex of P.

Now, since G is nontraceable, there must be some vertex of Q, say q, that is adjacent to a vertex of P, say p. From Claim 2.2, we know that q is nonadjacent to every other vertex in Q, and from Claim 2.3 we know that q is nonadjacent to every vertex of P except p. Thus, $\operatorname{deg}(q)=1$, and the proof of the lemma is complete.

Proof of Theorem 1. Suppose that G is nontraceable. Let S_{1} be a longest path in G, and say the end vertices are u and v. Then u, v satisfy condition (i) of Lemma 1, and so there exists some $a_{0} \in V(G) \backslash V\left(S_{1}\right)$ such that $\operatorname{deg}\left(a_{0}\right)=1$. Let S_{2} be a longest path in G extending from a_{0}. If we let w be the other end vertex of S_{2}, then a_{0}, w satisfy condition (ii) of the lemma. Hence, there exists some $b_{0} \in V(G) \backslash V\left(S_{2}\right)$ with degree 1 in G. Let S_{3} be a longest path in G that has a_{0} and b_{0} as its end vertices. Then since a_{0}, b_{0} satisfy condition (iii) of Lemma 1 , there exists a vertex $c_{0} \in V(G) \backslash V\left(S_{3}\right)$ such that $\operatorname{deg}\left(c_{0}\right)=1$. Note that a_{0}, b_{0}, and c_{0} are distinct vertices of degree 1 in G, and since G is connected, it must be that a_{0}, b_{0}, and c_{0} are pairwise nonadjacent.
Now, let a_{1}, b_{1}, and c_{1} be the neighbors of a_{0}, b_{0}, and c_{0}, respectively. Suppose that $a_{1}=b_{1}$ and consider $\left\langle\left\{a_{0}, b_{0}, a_{1}, x\right\}\right\rangle$ where x is some vertex of $V(G) \backslash\left\{a_{0}, b_{0}\right\}$ that is adjacent to a_{1} (such an x must exist since G is connected and nontraceable). Then since G is claw-free, one of the edges $a_{0} b_{0}, a_{0} x, b_{0} x$ must be present; but this is a contradiction since a_{1} is the unique neighbor of both a_{0} and b_{0}. Therefore, $a_{1} \neq b_{1}$ and by a similar argument, we see that a_{1}, b_{1}, and c_{1} are all distinct. Thus, we have that $a_{0}, b_{0}, c_{0}, a_{1}, b_{1}, c_{1}$ are six distinct vertices of G.

Claim 2.4. The vertex a_{1} is adjacent to b_{1}.
Proof. Suppose that a_{1} is not adjacent to b_{1}, and let P be a shortest path in G that has a_{1} and b_{1} as end vertices. Note that $|V(P)|>2$ and that $a_{0}, b_{0}, c_{0} \notin V(P)$. Order P from a_{1} to b_{1}. For convenience define a_{1}^{-1} to be a_{0} and define b_{1}^{+1} to be b_{0}.

Case 1: Suppose $c_{1} \in V(P)$. We know that $c_{1}^{-1}, c_{1}^{+1} \neq c_{0}$, so consider $\left\langle\left\{c_{1}, c_{1}^{-1}, c_{1}^{+1}\right.\right.$, $\left.\left.c_{0}\right\}\right\rangle$. Since G is claw-free, one of the edges $c_{1}^{-1} c_{1}^{+1}, c_{1}^{-1} c_{0}, c_{1}^{+1} c_{0}$ must be present. But since $\operatorname{deg}\left(c_{0}\right)=1$, only $c_{1}^{-1} c_{1}^{+1}$ can be present. But then $\left[a_{1}, c_{1}^{-1}\right]_{P},\left[c_{1}^{+1}, b_{1}\right]_{P}$ is a path from a_{1} to b_{1} that is shorter than P, a contradiction.

Case 2: Suppose $c_{1} \notin V(P)$. Let $P^{\prime}: g_{0}, g_{1}, g_{2}, \ldots, g_{k}\left(=c_{1}\right)$ be a shortest path that connects c_{1} to the path $P\left(g_{0} \in V(P), g_{i} \notin V(P)\right.$ for $\left.1 \leqslant i \leqslant k\right)$. For convenience, define g_{k+1} to be c_{0}.

Fig. 3.

Fig. 4.
Suppose $g_{0}=a_{1}$ and consider $\left\langle\left\{a_{1}, a_{0}, a_{1}^{+1}, g_{1}\right\}\right\rangle$. This is a potential claw, and since $\operatorname{deg}\left(a_{0}\right)=1$, we see that $g_{1} a_{1}^{+1} \in E(G)$. Thus, we may assume for convenience that $g_{0} \in V(P) \backslash\left\{a_{1}, b_{1}\right\}$. Considering $\left\langle\left\{g_{0}, g_{0}^{-1}, g_{0}^{+1}, g_{1}\right\}\right\rangle$, we can see that one of $g_{0}^{-1} g_{1}$ and $g_{0}^{+1} g_{1}$ must be present (the edge $g_{0}^{-1} g_{0}^{+1}$ produces a shorter $a_{1}-b_{1}$ path). Without loss of generality, assume that $g_{0}^{-1} g_{1} \in E(G)$.

If $k \geqslant 2$, we can consider $\left\langle\left\{g_{0}^{-1}, g_{0}, g_{1}, g_{2}, g_{3}\right\}\right\rangle$, a potential induced Z_{2}. To prevent this Z_{2} from existing, one of the edges $g_{0}^{-1} g_{3}, g_{0}^{-1} g_{2}, g_{0} g_{3}, g_{0} g_{2}, g_{1} g_{3}$ must be present. However, each of these edges can be shown to yield a shorter path from c_{1} to P. Therefore, it must be that $k=1$, that is, $g_{1}=c_{1}$ (see Fig. 3).

Consider the potential Z_{2} formed by the vertices $c_{1}, g_{0}^{-1}, g_{0}, g_{0}^{+1}$, and g_{0}^{+2}. One of the edges $g_{0}^{-1} g_{0}^{+2}, g_{0}^{-1} g_{0}^{+1}, c_{1} g_{0}^{+2}, c_{1} g_{0}^{+1}, g_{0} g_{0}^{+2}$ must be present. We can exclude $c_{1} g_{0}^{+2}$ and $c_{1} g_{0}^{+1}$ from consideration since each would yield an induced $K_{1,3}:\left\langle\left\{c_{1}, g_{0}^{+2}, g_{0}^{-1}, c_{0}\right\}\right\rangle$ and $\left\langle\left\{c_{1}, g_{0}^{+1}, g_{0}^{-1}, c_{0}\right\}\right\rangle$, respectively. Furthermore, we can exclude $g_{0}^{-1} g_{0}^{+1}$ since it produces a shorter $a_{1}-b_{1}$ path. Thus, one of $g_{0}^{-1} g_{0}^{+2}$ or $g_{0} g_{0}^{+2}$ must be present. This implies that $g_{0}^{+2} \neq b_{0}$ since b_{0} has degree 1 . But then each of $g_{0}^{-1} g_{0}^{+2}$ and $g_{0} g_{0}^{+2}$ provides a shorter $a_{1}-b_{1}$ path, which is a contradiction.

Therefore, it must be that a_{1} is adjacent to b_{1}, proving Claim 2.4.
The argument used in the proof of Claim 2.4 can also be used to show that $a_{1} c_{1}, b_{1} c_{1}$ $\in E(G)$. Thus, we have an induced $E_{3}(=N)$.

Let $l=\max \left\{k: G\right.$ contains an induced E_{k} which contains a_{0}, b_{0}, and $\left.c_{0}\right\}$, and let S be a subgraph of G that is isomorphic to E_{l}. Note that $3 \leqslant l<r$ and that $|V(S)|=l+$ $3<r+3$.

Define two sets: $D=V(S) \backslash\left\{a_{0}, b_{0}, c_{0}, a_{1}, b_{1}, c_{1}\right\}$ and $W=V(G) \backslash V(S)$ (see Fig. 4).
Note that $|D|=l-3$ and also that since $n \geqslant 2 r$ we have $|W|=n-|V(S)|>n-(r+$ $3) \geqslant r-3>0$.

Thus, $W \neq \emptyset$. Let $x \in W$ be a vertex adjacent to some vertex of S. First of all, we know that x is not adjacent to any of a_{0}, b_{0}, and c_{0} since they each have degree 1 . Suppose x is adjacent to a_{1}, and consider $\left\langle\left\{a_{1}, a_{0}, x, d\right\}\right\rangle$ where $d\left(\neq a_{1}\right)$ is an arbitrary element of $V(S) \backslash\left\{a_{0}, b_{0}, c_{0}\right\}$. We know $a_{0} x, a_{0} d \notin E(G)$ since $\operatorname{deg}\left(a_{0}\right)=1$, so since G is claw-free, the edge $x d$ must be present. Since d was chosen arbitrarily, we can conclude that x is adjacent to all vertices of $V(S) \backslash\left\{a_{0}, b_{0}, c_{0}\right\}$. But then, $\langle V(S) \cup\{x\}\rangle$ is isomorphic to E_{l+1}, which contradicts the maximality of S. Hence, x cannot be adjacent to a_{1}, and by a similar argument, x is also nonadjacent to b_{1} and c_{1}. Therefore no vertex of W is adjacent to any of $a_{0}, b_{0}, c_{0}, a_{1}, b_{1}$, or c_{1}. Since $|W|>0$, there must be vertices of W that are adjacent to vertices of D (also implying that $D \neq \emptyset$).

If any vertex of W has distance 2 from D, we will immediately have an induced Z_{2}. Thus each vertex of W is adjacent to a vertex in D. Further, if $d \in D$ is adjacent to two vertices of W, say w and w^{\prime}, then $\left\langle\left\{d, w, w^{\prime}, a_{1}\right\}\right\rangle$ is a potential claw, implying that the edge $w w^{\prime}$ must be present. But then, $\left\langle\left\{w, w^{\prime}, d, a_{1}, a_{0}\right\}\right\rangle$ is an induced Z_{2}, which is a contradiction. Thus, each vertex of D can be adjacent to at most one vertex of W.
We therefore have that $|W| \leqslant|D|=l-3<r-3$. This contradicts our earlier finding (p. 6) that $|W|>r-3$.

We have reached the desired contradiction. Thus, G must be traceable.
Corollary 1. Let $r \geqslant 4$ be a fixed integer. Let R, S, and T be connected induced subgraphs of $K_{1,3}, E_{r}$, and Z_{2}, respectively. If G is a connected graph of order $n \geqslant 2 r$ that is $\{R, S, T\}$-free, then G is traceable.

3. Proof of Theorem 2

The proof of Theorem 2 is similar in many ways to that of the proof of Theorem C in [4].

Let $\gamma=\max \{r(m-2), 2 r+(m-2)\}+1$. We consider two cases.
Case 1: Suppose G is K_{γ}-free. Let w be a vertex with max degree, $\Delta(G)$. Since the neighborhood of any vertex cannot contain a $K_{\gamma-1}$ or a $\overline{K_{r}}$, it must be that $\Delta(G)<R(\gamma-$ $1, r)$, the Ramsey number associated with the integers $\gamma-1$ and r.
For $i=1,2, \ldots$, let the set $N_{i}(w)$ be defined by $N_{i}(w)=\{v \in V(G): d(w, v)=i\}$. Since the degree of every vertex in $N_{1}(w)$ is bounded by $R(\gamma-1, r)$, we know that $\left|N_{2}(w)\right|<(R(\gamma-1, r))^{2}$. By a similar argument, we can conclude that $\left|N_{i}(w)\right|<(R(\gamma-$ $1, r))^{i}$ for $i=1,2, \ldots$. We assume that n is large enough for $N_{l-1}(w)$ to be nonempty. But then if $a_{l-1} \in N_{l-1}(w)$, there must exist vertices $a_{l-2}, a_{l-3}, \ldots, a_{1}$ where $a_{i} \in N_{i}(w)$ such that $\left\{w, a_{1}, a_{2}, \ldots, a_{l-1}\right\}$ induces a P_{l}, which is a contradiction.
Therefore, G is not K_{γ}-free, and Case 1 cannot occur.
Case 2: Suppose G is not K_{γ}-free. Let C be a largest clique in G, and let $t=|V(C)|$ (thus $t \geqslant \gamma>r(m-2)$). Let $P=\{v \in V(G): d(v, C)=1\}$, where $d(v, C)$ denotes the distance from v to some vertex of C.

Claim 3.1. (i) If v is a vertex of P, then $\left|N_{C}(v)\right| \geqslant t-(m-2)$.
(ii) $V(G)=V(C) \cup P$.
(iii) $\alpha(P)<r$, where $\alpha(P)$ is the independence number of P.

Proof. Let $v \in P$, say it is adjacent to $a_{0} \in V(C)$, and suppose that $\left|N_{C}(v)\right| \leqslant t-(m-$ $2)-1=t-(m-1)$. Then v is nonadjacent to at least $m-1$ vertices of C. If we let a_{1}, \ldots, a_{m-1} be vertices of C that are not adjacent to v, then $\left\langle\left\{v, a_{0}, a_{1}, \ldots, a_{m-1}\right\}\right\rangle$ is an induced Q_{m}, which is a contradiction.

Therefore, it must be that for every $v \in P,\left|N_{C}(v)\right| \geqslant t-(m-2)$, and (i) is proven.
If we suppose that (ii) is not true, then there must exist some vertex w such that $d(w, C)=2$ and such that w is adjacent to some vertex, say v, of P.

From (i) we know that v is adjacent to at least $t-(m-2)$ vertices of C. Moreover, we see that $t-(m-2)>r(m-2)-(m-2)=(m-2)(r-1)>m-2$ since $r \geqslant 4$. Thus v is adjacent to at least $m-1$ vertices of C. But then, if a_{1}, \ldots, a_{m-1} are vertices of C that are adjacent to v, we have that $\left\langle\left\{w, v, a_{1}, \ldots, a_{m-1}\right\}\right\rangle$ is an induced Q_{m}, a contradiction.

Therefore, no such w can exist, and (ii) is proven.
Now, suppose $\alpha(P) \geqslant r$, and let $\left\{p_{1}, \ldots, p_{r}\right\} \subseteq P$ be an independent set of vertices.
Consider the sets $N_{C}\left(p_{1}\right), \ldots, N_{C}\left(p_{r}\right)$. They are all subsets of $V(C)$, and for each i,

$$
\left|N_{C}\left(p_{i}\right)\right| \geqslant t-(m-2)>\left(1-\frac{1}{r}\right) t
$$

since $t>r(m-2)$. It now follows (from a straightforward set systems argument) that

$$
\left|\bigcap_{i=1}^{r} N_{C}\left(p_{i}\right)\right|>0
$$

But then if we let a_{0} be a member of this intersection, we have that $\left\langle\left\{a_{0}, p_{1}, \ldots, p_{r}\right\}\right\rangle$ is an induced $K_{1, r}$, which contradicts our assumptions.

Therefore, it must be that $\alpha(P)<r$, and (iii) is proven.
Now, partition the vertices of P into disjoint paths in the following manner. Let S_{1} be a longest path (not necessarily induced) in $\langle P\rangle$, and say its end vertices are a_{1} and b_{1}. Let S_{2} be a longest path in $\left\langle P \backslash V\left(S_{1}\right)\right\rangle$, say with end vertices a_{2} and b_{2}. Continue this process until the paths $S_{1}, S_{2}, \ldots, S_{k}$ are obtained where $V\left(S_{1}\right) \cup V\left(S_{2}\right) \cup \cdots \cup V\left(S_{k}\right)$ $=P$, and where for each $i \in\{1,2, \ldots, k\}$, the path S_{i} has endpoints a_{i} and b_{i}. From this construction we see that $V\left(S_{1}\right), V\left(S_{2}\right), \ldots, V\left(S_{k}\right)$ are necessarily disjoint. Further, due to the maximality of the paths, $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ must be an independent set. Hence, from Claim 3.1, it must be that $k<r$.

Now, it might be the case that some of these paths are single vertices. Suppose that the paths $S_{1}, S_{2}, \ldots, S_{p}$ are the paths with more than one vertex, and that S_{p+1}, S_{p+2}, \ldots, S_{k} are the single vertex paths. That is, $a_{i}=b_{i}$ for each $i \in\{p+1, p+2, \ldots, k\}$. For $p+1 \leqslant i \leqslant k$, split the vertex a_{i} into two distinct vertices a_{i} and b_{i}, and connect them with an edge. Further, place edges between b_{i} and all vertices of $N_{C}\left(a_{i}\right)$.

Fig. 5. The situation in G^{\prime}.

This splitting creates a new graph G^{\prime} (if $p=k$, then $G^{\prime}=G$), and we have converted the single vertex paths S_{p+1}, \ldots, S_{k} into two-vertex paths, while the other paths S_{1}, \ldots, S_{p} remained unchanged.

Consider the bipartite subgraph of G^{\prime} defined as follows: $B=(X \cup Y, E(B)$ where $X=\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{k}, b_{k}\right\}$ and $Y=\bigcup_{i=1}^{k}\left(N_{C}\left(a_{i}\right) \cup N_{C}\left(b_{i}\right)\right)$ and where $E(B)=$ $\left\{x y: x \in X, y \in Y\right.$, and $\left.x y \in E\left(G^{\prime}\right)\right\}$. Let $R \subseteq X$. Then in B we have

$$
|R| \leqslant|X|=2 k<2 r<|N(R)|
$$

since in G we have

$$
\left|N_{C}(x)\right|>t-(m-2)>(2 r+(m-2))-(m-2)=2 r
$$

for any $x \in R$. Thus, by a well-known theorem from Hall [6], X can be matched to a subset of Y. For each i, say that a_{i} and b_{i} in X are matched to a_{i}^{*} and b_{i}^{*} in Y, respectively (see Fig. 5).

We now show that G^{\prime} is traceable by constructing a hamiltonian path. Let T_{1} be the following path in G^{\prime} :

$$
a_{1}^{*},\left[a_{1}, b_{1}\right]_{s_{1}}, b_{1}^{*}, a_{2}^{*},\left[a_{2}, b_{2}\right]_{s_{2}}, b_{2}^{*}, \ldots, a_{k}^{*},\left[a_{k}, b_{k}\right]_{s_{k}}, b_{k}^{*} .
$$

Let C^{\prime} be the set of vertices of C that are not on the path T_{1}. It is clear that $\left\langle C^{\prime}\right\rangle$ is complete, so let T_{2} be a hamiltonian path for $\left\langle C^{\prime}\right\rangle$, say with endpoints a_{0} and b_{0}. Then a hamiltonian path for G^{\prime} is given by

$$
\left[a_{1}^{*}, b_{k}^{*}\right]_{T_{1}},\left[a_{0}, b_{0}\right]_{\tau_{2}} .
$$

Therefore, we can conclude that G^{\prime} is traceable. (Note: If P is empty, G^{\prime} is still clearly traceable.) If $G^{\prime}=G$ the proof is complete. So, assume that $G^{\prime} \neq G$, and say that vertex $a_{i} \in G$ was split to form vertices a_{i} and b_{i} in G^{\prime}. In our construction of a hamiltonian path in G^{\prime}, the edge $a_{i} b_{i}$ was used (it was the path S_{i}). Hence, by identifying the vertex $a_{i} \in V\left(G^{\prime}\right)$ with the vertex $b_{i} \in V\left(G^{\prime}\right)$, we do not affect the
existence of a spanning path. Identifying all pairs of vertices of G^{\prime} that were a result of splitting, we obtain the graph G, and we see that G is also traceable.

Note here that if we let $\Phi=R(\gamma-1, r)$, then $n>1+\sum_{i=0}^{l-2}(\Phi-1)(\Phi-2)^{i}$ suffices in the proof. Also, notice that the result holds for $r<3$ and/or $l<4$ and/or $m<3$ from the work in [2]. Moreover, if $r=3$, the result follows from a theorem in [5], and if $l-4$, the result follows from the theorem in Section 3 of [4].

Corollary 2. Let $r \geqslant 4, l \geqslant 5$, and $m \geqslant 3$ be fixed integers. Let R, S, and T be connected induced subgraphs of $K_{1, r}, P_{l}$, and Q_{m}, respectively. If G is a connected graph of order n that is $\{R, S, T\}$-free, and if n is sufficiently large, then G is traceable.

Acknowledgements

The authors wish to thank the referees of this paper for their time, their careful consideration, and their helpful suggestions.

References

[1] D. Duffus, R.J. Gould, M.S. Jacobson, Forbidden subgraphs and the Hamiltonian theme, in: Chartrand et al. (Ed.), The Theory and Applications of Graphs, Wiley-Interscience, New York, 1981, 297-316.
[2] R.J. Faudree, R.J. Gould, Characterizing forbidden pairs for Hamiltonian properties, Discrete Math., to appear.
[3] R.J. Gould, Graph Theory, Benjamin/Cummings Pub., Menlo Park, CA, 1988.
[4] R.J. Gould, J.M. Harris, Forbidden triples of subgraphs and traceability, Congr. Numer. 108 (1995) 183-192.
[5] R.J. Gould, J.M. Harris, Forbidden triples of subgraphs and traceability: a fifth family and a characterization, preprint.
[6] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30.

[^0]: * Corresponding author. E-mail: jmh@math.appstate.edu.
 ${ }^{1}$ Research supported in part by O.N.R. Grant N00014-91-J-1085.

