Intersections of Longest Cycles in k-Connected Graphs

Guantao Chen
Department of Mathematics and Computer Sciences, Georgia State University, Atlanta, Georgia 30303
Ralph J. Faudree*
Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee 38152
and
Ronald J. Gould ${ }^{\dagger}$
Department of Mathematics and Computer Sciences, Emory University, Atlanta, Georgia 30322

Received August 23, 1996

Let G be a connected graph, where $k \geqslant 2$. S. Smith conjectured that every two longest cycles of G have at least k vertices in common. In this note, we show that every two longest cycles meet in at least $c k^{3 / 5}$ vertices, where $c \approx 0.2615$. ©(C) 1998 Academic Press

In this note, we provide a lower bound on the number of vertices in the intersection of any two longest cycles in a k-connected graph $(k \geqslant 2)$. This work is inspired by the following conjecture due to Scott Smith; see [2, 6].

Conjecture 1. In a k-connected graph, two longest cycles meet in at least k vertices.

According to Grötchel [6], the conjecture has been verified up to $k=10$. Theorem 1.2(a) of [6] showed the conjecture is true up to $k=6$. Further, Grötchel and Nemhauser [7] studied the properties of two longest cycles meeting in exactly 2 vertices in 2 -connected graphs and Grötchel [6] studied the properties of two longest cycles meeting in k vertices for $k=3,4,5$. For

[^0]general k, S. Burr and T. Zamfirescu (private communication) mentioned the following result.

Theorem 1 (Burr and Zamfirescu). If G is a k-connected graph with $k \geqslant 2$, then every pair of different longest cycles meet in at least $\sqrt{k}-1$ vertices.

The purpose of this paper is to improve the above result for large k as follows.

Theorem 2. If G is a k-connected graph, then any two different longest cycles meet in at least $c k^{3 / 5}$ vertices, where $c=1 /(\sqrt[3]{256}+3)^{3 / 5} \approx 0.2615$.

The proof of Theorem 2 will be deferred until we present several lemmas. We will generally follow the notation of Bondy and Murty [3]. All graphs considered in this paper are simple graphs. For convenience we will use the notation $G \subseteq K_{m, n}$ to signify a bipartite graph in which one part has m vertices and the other part has n vertices. Let X be a path or a cycle on a graph. We will usually give an orientation to X. In this case, for any pair of vertices u and $v \in V(X)$, we will use the notation $X[u, v]$ to signify the segment of X from u to v along the orientation (if such a segment exists). The same segment with reversed orientation will be denoted by $\bar{X}[v, u]$.

Lemma 1 (Hylton-Cavallius [8]). Let $G \subseteq K_{n, n}$ be a bipartite graph. Then G contains $K_{s, t}$ as a subgraph if

$$
e(G) \geqslant(s-1)^{1 / t}(n-t+1) n^{1-1 / t}+(t-1) n .
$$

For the purpose of this paper, we will only need the following special case of Lemma 1:

Corollary 1. Let $G \subseteq K_{n, n}$. Then G contains $K_{3,257}$ if

$$
e(G) \geqslant \sqrt[3]{256}(n-2) n^{2 / 3}+2 n
$$

The following classical Ramsey-type result is due to Erdős and Szekeres.
Lemma 2 (Erdős and Szekeres [5]). Every sequence of $n^{2}+1$ real numbers contains a monotone subsequence of length $n+1$.

The following result slightly generalizes Lemma 2.

Lemma 3. Let Σ be a set of n permutations of a sequence of S of $2^{2^{n}}+1$ elements. Then there is a subsequence (a, b, c) of S on which each
permutation $\sigma \in \Sigma$ is monotonic (that is, either $\sigma(a)<\sigma(b)<\sigma(c)$ or $\sigma(a)>$ $\sigma(b)>\sigma(c))$.

Proof. We proceed by induction on n. The lemma is true for $n=1$ by Lemma 2. Suppose it is true for $n-1$, where $n \geqslant 2$. Let $\sigma \in \Sigma$. By Lemma 2, there is a subsequence S^{\prime} of S of $2^{2^{n-1}}+1$ elements on which σ is monotonic. By induction, there is a subsequence (a, b, c) of S^{\prime} on which each permutation in $\Sigma-\{\sigma\}$ is monotonic.

The following classical result due to Dirac will be also be used in the proof.

Lemma 4 (Dirac [4]). Let G be a 2 -connected graph of minimum degree δ on n vertices, where $n \geqslant 3$. Then G contains either a cycle of length at least 2δ or a Hamiltonian cycle.

The Proof of Theorem 2. We will prove Theorem 2 by contradiction. Let G be a k-connected graph which contains two longest cycles C and D such that $|V(C) \cap V(D)|<c k^{3 / 5}$, where $c=1 /(\sqrt[3]{256}+3)^{3 / 5}$. Let $V(C) \cap$ $V(D)=A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ where $m<c k^{3 / 5}$. Let $X_{1}, X_{2}, \ldots, X_{m}$ be the segments of $C-A$ (some of them may be empty) and let $Y_{1}, Y_{2}, \ldots, Y_{m}$ be the segments of $D-A$ (some of them may be empty).

Since $|A|<c k^{3 / 5}, G$ is not Hamiltonian. By Lemma 4, we have $|V(G)|>2 k$ and $|V(C)|=|V(D)| \geqslant 2 k$. Thus,

$$
\left|X_{1} \cup X_{2} \cup \cdots \cup X_{m}\right|=\left|Y_{1} \cup Y_{2} \cup \cdots \cup X_{m}\right| \geqslant k .
$$

Since G is k-connected, $G-A$ is $(k-m)$-connected and thus contains $k-m$ pairwise vertex-disjoint paths $P_{1}, P_{2}, \ldots, P_{k-m}$ from $X_{1} \cup X_{2} \cup \cdots \cup X_{m}$ to $Y_{1} \cup Y_{2} \cup \cdots \cup Y_{m}$. Let $\mathscr{P}=\left\{P_{1}, P_{2}, \ldots, P_{k-m}\right\}$.

Claim 1. There do not exist two paths P_{i} and P_{j} both of whose initial vertices are in the same segment of $C-A$ and both of whose end vertices are in the same segment of $D-A$.

Proof. To the contrary, without loss of generality, we may assume that $P_{1}=P_{1}\left[u_{1}, v_{1}\right]$ and $P_{2}=P_{2}\left[u_{2}, v_{2}\right]$ are two paths with u_{1} and u_{2} in X_{1} and v_{1} and v_{2} in Y_{1}. Furthermore, we assume that $C\left[u_{1}, u_{2}\right] \subseteq X_{1}$ and $D\left[v_{1}, v_{2}\right] \subseteq Y_{1}$. Note that G contains two cycles

$$
C^{*}=C\left[u_{2}, u_{1}\right] P_{1}\left[u_{1}, v_{1}\right] D\left[v_{1}, v_{2}\right] \bar{P}_{2}\left[v_{2}, u_{2}\right]
$$

and

$$
D^{*}=C\left[v_{2}, v_{1}\right] \stackrel{\rightharpoonup}{P}_{1}\left[v_{1}, u_{1}\right] C\left[u_{1}, u_{2}\right] P_{2}\left[u_{2}, v_{2}\right]
$$

Then,

$$
\begin{aligned}
\left|V\left(C^{*}\right)\right|+\left|V\left(D^{*}\right)\right| & =|V(C)|+|V(D)|+2\left(\left|V\left(P_{1}\right)\right|-1\right)+2\left(\left|V\left(P_{2}\right)\right|-1\right) \\
& >|V(C)|+|V(D)|
\end{aligned}
$$

a contradiction.
We now construct an auxiliary graph H with vertex set $\left\{X_{1}, X_{2}, \ldots, X_{m}\right.$, $\left.Y_{1}, Y_{2}, \ldots, Y_{m}\right\}$ and for each path $P_{\ell} \in \mathscr{P}$ from X_{i} to Y_{j} we insert an edge e_{ℓ} joining X_{i} and Y_{j} in H. By Claim 1, H contains no multiple edges. Thus, H is a simple bipartite graph where each partite set has m vertices.

Note that H has at most m^{2} edges. Thus, $k-m \leqslant m^{2}$, which implies that $m \geqslant \sqrt{k}-1$. Theorem 1 is proved at this stage. The strategy for the remainder of the proof of Theorem 2 is a refinement if this idea.

Since $H \subseteq K_{m, m}$ and H contains at least $k-m \geqslant(\sqrt[3]{256}+2) m^{5 / 3}$ edges, by Corollary 1, H contains $K_{3,257}$ as a subgraph. Relabelling the segments if necessary, we assume the vertices $X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, \ldots, Y_{257}$ induce a $K_{3,257}$ and let $P_{i, j}\left[u_{i, j}, v_{i, y}\right]$ denote the path from X_{i} to Y_{j} for $1 \leqslant i \leqslant 3$ and $1 \leqslant j \leqslant 257$ in \mathscr{P}.

We orient both cycles C and D. Beginning with vertex a_{1}, the orientation of C gives a linear order of $V(C)$, that is, for any pair of vertices x_{1} and $x_{2} \in V(C)$, we define $x_{1} \prec x_{2}$ if $x_{1} \in C\left[a_{1}, x_{2}\right]$. Furthermore, if S and T are two disjoint segments of $C-\left\{a_{1}\right\}$, we define $S \prec T$ if S lies between a_{1} and T along the orientation of C. We define analogous notation with respect to the cycle D.

With the above definition, we lose no generality by assuming that $X_{1} \prec X_{2} \prec X_{3}$ and $Y_{1} \prec Y_{2} \prec \cdots \prec Y_{257}$. Along the orientation of C, the 257 vertices $u_{i, 1}, u_{i, 2}, \ldots, u_{i, 257}$ give a permutation σ_{i} of $1,2, \ldots, 257=2^{2^{3}}+1$ for each $i=1,2,3$. By Lemma 4, there are three integers a, b, c from $\{1,2, \ldots, 257\}$ on which each permutation σ_{i} is monotonic, that is, either $\sigma_{i}(a)>\sigma_{i}(b)>\sigma_{i}(c)$ or $\sigma_{i}(a)<\sigma_{i}(b)<\sigma_{i}(c)$ for each $i=1,2,3$. Without loss of generality, we may assume that $a=1, b=2, c=3$. By the Pigeonhole Principle, we may assume that $\sigma_{i}(1)>\sigma_{i}(2)>\sigma_{i}(3)$ for $i=1,2$. Thus, we have

$$
\begin{equation*}
u_{1,1} \prec u_{1,2} \prec u_{1,3} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{2,1} \prec u_{2,2} \prec u_{2,3} \tag{2}
\end{equation*}
$$

and either

$$
\begin{equation*}
u_{3,1} \prec u_{3,2} \prec u_{3,3} \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{3,3} \prec u_{3,2} \prec u_{3,1} . \tag{4}
\end{equation*}
$$

Recall that the end vertex of the path $P_{i, j}$ is $v_{i, j}$ for each path $P_{i, j}$. We may assume that $v_{1,1} \prec v_{2,1}$, otherwise we reverse the roles of X_{1} and X_{2}.

Claim 2. There are i and j with $1 \leqslant i \leqslant j \leqslant 3$ such that either

$$
\begin{equation*}
v_{1, i} \prec v_{2, i} \quad \text { and } \quad v_{1, j} \prec v_{2, j} \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
v_{2, i} \prec v_{1, i} \quad \text { and } \quad v_{2, j} \prec v_{1, j} . \tag{6}
\end{equation*}
$$

Note that the existence of a large $K_{2, m}$ in the auxiliary graph H would not be enough to provide statements of (5) and (6). This is the reason we need the fact that H contains a $K_{3,257}$ in our proof.

Proof. Since $v_{1,1} \prec v_{2,1}$, Claim 2 follows if either $v_{1,2} \prec v_{2,2}$ or $v_{1,3} \prec v_{2,3}$. We assume that $v_{2,2} \prec v_{2,1}$ and $v_{2,3} \prec v_{1,3}$. Clearly, Claim 2 follows in this case also.

By reversing the orientation of D if necessary, without loss of generality, we assume that $v_{1,1} \prec v_{2,1}$ and $v_{1,2} \prec v_{2,2}$. Then, G contains two cycles C^{*} and D^{*} listed below:

$$
\begin{aligned}
C^{*}= & P\left[u_{1,1}, v_{1,1}\right] D\left[v_{1,1}, v_{2,1}\right] \leftarrow \bar{P}_{2,1}\left[v_{2,1}, u_{2,1}\right] \leftarrow \bar{C}\left[u_{2,1}, u_{1,2}\right] \\
& \times P\left[u_{1,2}, v_{1,2}\right] D\left[v_{1,2}, v_{2,2}\right] \leftarrow \bar{P}_{2,2}\left[v_{2,2}, u_{2,2}\right] C\left[v_{2,2}, u_{1,1}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
D^{*}= & \leftarrow \tilde{P}\left[v_{1,1}, u_{1,1}\right] C\left[u_{1,1}, u_{2,1}\right] P_{2,1}\left[u_{2,1}, v_{2,1}\right] \leftarrow \tilde{D}\left[v_{2,1}, v_{1,2}\right] \\
& \leftarrow \bar{P}\left[v_{1,2}, u_{1,2}\right] C\left[u_{1,2}, u_{2,2}\right] P_{2,2}\left[u_{2,2}, v_{2,2}\right] D\left[v_{2,2}, v_{1,1}\right] .
\end{aligned}
$$

However,

$$
\begin{aligned}
\left|V\left(C^{*}\right)\right|+\left|V\left(D^{*}\right)\right| & =|V(C)|+|V(D)|+2 \sum_{1 \leqslant i, j \leqslant 2}\left(\left|V\left(P_{i, j}\right)\right|-1\right) \\
& >|V(C)|+|V(D)|
\end{aligned}
$$

which contradicts the assumption that both C and D are longest cycles of G.

Applications

We shall now state an application of Theorem 2 to vertex-transitive graphs. Babai [1] proved that every connected vertex-transitive graph with at least four vertices contains a cycle of length greater than $(3 n)^{1 / 2}$. Following the (nice and simple) proof of Babai [1], we can conclude:

Proposition 1. If G is a vertex-transitive graph of order n such that every two different longest cycles meet in at least $f(k)$ vertices, then G contains a cycle of length greater than $(f(k) n)^{1 / 2}$.

Combining the above result and Theorem 2, we obtain the following:
Theorem 3. If G is a k-connected vertex-transitive graph of order n, then G contains a cycle of length greater than $c k^{3 / 10} n^{1 / 2}$, where $c \approx 0.2615$.

Mader [9] and Watkins [10] proved that the connectivity of a connected vertex-transitive d-regular graph is at least $\frac{2}{3}(d+1)$. Note that vertex transitive graphs are regular, hence we can conclude:

Theorem 4. If G is a connected vertex-transitive graph of degree d, then G contains a cycle of length at least $c d^{3 / 10} n^{1 / 2}$, where $c \approx 0.2615$.

Although the folklore belief of many is that all but a finite number of connected vertex-transitive graphs are Hamiltonian, it seems that the lower bounds on the circumference given above are the best known at present for large d.

ACKNOWLEDGMENT

The authors express their gratitude to the referees for their helpful comments, especially pointing out the use of Lemma 3 to simplify the proof.

REFERENCES

1. L. Babai, Longest cycles in vertex-transitive graphs, J. Graph Theory 3 (1979), 301-304.
2. J. A. Bondy, Basic graph theory: Paths and circuits, in "Handbook of Combinatorics" (R. L. Graham, M. Grötschel, and L. Lovász, Eds.), Vol. I, pp. 3-110, Elsevier, Amsterdam, MIT Press, Cambridge, 1996.
3. J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications," Macmillan, London/ Elsevier, New York, 1976.
4. G. A. Dirac, Some theorem on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
5. P. Erdős and G. Szekeres, A combinatorial problem in geometry, Composito Math. 2 (1935), 463-470.
6. M. Grötschel, On intersections of longest cycles, in "Graph Theory and Combinatorics" (B. Bollobás, Ed.), pp. 171-189, Academic Press, London, 1984.
7. M. Grötschel and G. L. Nemhauser, A polynomial algorithm for the max-cut problem on graphs without long odd cycles, Math. Programming 29 (No. 1) (1984), 28-40.
8. C. Hylton-Cavallius, On a combinatorial problem, Colloq. Math. 6 (1958), 59-65.
9. W. Mader, Eine Eigenschaft der Atome endlicher Graphen, Arch. Math. (Basel) 22 (1977), 333-336.
10. M. E. Watkins, Connectivity of transitive graphs, J. Combin. Theory 8 (1970), 23-29.

[^0]: * Research partially supported under O.N.R. Grant N00014-J-91-1085.
 ${ }^{\dagger}$ Research partially supported under O.N.R. Grant N00014-97-1-0499.

