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ABSTRACT

For any positive integer k, we investigate degree conditions implying that a graph G of
order n contains a 2-factor with exactly k components (vertex disjoint cycles). In partic-
ular, we prove that for k ≤ (n/4), Ore's classical condition for a graph to be hamiltonian
(k = 1) implies that the graph contains a 2-factor with exactly k components. We also
obtain a sufficient degree condition for a graph to have k vertex disjoint cycles, at least
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1. INTRODUCTION

All graphs considered in this paper are simple finite graphs. Let G be a graph. The minimum
degree of G will be denoted by δ(G) and we define

σ2(G) = min{d(u) + d(v): uv 6∈ E(G), u, v ∈ V (G)},

that is, σ2(G) is the minimum value of the sum of degrees of pairs of nonadjacent vertices. A
hamiltonian cycle of G is a cycle of G which contains every vertex of G. The following two
results are classic theorems about hamiltonian graphs.

Theorem 1 (Dirac [5]). Let G be a graph of order n ≥ 3. If the minimum degree δ(G) ≥ n/2,
then G is hamiltonian.

Theorem 2 (Ore [9]). Let G be a graph of order n ≥ 3. If σ2(G) ≥ n, then G is hamiltonian.

For any graph G, F is a 2-factor of G if and only if F is a union of vertex disjoint cycles that
span V (G). Both Dirac and Ore's Theorems imply that G has a 2-factor consisting of exactly
one cycle. The main purpose of this paper is to investigate degree conditions sufficient to imply
a graph G has a 2-factor which is a union of exactly k vertex disjoint cycles for any fixed k. The
following result is obtained.

Theorem 3. Let k be a positive integer and let G be a graph of order n ≥ 4k. If σ2(G) ≥ n,
then G has a 2-factor with exactly k vertex disjoint cycles.

Since the complete bipartite graph K(n−1)/2,(n+1)/2 (n odd) does not contain a 2-factor, the
degree sum condition n in the above theorem is in some sense the best possible. Also note that
the complete bipartite graph Km,m does not contain k vertex disjoint cycles if m < 2k. Thus,
the condition n ≥ 4k in the above theorem is in some sense the best possible too.

In Theorem 4 we obtain for free a natural corollary to Theorem 3. This result corresponds to
a similar generalization of Dirac's Theorem.

Theorem 4. Let k be a positive integer and let G be a graph of order n ≥ 4k. If δ(G) ≥ n/2,
then G has a 2-factor with exactly k vertex disjoint cycles.

For the case k = 2, the following much stronger result was obtained by El-Zahar.

Theorem 5 (El-Zahar [6]). Let G be a graph of order n and let n1 ≥ 3 and n2 ≥ 3 be two
integers such that n1 + n2 = n. If the minimum degree δ(G) ≥ d(n1/2)e + d(n2/2)e, then G
has two vertex disjoint cycles C1 and C2 of length n1 and n2, respectively.

In fact, in the same paper, El-Zahar conjectured that if G is a graph of order n = n1 + n2 +
· · · + nk(ni ≥ 3) with minimum degree

δ(G) ≥
⌈n1

2

⌉
+

⌈n2

2

⌉
+ · · · +

⌈nk

2

⌉
,

then contains k vertex disjoint cycles of length n1, n2, . . . , nk, respectively.
If El-Zahar's conjecture is true, then it follows that if G is a graph of order n = n1 + n2

+ · · ·+nk(ni ≥ 3) with δ(G) ≥ (2n/3), then G contains k vertex disjoint cycles C1, C2, . . . , Ck

of lengths n1, n2, . . . , nk, respectively. Sauer and Spencer [10] and independently Catlin [3]
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proved the more general result that every graph of order n with minimum degree exceeding
(1 − (1/2∆))n − 1 contains every given subgraph of order n and maximum degree ∆.

This implies that El-Zahar's conjecture holds with δ(G) ≥ 3n
4 − 1. For ∆ = 2, Catlin [3]

established a stronger result.

Theorem 6. If G is a graph of order n = n1 + n2 + · · · + nk(ni ≥ 3) with δ(G) ≥ 2n
3

+ O(n1/3), then G contains k vertex disjoint cycles C1, C2, . . . , Ck of lengths n1, n2, . . . , nk,
respectively.

Recently Aigner and Brandt [1] obtained the following improvement which gives the best
possible degree bound.

Theorem 7. If G is a graph of order n ≥ n1 +n2 + · · ·+nk (ni ≥ 3) with δ(G) ≥ (2n−1)/3
then G contains k vertex disjoint cycles of lengths n1, n2, . . . , nk, respectively.

The following result gives a sufficient condition for a graph to have k disjoint cycles which
are either triangles or 4-cycles.

Theorem 8. Let s ≤ k be two nonnegative integers and let G be a graph of order n ≥ 3s +
4(k − s). If σ2(G) ≥ (n + s/2), then G contains k vertex disjoint cycles C1, C2, . . . , Ck such
that

|V (Ci)| = 3 for 1 ≤ i ≤ s

|V (Ci)| ≤ 4 for s + 1 ≤ i ≤ k

that is, the f irst s cycles are triangles and the others are either triangles or 4-cycles.

The proof of Theorem 3 will be immediate from two lemmas. Theorem 4 follows directly
from Theorem 3. There are also several lemmas needed for the proof of Theorem 8. For this
reason, we will place the proofs of Theorems 3 and Theorem 8 in separate sections.

Generally, we will follow [8] for notation and terminology. Let G be a graph and let V1 and V2
be two subsets of vertices of G. The subgraph of G induced by the vertex set V1 will be denoted
by 〈V1〉. Further, E(V1, V2) will denote the set of edges in G with one endvertex in V1 and the
other in V2. Let H and K be two subgraphs of G. We use V (H) and E(H) denote the vertex set
and the edge set of H, respectively, while e(H) denotes the number of edges in H . For simplicity,
let E(H, K) stand for E(V (H), V (K)) and e(H, K) for |E(H, G)|.

The following two results will be heavily used in our proofs.

Theorem 9 (Corradi-Hajnal [4]). Let k be a positive integer and G a graph of order n. If
n ≥ 3k and the minimum degree δ(G) ≥ 2k, then G contains k vertex disjoint cycles.

Theorem 10 (Justesen [7]). If G is a graph of order n ≥ 3k such that

d(u) + d(v) ≥ 4k

for all pairs u and v of nonadjacent vertices, then G contains k vertex disjoint cycles.

2. THEOREM 3

As stated earlier, the proof of Theorem 3 will follow immediately from the next two Lemmas.
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Lemma 1. Let G be a graph of order n ≥ 4k. If σ2(G) ≥ n then G contains a 2-factor with
at least k cycles.

Proof. Let L be the set of vertices of G with degree less than n/2. Observe that the vertices
of L form a complete subgraph of G.

By Justesen's Theorem G contains k vertex disjoint cycles. Choose a subgraph H of at least
k disjoint cycles which cover the largest number of vertices of L, and subject to this requirement,
the largest number of vertices altogether. Suppose H is not a spanning subgraph. Certainly
G − V (H) is a forest, otherwise we could have added a cycle to H, contradicting our choice of
H . Let v be a vertex of degree at most one in G − V (H). Further, we assume v has the smallest
degree in G subject to the condition of degree at most one in G − V (H). Clearly, N(v) does
not contain two consecutive vertices of any cycle in H . If d(v) ≥ n/2, it is readily seen that
G − V (H) = K2, d(v) = n/2 and v is adjacent to every other vertex of each cycles. Let w be
the other vertex in G − V (H). d(w) ≥ n/2 by the choice of v, hence d(w) = n/2 and w is
adjacent to every other vertex of each cycle in H . Then, it is not difficult to see that we can add
vertices v and w to a cycle of H to form a new cycle, a contradiction. Thus, suppose v ∈ L. If
v has two neighbors in a cycle C of H, then we can add v to C by possibly removing a segment
of C, no vertex of which is in L. In this way we obtain a subgraph H ′ with the same number of
cycles as H and which covers more vertices of L. This contradicts our choice of H . Hence, v
has at most one neighbor in every cycle of H .

Since σ2(G) ≥ n implies d(v) ≥ δ(G) ≥ 2, there must be a cycle C in which v has a neighbor
w. Let xy be an edge of C which is not incident with w. As neither x nor y are adjacent to v
each of them can have at most d(v) − 1 non-neighbors or our degree sum condition would fail
to hold. One non-neighbor of x (and y) is v, and if v has a neighbor in G − V (H), this is also
a non-neighbor of x and y because of our choice of H . If v has a neighbor in r ≥ 1 cycles of
H, then both x and y have at most r − 2 non-neighbors in H − V (C), or again our condition
on σ2 would be violated. In particular then there must be a cycle C ′ in which v has a neighbor
and all but at most one of the possible edges are joining xy to C ′. It is easy to check that this
yields two cycles which contain the following: v, the neighbors of v on C and C ′, x and y, again
contradicting the choice of H .

Lemma 2. Let G be a graph of order n containing a 2-factor with k ≥ 2 cycles. If σ2(G) ≥ n
then G contains a 2-factor with k − 1 cycles.

Proof. Among the 2-factors of G with exactly k cycles let H be one for which a smallest
component is as small as possible. Let C be such a shortest cycle of H . Again let L be the set
of vertices of G with degree smaller than n/2. It is easily seen that the degree sum condition
implies that G is connected. Thus, there must be an edge vw joining C to another component
C ′. Since k ≥ 2 we have |V (C)| ≤ n/2 and therefore any vertex of V (C) \ L must have a
neighbor in G − V (C). Choose v ∈ V (C) \ L unless all vertices of C are in L and choose
w ∈ V (C ′)L if possible. Fix an orientation of C and C ′ respectively. Now consider the two
predecessors v−, w− and the two successors v+, w+ of v and w on C and C ′, respectively. Since
both pairs are ends of a hamiltonian path of the subgraph G′ induced by V (C)∪V (C ′), either this
subgraph contains a hamiltonian cycle, in which case we have found the desired 2-factor with
exactly k − 1 components, or

dG′(v+) + dG′(v−) + dG′(w+) + dG′(w−) ≤ 2(|V (G′)| − 1).
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Since

dG−G′(v+) + dG−G′(v−) + dG−G′(w+) + dG−G′(w−) ≥ 2α2(G) − 2(|V (G′)| − 1)
≥ 2(|V (G) − V (G′)| + 1)

we obtain that one of the following statements must hold:

(i) dG−G′(v+) + dG−G′(v−) > |V (G) − V (G′)|, or
(ii) dG−G′(w+) + dG−G′(w−) > |V (G) − V (G′)|.

If (i) holds then we obtain edges v+x, v−y incident to an edge xy of another cycle C ′′ 6= C, C ′.
Hence, we obtain k − 1 disjoint cycles covering all vertices of G except v. If v is adjacent to both
ends of an edge in one of the k − 1 cycles we are done. If v ∈ L this follows from the fact that
the edge v+v++ belongs to one of the cycles and v+, v++ ∈ L (or our choice of v is violated),
and if v 6∈ L this follows from d(v) ≥ n/2.

Thus, we may assume that (i) does not hold. Hence (ii) holds and by a similar reasoning we
are done if w 6∈ L or if w is adjacent to two consecutive vertices of C or C ′. Hence, we assume
that w ∈ L and w is not adjacent to two consecutive vertices of C or C ′. In this case neither v+

nor v− are adjacent to w. In particular, v+ 6∈ L and v− 6∈ L. Since all neighbors of v+ and v−

on C ′ are in L (by the initial choice of the edge vw) and are all neighbors of w, both v+ and v−

have at most |C ′|/2 − 1 neighbors on C ′. Since v+w, v−w 6∈ E(G) we obtain

dC(v+) + dC(v−) ≥ 2(σ2(G) − d(w)) − |V (C ′)| + 2 − |V (G) − V (G′)|
≥ n + 1 − |V (C ′)| + 2 − |V (G) − V (G′)|
= |V (C)| + 3.

As |V (C)| ≥ 3, one of the vertices, say v+, has at least three neighbors in the subgraph induced by
C, in particular, a neighbor u different from v, v++. We obtain a new cycle v+, v++, . . . , u, v+

and a hamiltonian path P from u+ to w+ in the remaining part of G′. If the remaining part of G′ is
hamiltonian this contradicts the choice of H, because the resulting 2-factor has a shorter cycle than
C. Otherwise u+ and w+ are not adjacent and dG−V (P )(u+) + dG−V (P )(w+) > n − |V (P )|,
so that we obtain the desired 2-factor with k − 1 cycles, which completes the proof.

The proof of Theorem 3 is now an immediate consequence of Lemmas 1 and 2.

3. THEOREM 8

3.1. Lemmas

Lemma 3. Let C1 and C2 be two vertex disjoint cycles of G and let m1 = |V (C1)| and
m2 = |V (C2)|. If m1 ≥ m2 ≥ 4 and e(C1, C2) ≥ (m1m2 + 1)/2, then the subgraph induced
by V (C1) ∪ V (C2) contains two vertex disjoint cycles C∗

1 and C∗
2 such that C∗

1 is a triangle.

Proof. Suppose, to the contrary, there do not exist two such cycles. Let C1 = x1x2 · · ·xm1x1
and C2 = y1y2 · · · ym2y1. Since e(C1, C2) ≥ (m1m2 + 1)/2, there is a vertex in C2, say y1,
such that |N(y1) ∩ V (C1)| ≥ (m1 + 1)/2. This implies that N(y1) contains two consecutive
vertices of C1, say x2 and x3.

Suppose e({x2, x3}, C2) ≥ 2m2 − 1, that is, G contains every possible edge, with at most
one exception, from {x2, x3} to C2. Without loss of generality, we assume that the possible
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edge x3ym2 is missed. Then, triangles x2y1ym2x2 and x3y2y3x3 give two desired cycles, a
contradiction. Thus e({x2, x3}, C2) ≤ 2m2 − 2.

Suppose there is another vertex yi (i 6= 1) that is adjacent to both x2 and x3. Since the desired
cycles C∗

1 and C∗
2 do not exist, we have either

(1) E(C2, C1 − {x2, x3}) ⊆ {ykxj} for some k and j or;
(2) Each of y1 and yi is adjacent to exact one vertex in C1 − {x2, x3}.

In either case, we have e(C2, C1 −{x2, x3}) ≤ 2. Hence e(C1, C2) ≤ (2m2 −2)+2 = 2m2.
Thus, (m1m2 + 1)/2 ≤ 2m2, which implies that m1 ≤ 3, a contradiction.

Thus, |N(yi)∩{x2, x3}| ≤ 1 for each 2 ≤ i ≤ m2. Since the vertices y1, x2, x3 form a triangle
and the desired cycles C∗

1 and C∗
2 do not exist, it follows that e(C1 − {x2, x3}, C2 − {y1}) ≤ 1.

Thus,

e(C1, C2) = e({x2, x3}, C2 − y1) + e(C1 − {x2, x3}, C2 − y1) + e(C1, y1)
≤ (m2 − 1) + 1 + m1 = m1 + m2.

Hence we have (m1m2 + 1)/2 ≤ m1 + m2, which contradicts the fact m1 ≥ m2 ≥ 4.

Lemma 4. Let C1 and C2 be two vertex disjoint cycles with lengths m1 = |V (C1)| = 3 and
m2 = |V (C2)| ≥ 5. If e(C1, C2) ≥ (3m2 + 1/2), then 〈V (C1 ∪ C2)〉 contains a triangle C∗

1
and a cycle C∗

2 such that C∗
1 and C∗

2 are vertex disjoint and |V (C∗
2 )| < m2.

Proof. Let C1 = x1x2x3x1 and C2 = y1y2 · · · ym2y1. Suppose, to the contrary, there are no
such two cycles C∗

1 and C∗
2 . Since e(C1, C2) ≥ (3m2 + 1)/2, there is a vertex, say x1, such that

|N(x1) ∩ V (C2)| ≥ m2 + 1
2

≥ 3.

If N(x2)∩N(x3)∩V (C2) 6= ∅, without loss of generality, let y2 ∈ N(x2)∩N(x3). Since G
contains no such C∗

1 and C∗
2 and |N(x1)∩V (C2)| ≥ 3, we have N(x1)∩V (C2) = {y1, y2, y3}.

From the fact |N(x1) ∩ V (C2)| ≥ (m2 + 1)/2, we obtain m2 = 5. Since e(C1, C2) ≥
(3 × 5 + 1)/2 = 8, we have either |N(x2) ∩ V (C2)| ≥ 3 or |N(x3) ∩ V (C2)| ≥ 3. With-
out loss of generality, we assume that |N(x2) ∩ V (C2)| ≥ 3. Since y2 ∈ N(x1) ∩ N(x3), in the
same manner as the above, we see that N(x2) ∩ V (C2) = {y1, y2, y3}.

If x3y1 ∈ E(G), then x3y1y2x3 and y3x1x2y3 are desired triangles, which is a contradiction.
Thus, x3y1 6∈ E(G) and similarly x3y3 6∈ E(G). Since e(C1, C2) ≥ 8, N(x3) ∩ {y4, y5} 6= ∅.
Without loss of generality, assume that x3y4 ∈ E(G). Then there are two cycles C∗

1 = y1x1x2y1
and C∗

2 = x3y2y3y4x3, a contradiction.
Therefore, N(x2) ∩ N(x3) ∩ V (C2) = ∅. Suppose that |N(x1) ∩ V (C2)| ≥ m2 − 1, where

N(x1) ⊇ {y1, y2, . . . , ym2−1}. In this case, we claim e({x2, x3}, C2) ≤ 2. Otherwise, assume
e({x2, x3}, C2) ≥ 3. Without loss of generality, we assume that |N(x2) ∩ V (C2)| ≥ 2. Since
there does not exist a pair of cycles with the desired properties, we have |N(x2) ∩ V (C2)| = 2
and m2 = 5 and we have either

N(x2) ∩ V (C2) = {y2, y4},

N(x2) ∩ V (C2) = {y1, y3}.

Without loss of generality, we assume that N(x2) ∩ V (C2) = {y2, y4}. Then, it is readily seen
that N(x3) ∩ V (C2) = ∅, which gives e({x2, x3}, V (C2)) ≤ 2, a contradiction. Thus, we have
|N(x1) ∩ V (C2)| ≤ m2 − 2.
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Since |N(x1) ∩ V (C2)| ≥ (m2 + 1)/2, N(x1) contains two consecutive vertices of C2, say
y2 and y3. Since N(x1) ⊇ {y2, y3}, we have e({x2, x3}, C2 − {y2, y3}) ≤ 2. Further, equality
holds only if either

E({x2, x3}, C2 − {y2, y3}) = {x2y1, x3y4},

or

E({x2, x3}, C2 − {y2, y3}) = {x3y1, x2y4}.

Since N(x2) ∩ N(x3) ∩ V (C2) = ∅, it follows that e({x2, x3}, C2) ≤ 4. Thus

3m2 + 1
2

≤ e(C1, C2) ≤ (m2 − 2) + 4 ≤ m2 + 2,

which implies that m2 ≤ 3, a contradiction.

Lemma 5. Let C1 = x1x2x3x1 be a triangle and C2 = y1y2y3y4y1 be a 4-cycle in a graph
G such that C1 and C2 are vertex disjoint and e(C1, C2) ≥ 9. Then the induced subgraph
〈V (C1 ∪ C2)〉 contains two vertex disjoint triangles C∗

1 and C∗
2 .

Proof. To the contrary, we assume that 〈V (C1 ∪ C2)〉 contains no two vertex disjoint tri-
angles. Without loss of generality, we also assume that

|N(x1) ∩ V (C2)| ≥ |N(x2) ∩ V (C2)| ≥ |N(x3) ∩ V (C2)|.

Clearly, |N(x1) ∩ V (C2)| ≥ 3. Since e(C1, C2) ≥ 9 and |N(x1) ∩ V (C2)| ≤ |V (C2)| = 4, we
have e({x2, x3}, C2) ≥ 5. By the Pigeonhole Principle, N(x2) ∩ N(x3) ∩ V (C2) 6= ∅. Assume
that y2 ∈ N(x2)∩N(x3). If x1y4 ∈ E(G), then x1y3 6∈ E(G) and x1y1 6∈ E(G), which implies
that |N(x1) ∩ V (C2)| ≤ 2, a contradiction. Thus x1y4 6∈ E(G). Since |N(x1) ∩ V (C2)| ≥ 3,
we have N(x1) ∩ V (C2) = {y1, y2, y3}. Since e(C1, C2) ≥ 9, we have

|N(x1) ∩ V (C2)| = |N(x2) ∩ V (C2)| = |N(x3) ∩ V (C2)| = 3.

Further, in the same manner as we did for x1, we can show that,

N(xi) ∩ V (C2) = {y1, y2, y3} for i = 1, 2, 3.

Clearly, there are two triangles y1x1x3y1 and x2y2y3x2, a contradiction.

3.2. Proof of Theorem 8

Note that n ≥ 3s + 4(k − s) implies n + s ≥ 4k. By Theorem 10, we know that G contains k
vertex disjoint cycles. Let C1, C2, . . . , Ck be k vertex disjoint cycles such that

(1) the number of triangles in {C1, C2, . . . , Ck} is as large as possible;
(2) subject to condition 1,

∑
1≤i≤k |V (Ci)| is minimum.

Let mi = |V (Ci)|. Without loss of generality, assume that

m1 ≤ m2 ≤ · · · ≤ mk.
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Claim 1. If mk ≥ 4, then

e


Ck,

⋃
1≤i≤k−1

Ci


 >

mk × (
∑

1≤i≤k−1 mi + s)
2

.

Proof. By the minimality of
∑

1≤i≤k mi, we know that Ck is an induced cycle. Then
e(〈Ck〉) = mk and

∑
x∈V (Ck) d(x) ≥ (mk × (n + s)/2).

For each vertex v 6∈ ∪1≤i≤kV (Ci), we have |N(v) ∩ V (Ck)| ≤ 2 < (mk/2). Thus,

e


Ck,

⋃
1≤i≤k−1

Ci


 >

mk(n + s)
2

− mk

2


n −

∑
1≤i≤k−1

mi




=
mk × (

∑
1≤i≤k−1 mi + s)

2
.

Claim 2. The inequality mk ≤ 4 holds.

Proof. Suppose, to the contrary, that mk ≥ 5. By Claim 1, we see there is a cycle Ci such
that e(Ci, Ck) ≥ (mimk + 1)/2.

If mi ≥ 4, by Lemma 3, 〈V (Ci ∪ Ck)〉 contains two vertex disjoint cycles C∗
i and C∗

k such
that V (C∗

i ) is a triangle, which contradicts condition (1) of the choice of C1, C2, . . . , Ck.
Thus mi = 3. By Lemma 4, 〈V (Ci ∪ Ck)〉 contains two vertex disjoint cycles C∗

i and C∗
k

such that C∗
i is a triangle and |V (C∗

k)| < |V (Ck)|, a contradiction.

Assume that m1 = m2 = · · · = mt = 3 and mt+1 = · · · = mk = 4. To finish the
proof, we only need to show that t ≥ s. Suppose, to the contrary, t < s. If there is a cycle
Ci with t + 1 ≤ i ≤ k − 1 such that e(Ci, Ck) ≥ d(4 × 4 + 1)/2e = 9. Then by Lemma 3,
G(V (Ci ∪ Ck)) contains a triangle and a cycle, which contradicts to our choice of C1, . . . , Ck.
Thus,

e


Ck,

⋃
t+1≤i≤k−1

Ci


 ≤ 8(k − t − 1).

From Claim 1, we have

e


Ck,

⋃
1≤i≤k−1

Ci


 ≥ mk(

∑
1≤i≤k−1 mi + s)

2

=
4(3t + 4(k − 1 − t) + s)

2
= 2(3t + s) + 8(k − t − 1).

Combining the above two inequalities, we obtain the following

e


Ck,

⋃
1≤i≤t

Ci


 ≥ 2(3t + s) > 8t.
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Since s > t, there is a cycle Ci with 1 ≤ i ≤ t such that e(Ci, Ck) ≥ 9 by the Pigeon-
hole Principle. By Lemma 5, G(V (Ci, Ck)) contains two vertex disjoint triangles, a contra-
diction.

ACKNOWLEDGMENT

The authors thank the referees for their helpful comments.

References

[1] M. Aigner and S. Brandt, Embedding Arbitrary Graphs of Maximum Degree Two. J. London Math.
Soc. (2) 48 (1993), 39–51.

[2] B. Bollobás, Extremal Graph Theory. Academic Press 1978. (pg. 366, Ex. 42)

[3] P. Catlin, Embedding subgraphs and coloring graphs under extremal degree conditions. Ph.D. Disser-
tation, Ohio State University, 1976.
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Discrete Math 41 (1989), 299–306.

[8] R. Gould, Graph Theory. Benjamin/Cummings, Menlo Park, CA, 1988.

[9] O. Ore, Note on hamiltonian circuits. Amer. Math Monthly 67 (1960), 55.

[10] N. Sauer and J. Spencer, Edge disjoint placements of graphs. J. Combinatorial Theory B 25 (1978),
295–302.

Received July 12, 1995


