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Abstract

In this paper we characterize those pairs of forbidden subgraphs sufficient to imply various
hamiltonian type properties in graphs. In particular, we find all forbidden pairs sufficient, along
with a minor connectivity condition, to imply a graph is traceable, hamiltonian, pancyclic, pan-
connected or cycle extendable. We also consider the case of hamiltonian-connected graphs and
present a result concerning the pairs for such graphs.

1. Introduction

Given a family & = {H),H,,...,H;} of graphs we say that a graph G is % -free if
G contains no induced subgraph isomorphic to any H;, { = 1,2,...,%. In particular, if
F = {H}, we simply say G is H-free. We call the graphs in & forbidden subgraphs.
The use of forbidden subgraphs to obtain classes of graphs possessing special prop-
erties has long been a common graphical technique. In particular, some of the graphs
most commonly involved in forbidden families for hamiltonian properties are shown in
Fig. 1. It has been pointed out that the star K 3, sometimes called the claw, has often
been a part of these forbidden families. We shall show the reason for that observation
in the course of this paper.

One of the earliest forbidden subgraph results dealing with hamiltonian properties
is the following result due to Duffus et al. [3]. The graphs K; 3 and N are shown
in Fig. 1.

Theorem 1. Let G be a {K; 3, N }-free graph. Then
(1) if G is connected, then G is traceable and
(2) if G is 2-connected, then G is hamiltonian.
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Fig. 1. Common forbidden graphs.

This result is typical of the type we wish to address in this paper. It imposes minor,
but necessary, connectivity conditions on the class of graphs defined by a forbidden pair
of graphs in order to obtain hamiltonian results. The connectivity conditions used in
Theorem 1 are the minimal ones necessary in graphs with the corresponding properties.

If P is a hamiltonian property (like traceable, hamiltonian, pancyclic, etc.), let k(P)
denote the least connectivity possible in a graph with property P. Thus, for example if P
is traceability, then k(P)=1 while if P is hamiltonicity, then k(P)=2. In this paper we
wish to determine all pairs of connected graphs {H1,H,} such that any k(P )-connected
{H,, H,}-free graph will possess hamiltonian property P. In particular, we will consider
property P to be each of the following fundamental hamiltonian properties: traceable,
hamiltonian, pancyclic, panconnected, and cycle extendable. We shall also consider
the problem when P is hamiltonian-connected, however a complete characterization in
this case will not be obtained. This idea was introduced by Bedrossian in 1] who
considered it for hamiltonian and pancyclic graphs. However, in proving which graphs
must be forbidden, he used graphs of small order in his proofs. We shall reexamine
his results later and restrict our attention to infinite families of graphs. In doing so, we
shall extend Bedrossian’s results.

We concentrate on forbidden pairs, however, in the course of our work we will also
solve the corresponding problems when only one graph is forbidden. This turns out
to be a much more restrictive situation and easier to solve. The question for triples
has also been considered and, as you might expect, is considerably more involved. We
shall not address triples in this paper.
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One case is trivial and we wish to eliminate it from further consideration. Suppose
G is connected, has order n>3 and is P;-free (here P, denotes a path on k vertices),
then G is easily seen to be a complete graph (which we denote X,). But if G is
complete, then G has every hamiltonian property. Thus, forbidding P; alone implies
each hamiltonian property P and thus any other graph could be paired with P; to obtain
the same result. In fact, later we will show that P is the only single graph that solves
our problem and thus we will remove it from consideration in forbidden pairs.

We also denote the cycle on n vertices as C, and the complete bipartite graph with
r vertices in one set and m vertices in the other set as K, ,. Finally, we define the
graphs Z;, i = 1,2,... to be a triangle with a path of length i attached to one of its
vertices, that is, Z; is formed by identifying one vertex of a C; with an end vertex
of a Py (see Fig. 1 for Z; and Z;). For convenience we use the notation 4 = B to
denote A is isomorphic to B as well as 4 is equal to B. This should cause the reader
no problems. For other terms not defined here see [6].

2. Traceable graphs

We say a graph G is traceable if it contains a spanning path, that is, a path containing
all of the vertices of G. In this section we determine which pairs {Hi,H,} (H; #
Ps, i =1,2) imply a connected graph G is traceable. We note that Theorem 1 shows
the pair {K; 3, N} is one such pair. It is also a simple matter to see that if H is
any induced subgraph of N, then the pair {K; 3, H} will also solve our problem. In
particular then, the graphs Cs,Ps,Z; and B (see Fig. 1) may each play the role of H.
We now show these are the only such pairs of graphs. To do this we will need the
example graphs of Fig. 2. Note that each of these graphs represents an infinite family
of connected nontraceable graphs.

Theorem 2. Let R and S be connected graphs (R,S+# P3) and let G be a connected
graph. Then G is {R,S}-free implies G is traceable if, and only if, R =K, 3 and §
is one of the following: Cs3,Py,Z1,B or N.

Proof. That each of these pairs implies a connected graph is traceable follows from
Theorem 1 and our previous comments on induced subgraphs.

Now consider the graph Hj of Fig. 2, obtained by subdividing the edges of a K| 3
an arbitrary number of times. The graph Hj is clearly connected and nontraceable, so
assume without loss of generality that Hy contains R as an induced subgraph. Further,
suppose that R contains an induced P;. Then note that the graphs H; and H, (see
Fig. 2) are both connected and nontraceable and neither contains an induced P;. Thus,
S must be an induced subgraph of both H; and H,. But then we see that § must be
a star, in fact, S = K, 3.

Next suppose R does not contain an induced P4. As R is a subgraph of Hy, then R
must contain a vertex of degree 3. But these conditions in Hy imply R = K 3. Thus,
in either case one of our forbidden subgraphs must be K 3.
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Fig. 2. Connected nontraceable graphs.

For the remainder of this proof we assume without loss of generality that R = K] 3.
The graph H; (see Fig. 2) is connected, nontraceable and contains no induced X 3
and thus, § must be an induced subgraph of H;. Further, H; contains no induced P,
hence S contains no induced Ps. Similarly, Hs is claw-free and Z,-free. Also, Hy (see
Fig. 2) is connected, nontraceable and K 3;-free; thus S is an induced subgraph of Hj.
Since the largest clique in Hy is K3, the same holds for S. But now if S contains no
K3 then § must be Py, while if S does contain K3, then S is either C3 = K3,Z1,B
or N. This completes the proof. [

We now verify the single forbidden subgraph result for traceable graphs mentioned
earlier.

Theorem 3. Let A and G be connected graphs. Then G is A-free implies G is traceable
if, and only if, A = P;.

Proof. From our earlier remarks we know that if 4 = P; then G is traceable. Thus,
assume A # P;. The graph Hy of Fig. 2 is not traceable, hence 4 must be an induced
subgraph of Hy. Thus, 4 is a tree with at most one vertex of degree 3. Similarly, the
graphs K , (r=3) imply that 4 must be a star, in fact, 4 = K, 3. However, the graph
Hs of Fig. 2 is connected, nontraceable and contains no induced X 3. Thus, no other
A exists and the result is shown. [
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Fig. 3. 2-Connected nonhamiltonian graphs.

3. Hamiltonian graphs

A graph G is hamiltonian if G contains a spanning cycle. We now consider the
problem of all forbidden pairs that imply a 2-connected graph is hamiltonian. In order
to do this we will need several results from the literature as well as the example graphs
of Fig. 3, each of which is 2-connected and nonhamiltonian.

Theorem 4 (Broersma and Veldman [2]). If G is a 2-connected {K, 3, Ps}-free graph,
then G is hamiltonian.

Theorem 5 (Gould and Jacobson [7]). If G is a 2-connected {K,3,Z,}-free graph,
then G is hamiltonian.

Theorem 6 (Bedrossian [1]). If G is a 2-connected {Ki 3, W }-free graph, then G is
hamiltonian.
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Theorem 7 (Faudree [4]). If G is a 2-connected {K, 3,23 }-free graph of order n> 10,
then G is hamiltonian.

A characterization of all pairs that imply a 2-connected graph is hamiltonian was
accomplished in [1]. However, as mentioned earlier, graphs of small order were used in
the proof to eliminate certain graphs, namely Z;. However, recently Theorem 7 was ver-
ified and this sheds new light on the situation. We now present an extended characteri-
zation whose proof is based on infinite families of nonhamiltonian graphs (see Fig. 3).

Theorem 8. Let R and S be connected graphs (R,S+# P;) and G a 2-connected graph
of order n210. Then G is (R, S)-free implies G is hamiltonian if, and only if, R = K; 3
and S is one of the graphs C3, P4, Ps, Ps, Z1, Z>, Z3, B, N or W.

Proof. That each of the pairs implies G is hamiltonian follows from Theorems 1, 4-7
and our remarks about induced subgraphs of forbidden graphs.

Now consider the graphs Gy, ..., G of Fig. 3. Each is 2-connected and nonhamilto-
nian. Without loss of generality assume that R is a subgraph of G.

Case 1: Suppose that R contains an induced F;.

Since G4, Gs, and Gy are all Py-free, then S must be an induced subgraph of each
of them. But if S is an induced subgraph of G, then either S is a star or S contains an
induced C4. However, Gs is Cy-free, hence .S must be a star. Since the only induced
star in Gg is K 3, we have that § = K| 3.

Case 2: Suppose that R does not contain an induced F.

Then, using Gy we see immediately that R must be a tree containing at most one
vertex of degree 3 and since R contains no induced F4, we see that R = K 3. Thus,
for the remainder of the proof we assume without loss of generality that R = K] 3.

Now, S must be an induced subgraph of G;, G2, and G3 (each of which is claw-
free). The fact that S is an induced subgraph of G; implies that S is a path or § is
K3, possibly with a path off each of its vertices. Suppose that S is a path. Since § is
an induced subgraph of Gs; which is P;-free, we see that if S is a path, it is one of
P4, P5 or P6.

Hence, we now assume that S contains a K3, possibly with a path off each of its
vertices. Note that G3 is Zy-free. Further, any triangle in G, with a path of length 3
off one of its vertices can have no paths off its other vertices (leaving Z3, Z,, Z;, and
K3). Again examining G, we see it contains no triangle with a path of length 2 from
one of its vertices and a path of length 1 from the other two vertices (leaving B or
W). The only remaining possibility is a path of length 1 off each of the vertices of
Kj, that is, the graph N. O

Again we turn our attention to the case of only one forbidden subgraph.

Theorem 9. Suppose A is a connected graph and G is a 2-connected graph. Then G
is A-free implies G is hamiltonian if, and only if, A = P;.
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Proof. By our earlier comments we know that if G is P;-free then, G is complete and
hence hamiltonian.

Conversely, the graph Gy of Fig. 2 is not hamiltonian, hence 4 must be an induced
subgraph of Gy. Thus, 4 must be a tree with at most one vertex of degree 3. But then
Gs shows that 4 must be the star K 3 or P;. However, since G3 is K 3-free, we see
that 4 = P. O

4. Pancyclic and panconnected graphs

In this section we characterize those forbidden pairs that imply a 2-connected graph is
pancyclic or panconnected. We begin with pancyclic graphs. Recall that G is pancyclic
if G contains cycles of all lengths from 3 to |V(G)| and that pancyclic graphs are
2-connected. Once again we must recall earlier works.

Theorem 10 (Faudree [51). If G is a 2-connected {K, 3, Ps}-free graph of order n=10,
then G is pancyclic.

Theorem 11 (Gould and Jacobson [7]). If G (# C,) is a 2-connected {K| 3,Z,}-free
graph of order n=3, then G is pancyclic.

With these results in mind we are ready to consider our problem for pancyclic
graphs. Once again by considering only infinite families we obtain an extension of
Bedrossian’s earlier result (which excluded F).

Theorem 12. Let R,S be connected graphs (R,S # P3) and let G (G # C,) be a
2-connected graph of order n210. Then G is {R,S}-free implies G is pancyclic if,
and only if, R = K, 3 and B is one of Py, Ps, Ps, Z| or Z,.

Proof. That each of these pairs implies a 2-connected graph is pancyclic follows from
Theorems 10 and 11 and our earlier remarks about induced subgraphs of forbidden
graphs.

Conversely, note that G is pancyclic, hence G is hamiltonian. Thus, we may limit
our attention to those pairs that imply G is hamiltonian. Hence, R = K, 5 and § is
one of Py, Ps, Ps, Z1, Z5, Z3, B, N, or W. However, the graph G; of Fig. 4 is a
2-connected, claw-free, nonpancyclic graph which contains no induced B, N or W.
Further, Gg (where the vertices of a Kj, are paired and each such pair is connected
by a path of length three through two new vertices) is also 2-connected, claw-free and
nonpancyclic and is Zs-free. Thus, our result follows. O

The following result is immediate from Theorem 9.

Theorem 13. Suppose that A is a connected graph and G is a 2-connected graph.
Then G is A-free implies G is pancyclic if, and only if, A = P;.
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Fig. 4. Two 2-connected nonpancyclic graphs.

We next turn our attention to another strong hamiltonian property. A graph G of
order n is said to be panconnected if any two vertices of G, say x and y, are joined
by paths of all possible lengths / from dist(x, y) to n—1. Also recall that panconnected
graphs are 3-connected. We begin with the following result.

Theorem 14. If G is a 3-connected {K, 3,Z,}-free graph then G is a complete graph
or a complete graph minus a matching. In either case, G is panconnected.

Proof. A straightforward induction proof can be used to show that any connected
{Ki,3, 2, }-free graph containing a vertex of degree at least 3 is either a complete
graph or a complete graph minus a matching. This fact implies G is panconnected. [

For our next result we need several other example families. Let J; represent K, ,,
the family of balanced complete bipartite graphs. Let J; = Gg, (see Fig. 3). Let Js be
the point-line incidence graph of a projective plane of order n. It is defined to have
a vertex corresponding to each point and to each line of the plane. Two vertices are
adjacent provided the point is on the line, that is, we obtain a bipartite graph modeling
the incidence of points on lines in the plane. It is well known that such graphs have
girth at least 6, are regular, and bipartite. The point-line incidence graph of the Fano
plane (the projective plane of order 2) is shown in Fig. 5. The graphs J3, Js and Jg
are also shown in Fig. 5.

Theorem 15. Let R,S be connected graphs (R,S # P;) and let G be a 3-connected
graph. Then G is {R,S}-free implies G is panconnected if, and only if, R = K, ; and
S=12.

Proof. The sufficiency follows from Theorem 14.

Conversely, we will first show that one of R and S must be a claw. Thus, suppose
that R,S # K| 3. Without loss of generality assume that R is an induced subgraph of
Jy = K ». Then R = K, where r>=4 or R contains an induced C4. We now consider
two cases.
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Fig. 5. 3-Connected nonpanconnected graphs.

Case 1: Suppose R =K, , (r=4).

Then R is not an induced subgraph of Js (see Fig. 5) as Js is regular of degree 3.
Thus, S must be an induced subgraph of Js. Hence we sece that S must have girth at
least 4. Also note that § must be an induced subgraph of J,, as R is not an induced
subgraph of ./,. But this implies that S must be a star, in fact, S = K, 3 contradicting
our assumption.

Case 2: Suppose R contains an induced Cs.

Then clearly R is not an induced subgraph of J; (the point-line incidence graph of a
projective plane which has girth 6). Thus, S must be an induced subgraph of Jy, and so
the girth of S must also be at least 6. But S is an induced subgraph of J, as well (as J,
fails to contain an R). Therefore, § must again be a star, contradicting our assumption.

Thus, one of our graphs must be Kj 3, so without loss of generality suppose that
R = K 3. (Note: all graphs used to date in this proof were also not hamiltonian-
connected, thus R = K 3 in that problem as well.) Since R = K 3, then S must be
an induced subgraph of Jg and of J; as neither contains claws. Note that the longest
induced path in J¢ is P3 which implies that S must contain a cycle. Therefore, S must
contain a Cs3 with some edges off its vertices. Now since S is an induced subgraph
of J; we see S contains a triangle and any four vertices containing this triangle will
induce at most 4 edges. Similarly, any five vertices containing this triangle will induce
at most 5 edges. Finally, we see that S has maximum degree at most 3. Now the only
such graphs existing in J, are Z, and C;. But then we are left with only Z;. [
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We next state the now obvious result concerning one forbidden subgraph.

Theorem 16. If A is connected and G is 3-connected then G is A-free implies G is
panconnected if, and only if, A = P;.

We conclude this section with another variation. A graph is said to have a k-
pancyclic ordering provided the vertices of G can be ordered such that the graph
induced by the first j vertices (j=k) is hamiltonian. We now consider such graphs.

Theorem 17. Let R and S be connected graphs (R,S # P;) and let G (# C,) be a
2-connected graph of order n=10. Then G is {R,S}-free implies G has a 6-pancyclic
ordering if, and only if, R=K, 3 and S = P4, Ps, Fs, Z, or Z,.

Proof. If G is {R,S}-free implies that G has a 6-pancyclic ordering then G is also
hamiltonian. Thus, we know that R = K, 3 and S is one of Cs, P4, Ps, Ps, Z, 23, Z3,
B, N, or W. However, consider the graph G7 as well as Gg of Fig. 4. Clearly, G; has
no 6-pancyclic ordering as it has no 6-cycles, while Gg has no 6-pancyclic ordering
as the vertices of degree 2 cannot be incorporated one by one in the ordering. Each
graph is claw-free and G; is B, N and W -free, while Gy is Z3-free. Also, a 2-connected
graph being claw-free and C;-free implies the graph is a cycle. Hence, S is one of P,
P5, P6, Zl or Zz.

Further, Theorem 10 (see [5]) implies that every {Kj3,Ps}-free graph G has a
6-pancyclic ordering. Thus, we are left with Z; and Z,. However, these follow imme-
diately from Hendry’s result (Theorem 18) from the next section. [J

5. Cycle extendable graphs

A graph G is said to be cycle extendable if any nonhamiltonian cycle can be ex-
tended to a cycle containing exactly one more vertex, that is, C is extended to a cycle
C’ with V(C') = V(C)U {x} for some vertex x not on C. We say G is fully cycle
extendable if G is cycle extendable and every vertex of G lies on a triangle. This
concept was introduced by Hendry [8]. In that paper he also showed the following:

Theorem 18. If G is a 2-connected graph of order n=10 that is {K, 3,7, }-free, then
G is cycle extendable.

With this result in hand we now characterize the forbidden pairs that imply a
2-connected graph is cycle extendable.

Theorem 19. Let R,S be connected graphs (R,S # P3) and G a 2-connected graph
of order n=10. Then G is {R,S}-free implies G is cycle extendable if, and only if,
R=K3 and S is one of C3, P4, Z; or Z,.
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Fig. 6. A non-cycle extendable graph.

Proof. That each of these pairs implies G is cycle extendable follows from Theorem 18
and our comments on induced subgraphs of forbidden graphs.

Conversely, note that if G is cycle extendable then G is hamiltonian and so we may
limit our consideration to the pairs listed in Theorem 8. Further, we may assume that
R = K, 3. The graph Gy of Fig. 6, formed by taking two copies of K,, and joining
corresponding vertices in each copy by an edge, is claw-free and not cycle extendable
(in particular, any cycle formed by the vertices of one copy of K, cannot be extended).
Therefore, S must be an induced subgraph of Gy. However, Gy contains no induced
Ps, B, N, W or Z3. The result now follows. [}

The following are corollaries to Hendry’s proof of Theorem 18 and the last result.
Note that in the next corollary, the cycle extendability requires the use of 3 chords
induced by the original cycle. In fact, we can classify types of cycle extendability by the
number of cycle chords that must be used in order to extend the cycle. We say a cycle
is t-chord extendable if it requires exactly ¢ chords to extend the cycle; while a graph
G is t-chord extendable if every cycle in G can be extended using at most ¢ chords.

Corollary 20. Let R,S (R,S # P3) be connected graphs and G a 2-connected graph
of order n=10. Then G is {R,S}-free implies G is 3-chord cycle extendable if, and
only if, R=Ky 3 and S is one of: C3, Py, Z, or Z,.

Corollary 21. Let R,S (R,S # P3) be connected graphs and G a 2-connected graph
of order n=10 with 6(G)=3. Then G is {R,S}-free implies G is 3-chord fully cycle
extendable if, and only if, R =K, 3 and § is one of: P4, Zy or Z,.

Corollary 22. Let R,S (R,S # P3) be connected graphs and G a 2-connected graph
of order n210. Then G is {R,S}-free implies G is 0-chord cycle extendable if, and
only if, R=K,3; and S is one of Cs, Z.

The graph E; in Fig. 7 is claw-free and Z,-free and is not 0-chord cycle extendable.
Any cycle formed from all the vertices except the one of degree 2 cannot be extended
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Fig. 7. A graph which is not O-chord cycle extendable.

without using chords. This is because the neighbors of the vertex of degree 2 are not
adjacent on any such cycle. Thus, a natural question is what we can say about such
graphs, are they 1 or 2 chord cycle extendable?

We now turn to a situation when 1-chord extendability is obtained.

Theorem 23. If G is a 2-connected {K 3,7, }-free graph of order n=10, then G is
1-chord cycle extendable.

Proof. Let C = x,x2,...,x,%x; be a cycle that is not 1-chord extendable. We can
assume that y; ¢ V(C) and that x; y; € E(G). Moreover, since G is 2-connected, there
is a path P from y; to C that avoids x;. We will assume that this path is as short
as possible over all possible choices of y; and the path, which we will denote by
P = y1,y2,...,y with y, = x;. We can also assume that j is minimal with respect to
this property as well. Since G is K] 3-free, x;x; € E(G).

If 124, then {xt,x2,x1, 1,2} induces a Z,. Thus, we can assume that 1 = 2 or 3.
For t = 3, the same set induces a Z, unless, without loss of generality, y, = x,. In this
case, K 3-free implies that x,x3 € E(G) as well. If x;x3 € E(G), then {xi,x3,x2, y2, 1}
induces a Z,, and if xex3 € E(G), then {x;,x,x3,y;} induces a claw. Therefore we
can assume that £ =2 and y;x; and y1x; € E(G) 2 < j < k).

We next investigate the edges between {x,x1,x2} and {x;_,,x;,x;41}, noting that
xgxy and x;j1x;41 € E(G). Since C is not l1-chord extendable, x,x;4; and xpx;—; &
E(G). Since G is Ky 3-free, xix;—1 & E(G), as any additional edge on x,x, y; and
xj—y allows us to extend C. By similar arguments, x1x;11, x;x¢, and x;x, ¢ E(G).
Also, no Z; induced by {xi,x3,x1, y1,x;} implies that x;x; € E(G). No Z, induced by
{%&>X2,%1,%j,x;_1 } implies that x,x;_; € E(G), and likewise xxjy1 € E(G). Therefore,
the structure of edges in the graph induced by {xi,x1,x2,x;_1,%;,x;11} is completely
known.

Now observe that if y;x; € E(G) for some i # 1,/, then using the observations of
the previous paragraphs we have that {xz,xl,xj_l,x,-_l} induces a claw. Thus, we can
assume that y; is not adjacent to x; for any i # 1 or j.
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Let z = x;42. We will now examine the adjacencies of z. If zx; ¢ E(G), then
zxx € E(G), for otherwise there would be a claw using the vertices {xji1,x;,2,x¢}.
However, if zx; € E(G), then there is a Z, using {x,z,x;;41,%;, ¥1}, a contradiction.
Hence we can assume that zx; € E(G). Also, zx;_; € E(G), for otherwise there is
a claw centered at x; using x;_1,z and y;. The set {xj_l,z,xj+1,xk,x1} induces a 7,
unless z is adjacent to a least one of x; or x,. However, note that if z is adjacent
to x;, then z must be adjacent to x; (and also x;), for otherwise there would be a
claw centered at x;. Thus, we can assume that z is adjacent to x;. This implies that
zx) € E(G), for otherwise {xjH,z,xk,x],yl} induces a Z;. Hence z is adjacent to each
of x¢, x| and x,. This gives a contradiction, since {x¢,x2,z,x;, 1} induces a Z,. [J

We end this section with the expected result on one forbidden graph.

Theorem 24. If 4 is connected and G is 2-connected then G is A-free implies G is
cycle extendable if, and only if, A = P;.

6. Hamiltonian-connected graphs

In this section we examine what can be said about graphs in which any two vertices
are joined by a spanning path, that is, hamiltonian-connected graphs. Unfortunately, we
do not have a complete answer in this case. However, recently Shepherd [9] showed
that a result similar to Theorem 1 holds.

Theorem 25. If G is a 3-connected {K3,N }-free graph, then G is hamiltonian-
connected.

We now prove a new result concerning hamiltonian-connected graphs.

Theorem 26. Let G be a 3-connected graph. If G is {K13,2Z,}-free, then G is hamil-
tonian-connected.

Proof. Select vertices u and v and a maximal (hence, nonextendable) u—v path P: u =
U1,02,...,Um = v and assume P is not a hamiltonian path. By an extension of P we
shall mean a longer u — v path containing all the vertices of P. Select a vertex w not
on P that is adjacent to an interior vertex of P (clearly, this is possible). Since G is
3-connected, there are three vertex disjoint paths from w to P, at least one of which
is an edge. Say Pi: w = x1,X2,....,X¢41 = v; and Pyt w = y1,..., ypq1 = U (j <k) are
these paths. Without loss of generality we may assume these are shortest paths.

We now consider several cases.

Case 1: Suppose w has disjoint paths to two interior vertices of P, that is, 1 < j <
k<m.

We may assume that no other w to P path occurs in the interval [v;,1,v5_1], that
is, P; and P, are consecutive paths from w to interior vertices of P.
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It is now apparent that at least one of j > 2 or £ < m — 1 must hold, as at least
one other w to P path exists and it either intersects P prior to v; or after v, and at
least one vertex of P must lie between these points of intersection. Thus, we assume
without loss of generality that £k <m — 1.

Since G is claw-free, the edges v;_jv;41 and vg_jvry must be in G or we could
extend P. Further, all edges from v;_1,v;41,04—1, and ;41 to vertices of P; and P, are
not in E(G) or again we could easily extend P. Similarly, the edges vgv;i1, viv;—1,
v;vk—1 and v;vgy all allow us to extend P. If vjvpya, ;41041 OF U410y are in E(G),
then P can be extended by

V02, o5 U1 Ut b o o s Uk — 1 Uk 15 Uks o o o s Wo e o5 Uy U425 -0, Uy
or

U],Uz,...,vj,...,w,...,Uk,Uk_1,...,Uj+1,vk+1,...,lim
or

1)1,122,...,1)_,-,...,W,...,Uk,vk+1,l)k_1,...,Uj+1,l)k+2,...,lim,
respectively.

Now (v;_1,),Vj+1,X¢,%Xs—1) # Z2, hence x,_1v; € E(G). But this contradicts the fact
P; (and P,) are shortest paths. From this we infer that both P, and P, are edges, that
is, w is the only vertex on either P, or P, off P.

Next we note that if w is adjacent to any of v;_j,v42,0¢-2 O vx42, then P can
easily be extended. For example, if wuy,2 € E(G), then

V1502505 Uk —15 Uk 15 Uk s W, U425 - - Uy

extends P.

Since (vj_1,v;,0j41,w,0) # Z,, we see that v;vr € E(G). Since (W, v;, U, Ukt 1, Uk12)
# Z, we see that vgves2 € E(G). But now, (Uky1,Uk42, V% 0),0j+1) = Zz, a contra-
diction.

Case 2: Suppose the paths P, and P; from w hit P at vy, v, and some interior vertex
v; (clearly, 2 <j<m—1).

Subcase 1: Suppose the path P, from w to v, contains at least three vertices.

Let w; be the successor of w along P; and let v;_; and v, be the predecessor
and successor of v; along P. Since G is claw-free and P is of maximal length, we
see that v;_; and v;.; must be adjacent. Further, both w and w; are nonadjacent to
v;—; and v;4;. But then the vertices v;_;, v;, v;41, w and w; induce a Z; unless
wy is adjacent to v;. But now the vertices w, wy, v;, v;41 and v, induce a Z,. Of
the edges that could destroy the Z;, all but v;v;,, lead to an easy extension of P.
Thus, we suppose that v;v;,, is an edge of G. If v;1s # vy, then we repeat the last
argument on v;_1,v;,;4+1,w; and w, to obtain that v;w; is an edge of G. But then,
(v, vj—1,w,w2) is isomorphic to Ki 3. The edges wv,_1 and w,v;_; both allow us to
extend P while ww, allows us to shorten P,, a contradiction to our assumptions. Note
that w, = v, is possible, but our conclusions still hold in this situation as the induced
K13 on {vm, wi,Um_1,0;—1} allows us to extend P no matter which of the remaining
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edges are present in G. In any case, we have a contradiction. Thus, we assume that
;42 = Uyp. But then, the path

vlav2a"~7Uj—lavj+1,vjawl"--’vm

extends P, again producing a contradiction, and completing this subcase.

Note that a similar argument applies if the path from w to vy contains three or more
vertices.

Subcase 2: The vertex w is adjacent to vy, v, and v;.

If the number of components of G — P is two or more, then each of those vertices
behaves like w or we would be in a prior case. But this implies that there is a claw
centered at v (or v,), contradicting our conditions.

Thus, the number of components of G — P is exactly one. Call this component C.
Suppose that w’ € V(C). If w'w € E(G), then w'v; € E(G) by the Subcase | argument
of Case 2. Also, w’ is adjacent to v\, v, and v; on P. Hence, C must be complete
and each vertex of C is adjacent to v, v,, and v;. Further, we see that {V(C)| = 1,
for otherwise the argument of Subcase 1 implies that Z, is an induced subgraph of G.

Hence, in this case we see that any vertex off a maximal length  — v path has degree
3 with adjacencies v; and vy,. If the vertex had degree more than 3 it would have two
internal adjacencies and we would be back in Case 1. If it was not adjacent to v, and
v, and not suitable for Case 1, we would be back in Subcase 1 of this case.

Now consider the paths Qy: v, w,v;,0;_1,041,...,U0m and QO v1,...,0/_1,L41,
v;, W, vy, There is a maximal path containing Q;, i = 1,2, missing at most one vertex,
which must be v, and v, respectively (as any one of the interior vertices of P other
than v, and v,,—; will have at least two paths to interior vertices of the maximal paths).
Thus, v20, tm—101 € E(G). Also, no claw at v; implies v,v,,1 € E(G). Thus, the path
Q" V1,02, Um—1, .-+, Uj+1,V;, W, Up, cONtains vy, w, v, and v,_;. Hence, the maximal path
containing (' avoids a vertex of degree 3 adjacent to v; and v,. However, there is no
such vertex in G — @', producing the desired contradiction. [

We conclude with a result describing some of the characteristics of the forbidden
pairs for hamiltonian-connected graphs.

Theorem 27. Let R,S be connected graphs (R,S # Py) and let G be a 3-connected
graph. If G is {R,S}-free implies G is hamiltonian-connected, then R = K, 3 and S
satisfies each of the following:

(a) A($)<3,

(b) The longest induced path in S is at most a P,

(c) S contains no cycles except for Cs,

(d) all triangles in S are vertex disjoint,

(e) S is claw-free.

(Note: there are only a finite number of possibie graphs for S).
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Fig. 8. 3-Connected nonhamiltonian-connected graphs.

Proof. It was shown in Theorem 15 that R = K 3 and we note that all graphs used in
that proof are not hamiltonian connected. Hence, the same proof applies here. Consider
the claw-free graphs J; and Jg of Fig. 8 and well as J; of Fig. 5. The graph S must be
an induced subgraph of each of these nonhamiltonian-connected 3-connected graphs.

Now S an induced subgraph of J; implies that A(S)<3; hence (a) follows and (d)
follows as well. Then the graph J; implies that S contains no P;; and so (b) follows.
The only induced cycles in J53 (except for C3) are Cg, Cjp etc. On the other hand,
Jz has only C3, (7, Cy, etc. Thus, (¢) follows. Clearly, S is claw-free, hence (e)
follows. [

The authors would like to thank the referees for their careful reading and fine sug-
gestions.
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