DISCRETE

 MATHEMATICS
Graph spectra

R.J. Faudree ${ }^{\text {a.1 }}$, R.J. Gould ${ }^{\text {b. } 1}$, M.S. Jacobson ${ }^{\text {c. } 2}$, J. Lehel ${ }^{\text {c }}$, L.M. Lesniak ${ }^{\text {d.*. }}{ }^{3}$
${ }^{a}$ University of Memphis, Memphis, TN 38152, USA
${ }^{\mathrm{b}}$ Emory University, Atlanta, GA 30322, USA
${ }^{\text {c }}$ University of Louisville, Louisville, KY 40208, USA
${ }^{\text {d }}$ Drew University, Madison, NJ 07940, USA

Received 24 August 1993; revised 27 January 1995

Abstract

The k-spectrum $s_{k}(G)$ of a graph G is the set of all positive integers that occur as the size of an induced k-vertex subgraph of G. In this paper we determine the minimum order and size of a graph G with $s_{k}(G)=\left\{0,1, \ldots,\binom{k}{2}\right\}$ and consider the more general question of describing those sets $S \subseteq\left\{0,1, \ldots,\binom{k}{2}\right\}$ such that $S=s_{k}(G)$ for some graph G.

1. Introduction

In [2] it was shown that for every positive integer k there is an integer $N(k)$ such that every connected graph of order at least $N(k)$ contains either a complete graph of order k or an induced tree of order k. On the other hand, by Ramsey's theorem every graph of sufficiently large order contains either a complete graph of order k or an independent set of k vertices. It follows, then, that every connected graph of sufficiently large order contains either an induced subgraph of order k and size $\binom{k}{2}$ or two induced subgraphs of order k, one of size 0 and one of size $k-1$. In this paper we consider the set of sizes of all induced subgraphs of a fixed order k in a graph G. In particular, we define the k-spectrum $s_{k}(G)$ of a graph G by

$$
s_{k}(G)=\{j \mid G \text { contains an induced subgraph of order } k \text { and size } j\} .
$$

[^0]Thus $s_{k}(G) \subseteq\left\{0,1, \ldots,\binom{k}{2}\right\}$. Furthermore, from the remarks above we can say that if G is a connected graph of sufficiently larger order then either $\binom{k}{2} \in s_{k}(G)$ or $0, k-1 \in s_{k}(G)$. In Section 2 we establish two extremal results regarding graphs G for which $s_{k}(G)=\left\{0,1, \ldots,\binom{k}{2}\right\}$. In Section 3 we consider the more general problem of describing those sets $S \subseteq\left\{0,1, \ldots,\binom{k}{2}\right\}$ such that $S=s_{k}(G)$ for some graph G.

2. Extremal results

If $s_{k}(G)=\left\{0,1, \ldots,\binom{k}{2}\right\}$ we will say that the graph G has a complete k-spectrum. In Theorem 1 we determine the minimum order among all graphs with complete k-spectra.

Theorem 1. The minimum number of vertices in a graph with a complete k-spectrum is $2 k-1$.

Proof. If G is any graph with a complete k-spectrum then $0,\binom{k}{2} \in s_{k}(G)$. Thus G contains K_{k} and \bar{K}_{k} as induced subgraphs. Since these subgraphs can have at most one vertex in common it follows that G has order at least $2 k-1$.

We complete the proof of describing a graph $G(k)$ of order $2 k-1$ that has a complete k-spectrum. Let $V(G(k))=\left\{w_{1}, w_{2}, \ldots, w_{k}, x_{1}, x_{2}, \ldots, x_{k-1}\right\}$, where $\left\langle\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}\right\rangle$ is a complete subgraph of $G(k)$ and $\left\langle\left\{x_{1}, x_{2}, \ldots, x_{k-1}\right\}\right\rangle$ is an empty subgraph of $G(k)$. Furthermore, $x_{i} w_{j} \in E(G(k))$ if and only if $j>i$. Then $G(k)$ has order $2 k-1$ and clearly $0,\binom{k}{2} \in s_{k}(G(k))$. In order to verify that $G(k)$ has a complete k-spectrum, let t be any integer satisfying $0<t<\binom{k}{2}$. We show that $G(k)$ contains an induced k-vertex subgraph of size t. Let ℓ be the largest integer for which $\binom{t}{2} \leqslant t$ and let $r=t-\binom{f}{2}$. Note that $0 \leqslant r \leqslant \ell-1$. Then

$$
\left\langle\left\{w_{1}, w_{2}, \ldots, w_{\ell}, x_{\ell-r}, x_{\ell+1}, x_{\ell+2}, \ldots, x_{k-1}\right\}\right\rangle
$$

has order k and size $\left(\begin{array}{l}\frac{f}{2}\end{array}\right)+r=t$.
The graph with a complete k-spectrum constructed in Theorem 1 has size

$$
\binom{k}{2}+(k-1)+(k-2)+\cdots+1=2\binom{k}{2} .
$$

It is reasonable to ask if there is a graph with a complete k-spectrum and size less than $2\binom{k}{2}$. In Theorem 2 we determine the minimum size of a graph with a complete k-spectrum. We will write $H \prec G$ to mean that H is an induced subgraph of G.

Theorem 2. For k sufficiently large, the minimum number of edges in a graph with a complete k-spectrum is

$$
\binom{k}{2}+k \log k-O(k \log \log k)
$$

Proof. We begin by constructing a graph $S(k)$ that has a complete k-spectrum and size

$$
\binom{k}{2}+k\lceil\log k\rceil+\binom{\lceil\log k\rceil}{ 2}-\left(2^{\lceil\log k\rceil}-1\right) .
$$

Let $V(S(k))=\left\{w_{1}, w_{2}, \ldots, w_{k}, x_{1}, x_{2}, \ldots, x_{\lceil\log k}, y_{1}, y_{2}, \ldots, y_{k}\right\}$, where $\operatorname{deg} y_{i}=0$ $(1 \leqslant i \leqslant k)$. Furthermore, $\left\langle\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}\right\rangle$ and $\left\langle\left\{x_{1}, x_{2}, \ldots, x_{\lceil\log k]}\right\}\right\rangle$ are complete subgraphs of $S(k)$. Finally, $x_{i} w_{j} \in \mathrm{E}(S(k))$ if and only if $j>2^{i-1}$. Then $S(k)$ has size

$$
\begin{aligned}
& \binom{k}{2}+\binom{\lceil\log k\rceil}{ 2}+k\lceil\log k\rceil-\left(2^{0}+2^{1}+\cdots+2^{\lceil\log k\rceil^{-1}}\right) \\
& =\binom{k}{2}+k\lceil\log k\rceil+\binom{\lceil\log k\rceil}{ 2}-\left(2^{\lceil\log k\rceil-1) .}\right.
\end{aligned}
$$

We show, by induction on k, that $S(k)$ has a complete k-spectrum. Certainly $S(2)$ has a complete 2 -spectrum. Assume, for some $k \geqslant 3$, that $S(k-1)$ has a complete ($k-1$)-spectrum, and consider $S(k)$. Since $S(k-1)<S(k)$ it follows that $S(k)$ contains induced $(k-1)$-vertex subgraphs having sizes $0,1, \ldots,\left({ }_{2}^{2}\right)$ and containing at most $k-1$ of the isolated vertices of $S(k)$. Thus $S(k)$ contains induced k-vertex subgraphs of sizes $0,1, \ldots,\left({ }^{k-1}\right)$. It remains to show that $S(k)$ contains k-vertex subgraphs of size $\binom{k}{2}-i$ for $0 \leqslant i \leqslant k-2$. Since $K_{k}<S(k)$ we may assume $i \geqslant 1$.

For fixed i satisfying $1 \leqslant i \leqslant k-2$, let

$$
i=b_{1} 2^{0}+b_{2} 2^{1}+\cdots+b_{\lceil\log k\rceil^{2}} 2^{\lceil\log k\rceil-1}
$$

be the binary expansion of i, let $J=\left\{j \mid b_{j}=1\right\}$ and let $m=\max \{j \mid j \in J\}$. Then $|J| \leqslant\lceil\log k\rceil \leqslant k$. Let $V(i)=\left\{x_{j} \mid j \in J\right\} \cup\left\{w_{1}, w_{2}, \ldots, w_{k-|J|}\right\}$. Then $|E(V(i))|=$ $\binom{k}{2}-i$ provided $k-|J| \geqslant 2^{m-1}$. If $|J|=1$ then $k-|J|=k-1 \geqslant 2^{m-1}$. If, on the other hand, $|J| \geqslant 2$ then

$$
\begin{aligned}
k & \geqslant i+2 \geqslant 2^{0}+2^{1}+\cdots+2^{J \mid-2}+2^{m-1}+2 \\
& =2^{|J|-1}-1+2^{m-1}+2 \geqslant 2^{m-1}+|J| .
\end{aligned}
$$

We complete the proof by showing that for k sufficiently large, every graph with a complete k-spectrum has at least $\binom{k}{2}+k \log k-2 k \log \log k$ edges. Let G be such a graph with $S \subseteq V(G)$ such that $|S|=k$ and $\langle S\rangle$ is complete.

Assume first that there exists $S^{\prime} \neq S$ such that $\left|S^{\prime}\right|=k$ and $\left|E\left(\left\langle S^{\prime}\right\rangle\right)\right| \geqslant\binom{ k}{2}-k$ and $\left|S^{\prime}-S\right|=\ell>\log k$. Then

$$
|E(G)| \geqslant\binom{ k}{2}+\binom{\ell}{2}+\ell(k-\ell)-k
$$

The function $f(\ell)=\binom{\ell}{2}+\ell k-\ell^{2}+k-\lceil k \log k\rceil$ is nonnegative at $\ell=\lceil\log k\rceil$, and it is an increasing function of ℓ for $\log k<\ell \leqslant k-1$. Therefore,

$$
|E(G)| \geqslant\binom{ k}{2}+k \log k-2 k
$$

for k sufficiently large. Thus we may assume that if $S \neq S^{\prime}$ and $\left|S^{\prime}\right|=k$ and $\left|E\left(\left\langle S^{\prime}\right\rangle\right)\right| \geqslant\binom{ k}{2}-k$ then $\left|S^{\prime}-S\right| \leqslant \log k$.

Let S_{1} be the vertex set of an induced k-vertex subgraph of G of size $\binom{k}{2}-1$. Then $1 \leqslant\left|S_{1}-S\right| \leqslant \log k$. Let $v_{1} \in S_{1}-S$. Since $\left|E\left(\left\langle S_{1}\right\rangle\right)\right|=\binom{k}{2}-1$ it follows that $\operatorname{deg}_{\left\langle s_{1}\right\rangle} v_{1} \geqslant(k-1)-1=k-2$. Thus v_{1} is adjacent to at least $k-2-(\log k-1)=$ $k-(\log k+1)$ vertices of S. Let S_{2} be the vertex set of an induced k-vertex subgraph of G of size $\binom{k}{2}-(\log k+2)$. Since every induced k-vertex subgraph of $\left\langle S \cup\left\{v_{1}\right\}\right\rangle$ contains at least $\binom{k}{2}-(\log k+1)$ edges, it follows that $\left|S_{2}-S-\left\{v_{1}\right\}\right| \geqslant 1$. Furthermore, since $\log k+2 \leqslant k$ for k sufficiently large, $\left|S_{2}-S\right| \leqslant \log k$. Let $v_{2} \in S_{2}-S-\left\{v_{1}\right\}$. Since $\left|E\left(\left\langle S_{2}\right\rangle\right)\right|=\binom{k}{2}-(\log k+2)$, it follows that $\operatorname{deg}_{\left\langle s_{2}\right\rangle} v_{2} \geqslant(k-1)-(\log k+2)=k-(\log k+3)$. Thus v_{2} is adjacent to at least $k-(\log k+3)-(\log k-1)=k-(2 \log k+2)$ vertices of S. In general, suppose that for some $\ell \leqslant\lfloor\log (k / \log k)\rfloor$ we have selected distinct vertices $v_{1}, v_{2}, \ldots, v_{\ell-1} \notin S$ such that for $1 \leqslant i \leqslant \ell-1$, the vertex v_{i} is adjacent to at least $k-\left(2^{i-1} \log k+2^{i}-i\right)$ vertices of S. Observe that for $i \leqslant \ell$ we have

$$
2^{i-1} \log k+2^{i}-i \leqslant k / 2+k / \log k \leqslant k,
$$

for k sufficiently large. Every induced k-vertex subgraph of $\left\langle S \cup\left\{v_{1}, v_{2}, \ldots, v_{\ell-1}\right\}\right\rangle$ contains at least

$$
\binom{k}{2}-\left(\sum_{i=1}^{\ell-1}\left(2^{i-1} \log k+2^{i}-i\right)+\binom{\ell-1}{2}\right)
$$

edges, i.e., at least

$$
\binom{k}{2}-\left(\left(2^{\ell-1}-1\right) \log k+2^{\ell}-\ell-1\right)
$$

edges. Let S_{ℓ} be the vertex set of an induced k-vertex subgraph of G of size

$$
\binom{k}{2}-\left(\left(2^{\ell-1}-1\right) \log k+2^{\ell}-\ell\right) .
$$

Then $\left|S_{\ell}-S-\left\{v_{1}, v_{2}, \ldots, v_{\ell-1}\right\}\right| \geqslant 1$. Let $v_{\ell} \in S_{\ell}-S-\left\{v_{1}, v_{2}, \ldots, v_{\ell-1}\right\}$. Then

$$
\operatorname{deg}_{\left\langle s_{\ell}\right\rangle} v_{\ell} \geqslant(k-1)-\left(\left(2^{\ell-1}-1\right) \log k+2^{\ell}-\ell\right) .
$$

Furthermore, $\left|S_{\ell}-S\right| \leqslant \log k$ and so v_{ℓ} is adjacent to at least

$$
\begin{aligned}
k- & \left(\left(2^{\ell-1}-1\right) \log k+2^{\ell}-\ell+1\right)-(\log k-1) \\
& =k-\left(2^{\ell-1} \log k+2^{\ell}-\ell\right)
\end{aligned}
$$

vertices of S. Thus there exist distinct vertices $v_{1}, v_{2}, \ldots, v_{\ell} \notin S$, where $\ell=\lfloor\log (k / \log k)\rfloor$, such that v_{i} is adjacent to at least $k-\left(2^{i-1} \log k+2^{i}-i\right)$ vertices
of S for $i=1,2, \ldots, \ell$. Therefore,

$$
\begin{aligned}
|E(G)| & \geqslant\binom{ k}{2}+\sum_{i=1}^{1}\left(k-2^{i-1} \log k-2^{i}+i\right) \\
& \geqslant\binom{ k}{2}+\sum_{i=1}^{c}\left(k-2^{i} \log k\right) \\
& \geqslant\binom{ k}{2}+k \log (k / \log k)-(2 \log k)(k / \log k-1) \\
& \geqslant\binom{ k}{2}+k \log k-2 k \log \log k
\end{aligned}
$$

In [3] Erdős and Spencer defined the size spectrum $s(G)$ of a graph G by

$$
s(G)=\{j \mid G \text { has an induced subgraph of size } j\} .
$$

Thus $s(G)=\bigcup_{k=1}^{V(G)} s_{k}(G)$. They showed that if M_{n} is the largest cardinality among the size spectra of graphs of order n, then $M_{n} \leqslant\binom{ n}{2}-\mathrm{O}(n \log \log n)$. It follows from the construction of the graph $S(k)$ in Theorem 2 (by considering $n=\log (k+k)$ that $M_{n} \geqslant\binom{ n}{2}-n \log n$.

Corollary 1. Let M_{n} be the largest cardinality among the size spectra of graphs of order n. Then

$$
\binom{n}{2}-n \log n \leqslant M_{n} \leqslant\binom{ n}{2}-\mathrm{O}(n \log \log n) .
$$

3. Properties of \boldsymbol{k}-spectra of graphs

For a fixed integer k, every graph of sufficiently large order n has at least one of 0 and $\binom{k}{2}$ in its k-spectrum. This follows, of course, by choosing n to be at least as large as the diagonal Ramsey number $r(k, k)$. We will say that a set S of integers is k-realizable if there is an integer N_{k} such that for every $n \geqslant N_{k}$ there is a graph G of order n for which $s_{k}(G)=S$. Thus two necessary conditions for S to be k-realizable are that $S \subseteq\left\{0,1, \ldots,\binom{k}{2}\right\}$ and that either 0 or $\binom{k}{2}$ is in S. As a corollary of our next result we determine a necessary condition for a set $S \subseteq\left\{0,1, \ldots,\binom{k}{2}\right\}$ containing both 0 and $\binom{k}{2}$ to be k-realizable.

For disjoint graphs G and H, let $G \cup H$ denote the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. By adding all edges to $G \cup H$ between the vertices of G and those of H we obtain the graph $G+H$.

Theorem 3. Let I_{k} denote the set of all integers that are in the k-spectrum of every graph G of order $n \geqslant r\left(k 2^{k}+1, k 2^{k}+1\right)$ for which $0,\binom{k}{2} \in s_{k}(G)$. Then

$$
I_{k}=\left(\bigcap_{\ell=0}^{k} s_{k}\left(A_{\ell}(k)\right)\right) \cap\left(\bigcap_{\ell=0}^{k} s_{k}\left(\overline{\left.A_{\ell}(k)\right)}\right)\right.
$$

where

$$
A_{\ell}(k)=\left(K_{k}+\bar{K}_{\ell}\right) \cup \bar{K}_{k-\ell} .
$$

Proof. We first observe that $A_{\ell}(k)$ is an induced subgraph of $\left(K_{n-k}+\bar{K}_{\ell}\right) \cup \bar{K}_{k-\ell}$, for every $n \geqslant 2 k$. Furthermore, $s_{k}\left(A_{\ell}(k)\right)=s_{k}\left(\left(K_{n-k}+\bar{K}_{\ell}\right) \cup \bar{K}_{k-\ell}\right)$. Similarly, $\overline{A_{\ell}(k)}$ is an induced subgraph of $\left(\bar{K}_{n-k} \cup K_{\ell}\right)+K_{k-\ell}$ for every $n \geqslant 2 k$ and $s_{k}\left(\overline{A_{\ell}(k)}\right)=$ $s_{k}\left(\left(\bar{K}_{n-k} \cup K_{\ell}\right)+K_{k-\ell}\right)$. Since $0,\binom{k}{2} \in s_{k}\left(A_{\ell}(k)\right)$ and $0,\binom{k}{2} \in s_{k}\left(\overline{A_{\ell}(k)}\right)$ for $0 \leqslant \ell \leqslant k$, it follows that if $x \in I_{k}$, i.e., if x is in the k-spectrum of every graph of order $n \geqslant r\left(k 2^{k}+1, k 2^{k}+1\right)$ that has 0 and $\binom{k}{2}$ in its k-spectrum, then

$$
x \in\left(\bigcap_{\ell=0}^{k} s_{k}\left(A_{\ell}(k)\right)\right) \cap\left(\bigcap_{\ell=0}^{k} s_{k}\left(\overline{A_{\ell}(k)}\right) .\right.
$$

Thus,

$$
x \subseteq\left(\bigcap_{\ell=0}^{k} s_{k}\left(A_{\ell}(k)\right)\right) \cap\left(\bigcap_{\ell=0}^{k} s_{k}\left(\overline{A_{\ell}(k)}\right)\right)
$$

We complete the proof by showing that if G is a graph of order $n \geqslant r\left(k 2^{k}+1, k 2^{k}+1\right)$ such that $0,\binom{k}{2} \in s_{k}(G)$ then G contains either $A_{\ell}(k)$ or $\overline{A_{\ell}(k)}$ as an induced subgraph for some ℓ satisfying $0 \leqslant \ell \leqslant k$. Thus, either

$$
s_{k}\left(A_{\ell}(k)\right) \subseteq s_{k}(G) \text { or } s_{k}\left(\overline{A_{\ell}(k)}\right) \subseteq s_{k}(G)
$$

which implies

$$
\left(\bigcap_{\ell=0}^{k} s_{k}\left(A_{\ell}(k)\right)\right) \cap\left(\bigcap_{\ell=0}^{k} s_{k}\left(\overline{\left.A_{\ell}(k)\right)}\right) \subseteq I_{k} .\right.
$$

Since $n \geqslant r\left(k 2^{k}+1, k 2^{k}+1\right), G$ contains either a complete graph of order $k 2^{k}+1$ or an independent $\left(k 2^{k}+1\right)$-set of vertices. Suppose first that G contains a complete graph of order $k 2^{k}+1$. Thus G contains disjoint sets A and B such that $\langle A\rangle=K_{k 2^{k}}$ and $\langle B\rangle=\bar{K}_{k}$. Let $S_{1}, S_{2}, \ldots, S_{2^{k}}$ denote the distinct subsets of B and, for $1 \leqslant i \leqslant 2^{k}$, let $T_{i}=\left\{v \in A \mid N_{B}(v)=S_{i}\right\}$. Then $\bigcup_{i=1}^{2^{k}} T_{i}=A$ and, since $|A|=k 2^{k}$, it follows that $\left|T_{j}\right| \geqslant k$ for some j. But then

$$
A_{\ell}(k)<\left\langle T_{j} \cup B\right\rangle,
$$

where $\ell=\left|S_{j}\right|$. The case in which G contains an independent $\left(k 2^{k}+1\right)$-set of vertices follows from a symmetric argument.

Corollary 2. If S is k-realizable and $0,\binom{k}{2} \in S$, then $I_{k} \subseteq S$.
It is worth noting that $s_{k}\left(A_{t}(k)\right)$ and $s_{k}\left(\overline{A_{t}(k)}\right)$, are straightforward to calculate. Thus, I_{k} can be determined for small k.

By definition, $\left\{0,\binom{k}{2}\right\} \subseteq I_{k}$. It is easy to check that for some values of $k(k=5$, for example), $I_{k}=\left\{0,\binom{k}{2}\right\}$. In such a case, Corollary 2 gives no new information. The case $k=5$ follows from our next result.

Propositon 1. If k is an integer for which $(k-1)^{2}+k^{2}$ is prime, then $I_{k}=\left\{0,\binom{k}{2}\right\}$.
Proof. We first note that $s_{k}\left(A_{k}(k)\right)=\left\{\begin{array}{l}\left.\binom{k}{2}-\binom{b}{2}: 1 \leqslant b \leqslant k\right\} \text { and } s_{k}\left(\overline{A_{k}(k)}\right)= \\ \hline(0)\end{array}\right.$ $\left\{\binom{a}{2}: 1 \leqslant a \leqslant k\right\}$ for every positive integer k. Thus $s_{k}\left(A_{k}(k)\right) \cap s_{k}\left(\overline{A_{k}(k)}\right)-\left\{0,\binom{k}{2}\right\} \neq \emptyset$ for some k if and only if there are integers $1<a<k$ and $1<b<k$ for which

$$
\begin{equation*}
\binom{k}{2}=\binom{a}{2}+\binom{b}{2} . \tag{1}
\end{equation*}
$$

Setting $n=2 k-1, x=2 a-1$ and $y=2 b-1$, Eq. (1) becomes

$$
\begin{equation*}
n^{2}+1=x^{2}+y^{2} . \tag{2}
\end{equation*}
$$

Since every odd prime divisor of $n^{2}+1$ is of the form $4 q+1$ (see [4, Theorem 3.1], for example), it follows that the prime decomposition of $n^{2}+1$ is

$$
\begin{equation*}
n^{2}+1=2^{\alpha} \prod_{i=1}^{t} p_{i}^{a^{i}} \tag{3}
\end{equation*}
$$

where $p_{i} \equiv 1(\bmod 4)$. It follows from Eq. (3) that Eq. (2) has precisely $4 \prod_{i=1}^{t}\left(\alpha_{i}+1\right)$ ordered pairs (x, y) of integer solutions. Thus Eq. (2) has only the eight trivial solutions $(x, y)=(\pm n, \pm 1)$ and $(\pm 1, \pm n)$ if and only if $n^{2}+1=2^{x} p_{1}$. However,

$$
n^{2}+1=2\left((k-1)^{2}+k^{2}\right)
$$

where $(k-1)^{2}+k^{2}$ is odd. Thus Eq. (2) has only the eight trivial solutions if and only if $(k-1)^{2}+k^{2}$ is prime. Therefore, if $(k-1)^{2}+k^{2}$ is prime, then $a=\frac{1}{2}(x+1)=1$ and $b=\frac{1}{2}(y+1)=\frac{1}{2}(n+1)=k$ are the only integers $1 \leqslant a \leqslant b \leqslant k$ satisfying Eq. (1) and, consequently, $I_{k}=s_{k}\left(A_{k}(k)\right) \cap s_{k}\left(\overline{\left.A_{k}(k)\right)}=\left\{0,\binom{k}{2}\right\}\right.$.

From Proposition 1 we see that $I_{k}=\left\{0,\binom{k}{2}\right\}$ for $k=2,3,5,8, \ldots$. However, it is unknown whether $(k-1)^{2}+k^{2}$ is prime for infinitely many k and, consequently, we do not know if $I_{k}=\left\{0,\binom{k}{2}\right\}$ for infinitely many k. But it is worth noting that Proposition 1 does not give a necessary condition for $I_{k}=\left\{0,\binom{k}{2}\right\}$. For example, $I_{7}=\{0,21\}$ even though $6^{2}+7^{2}=85$, which is not prime.

If $I_{k} \neq\left\{0,\binom{k}{2}\right\}$, then Corollary 2 gives a nontrivial necessary condition for a set $S \subseteq\left\{0,1, \ldots,\binom{k}{2}\right\}$ containing 0 and $\binom{k}{2}$ to be k-realizable. As our next result shows, there are infinitely many k for which this happens.

Proposition 2. For infinitely many $k, I_{k} \neq\left\{0,\binom{k}{2}\right\}$.

Proof. Let k be an integer such that $\binom{k}{2}=2\binom{a}{2}$, for some $a \geqslant 3$. We first show that $\binom{a}{2} \in I_{k}$. Note that $\left|E\left(\bar{K}_{k-a} \cup K_{a}\right)\right|=\binom{a}{2}$, and $\left|E\left(K_{k-a}+\bar{K}_{a}\right)\right|=\binom{k}{2}-\binom{a}{2}=\binom{a}{2}$.

Let $0 \leqslant \ell \leqslant k$ be fixed. If $a \leqslant \ell$, then

$$
K_{k-a}+\bar{K}_{a} \prec\left(K_{k}+\bar{K}_{\ell}\right) \cup \bar{K}_{k-\ell}=A_{\ell}(k),
$$

and

$$
\bar{K}_{k-a} \cup K_{a} \prec\left(\bar{K}_{k} \cup K_{\ell}\right)+K_{k-\ell}=\overline{A_{t}(k)}
$$

Thus $\binom{a}{2} \in s_{k}\left(A_{\ell}(k) \cap s_{k}\left(\overline{A_{\ell}(k)}\right)\right.$. If, on the other hand, $a>\ell$, that is, $k-a<k-\ell$, then

$$
\bar{K}_{k-a} \cup K_{\mathfrak{a}} \prec \bar{K}_{k-\ell} \cup K_{k} \prec\left(K_{k}+\bar{K}_{t}\right) \cup \bar{K}_{k-\ell}=A_{\ell}(k),
$$

and

$$
K_{k-a}+\bar{K}_{a} \prec K_{k-\ell}+\bar{K}_{k} \prec\left(\bar{K}_{k} \cup K_{\ell}\right)+K_{k-\ell}=\overline{A_{\ell}(k)}
$$

implying that $\binom{a}{2} \in s_{k}\left(A_{\ell}(k)\right) \cap s_{k}\left(\overline{A_{\ell}(k)}\right)$. Hence, by Theorem $3,\binom{a}{2} \in I_{k}$. Since $0<\binom{a}{2}<\binom{k}{2}$, it follows that $I_{k} \neq\left\{0,\binom{k}{2}\right\}$ for every value of k satisfying $\binom{k}{2}=2\binom{a}{2}$.

We conclude the proof by showing that this last equation, or, equivalently, $2 a^{2}-2 a-k^{2}+k=0$ has infinitely many positive integer solutions (k, a). Solving this equation for a, we see that a is a positive integer if $(k-1)^{2}+k^{2}$ is a perfect square.

Consider the Pell-equation $x^{2}-2 y^{2}=1$, which has infinitely many positive integer solutions (x, y). (See [4], for example.) For any such solution $x>y>0$, set $k=2 y(x-y)$. Since $2 y^{2}+1=x^{2}$, we have $k-1=y^{2}-(x-y)^{2}$. Therefore, $(k-1)^{2}+k^{2}=\left(y^{2}-(x-y)^{2}\right)^{2}+4 y^{2}(x-y)^{2}=\left(y^{2}+(x-y)^{2}\right)^{2}$, and the proof is complete.

4. \boldsymbol{k}-realizable sets for $\boldsymbol{k} \leqslant 5$

It is an open problem to characterize k-realizable sets for general k. For $k \leqslant 4$, however, the k-realizable sets have been characterized. The case $k \leqslant 2$ is trivial. For $k=3$, the results are summarized in Table 1 . As can be seen, there are only four 'missing' sets, namely $\{1\},\{2\},\{1,2\}$ and $\{0,3\}$ for $k=3$. The first three of these fail to be 3 -realizable since Ramsey's theorem says that a 3 -realizable set contains either 0 or 3. Interestingly, each of these sets is the 3-spectrum of at least one graph G. In particular, $s_{3}\left(P_{3}\right)=\{2\}, s_{3}\left(K_{1} \cup K_{2}\right)=\{1\}$ and $s_{3}\left(P_{4}\right)=\{1,2\}$. Finally, it follows from the 'Gap Theorem', whose proof can be found in [1], that $\{0,3\}$ is the 3 -spectrum of no graph.

Table 1

3-realizable sets S	Graphs G with $s_{3}(G)=S$
$\{0 ;$	\bar{K}_{n} (unique)
$\{3\}$	K_{n} (unique)
$\{0.1\}$	$t K_{2} \cup(n-2 t) K_{1} \quad$ (unique)
$\{0,2\}$	$K_{r, n-r}$ (unique)
$\{1,3\}$	$K_{r} \cup K_{n-r}$ (unique)
$\{2,3\}$	$K_{n}-t K_{2} \quad$ (unique)
$\{0,1,2\}$	P_{n}
$\{0,1,3\}$	$K_{r} \cup K_{s} \cup K_{t}, \quad r+s+t=n$
$\{0,2,3\}$	$K_{r} \cup K_{s} \cup K_{t}, r+s+t=n$
$\{1,2,3\}$	P_{n}
$\{0,1,2,3\}$	See Theorem 1

Gap Theorem. If $S=\left\{a_{1}<a_{2}<\cdots<a_{t}\right\}$ is the k-spectrum of some graph then $a_{i+1}-a_{i} \leqslant k-2$ except when $a_{i}=a_{1}=0$ or $a_{i+1}=a_{t}=\binom{k}{2}$. In these latter cases, $a_{i+1}-a_{i} \leqslant k-1$.

For the case $k=4$, some preliminary results are helpful in our analysis. Since $\binom{4}{2}=2\binom{3}{2}$, the proof of Proposition 2 gives that $3 \in I_{4}$. Thus, if G is a graph of sufficiently large order with $0,6 \in s_{4}(G)$ then $3 \in s_{4}(G)$. This result can be strengthened to include all graphs with $0,6 \in s_{4}(G)$.

Theorem 4. If G is a graph for which $0,6 \in s_{4}(G)$ then $3 \in s_{4}(G)$.

Proof. Let G be a graph for which $0,6 \in s_{4}(G)$. Since $6 \in s_{4}(G)$, it follows that G has a triangle. If G is not connected then G contains $K_{3} \cup K_{1}$ as an induced subgraph and $3 \in s_{4}(G)$. Thus we may assume that G is connected. Furthermore, we may assume that the distance between any pair of vertices of G is 1 or 2 ; for otherwise, G contains P_{4} as an induced subgraph and $3 \in s_{4}(G)$.

Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be a set of 4 independent vertices of G. Then for each pair v_{i}, v_{j} $(i \neq j)$ there is a vertex $x \in V(G)-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ such that $x v_{i}, x v_{j} \in E(G)$. Moreover, we may assume that if $x v_{i}, x v_{j} \in E(G)$ then $x v_{k} \notin E(G)$ for $k \neq i, j$; for otherwise, G contains $K_{1,3}$ as an induced subgraph and hence $3 \in s_{4}(G)$. Thus there are vertices x and y such that $v_{1}, x, v_{2}, y, v_{3}$ is a path in G and for which the only possible chord is $x y$. Then G contains either P_{4} or $K_{3} \cup K_{1}$ as an induced subgraph depending on whether $x y \in E(G)$. In either case, $3 \in s_{4}(G)$.

The proof of Theorem 4 depends only on the fact that G contains K_{3} and \bar{K}_{3} as induced subgraphs. Thus we also have the following results.

Corollary 3. If G is a graph for which at least one of 0,1 and one of 5,6 is in $s_{4}(G)$ then $3 \in s_{4}(G)$.

Using Ramsey's Theorem, the Gap Theorem, Corollary 3 and case-by-case analysis we can describe precisely the situation for 4 -spectra. In what follows we will use, for example, 013 to denote the set $\{0,1,3\}$. Also, $\overline{013}$ will denote the complement of 013 , that is, $\{2,4,5,6\}$.

4-realizable sets:
060103365601201302303403513623634635645601230124
$0136023402350345035612361346234624563456 \overline{01} \overline{02} \overline{04} \overline{05} \overline{12} \overline{15}$
$\overline{16} \overline{25} \overline{26} \overline{45} \overline{46} \quad \overline{56} \overline{0} \overline{1} \overline{2} \overline{4} \overline{5} \overline{6} 0123456$
Sets that are the 4 -spectrum of some graph but are not 4 -realizable:
12345121323243435451231241342342352453451235
$134523451234 \overline{06}$
The remaining subsets of $\{0,1,2,3,4,5,6\}$ are the 4 -spectra of no graphs.
Using similar techniques, although much more detailed, to those used in Theorem 4 we can show the following.
(a) If G is a graph for which $0,8 \in s_{5}(G)$ then $4 \in s_{5}(G)$.
(b) If G is a graph for which $0,1,9,10 \in s_{5}(G)$ then $5 \in s_{5}(G)$.
(c) If G is a graph of sufficiently large order for which $0,14 \in s_{6}(G)$ then $5 \in s_{6}(G)$.

We close with three open questions based on our knowledge of k-spectra for $k \leqslant 5$.
 $k=4,5$.

Question 1. For $k \geqslant 4$, is $\left\{0,1, \ldots,\binom{k}{2}\right\}-\{k-1\} k$-realizable?
As mentioned earlier, the proof of Theorem 4 depends only on the fact that G contains K_{3} and \bar{K}_{3} as induced subgraphs. Therefore, if $0,3 \in s_{3}(G)$ then $3 \in s_{4}(G)$. We can also show that if $0,4,6 \in s_{4}(G)$ then $4 \in s_{5}(G)$. Thus for $k=4,5$ we have that if G has a complete ($k-1$)-spectrum, then $k-1 \in s_{k}(G)$.

Question 2. For $k \geqslant 4$, if G has a complete $(k-1)$-spectrum, is $k-1 \in s_{k}(G)$?
Finally, for $k \leqslant 4$ we know that if S is the k-spectrum of at least one graph and either 0 or $\binom{k}{2}$ is in S, then, in fact, S is k-realizable.

Question 3. For $k \geqslant 1$, if S is the k-spectrum of at least one graph and either 0 or $\binom{k}{2}$ is in S, then, is $S k$-realizable?

Acknowledgements

The authors wish to thank their friend and colleague Andras Gyárfás for many helpful conversations and suggestions.

References

[1] P. Erdös, R. Faudree and V. Sós, The k-spectrum of a graph, in: Graph Theory, Combinatorics and Algorithms: Proc. 7th Quadrenniel Conf. on the Theory and Applications of Graphs (Wiley, New York, 1995) 377-389.
[2] P. Erdös, M. Saks and V. Sós, Maximum induced trees in graphs, J. Combin. Theory B 41 (1986) 61-79.
[3] P. Erdös and J. Spencer, personal communication.
[4] 1. Niven and H.S. Zuckerman, An Introduction to the Theory of Numbers (Wiley, New York, 4th ed., 1980).

[^0]: * Corresponding author. E-mail: lesniak@drew.drew.edu.
 ${ }^{1}$ Research supported by O.N.R. Grant No. N00014-91-J-1085.
 ${ }^{2}$ Research supported by O.N.R. Grant No. N00014-91-J-1098.
 ${ }^{3}$ Research partially supported by a Fulbright Research Grant and by O.N.R. Grant No. N00014-93-10050.

