

DISCRETE MATHEMATICS

Discrete Mathematics 150 (1996) 103-113

# Graph spectra

R.J. Faudree<sup>a,1</sup>, R.J. Gould<sup>b,1</sup>, M.S. Jacobson<sup>c,2</sup>, J. Lehel<sup>c</sup>, L.M. Lesniak<sup>d,\*,3</sup>

<sup>a</sup> University of Memphis, Memphis, TN 38152, USA
 <sup>b</sup> Emory University, Atlanta, GA 30322, USA
 <sup>c</sup> University of Louisville, Louisville, KY 40208, USA
 <sup>d</sup> Drew University, Madison, NJ 07940, USA

Received 24 August 1993; revised 27 January 1995

#### Abstract

The k-spectrum  $s_k(G)$  of a graph G is the set of all positive integers that occur as the size of an induced k-vertex subgraph of G. In this paper we determine the minimum order and size of a graph G with  $s_k(G) = \{0, 1, ..., {k \choose 2}\}$  and consider the more general question of describing those sets  $S \subseteq \{0, 1, ..., {k \choose 2}\}$  such that  $S = s_k(G)$  for some graph G.

## 1. Introduction

In [2] it was shown that for every positive integer k there is an integer N(k) such that every connected graph of order at least N(k) contains either a complete graph of order k or an induced tree of order k. On the other hand, by Ramsey's theorem every graph of sufficiently large order contains either a complete graph of order k or an independent set of k vertices. It follows, then, that every connected graph of sufficiently large order contains either an induced subgraph of order k and size  $\binom{k}{2}$  or two induced subgraphs of order k, one of size 0 and one of size k - 1. In this paper we consider the set of sizes of all induced subgraphs of a fixed order k in a graph G. In particular, we define the k-spectrum  $s_k(G)$  of a graph G by

 $s_k(G) = \{j \mid G \text{ contains an induced subgraph of order } k \text{ and size } j\}.$ 

<sup>\*</sup>Corresponding author. E-mail: lesniak@drew.drew.edu.

<sup>&</sup>lt;sup>1</sup> Research supported by O.N.R. Grant No. N00014-91-J-1085.

<sup>&</sup>lt;sup>2</sup> Research supported by O.N.R. Grant No. N00014-91-J-1098.

<sup>&</sup>lt;sup>3</sup> Research partially supported by a Fulbright Research Grant and by O.N.R. Grant No. N00014-93-1-0050.

Thus  $s_k(G) \subseteq \{0, 1, \dots, \binom{k}{2}\}$ . Furthermore, from the remarks above we can say that if G is a connected graph of sufficiently larger order then either  $\binom{k}{2} \in s_k(G)$  or  $0, k - 1 \in s_k(G)$ . In Section 2 we establish two extremal results regarding graphs G for which  $s_k(G) = \{0, 1, \dots, \binom{k}{2}\}$ . In Section 3 we consider the more general problem of describing those sets  $S \subseteq \{0, 1, \dots, \binom{k}{2}\}$  such that  $S = s_k(G)$  for some graph G.

### 2. Extremal results

If  $s_k(G) = \{0, 1, \dots, \binom{k}{2}\}$  we will say that the graph G has a complete k-spectrum. In Theorem 1 we determine the minimum order among all graphs with complete k-spectra.

**Theorem 1.** The minimum number of vertices in a graph with a complete k-spectrum is 2k - 1.

**Proof.** If G is any graph with a complete k-spectrum then  $0, \binom{k}{2} \in s_k(G)$ . Thus G contains  $K_k$  and  $\overline{K}_k$  as induced subgraphs. Since these subgraphs can have at most one vertex in common it follows that G has order at least 2k - 1.

We complete the proof of describing a graph G(k) of order 2k - 1 that has a complete k-spectrum. Let  $V(G(k)) = \{w_1, w_2, ..., w_k, x_1, x_2, ..., x_{k-1}\}$ , where  $\langle \{w_1, w_2, ..., w_k\} \rangle$  is a complete subgraph of G(k) and  $\langle \{x_1, x_2, ..., x_{k-1}\} \rangle$  is an empty subgraph of G(k). Furthermore,  $x_i w_j \in E(G(k))$  if and only if j > i. Then G(k)has order 2k - 1 and clearly  $0, {k \choose 2} \in s_k(G(k))$ . In order to verify that G(k) has a complete k-spectrum, let t be any integer satisfying  $0 < t < {k \choose 2}$ . We show that G(k)contains an induced k-vertex subgraph of size t. Let  $\ell$  be the largest integer for which  ${k \choose 2} \leq t$  and let  $r = t - {k \choose 2}$ . Note that  $0 \leq r \leq \ell - 1$ . Then

$$\langle \{w_1, w_2, \dots, w_{\ell}, x_{\ell-\ell}, x_{\ell+1}, x_{\ell+2}, \dots, x_{k-1}\} \rangle$$

has order k and size  $\binom{l}{2} + r = t$ .  $\Box$ 

The graph with a complete k-spectrum constructed in Theorem 1 has size

$$\binom{k}{2} + (k-1) + (k-2) + \dots + 1 = 2\binom{k}{2}.$$

It is reasonable to ask if there is a graph with a complete k-spectrum and size less than  $2\binom{k}{2}$ . In Theorem 2 we determine the minimum size of a graph with a complete k-spectrum. We will write  $H \prec G$  to mean that H is an *induced subgraph* of G.

**Theorem 2.** For k sufficiently large, the minimum number of edges in a graph with a complete k-spectrum is

$$\binom{k}{2} + k \log k - \mathcal{O}(k \log \log k).$$

**Proof.** We begin by constructing a graph S(k) that has a complete k-spectrum and size

$$\binom{k}{2} + k \lceil \log k \rceil + \binom{\lceil \log k \rceil}{2} - (2^{\lceil \log k \rceil} - 1).$$

Let  $V(S(k)) = \{w_1, w_2, \dots, w_k, x_1, x_2, \dots, x_{\lceil \log k \rceil}, y_1, y_2, \dots, y_k\}$ , where deg  $y_i = 0$  $(1 \le i \le k)$ . Furthermore,  $\langle \{w_1, w_2, \dots, w_k\} \rangle$  and  $\langle \{x_1, x_2, \dots, x_{\lceil \log k \rceil}\} \rangle$  are complete subgraphs of S(k). Finally,  $x_i w_j \in E(S(k))$  if and only if  $j > 2^{i-1}$ . Then S(k) has size

$$\binom{k}{2} + \binom{\lceil \log k \rceil}{2} + k \lceil \log k \rceil - (2^{0} + 2^{1} + \dots + 2^{\lceil \log k \rceil - 1})$$
$$= \binom{k}{2} + k \lceil \log k \rceil + \binom{\lceil \log k \rceil}{2} - (2^{\lceil \log k \rceil} - 1).$$

We show, by induction on k, that S(k) has a complete k-spectrum. Certainly S(2) has a complete 2-spectrum. Assume, for some  $k \ge 3$ , that S(k-1) has a complete (k-1)-spectrum, and consider S(k). Since  $S(k-1) \prec S(k)$  it follows that S(k) contains induced (k-1)-vertex subgraphs having sizes  $0, 1, \ldots, \binom{k-1}{2}$  and containing at most k-1 of the isolated vertices of S(k). Thus S(k) contains induced k-vertex subgraphs of sizes  $0, 1, \ldots, \binom{k-1}{2}$ . It remains to show that S(k) contains k-vertex subgraphs of size  $\binom{k}{2} - i$  for  $0 \le i \le k-2$ . Since  $K_k \prec S(k)$  we may assume  $i \ge 1$ .

For fixed *i* satisfying  $1 \le i \le k - 2$ , let

$$i = b_1 2^0 + b_2 2^1 + \dots + b_{\lceil \log k \rceil} 2^{\lceil \log k \rceil - 1}$$

be the binary expansion of *i*, let  $J = \{j | b_j = 1\}$  and let  $m = \max\{j | j \in J\}$ . Then  $|J| \leq \lceil \log k \rceil \leq k$ . Let  $V(i) = \{x_j | j \in J\} \cup \{w_1, w_2, \dots, w_{k-|J|}\}$ . Then  $|E(V(i))| = \binom{k}{2} - i$  provided  $k - |J| \geq 2^{m-1}$ . If |J| = 1 then  $k - |J| = k - 1 \geq 2^{m-1}$ . If, on the other hand,  $|J| \geq 2$  then

$$k \ge i + 2 \ge 2^{0} + 2^{1} + \dots + 2^{|J| - 2} + 2^{m - 1} + 2$$
$$= 2^{|J| - 1} - 1 + 2^{m - 1} + 2 \ge 2^{m - 1} + |J|.$$

We complete the proof by showing that for k sufficiently large, every graph with a complete k-spectrum has at least  $\binom{k}{2} + k \log k - 2k \log \log k$  edges. Let G be such a graph with  $S \subseteq V(G)$  such that |S| = k and  $\langle S \rangle$  is complete.

Assume first that there exists  $S' \neq S$  such that |S'| = k and  $|E(\langle S' \rangle)| \ge {k \choose 2} - k$  and  $|S' - S| = \ell > \log k$ . Then

$$|E(G)| \ge \binom{k}{2} + \binom{\ell}{2} + \ell(k-\ell) - k.$$

The function  $f(\ell) = \binom{\ell}{2} + \ell k - \ell^2 + k - \lceil k \log k \rceil$  is nonnegative at  $\ell = \lceil \log k \rceil$ , and it is an increasing function of  $\ell$  for  $\log k < \ell \le k - 1$ . Therefore,

$$|E(G)| \ge \binom{k}{2} + k \log k - 2k,$$

for k sufficiently large. Thus we may assume that if  $S \neq S'$  and |S'| = k and  $|E(\langle S' \rangle)| \ge {k \choose 2} - k$  then  $|S' - S| \le \log k$ .

Let  $S_1$  be the vertex set of an induced k-vertex subgraph of G of size  $\binom{k}{2} - 1$ . Then  $1 \leq |S_1 - S| \leq \log k$ . Let  $v_1 \in S_1 - S$ . Since  $|E(\langle S_1 \rangle)| = \binom{k}{2} - 1$  it follows that  $deg_{\langle S_1 \rangle}v_1 \geq (k-1) - 1 = k-2$ . Thus  $v_1$  is adjacent to at least  $k-2 - (\log k-1) = k - (\log k + 1)$  vertices of S. Let  $S_2$  be the vertex set of an induced k-vertex subgraph of G of size  $\binom{k}{2} - (\log k + 2)$ . Since every induced k-vertex subgraph of  $\langle S \cup \{v_1\} \rangle$  contains at least  $\binom{k}{2} - (\log k + 2)$ . Since every induced k-vertex subgraph of  $\langle S \cup \{v_1\} \rangle$  contains at least  $\binom{k}{2} - (\log k + 2)$ . Since every induced k-vertex subgraph of  $\langle S \cup \{v_1\} \rangle$  contains at least  $\binom{k}{2} - (\log k + 1)$  edges, it follows that  $|S_2 - S - \{v_1\}| \ge 1$ . Furthermore, since  $\log k + 2 \leq k$  for k sufficiently large,  $|S_2 - S| \leq \log k$ . Let  $v_2 \in S_2 - S - \{v_1\}$ . Since  $|E(\langle S_2 \rangle)| = \binom{k}{2} - (\log k + 2)$ , it follows that  $deg_{\langle S_2 \rangle}v_2 \geq (k-1) - (\log k + 2) = k - (\log k + 3)$ . Thus  $v_2$  is adjacent to at least  $k - (\log k + 3) - (\log k - 1) = k - (2 \log k + 2)$  vertices of S. In general, suppose that for some  $\ell \leq \lfloor \log(k/\log k) \rfloor$  we have selected distinct vertices  $v_1, v_2, \dots, v_{\ell-1} \notin S$  such that for  $1 \leq i \leq \ell - 1$ , the vertex  $v_i$  is adjacent to at least  $k - (2^{i-1} \log k + 2^i - i)$  vertices of S. Observe that for  $i \leq \ell$  we have

$$2^{i-1}\log k + 2^i - i \leq k/2 + k/\log k \leq k,$$

for k sufficiently large. Every induced k-vertex subgraph of  $\langle S \cup \{v_1, v_2, ..., v_{\ell-1}\}\rangle$  contains at least

$$\binom{k}{2} - \left(\sum_{i=1}^{\ell-1} (2^{i-1}\log k + 2^i - i) + \binom{\ell-1}{2}\right)$$

edges, i.e., at least

$$\binom{k}{2} - ((2^{\ell-1} - 1)\log k + 2^{\ell} - \ell - 1)$$

edges. Let  $S_{\ell}$  be the vertex set of an induced k-vertex subgraph of G of size

$$\binom{k}{2} - ((2^{\ell-1} - 1)\log k + 2^{\ell} - \ell).$$

Then  $|S_{\ell} - S - \{v_1, v_2, ..., v_{\ell-1}\}| \ge 1$ . Let  $v_{\ell} \in S_{\ell} - S - \{v_1, v_2, ..., v_{\ell-1}\}$ . Then

$$deg_{\langle S_{\ell} \rangle} v_{\ell} \ge (k-1) - ((2^{\ell-1}-1)\log k + 2^{\ell} - \ell).$$

Furthermore,  $|S_{\ell} - S| \leq \log k$  and so  $v_{\ell}$  is adjacent to at least

$$k - ((2^{\ell-1} - 1)\log k + 2^{\ell} - \ell + 1) - (\log k - 1)$$
$$= k - (2^{\ell-1}\log k + 2^{\ell} - \ell)$$

vertices of S. Thus there exist distinct vertices  $v_1, v_2, ..., v_\ell \notin S$ , where  $\ell = \lfloor \log(k/\log k) \rfloor$ , such that  $v_i$  is adjacent to at least  $k - (2^{i-1} \log k + 2^i - i)$  vertices

of S for  $i = 1, 2, ..., \ell$ . Therefore,

$$|E(G)| \ge {\binom{k}{2}} + \sum_{i=1}^{\ell} (k - 2^{i-1} \log k - 2^{i} + i)$$
$$\ge {\binom{k}{2}} + \sum_{i=1}^{\ell} (k - 2^{i} \log k)$$
$$\ge {\binom{k}{2}} + k \log(k/\log k) - (2 \log k)(k/\log k - 1)$$
$$\ge {\binom{k}{2}} + k \log k - 2k \log \log k. \quad \Box$$

In [3] Erdős and Spencer defined the size spectrum s(G) of a graph G by

 $s(G) = \{j \mid G \text{ has an induced subgraph of size } j\}.$ 

Thus  $s(G) = \bigcup_{k=1}^{|V(G)|} s_k(G)$ . They showed that if  $M_n$  is the largest cardinality among the size spectra of graphs of order *n*, then  $M_n \leq \binom{n}{2} - O(n \log \log n)$ . It follows from the construction of the graph S(k) in Theorem 2 (by considering  $n = \log (k + k)$  that  $M_n \geq \binom{n}{2} - n \log n$ .

**Corollary 1.** Let  $M_n$  be the largest cardinality among the size spectra of graphs of order n. Then

$$\binom{n}{2} - n \log n \leq M_n \leq \binom{n}{2} - O(n \log \log n).$$

#### 3. Properties of k-spectra of graphs

For a fixed integer k, every graph of sufficiently large order n has at least one of 0 and  $\binom{k}{2}$  in its k-spectrum. This follows, of course, by choosing n to be at least as large as the diagonal Ramsey number r(k, k). We will say that a set S of integers is k-realizable if there is an integer  $N_k$  such that for every  $n \ge N_k$  there is a graph G of order n for which  $s_k(G) = S$ . Thus two necessary conditions for S to be k-realizable are that  $S \subseteq \{0, 1, ..., \binom{k}{2}\}$  and that either 0 or  $\binom{k}{2}$  is in S. As a corollary of our next result we determine a necessary condition for a set  $S \subseteq \{0, 1, ..., \binom{k}{2}\}$  containing both 0 and  $\binom{k}{2}$  to be k-realizable.

For disjoint graphs G and H, let  $G \cup H$  denote the graph with vertex set  $V(G) \cup V(H)$  and edge set  $E(G) \cup E(H)$ . By adding all edges to  $G \cup H$  between the vertices of G and those of H we obtain the graph G + H.

**Theorem 3.** Let  $I_k$  denote the set of all integers that are in the k-spectrum of every graph G of order  $n \ge r(k2^k + 1, k2^k + 1)$  for which  $0, \binom{k}{2} \in s_k(G)$ . Then

$$I_{k} = \left(\bigcap_{\ell=0}^{k} s_{k}(A_{\ell}(k))\right) \cap \left(\bigcap_{\ell=0}^{k} s_{k}(\overline{A_{\ell}(k)})\right)$$

where

$$A_{\ell}(k) = (K_k + \bar{K}_{\ell}) \cup \bar{K}_{k-\ell}.$$

**Proof.** We first observe that  $A_{\ell}(k)$  is an induced subgraph of  $(K_{n-k} + \bar{K}_{\ell}) \cup \bar{K}_{k-\ell}$ , for every  $n \ge 2k$ . Furthermore,  $s_k(A_{\ell}(k)) = s_k((K_{n-k} + \bar{K}_{\ell}) \cup \bar{K}_{k-\ell})$ . Similarly,  $\overline{A_{\ell}(k)}$  is an induced subgraph of  $(\bar{K}_{n-k} \cup K_{\ell}) + K_{k-\ell}$  for every  $n \ge 2k$  and  $s_k(\overline{A_{\ell}(k)}) =$  $s_k((\bar{K}_{n-k} \cup K_{\ell}) + K_{k-\ell})$ . Since  $0, {k \choose 2} \in s_k(A_{\ell}(k))$  and  $0, {k \choose 2} \in s_k(\overline{A_{\ell}(k)})$  for  $0 \le \ell \le k$ , it follows that if  $x \in I_k$ , i.e., if x is in the k-spectrum of every graph of order  $n \ge r(k2^k + 1, k2^k + 1)$  that has 0 and  ${k \choose 2}$  in its k-spectrum, then

$$x \in \left(\bigcap_{\ell=0}^{k} s_{k}(A_{\ell}(k))\right) \cap \left(\bigcap_{\ell=0}^{k} s_{k}(\overline{A_{\ell}(k)})\right)$$

Thus,

$$x \subseteq \left(\bigcap_{\ell=0}^{k} s_{k}(A_{\ell}(k))\right) \cap \left(\bigcap_{\ell=0}^{k} s_{k}(\overline{A_{\ell}(k)})\right)$$

We complete the proof by showing that if G is a graph of order  $n \ge r(k2^k + 1, k2^k + 1)$  such that  $0, \binom{k}{2} \in s_k(G)$  then G contains either  $A_\ell(k)$  or  $\overline{A_\ell(k)}$  as an induced subgraph for some  $\ell$  satisfying  $0 \le \ell \le k$ . Thus, either

$$s_k(A_\ell(k)) \subseteq s_k(G) \text{ or } s_k(A_\ell(k)) \subseteq s_k(G),$$

which implies

$$\left(\bigcap_{\ell=0}^{k} s_{k}(A_{\ell}(k))\right) \cap \left(\bigcap_{\ell=0}^{k} s_{k}(\overline{A_{\ell}(k)})\right) \subseteq I_{k}.$$

Since  $n \ge r(k2^k + 1, k2^k + 1)$ , G contains either a complete graph of order  $k2^k + 1$  or an independent  $(k2^k + 1)$ -set of vertices. Suppose first that G contains a complete graph of order  $k2^k + 1$ . Thus G contains disjoint sets A and B such that  $\langle A \rangle = K_{k2^k}$ and  $\langle B \rangle = \overline{K}_k$ . Let  $S_1, S_2, ..., S_{2^k}$  denote the distinct subsets of B and, for  $1 \le i \le 2^k$ , let  $T_i = \{v \in A \mid N_B(v) = S_i\}$ . Then  $\bigcup_{i=1}^{2^k} T_i = A$  and, since  $|A| = k2^k$ , it follows that  $|T_i| \ge k$  for some j. But then

$$A_{\ell}(k) \prec \langle T_j \cup B \rangle$$

where  $\ell = |S_j|$ . The case in which G contains an independent  $(k2^k + 1)$ -set of vertices follows from a symmetric argument.  $\Box$ 

**Corollary 2.** If S is k-realizable and  $0, \binom{k}{2} \in S$ , then  $I_k \subseteq S$ .

It is worth noting that  $s_k(A_\ell(k))$  and  $s_k(A_\ell(k))$ , are straightforward to calculate. Thus,  $I_k$  can be determined for small k.

By definition,  $\{0, \binom{k}{2}\} \subseteq I_k$ . It is easy to check that for some values of k (k = 5, for example),  $I_k = \{0, \binom{k}{2}\}$ . In such a case, Corollary 2 gives no new information. The case k = 5 follows from our next result.

**Propositon 1.** If k is an integer for which  $(k-1)^2 + k^2$  is prime, then  $I_k = \{0, \binom{k}{2}\}$ .

**Proof.** We first note that  $s_k(A_k(k)) = \{\binom{k}{2} - \binom{b}{2}: 1 \le b \le k\}$  and  $s_k(A_k(k)) = \{\binom{a}{2}: 1 \le a \le k\}$  for every positive integer k. Thus  $s_k(A_k(k)) \cap s_k(\overline{A_k(k)}) - \{0, \binom{k}{2}\} \ne \emptyset$  for some k if and only if there are integers 1 < a < k and 1 < b < k for which

$$\binom{k}{2} = \binom{a}{2} + \binom{b}{2}.$$
(1)

Setting n = 2k - 1, x = 2a - 1 and y = 2b - 1, Eq. (1) becomes

$$n^2 + 1 = x^2 + y^2. (2)$$

Since every odd prime divisor of  $n^2 + 1$  is of the form 4q + 1 (see [4, Theorem 3.1], for example), it follows that the prime decomposition of  $n^2 + 1$  is

$$n^{2} + 1 = 2^{\alpha} \prod_{i=1}^{t} p_{i}^{\alpha^{i}},$$
(3)

where  $p_i \equiv 1 \pmod{4}$ . It follows from Eq. (3) that Eq. (2) has precisely  $4 \prod_{i=1}^{t} (\alpha_i + 1)$  ordered pairs (x, y) of integer solutions. Thus Eq. (2) has only the eight trivial solutions  $(x, y) = (\pm n, \pm 1)$  and  $(\pm 1, \pm n)$  if and only if  $n^2 + 1 = 2^{\alpha} p_1$ . However,

$$n^{2} + 1 = 2((k - 1)^{2} + k^{2}),$$

where  $(k-1)^2 + k^2$  is odd. Thus Eq. (2) has only the eight trivial solutions if and only if  $(k-1)^2 + k^2$  is prime. Therefore, if  $(k-1)^2 + k^2$  is prime, then  $a = \frac{1}{2}(x+1) = 1$ and  $b = \frac{1}{2}(y+1) = \frac{1}{2}(n+1) = k$  are the only integers  $1 \le a \le b \le k$  satisfying Eq. (1) and, consequently,  $I_k = s_k(A_k(k)) \cap s_k(\overline{A_k(k)}) = \{0, \binom{k}{2}\}$ .  $\Box$ 

From Proposition 1 we see that  $I_k = \{0, \binom{k}{2}\}$  for  $k = 2, 3, 5, 8, \ldots$  However, it is unknown whether  $(k - 1)^2 + k^2$  is prime for infinitely many k and, consequently, we do not know if  $I_k = \{0, \binom{k}{2}\}$  for infinitely many k. But it is worth noting that Proposition 1 does not give a necessary condition for  $I_k = \{0, \binom{k}{2}\}$ . For example,  $I_7 = \{0, 21\}$  even though  $6^2 + 7^2 = 85$ , which is not prime.

If  $I_k \neq \{0, \binom{k}{2}\}$ , then Corollary 2 gives a nontrivial necessary condition for a set  $S \subseteq \{0, 1, \dots, \binom{k}{2}\}$  containing 0 and  $\binom{k}{2}$  to be k-realizable. As our next result shows, there are infinitely many k for which this happens.

**Proposition 2.** For infinitely many  $k, I_k \neq \{0, \binom{k}{2}\}$ .

**Proof.** Let k be an integer such that  $\binom{k}{2} = 2\binom{a}{2}$ , for some  $a \ge 3$ . We first show that  $\binom{a}{2} \in I_k$ . Note that  $|E(\bar{K}_{k-a} \cup K_a)| = \binom{a}{2}$ , and  $|E(K_{k-a} + \bar{K}_a)| = \binom{k}{2} - \binom{a}{2} = \binom{a}{2}$ . Let  $0 \le \ell \le k$  be fixed. If  $a \le \ell$ , then

$$K_{k-a} + \bar{K}_a \prec (K_k + \bar{K}_\ell) \cup \bar{K}_{k-\ell} = A_\ell(k),$$

and

$$\bar{K}_{k-a} \cup K_a \prec (\bar{K}_k \cup K_\ell) + K_{k-\ell} = A_\ell(k).$$

Thus  $\binom{a}{2} \in s_k(A_\ell(k) \cap s_k(A_\ell(k)))$ . If, on the other hand,  $a > \ell$ , that is,  $k - a < k - \ell$ , then

$$\bar{K}_{k-a} \cup K_a \prec \bar{K}_{k-\ell} \cup K_k \prec (K_k + \bar{K}_\ell) \cup \bar{K}_{k-\ell} = A_\ell(k),$$

and

$$K_{k-a} + \bar{K}_a \prec K_{k-\ell} + \bar{K}_k \prec (\bar{K}_k \cup K_\ell) + K_{k-\ell} = A_\ell(k)$$

implying that  $\binom{a}{2} \in s_k(A_\ell(k)) \cap s_k(\overline{A_\ell(k)})$ . Hence, by Theorem 3,  $\binom{a}{2} \in I_k$ . Since  $0 < \binom{a}{2} < \binom{k}{2}$ , it follows that  $I_k \neq \{0, \binom{k}{2}\}$  for every value of k satisfying  $\binom{k}{2} = 2\binom{a}{2}$ .

We conclude the proof by showing that this last equation, or, equivalently,  $2a^2 - 2a - k^2 + k = 0$  has infinitely many positive integer solutions (k, a). Solving this equation for a, we see that a is a positive integer if  $(k - 1)^2 + k^2$  is a perfect square.

Consider the Pell-equation  $x^2 - 2y^2 = 1$ , which has infinitely many positive integer solutions (x, y). (See [4], for example.) For any such solution x > y > 0, set k = 2y(x - y). Since  $2y^2 + 1 = x^2$ , we have  $k - 1 = y^2 - (x - y)^2$ . Therefore,  $(k - 1)^2 + k^2 = (y^2 - (x - y)^2)^2 + 4y^2(x - y)^2 = (y^2 + (x - y)^2)^2$ , and the proof is complete.  $\Box$ 

## 4. *k*-realizable sets for $k \leq 5$

It is an open problem to characterize k-realizable sets for general k. For  $k \le 4$ , however, the k-realizable sets have been characterized. The case  $k \le 2$  is trivial. For k = 3, the results are summarized in Table 1. As can be seen, there are only four 'missing' sets, namely  $\{1\}, \{2\}, \{1,2\}$  and  $\{0,3\}$  for k = 3. The first three of these fail to be 3-realizable since Ramsey's theorem says that a 3-realizable set contains either 0 or 3. Interestingly, each of these sets is the 3-spectrum of at least one graph G. In particular,  $s_3(P_3) = \{2\}, s_3(K_1 \cup K_2) = \{1\}$  and  $s_3(P_4) = \{1,2\}$ . Finally, it follows from the 'Gap Theorem', whose proof can be found in [1], that  $\{0,3\}$  is the 3-spectrum of no graph.

110

| 3-realizable sets S | Graphs G with $s_3(G) = S$                   |
|---------------------|----------------------------------------------|
| {0}                 | $\bar{K}_n$ (unique)                         |
| {3}                 | $K_n$ (unique)                               |
| {0,1}               | $tK_2 \cup (n-2t)K_1$ (unique)               |
| {0,2}               | $K_{r,n-r}$ (unique)                         |
| {1,3}               | $K_r \cup K_{n-r}$ (unique)                  |
| {2,3}               | $K_n - tK_2$ (unique)                        |
| {0, 1, 2}           | P <sub>n</sub>                               |
| {0, 1, 3}           | $K_r \cup K_s \cup K_t,  r+s+t=n$            |
| {0, 2, 3}           | $\overline{K_r \cup K_s \cup K_t},  r+s+t=n$ |
| {1,2,3}             | $\overline{P_n}$                             |
| $\{0, 1, 2, 3\}$    | See Theorem 1                                |

Table 1

**Gap Theorem.** If  $S = \{a_1 < a_2 < \cdots < a_t\}$  is the k-spectrum of some graph then  $a_{i+1} - a_i \leq k - 2$  except when  $a_i = a_1 = 0$  or  $a_{i+1} = a_t = \binom{k}{2}$ . In these latter cases,  $a_{i+1} - a_i \leq k - 1$ .

For the case k = 4, some preliminary results are helpful in our analysis. Since  $\binom{4}{2} = 2\binom{3}{2}$ , the proof of Proposition 2 gives that  $3 \in I_4$ . Thus, if G is a graph of sufficiently large order with  $0, 6 \in s_4(G)$  then  $3 \in s_4(G)$ . This result can be strengthened to include all graphs with  $0, 6 \in s_4(G)$ .

**Theorem 4.** If G is a graph for which  $0, 6 \in s_4(G)$  then  $3 \in s_4(G)$ .

**Proof.** Let G be a graph for which  $0, 6 \in s_4(G)$ . Since  $6 \in s_4(G)$ , it follows that G has a triangle. If G is not connected then G contains  $K_3 \cup K_1$  as an induced subgraph and  $3 \in s_4(G)$ . Thus we may assume that G is connected. Furthermore, we may assume that the distance between any pair of vertices of G is 1 or 2; for otherwise, G contains  $P_4$  as an induced subgraph and  $3 \in s_4(G)$ .

Let  $\{v_1, v_2, v_3, v_4\}$  be a set of 4 independent vertices of G. Then for each pair  $v_i, v_j$  $(i \neq j)$  there is a vertex  $x \in V(G) - \{v_1, v_2, v_3, v_4\}$  such that  $xv_i, xv_j \in E(G)$ . Moreover, we may assume that if  $xv_i, xv_j \in E(G)$  then  $xv_k \notin E(G)$  for  $k \neq i, j$ ; for otherwise, G contains  $K_{1,3}$  as an induced subgraph and hence  $3 \in s_4(G)$ . Thus there are vertices x and y such that  $v_1, x, v_2, y, v_3$  is a path in G and for which the only possible chord is xy. Then G contains either  $P_4$  or  $K_3 \cup K_1$  as an induced subgraph depending on whether  $xy \in E(G)$ . In either case,  $3 \in s_4(G)$ .  $\Box$ 

The proof of Theorem 4 depends only on the fact that G contains  $K_3$  and  $K_3$  as induced subgraphs. Thus we also have the following results.

**Corollary 3.** If G is a graph for which at least one of 0, 1 and one of 5, 6 is in  $s_4(G)$  then  $3 \in s_4(G)$ .

Using Ramsey's Theorem, the Gap Theorem, Corollary 3 and case-by-case analysis we can describe precisely the situation for 4-spectra. In what follows we will use, for example, 013 to denote the set  $\{0, 1, 3\}$ . Also,  $\overline{013}$  will denote the complement of 013, that is,  $\{2, 4, 5, 6\}$ .

4-realizable sets:

```
0 6 01 03 36 56 012 013 023 034 035 136 236 346 356 456 0123 0124
0136 0234 0235 0345 0356 1236 1346 2346 2456 3456 \overline{01} \overline{02} \overline{04} \overline{05} \overline{12} \overline{15}
\overline{16} \overline{25} \overline{26} \overline{45} \overline{46} \overline{56} \overline{0} \overline{1} \overline{2} \overline{4} \overline{5} \overline{6} 0123456
```

Sets that are the 4-spectrum of some graph but are not 4-realizable:

1 2 3 4 5 12 13 23 24 34 35 45 123 124 134 234 235 245 345 1235

1345 2345 1234 06

The remaining subsets of  $\{0, 1, 2, 3, 4, 5, 6\}$  are the 4-spectra of no graphs.

Using similar techniques, although much more detailed, to those used in Theorem 4 we can show the following.

(a) If G is a graph for which  $0, 8 \in s_5(G)$  then  $4 \in s_5(G)$ .

(b) If G is a graph for which  $0, 1, 9, 10 \in s_5(G)$  then  $5 \in s_5(G)$ .

(c) If G is a graph of sufficiently large order for which  $0, 14 \in s_6(G)$  then  $5 \in s_6(G)$ .

We close with three open questions based on our knowledge of k-spectra for  $k \le 5$ . According to Theorem 4 and (a) above,  $\{0, 1, \dots, {k \choose 2}\} - \{k - 1\}$  is not k-realizable for k = 4, 5.

Question 1. For  $k \ge 4$ , is  $\{0, 1, ..., \binom{k}{2}\} - \{k - 1\}$  k-realizable?

As mentioned earlier, the proof of Theorem 4 depends only on the fact that G contains  $K_3$  and  $\overline{K}_3$  as induced subgraphs. Therefore, if  $0, 3 \in s_3(G)$  then  $3 \in s_4(G)$ . We can also show that if  $0, 4, 6 \in s_4(G)$  then  $4 \in s_5(G)$ . Thus for k = 4, 5 we have that if G has a complete (k - 1)-spectrum, then  $k - 1 \in s_k(G)$ .

Question 2. For  $k \ge 4$ , if G has a complete (k - 1)-spectrum, is  $k - 1 \in s_k(G)$ ?

Finally, for  $k \le 4$  we know that if S is the k-spectrum of at least one graph and either 0 or  $\binom{k}{2}$  is in S, then, in fact, S is k-realizable.

**Question 3.** For  $k \ge 1$ , if S is the k-spectrum of at least one graph and either 0 or  $\binom{k}{2}$  is in S, then, is S k-realizable?

## Acknowledgements

The authors wish to thank their friend and colleague Andras Gyárfás for many helpful conversations and suggestions.

## References

- P. Erdős, R. Faudree and V. Sós, The k-spectrum of a graph, in: Graph Theory, Combinatorics and Algorithms: Proc. 7th Quadrenniel Conf. on the Theory and Applications of Graphs (Wiley, New York, 1995) 377–389.
- [2] P. Erdős, M. Saks and V. Sós, Maximum induced trees in graphs, J. Combin. Theory B 41 (1986) 61-79.
- [3] P. Erdős and J. Spencer, personal communication.
- [4] I. Niven and H.S. Zuckerman, An Introduction to the Theory of Numbers (Wiley, New York, 4th ed., 1980).