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Abstract 

In this paper we characterize those pairs of forbidden subgraphs sufficient to imply various 
hamiltonian type properties in graphs. In particular, we find all forbidden pairs sufficient, along 
with a minor connectivity condition, to imply a graph is traceable, hamiltonian, pancyclic, pan- 
connected or cycle extendable. We also consider the case of hamiltonian-connected graphs and 
present a result concerning the pairs for such graphs. 

1. Introduction 

Given a family ~ = {H1,H2 . . . . .  Hk} of  graphs we say that a graph G is ,N-free i f  

G contains no induced subgraph isomorphic to any Hi, i = 1,2 . . . . .  k. In particular, i f  

= {H},  we simply say G is H-free.  We call the graphs in o~ forbidden subgraphs. 
The use o f  forbidden subgraphs to obtain classes of  graphs possessing special prop- 

erties has long been a common graphical technique. In particular, some o f  the graphs 

most commonly involved in forbidden families for hamiltonian properties are shown in 

Fig, 1. It has been pointed out that the star K1,3, sometimes called the claw, has often 

been a part of  these forbidden families. We shall show the reason for that observation 

in the course of  this paper. 

One o f  the earliest forbidden subgraph results dealing with hamiltonian properties 

is the following result due to Duffus et al. [3]. The graphs K1,3 and N are shown 

in Fig. 1. 

Theorem 1, Let G be a {Kl,3,N}-free graph. Then 

(1) i f  G is connected, then G is traceable and 

(2) i f  G is 2-connected, then G is hamiltonian. 
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Fig. 1. Common forbidden graphs. 

This result is typical of the type we wish to address in this paper. It imposes minor, 
but necessary, connectivity conditions on the class of graphs defined by a forbidden pair 
of graphs in order to obtain hamiltonian results. The connectivity conditions used in 
Theorem 1 are the minimal ones necessary in graphs with the corresponding properties. 

If P is a hamiltonian property (like traceable, hamiltonian, pancyclic, etc.), let k(P)  

denote the least connectivity possible in a graph with property P. Thus, for example if P 
is traceability, then k ( P ) =  1 while if P is hamiltonicity, then k ( P ) =  2. In this paper we 
wish to determine all pairs of  connected graphs {H1,H2} such that any k(P)-connected 
{H1, H2}-free graph will possess hamiltonian property P. In particular, we will consider 
property P to be each of the following fundamental hamiltonian properties: traceable, 
hamiltonian, pancyclic, panconnected, and cycle extendable. We shall also consider 
the problem when P is hamiltonian-connected, however a complete characterization in 
this case will not be obtained. This idea was introduced by Bedrossian in [1] who 
considered it for hamiltonian and pancyclic graphs. However, in proving which graphs 
must be forbidden, he used graphs of  small order in his proofs. We shall reexamine 
his results later and restrict our attention to infinite families of graphs. In doing so, we 
shall extend Bedrossian's results. 

We concentrate on forbidden pairs, however, in the course of our work we will also 
solve the corresponding problems when only one graph is forbidden. This tums out 
to be a much more restrictive situation and easier to solve. The question for triples 
has also been considered and, as you might expect, is considerably more involved. We 
shall not address triples in this paper. 
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One case is trivial and we wish to eliminate it from further consideration. Suppose 
G is connected, has order n ~>3 and is P3-free (here Pk denotes a path on k vertices), 

then G is easily seen to be a complete graph (which we denote Kn). But if  G is 
complete, then G has every hamiltonian property. Thus, forbidding P3 alone implies 
each hamiltonian property P and thus any other graph could be paired with 1°3 to obtain 
the same result. In fact, later we will show that P3 is the only single graph that solves 
our problem and thus we will remove it from consideration in forbidden pairs. 

We also denote the cycle on n vertices as Cn and the complete bipartite graph with 
r vertices in one set and m vertices in the other set as Kr, m. Finally, we define the 
graphs Zi, i = 1,2, . . .  to be a triangle with a path of  length i attached to one of  its 
vertices, that is, Zi is formed by identifying one vertex of  a C3 with an end vertex 
of  a Pi+l (see Fig. 1 for Z1 and Z2). For convenience we use the notation A -- B to 
denote A is isomorphic to B as well as A is equal to B. This should cause the reader 
no problems. For other terms not defined here see [6]. 

2. Traceable graphs 

We say a graph G is traceable if  it contains a spanning path, that is, a path containing 
all o f  the vertices of  G. In this section we determine which pairs {H1,H2} ( /4 ¢ 
P3, i = 1,2) imply a connected graph G is traceable. We note that Theorem 1 shows 
the pair {K1,3,N} is one such pair. It is also a simple matter to see that if  H is 
any induced subgraph of  N, then the pair {K1,3,H} will also solve our problem. In 
particular then, the graphs C3, P4, Z1 and B (see Fig. 1 ) may each play the role of  H.  
We now show these are the only such pairs o f  graphs. To do this we will need the 
example graphs of  Fig. 2. Note that each of  these graphs represents an infinite family 
of  connected nontraceable graphs. 

Theorem 2. Let  R and S be connected 9raphs (R, S ~ P3 ) and let G be a connected 

graph. Then G is {R ,S}- f ree  implies G is traceable if, and only if, R = K1,3 and S 

is one o f  the following: C3,P4,Z1,B or N. 

Proof .  That each of  these pairs implies a connected graph is traceable follows from 
Theorem 1 and our previous comments on induced subgraphs. 

Now consider the graph H0 of  Fig. 2, obtained by subdividing the edges of  a K1,3 
an arbitrary number of  times. The graph H0 is clearly connected and nontraceable, so 
assume without loss of  generality that H0 contains R as an induced subgraph. Further, 
suppose that R contains an induced P4. Then note that the graphs H1 and //2 (see 
Fig. 2) are both connected and nontraceable and neither contains an induced P4. Thus, 
S must be an induced subgraph of  both H1 and H2. But then we see that S must be 

a star, in fact, S = K1,3. 
Next suppose R does not contain an induced P4. As R is a subgraph of  H0, then R 

must contain a vertex of  degree 3. But these conditions in H0 imply R =/(1,3. Thus, 
in either case one of  our forbidden subgraphs must be K1,3. 
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Fig. 2. Connected nontraceable graphs. 

For the remainder of  this proof we assume without loss of  generality that R = K1, 3. 

The graph //3 (see Fig. 2) is connected, nontraceable and contains no induced K1,3 
and thus, S must be an induced subgraph of H3. Further, //3 contains no induced Ps, 
hence S contains no induced Ps. Similarly, 115 is claw-free and Z2-free. Also, Ha (see 
Fig. 2) is connected, nontraceable and K1,3-free; thus S is an induced subgraph of H4. 
Since the largest clique in H4 is K3, the same holds for S. But now if S contains no 
/£3 then S must be P4, while if S does contain /£3, then S is either C3 -- K3,Z1,B 
or N. This completes the proof. [] 

We now verify the single forbidden subgraph result for traceable graphs mentioned 
earlier. 

Theorem 3. Let  A and G be connected 9raphs. Then G is A-free implies G is traceable 

if, and only if, A = P3. 

Proof. From our earlier remarks we know that if  A ----/°3 then G is traceable. Thus, 
assume A ~ P3. The graph Ho of Fig. 2 is not traceable, hence A must be an induced 
subgraph of H0. Thus, A is a tree with at most one vertex of degree 3. Similarly, the 
graphs Kl,r (r~>3) imply that A must be a star, in fact, A ---- KI,3. However, the graph 
//5 of  Fig. 2 is connected, nontraceable and contains no induced K1,3. Thus, no other 
A exists and the result is shown. [] 
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Fig. 3. 2-Connected nonhamiltonian graphs. 

3. Hamiltonian graphs 

A graph G is hamiltonian if G contains a spanning cycle. We now consider the 
problem of all forbidden pairs that imply a 2-connected graph is hamiltonian. In order 
to do this we will need several results from the literature as well as the example graphs 
of Fig. 3, each of which is 2-connected and nonhamiltonian. 

Theorem 4 (Broersma and Veldman [2]). I f  G is a 2-connected {K1,3,P6}-free graph, 
then G is hamiltonian. 

Theorem 5 (Gould and Jacobson [7]). I f  G is a 2-connected {Kl,3,Z2}-free 9raph, 
then G is hamiltonian. 

Theorem 6 (Bedrossian [1]). I f  G is a 2-connected {K1,3, W}-free 9raph, then G is" 
hamiltonian. 
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Theorem 7 (Faudree [4]). I f  G is a 2-connected {Kl,3,Z3}-free graph o f  order n >, 10, 
then G is hamiltonian. 

A characterization of all pairs that imply a 2-connected graph is hamiltonian was 
accomplished in [ 1 ]. However, as mentioned earlier, graphs of small order were used in 

the proof to eliminate certain graphs, namely Z3. However, recently Theorem 7 was ver- 
ified and this sheds new light on the situation. We now present an extended characteri- 
zation whose proof is based on infinite families of  nonhamiltonian graphs (see Fig. 3). 

Theorem 8. Let R and S be connected graphs (R,S ¢ P3 ) and G a 2-connected graph 

o f  order n>>- 10. Then G is (R,S)-free implies G is hamiltonian if, and only tf, R = K1,3 

and S is one o f  the graphs C3, P4, Ps, P6, Z1, Z2, Z3, B, N or W. 

Proofi That each of the pairs implies G is hamiltonian follows from Theorems 1, 4 - 7  
and our remarks about induced subgraphs of forbidden graphs. 

Now consider the graphs Go,. . . ,  G6 of Fig. 3. Each is 2-connected and nonhamilto- 
nian. Without loss of  generality assume that R is a subgraph of G~. 

Case 1: Suppose that R contains an induced P4. 
Since G4, G5, and G6 are all P4-free, then S must be an induced subgraph of each 

of them. But if  S is an induced subgraph of G4, then either S is a star or S contains an 
induced Ca. However, G5 is C4-free, hence S must be a star. Since the only induced 

star in G6 is KI,3, we have that S = KI,3. 
Case 2: Suppose that R does not contain an induced P4. 
Then, using Go we see immediately that R must be a tree containing at most one 

vertex of degree 3 and since R contains no induced P4, we see that R = K1,3. Thus, 
for the remainder of  the proof we assume without loss of  generality that R = K1,3. 

Now, S must be an induced subgraph of G1, G2, and G3 (each of which is claw- 
free). The fact that S is an induced subgraph of G1 implies that S is a path or S is 
K3, possibly with a path off each of its vertices. Suppose that S is a path. Since S is 
an induced subgraph of G3 which is P7-free, we see that if  S is a path, it is one of 

P4, P5 orP6. 
Hence, we now assume that S contains a K3, possibly with a path off each of its 

vertices. Note that G3 is Z4-free. Further, any triangle in G2 with a path of length 3 
off one of its vertices can have no paths off its other vertices (leaving Z3, Z2, Z1, and 
/£3). Again examining G2 we see it contains no triangle with a path of  length 2 from 
one of its vertices and a path of  length 1 from the other two vertices (leaving B or 
W). The only remaining possibility is a path of  length 1 off each of the vertices of  

K3, that is, the graph N. [] 

Again we turn our attention to the case of  only one forbidden subgraph. 

Theorem 9. Suppose A is a connected graph and G is a 2-connected graph. Then G 
is A-free implies G is hamiltonian if, and only if, A = P3. 
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ProoL By our earlier comments we know that if G is P3-free then, G is complete and 
hence hamiltonian. 

Conversely, the graph Go of Fig. 2 is not hamiltonian, hence A must be an induced 
subgraph of Go. Thus, A must be a tree with at most one vertex of degree 3. But then 

G6 shows that A must be the star Kx,3 or P3. However, since G3 is K1,3-free, we see 
that A = P3. 

4. Pancyclic and panconnected graphs 

In this section we characterize those forbidden pairs that imply a 2-connected graph is 
pancyclic or panconnected. We begin with pancyclic graphs. Recall that G is pancyclic 
if G contains cycles of  all lengths from 3 to ]V(G)t and that pancyclic graphs are 
2-connected. Once again we must recall earlier works. 

Theorem 10 (Faudree [5]). I f  G is a 2-connected {K1,3, P6}-free graph of  order n >~ 1 O, 
then G is pancyclic. 

Theorem 11 (Gould and Jacobson [7]). I f  G (¢  Cn) is' a 2-connected {K1,3,Zz}-free 
graph of  order n >~ 3, then G is pancyclic. 

With these results in mind we are ready to consider our problem for pancyclic 
graphs. Once again by considering only infinite families we obtain an extension of 
Bedrossian's earlier result (which excluded P6). 

Theorem 12. Let R,S  be connected graphs (R,S 7~ P3) and let G (G ~ Cn) be a 
2-connected graph of  order n~>10. Then G is {R,S}-free implies G is" pancyclic i f  

and only iJ; R = K1,3 and B is one of  P4, 135, P6, Z1 or Z 2. 

Proof. That each of these pairs implies a 2-connected graph is pancyclic follows from 
Theorems 10 and 11 and our earlier remarks about induced subgraphs of forbidden 
graphs. 

Conversely, note that G is pancyclic, hence G is hamiltonian. Thus, we may limit 
our attention to those pairs that imply G is hamiltonian. Hence, R = K1,3 and S is 
one of P4, Ps, P6, Zl, Z2, Z3, B, N, or W. However, the graph G7 of Fig. 4 is a 
2-connected, claw-free, nonpancyclic graph which contains no induced B, N or W. 

Further, G8 (where the vertices of  a K2m are paired and each such pair is connected 
by a path of length three through two new vertices) is also 2-connected, claw-free and 
nonpancyclic and is Z3-free. Thus, our result follows. [] 

The following result is immediate from Theorem 9. 

Theorem 13. Suppose that A is a connected graph and G is a 2-connected graph. 
Then G is A-free implies G is pancyclic if, and only if, A = P3. 
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Fig. 4. Two 2-connected nonpancyclic graphs. 

We next tum our attention to another strong hamiltonian property. A graph G of 
order n is said to be panconnected if  any two vertices of G, say x and y, are joined 
by paths of  all possible lengths l from dist(x, y)  to n - 1. Also recall that panconnected 
graphs are 3-connected. We begin with the following result. 

Theorem 14. I f  G is a 3-connected {K1,3,Z1}-free graph then G is a complete graph 
or a complete graph minus a matching. In either case, G is panconnected. 

Proof. A straightforward induction proof can be used to show that any connected 
{K1,3,Zl}-free graph containing a vertex of degree at least 3 is either a complete 
graph or a complete graph minus a matching. This fact implies G is panconnected. [] 

For our next result we need several other example families. Let art represent Kn,~, 
the family of  balanced complete bipartite graphs. Let Jz = G6, (see Fig. 3). Let J4 be 
the point-line incidence graph of a projective plane of order n. It is defined to have 
a vertex corresponding to each point and to each line of the plane. Two vertices are 
adjacent provided the point is on the line, that is, we obtain a bipartite graph modeling 
the incidence of points on lines in the plane. It is well known that such graphs have 
girth at least 6, are regular, and bipartite. The point-line incidence graph of the Fano 

plane (the projective plane of order 2) is shown in Fig. 5. The graphs -/3, J5 and J6 
are also shown in Fig. 5. 

Theorem 15. Let R, S be connected graphs (R, S ~ P3) and let G be a 3-connected 

graph. Then G is {R,S}-free implies G is panconnected if, and only if, R = K1,3 and 
S = Z1. 

Proof. The sufficiency follows from Theorem 14. 
Conversely, we will first show that one of R and S must be a claw. Thus, suppose 

that R,S  ~ K1,3. Without loss of  generality assume that R is an induced subgraph of 
J1 ---Kn, n. Then R---Kl,r  where r~>4 or R contains an induced C4. We now consider 
two cases. 
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Fig. 5. 3-Connected nonpanconnected graphs. 

Case 1: Suppose R = K l , r  (r>~4). 

Then R is not an induced subgraph of  J5 (see Fig. 5) as J5 is regular o f  degree 3. 
Thus, S must be an induced subgraph of  Js. Hence we see that S must have girth at 

least 4. Also note that S must be an induced subgraph of  J2, as R is not an induced 

subgraph of  J2. But this implies that S must be a star, in fact, S = K~,3 contradicting 
our assumption. 

Case 2: Suppose R contains an induced C4. 
Then clearly R is not an induced subgraph of  J4 (the point-line incidence graph of  a 

projective plane which has girth 6). Thus, S must be an induced subgraph of  J4, and so 

the girth o f  S must also be at least 6. But S is an induced subgraph of  J2 as well (as J2 

fails to contain an R). Therefore, S must again be a star, contradicting our assumption. 
Thus, one of  our graphs must be K1,3, so without loss o f  generality suppose that 

R = Ki,3. (Note: all graphs used to date in this proof were also not hamiltonian- 

connected, thus R = Ka,3 in that problem as well.) Since R = K1,3, then S must be 
an induced subgraph of  J6 and of  J3 as neither contains claws. Note that the longest 

induced path in J6 is P3 which implies that S must contain a cycle. Therefore, S must 

contain a C3 with some edges off its vertices. Now since S is an induced subgraph 
of  J3 we see S contains a triangle and any four vertices containing this triangle will 
induce at most 4 edges. Similarly, any five vertices containing this triangle will induce 

at most 5 edges. Finally, we see that S has maximum degree at most 3. Now the only 
such graphs existing in J2 are Z1 and C3. But then we are left with only Zl. 
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We next state the now obvious result concerning one forbidden subgraph. 

Theorem 16. I f  A is connected and G is 3-connected then G is A-free implies G is 
panconnected if, and only if, A = 1°3. 

We conclude this section with another variation. A graph is said to have a k- 
pancyclic ordering provided the vertices of  G can be ordered such that the graph 
induced by the first j vertices (j>>.k) is hamiltonian. We now consider such graphs. 

Theorem 17. Let R and S be connected graphs (R,S ¢ P3) and let G ( 5  Cn) be a 
2-connected graph of  order n >>. 10. Then G is {R,S}-free implies G has a 6-pancyclic 
ordering if, and only if, R = K1,3 and S = P4, Ps, P6, Z1 or Z2. 

Proof. I f  G is {R,S}-free implies that G has a 6-pancyclic ordering then G is also 

hamiltonian. Thus, we know that R = K1,3 and S is one of C3, P4, Ps, P6, Z1, Z2, Z3, 
B, N, or W. However, consider the graph G7 as well as G8 of Fig. 4. Clearly, G7 has 
no 6-pancyclic ordering as it has no 6-cycles, while G8 has no 6-pancyclic ordering 
as the vertices of  degree 2 cannot be incorporated one by one in the ordering. Each 
graph is claw-free and G7 is B, N and W-free, while G8 is Z3-free. Also, a 2-connected 
graph being claw-free and C3-free implies the graph is a cycle. Hence, S is one of P4, 

Ps, P6, ZI or Z 2. 
Further, Theorem 10 (see [5]) implies that every {K~,3,P6}-free graph G has a 

6-pancyclic ordering. Thus, we are left with Z1 and Z2. However, these follow imme- 
diately from Hendry's result (Theorem 18) from the next section. [] 

5. Cycle extendable graphs 

A graph G is said to be cycle extendable if  any nonhamiltonian cycle can be ex- 
tended to a cycle containing exactly one more vertex, that is, C is extended to a cycle 
C' with V(C') = V(C) U {x} for some vertex x not on C. We say G is fully cycle 
extendable if  G is cycle extendable and every vertex of G lies on a triangle. This 
concept was introduced by Hendry [8]. In that paper he also showed the following: 

Theorem 18. I f  G is a 2-connected graph of  order n >~ 10 that is {K1,3, Z2}-free, then 
G is cycle extendable. 

With this result in hand we now characterize the forbidden pairs that imply a 
2-connected graph is cycle extendable. 

Theorem 19. Let R, S be connected graphs (R, S ~ P3) and G a 2-connected graph 
of  order n~>10. Then G is {R,S}-free implies G is cycle extendable if, and only if, 
R = K1,3 and S is one of C3, P4, Z1 or Z2. 
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Fig. 6. A non-cycle extendable graph. 

Proof. That each of these pairs implies G is cycle extendable follows from Theorem 18 

and our comments on induced subgraphs of forbidden graphs. 
Conversely, note that if G is cycle extendable then G is hamiltonian and so we may 

limit our consideration to the pairs listed in Theorem 8. Further, we may assume that 

R = K1,3. The graph G9 of Fig. 6, formed by taking two copies of  Km and joining 
corresponding vertices in each copy by an edge, is claw-free and not cycle extendable 
(in particular, any cycle formed by the vertices of  one copy of Km cannot be extended). 
Therefore, S must be an induced subgraph of G9. However, G9 contains no induced 
Ps, B, N, W or Z3. The result now follows. E5 

The following are corollaries to Hendry's proof of Theorem 18 and the last result. 
Note that in the next corollary, the cycle extendability requires the use of 3 chords 
induced by the original cycle. In fact, we can classify types of  cycle extendability by the 
number of  cycle chords that must be used in order to extend the cycle. We say a cycle 
is t-chord extendable if it requires exactly t chords to extend the cycle; while a graph 
G is t-chord extendable if every cycle in G can be extended using at most t chords. 

Corollary 20. Let R, S (R, S ~ P3 ) be connected graphs and G a 2-connected graph 
of  order n>~ 10. Then G is {R,S}-free implies G is 3-chord cycle extendable if, and 
only if, R = K1,3 and S is one of: C3, P4, Z1 or Zz. 

Corollary 21. Let R, S (R, S 7£ 1°3) be connected 9raphs and G a 2-connected graph 
of  order n>~10 with 6(G)~>3, Then G is {R,S}-free implies G is 3-chord fully cycle 
extendable if, and only if, R = K1,3 and S is one of: P4, Z1 or Z2. 

Corollary 22. Let R, S (R, S 7~ P3) be connected graphs and G a 2-connected 9raph 
of order n>~ 10. Then G is {R,S}-free implies G is" O-chord cycle extendable iJ~ and 
only if, R = K1,3 and S is one of C3, Z1. 

The graph E1 in Fig. 7 is claw-flee and Z2-free and is not 0-chord cycle extendable. 
Any cycle formed from all the vertices except the one of degree 2 cannot be extended 
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E1 

Fig. 7. A graph which is not 0-chord cycle extendable. 

without using chords. This is because the neighbors o f  the vertex o f  degree 2 are not 
adjacent on any such cycle. Thus, a natural question is what we can say about such 
graphs, are they 1 or 2 chord cycle extendable? 

We now turn to a situation when 1-chord extendability is obtained. 

Theorem 23. I f  G is a 2-connected {K1,3,Z2}-free graph o f  order n>~10, then G is 
1-chord cycle extendable. 

Proof.  Let C = Xl,X2,...,Xk,X 1 be a cycle that is not 1-chord extendable. We can 

assume that yl ~ V(C) and that XlYl C E(G). Moreover, since G is 2-connected, there 
is a path P from Yl to C that avoids xl. We will assume that this path is as short 

as possible over all possible choices o f  yl and the path, which we will denote by 

P = yl,  y2 . . . . .  yt with yt = xj. We can also assume that j is minimal with respect to 
this property as well. Since G is Kl,3-free, xkx2 C E(G). 

I f  t~>4, then {xk,x2,x l ,y l ,y2}  induces a Z2. Thus, we can assume that t = 2 or 3. 

For t = 3, the same set induces a Z2 unless, without loss o f  generality, yt = x2. In this 

case, K1,3-free implies that xlx3 E E(G) as well. I f  XkX3 E E(G),  then {xk,x3,x2, YE, Yl} 

induces a Z2, and if  xkx3 ~ E(G), then {x2,xk,xa,Y2} induces a claw. Therefore we 
can assume that t = 2 and ylxl  and ylx j  c E(G) (2 < j < k). 

We next investigate the edges between {xk,xl,x2} and {xj - l ,x j ,x j+l} ,  noting that 

xkx2 and xj-lXj+l E E(G). Since C is not 1-chord extendable, x2xj+ 1 and x,~xj_~ ([ 

E(G). Since G is K1,3-free, XlXj_ 1 ~ E(G), as any additional edge on Xl,Xk, Yl and 
xj-1 allows us to extend C. By similar arguments, XlXj+l, xjxk, and xjx2 ~ E(G). 

Also, no Z2 induced by {Xk,X2,Xl,YI,Xj} implies that xlxj  E E(G). No Z2 induced by 
{Xk,X2,Xl,Xj,Xj--1} implies that x2xj-1 E E(G), and likewise xkxj+~ E E(G). Therefore, 
the structure o f  edges in the graph induced by {xk,x l ,x2,x j - l ,x j ,x j+l}  is completely 
known. 

Now observe that if ylxi E E(G) for some i ¢ 1,j, then using the observations o f  

the previous paragraphs we have that {x2,xl,xj_l,Xi_l} induces a claw. Thus, we can 
assume that Yl is not adjacent to xi for any i ¢ 1 or j .  
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Let z : xj+2. We will now examine the adjacencies of  z. I f  zxj  9~ E(G) ,  then 

zxk E E(G) ,  for otherwise there would be a claw using the vertices {xj+l,xj ,z ,  xk}. 

However,  i f  zxj  E E(G) ,  then there is a Z2 using {Xk,Z, Xj+l,Xj, y l } ,  a contradiction. 

Hence we can assume that zxj  E E(G) .  Also, zxj  I E E(G) ,  for otherwise there is 

a claw centered at xj using x j - l , z  and y l .  The set {x j - l , z ,  xj+l,Xk,Xl} induces a Z2 

unless z is adjacent to a least one of  xk or Xl. However,  note that i f  z is adjacent 

to xl ,  then z must be adjacent to xk (and also x2), for otherwise there would be a 

claw centered at xl.  Thus, we can assume that z is adjacent to xk. This implies that 

zxl  E E(G),  for otherwise {xj+l,z, x k , x l , y l }  induces a Z2. Hence z is adjacent to each 

o fxk ,  xl and x2. This gives a contradiction, since {xk,x2,z, xj, y l }  induces a Z2. 

We end this section with the expected result on one forbidden graph. 

Theorem 24. If A is connected and G is 2-connected then G is A-free implies G is 

cycle extendable if, and only if, A = P3. 

6. Hamiltonian-connected graphs 

In this section we examine what can be said about graphs in which any two vertices 

are jo ined  by a spanning path, that is, hamiltonian-connected graphs. Unfortunately, we 

do not have a complete answer in this case. However,  recently Shepherd [9] showed 

that a result similar to Theorem 1 holds. 

Theorem 25. I f  G is a 3-connected {K1,3,N}-free graph, then G is hamiltonian- 

connected. 

We now prove a new result conceming hamiltonian-connected graphs. 

Theorem 26. Let  G be a 3-connected 9raph. I f  G is {K1,3,Z2}-free, then G & hamil- 
tonian-connected. 

Proof. Select vertices u and v and a maximal  (hence, nonextendable) u - v  path P:  u = 

vl,v2 . . . . .  Vm = v and assume P is not a hamiltonian path. By an extension of  P we 

shall mean a longer u - v path containing all the vertices o f  P.  Select a vertex w not 

on P that is adjacent to an interior vertex o f  P (clearly, this is possible).  Since G is 

3-connected, there are three vertex disjoint paths from w to P,  at least one of  which 

is an edge. Say P1: w = x l , x 2  . . . . .  xl+l = vj and P2: w = yl  . . . . .  Yb+l = vk ( j  < k )  are 

these paths. Without  loss of  generality we may assume these are shortest paths. 

We now consider several cases. 

Case 1 : Suppose w has disjoint paths to two interior vertices o f  P,  that is, 1 < j < 

k < m .  

We may assume that no other w to P path occurs in the interval [vj+l,vk-1],  that 

is, P1 and P2 are consecutive paths from w to interior vertices of  P.  
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It is now apparent that at least one of  j > 2 or k < m - 1 must hold, as at least 

one other w to P path exists and it either intersects P prior to vj or after vk, and at 

least one vertex o f  P must lie between these points of  intersection. Thus, we assume 

without loss o f  generali ty that k < m - 1. 

Since G is claw-free, the edges vj_lVj+l and vk-aVk+l must be in G or we could 

extend P.  Further, all edges from Vj-l,Vj+l,Vk-1, and Vk+l to vertices o f  P1 and P2 are 

not in E(G) or again we could easily extend P.  Similarly, the edges vkvj+l, vkvj_l, 
VjVk-l and vjvk+l all al low us to extend P. I f  vjvk+2, Vj+lVk+l or Vj+lVk+2 are in E(G), 
then P can be extended by 

o r  

o r  

Vl, V 2 , . . . ,  l ) j_ l ,  1 ) j+ l , . . . ,  Vk-1,  lAk+l, l ) k , . . . ,  W , . . . ,  V j ,  V k + 2 , . . .  , / ) m  

/ ) l ,  1 )2 , -  • - , / ) j , .  • • , W , . . . ,  ~)k, ~ ) k - - 1 , .  • • ,  1 ) j + l ,  V k + l ,  - - • ,  Vtn 

U 1,192, • • •, TAj, . . . ,  W , . . . ,  Vk, t)k+ 1,1)k- 1, • • •, Vj+I, V k + 2 ,  • • - ,  Vm, 

respectively. 

N O W  ( / ) j - - l ,  l)j, V j+I ,Xg ' ,X~ ' I )  7£ 22, hence x~_lvj E E(G). But this contradicts the fact 

P1 (and P2) are shortest paths. From this we infer that both P1 and P2 are edges, that 

is, w is the only vertex on either Pl or P2 off P.  

Next we note that i f  w is adjacent to any o f  vj_2, vj+2, vk-2 or vk+2, then P can 

easily be extended. For example, i f  wvk+2 E E(G), then 

I) 1 , 1 ) 2 , .  • . ,  Vk- -  1, l )k+  l ~ Vk ~ W~ / )k+2  ~ • - - , / A m  

extends P.  

Since (vj_l,vj, vj+l,w, vk) ¢ Z2, we see that vjvk E E(G). Since (w, vj, vk, vk+l,vk+2) 
¢ Z2, we see that VkVk+2 E E(G). But now, (vk+l,vk+2, vk, vj, vj+l) = Z2, a contra- 

diction. 

Case 2: Suppose the paths P1 and P2 from w hit P at vl, vm and some interior vertex 

vj (clearly, 2 < j < m - 1). 

Subcase 1: Suppose the path P2 from w to Vm contains at least three vertices. 

Let w1 be the successor of  w along P2 and let vj-i and vj+~ be the predecessor 

and successor o f  vj along P. Since G is claw-free and P is of  maximal  length, we 

see that Vj_l and vj+l must be adjacent. Further, both w and wl are nonadjacent to 

vj-1 and vj+l. But then the vertices vj-1, vj, vj+l, w and Wl induce a Z2 unless 

wl is adjacent to vj. But now the vertices w, w~, vj, Vj+l and vj+2 induce a Z2. Of  

the edges that could destroy the Z% all but vjvj+2 lead to an easy extension of  P.  

Thus, we suppose that vjvj+2 is an edge of  G. I f  vj+2 ~ Vm, then we repeat the last 

argument o n  1)j_l,1)j, IAj+l,W 1 and w2 to obtain that vjw2 is an edge o f  G. But then, 

(1)j, 1) j_l ,W, W2) is isomorphic to K1,3. The edges w1)j_ 1 and w21Yj_ 1 both allow us to 

extend P while ww2 allows us to shorten P2, a contradiction to our assumptions. Note 

that w2 = Vm is possible, but our conclusions still hold in this situation as the induced 

K1,3 on {Vm, Wl,Vm-l,Vj-1} allows us to extend P no matter which o f  the remaining 
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edges are present in G. In any case, we have a contradiction. Thus, we assume that 

vj+2 = Vm. But then, the path 

V l , V 2  . . . . .  Vj--I,Uj+I,Vj, Wl . . . . .  Vm 

extends P, again producing a contradiction, and completing this subcase. 

Note that a similar argument applies if the path from w to vl contains three or more 
vertices. 

Subcase 2: The vertex w is adjacent to va, vm and v/. 

I f  the number of  components of  G - P is two or more, then each of  those vertices 

behaves like w or we would be in a prior case. But this implies that there is a claw 

centered at Vl (or Vm), contradicting our conditions. 

Thus, the number of  components of  G - P is exactly one. Call this component C. 

Suppose that w t E V(C).  I f  w~w E E(G) ,  then w~vj E E ( G )  by the Subcase 1 argument 

o f  Case 2. Also, w ~ is adjacent to vl, Vm and vj on P. Hence, C must be complete 

and each vertex of  C is adjacent to vl, vm and vj. Further, we see that IV(C)] = 1, 

for otherwise the argument of  Subcase 1 implies that Z2 is an induced subgraph of  G. 
Hence, in this case we see that any vertex off a maximal length u -  v path has degree 

3 with adjacencies vl and Vm. If  the vertex had degree more than 3 it would have two 

internal adjacencies and we would be back in Case 1. If  it was not adjacent to vl and 

Vm and not suitable for Case 1, we would be back in Subcase 1 of  this case. 

Now consider the paths Ql: vl ,w, vj, vj_l,Vj+l . . . . .  Vm and Q2: vl . . . . .  vj-l ,vs+l,  

v j, w, Vm. There is a maximal path containing Qi, i = 1,2, missing at most one vertex, 

which must be v2 and vm-i respectively (as any one of  the interior vertices o f  P other 

than v2 and Vm-1 will have at least two paths to interior vertices of  the maximal paths). 

Thus, V2Vm,Vm_lV 1 E E(G).  Also, no claw at Vl implies V2Um_ l E E(G).  Thus, the path 

Q': vL,v2,vm_l . . . . .  Vj+I,Vj, W, Vm contains vl, w, v2 and Vm I. Hence, the maximal path 
containing Q~ avoids a vertex of  degree 3 adjacent to vl and v,~. However, there is no 
such vertex in G - Q', producing the desired contradiction. 

We conclude with a result describing some of  the characteristics of  the forbidden 
pairs for hamiltonian-connected graphs. 

Theorem 27. Let  R, S be connected 9raphs (R, S ¢ P3) and let G be a 3-connected 

9raph. I f  G is {R,S}- free  implies G is" hamiltonian-connected, then R =- K1.3 and S 

satisfies each o f  the following: 
(a) A(S) ~<3, 

(b) The lonyest induced path in S is at most  a P12, 

(c) S contains no cycles except for  C3, 

(d) all triangles in S are vertex disjoint, 

(e) S is claw-free. 

(Note: there are only a finite number o f  possible graphs for S). 
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Fig. 8. 3-Connected nonhamiltonian-connected graphs. 

Proof .  It was shown in Theorem 15 that R = KI,3 and we note that all graphs used in 

that p roof  are not hamiltonian connected. Hence, the same proof  applies here. Consider 

the claw-free graphs J7 and J8 o f  Fig. 8 and well as -/3 o f  Fig. 5. The graph S must be 

an induced subgraph o f  each o f  these nonhamiltonian-connected 3-connected graphs. 

Now S an induced subgraph o f  J3 implies that A(S)~<3; hence (a) follows and (d)  

follows as well. Then the graph -/7 implies that S contains no P13 and so (b) follows. 

The only induced cycles in J3 (except for C3) are C8, Clo etc. On the other hand, 

J8 has only C3, C7, C10, etc. Thus, (c)  follows. Clearly, S is claw-free, hence (e) 

follows. [] 

The authors would like to thank the referees for their careful reading and fine sug- 

gestions. 
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