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Abstract 

The k-spectrum st(G ) of a graph G is the set of all positive integers that occur as the size of an 
induced k-vertex subgraph of G. In this paper we determine the minimum order and size of 
a graph G with s k(G) = {0, 1 ..... (~)} and consider the more general question of describing those 
sets S ~_ [0, 1 ..... (~)} such that S = Sk(G)for some graph G. 

1. Introduction 

In [2] it was shown that for every positive integer k there is an integer N(k) 
such that every connected graph of order at least N(k) contains either a complete 
graph of order k or an induced tree of order k. On the other hand, by Ramsey's 

theorem every graph of sufficiently large order contains either a complete graph 
of order k or an independent set of k vertices. It follows, then, that every 
connected graph of sufficiently large order contains either an induced subgraph of 

order k and size (k) or two induced subgraphs of order k, one of size 0 and one of 

size k - 1. In this paper we consider the set of sizes of all induced subgraphs of a 
fixed order k in a graph G. In particular, we define the k-spectrum Sk(G) of a graph 
G by 

Sk(G) = {J] G contains an induced subgraph of order k and size j }. 
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Thus Sk(G) ~-- {0, 1 . . . . .  (k)). Furthermore, from the remarks above we can say that if 
G is a connected graph of sufficiently larger order then either (k)esk(G) or 
0, k - 1 ~ sk(G). In Section 2 we establish two extremal results regarding graphs G for 
which Sk(G)= {0, 1 . . . . .  (k)}. In Section 3 we consider the more general problem of 
describing those sets S _~ {0, 1 . . . . .  (k)} such that S = Sk(G) for some graph G. 

2. Extremal results 

Ifsk(G) = {0, 1, ...,(k)} we will say that the graph G has a complete k-spectrum. In 
Theorem 1 we determine the minimum order among all graphs with complete 
k-spectra. 

Theorem 1. The minimum number of vertices in a graph with a complete k-spectrum is 
2 k -  1. 

Proof. If G is any graph with a complete k-spectrum then 0,(k) ~ Sk(G ). Thus G con- 
tains Kk and /(k as induced subgraphs. Since these subgraphs can have at most one 
vertex in common it follows that G has order at least 2k - 1. 

We complete the proof of describing a graph G(k) of order 2 k -  1 that has 
a complete k-spectrum. Let V(G(k))={wl,w2 . . . . .  W k , ) f l , X  2 . . . . .  X k - 1 } ,  where 
({wl,w2 ... . .  Wk}) is a complete subgraph of G(k) and ({xl,x2 . . . . .  Xk-1}) is an 
empty subgraph of G(k). Furthermore, xlwj ~ E(G(k)) if and only i f j  > i. Then G(k) 
has order 2k - 1 and clearly 0,(k) e Sk(G(k)). In order to verify that G(k) has a com- 
plete k-spectrum, let t be any integer satisfying 0 < t < (k). We show that G(k) 
contains an induced k-vertex subgraph of size t. Let g be the largest integer for which 
( 5 ) ~ < t a n d l e t r = t - ( 5 ) . N o t e t h a t 0 ~ < r ~ < ~ - l .  Then 

( { w , ,  w2 . . . . .  w , ,  x , ,  . . . . .  x k - ,  }> 
has order k and size (5) + r = t. [] 

The graph with a complete k-spectrum constructed in Theorem 1 has size 

( k 2 ) + ( k - 1 ) + ( k - 2 ) + . - . + l  =2(k2) .  

It is reasonable to ask if there is a graph with a complete k-spectrum and size less than 
2(k). In Theorem 2 we determine the minimum size of a graph with a complete 
k-spectrum. We will write H-< G to mean that H is an induced subgraph of G. 

Theorem 2. For k sufficiently large, the minimum number of edges in a graph with 
a complete k-spectrum is 

(k2)+  k l o g k - O ( k l o g l o g k ) .  
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Proof. We begin by constructing a graph S(k) that has a complete k-spectrum and 
size 

( k2 ) + k F l°g k -] + (F l°g2 k-] l  _ (2r,ogk3 _ 1). 

Let  V(S(k) )  = { W I , W  2 . . . . .  Wk, X I , X  2 . . . . .  xl-logkq, y l , y 2  . . . . .  Yk}, where  d e g y i  = 0 

(1 ~< i~< k). Fur thermore,  ({wl,w2 . . . .  ,Wk}) and ({Xl,X2 . . . . .  Xrtogkl}) are complete 
subgraphs of S(k). Finally, xiwj ~ E(S(k)) if and only if j > 2 i- 1. Then S(k) has size 

=(~)+kFlogkT+(Fl°g2k-])--(2Ft°gkq--1 ,. 

We show, by induction on k, that S(k) has a complete k-spectrum. Certainly S(2) 
has a complete 2-spectrum. Assume, for some k/> 3, that S(k - 1) has a complete 
(k - B-spectrum, and consider S(k). Since S(k - 1)<(S(k) it follows that S(k) contains 
induced (k - 1)-vertex subgraphs having sizes 0, 1 . . . . .  (a21) and containing at most  
k - 1 of the isolated vertices of S(k). Thus S(k) contains induced k-vertex subgraphs of 
sizes 0, 1 . . . . .  (k 2 l). It remains to show that S(k) contains k-vertex subgraphs of size 
(k) _ i for 0 ~< i ~< k - 2. Since Kk-KS(k) we may assume i >~ 1. 

For  fixed i satisfying 1 ~< i ~< k - 2, let 

i = b12 ° + bE 21 + ... + b[iogkq2[l°gk]-I 

be the binary expansion of i, let d = {jlbj= 1} and let m =  max{jljeJ}. Then 
IJI ~< [-logk -]~< k. Let V(i) = {xjljeJ } w {wl,w2 . . . . .  W k - i j i } .  Then IE(V(i))l = 
( k ) _ i p r o v i d e d  k - I J l ~ > 2  " -1 .  I f l Y l =  1 then k - I J l = k -  1 ~>2 " - 1 . I f , o n  the 
other hand, I JI >/2 then 

k >~ i +  2 >~ 2o + 21 + ... + 21JI-2 + 2" -~  + 2 

=2is ,  1 _ 1 + 2,,-1 + 2 ~> 2,~-1 + IjI ' 

We complete the proof  by showing that for k sufficiently large, every graph with 
a complete k-spectrum has at least (k) + k log k - 2k log log k edges. Let G be such 
a graph with S ~_ V(G) such that ISl = k and ( S )  is complete. 

Assume first that there exists S' # S such that [S'I = k and IE((S ' ) ) I />  (k) _ k and 
IS' - S I = f > l o g  k. Then 

]E(G)l>~(k2)-4-(~)+f(k-f)-k .  

The function f ( f )  = (~) + fk - f z + k - [- k log k -] is nonnegative at f = [- log k 7, 
and it is an increasing function of f for log k < f ~< k - 1. Therefore, 

,E(G)l>~(k2)+klogk-2k, 
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for k sufficiently large. Thus we may  assume that  if S # S '  and I S'] = k and 

IE( (S ' ) ) I  1 > ( k ) -  k then I S ' -  SI ~< logk.  
Let S~ be the vertex set of an induced k-vertex subgraph  of G of size (k) _ 1. Then 

l ~ < [ S ~ - S [ ~ < l o g k .  Let v, e S ~ - S .  Since I E ( ( S 1 ) ) I = ( k ) - I  it follows that  

deg<s,>V~ >1 (k - I) - 1 = k - 2. Thus vl is adjacent  to at least k - 2 - (log k - 1) = 

k - (log k + 1) vertices of  S. Let $2 be the vertex set of  an induced k-vertex subgraph 
of G of size (k) _ (log k + 2). Since every induced k-vertex subgraph  of (S  w {vi }) 

contains at least (k) -- (log k + 1) edges, it follows that  IS2-S-{vl}l>>. 1. 

Fur thermore ,  since log k + 2~< k for k sufficiently large, I S 2 - S I  ~< Iog k. Let 
112 e S 2 - -  S - -  {131 }. Since I E ( ( S 2 ) ) [  = ( k ) _  (log k + 2), it follows that  
deg<s2> 112 >>- (k - 1) - (log k + 2) = k - (log k + 3). Thus v2 is adjacent  to at least 

k - (log k + 3) - (log k - 1) = k - (2 log k + 2) vertices of S. In general, suppose that  

for some f ~< Llog(k/log k) _] we have selected distinct vertices v~, 112 . . . . .  re-  1 qE S such 
that  for 1 ~< i ~< f - 1, the vertex v; is adjacent to at least k - (2 i-  ~ log k + 2 i - i) 

vertices of  S. Observe  that  for i ~ f we have 

2;-~ log k + 2 i -  i <~ k/2  + k/log k ~< k, 

for k sufficiently large. Every induced k-vertex subgraph  of (S  w {Vl, v2 . . . . .  re_ ~}) 

contains at least 

, - ,  

edges, i.e., at least 

( ~ ) - ( ( 2 e - l - l ) l o g k + 2 e - ~  ' - 1 )  

edges. Let Se be the vertex set of  an induced k-vertex subgraph of G of size 

( k 2 ) - ( ( 2 e - ' - l ) l o g k + 2  t -  f). 

Then I S t -  S -  { v ~ , v 2 , . . . , v e - 1 } l  >I 1. Let v e e S e - S -  {v l , v2  . . . . .  v~_~ }. Then 

deg<s,> ve >>. (k - 1) - ((2 e- l _ 1) log k + 2 e - f).  

Fur thermore ,  I Se - S I ~< log k and so ve is adjacent  to at least 

k - ( ( 2  e - ~ - l )  l o g k + 2  ~ - f +  l ) - ( l o g k -  1) 

= k -  (2 e-1 log k + 2 t -  f )  

vertices of  S. Thus there exist distinct vertices v~,v2 . . . . .  ve~S,  where 
f = L log(k/log k) .], such that v; is adjacent to at least k - (2 i-  ~ log k + 2 i - i) vertices 
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of S for i = 1,2 . . . . .  •. Therefore, 

]EIG)I ) + ( k -  2'-l  l o g k -  2i + i) 
i = 1  

>~ + (k - 2 i log k) 
i = l  

>>. ( k2 ) + k log(k/log k ) - (21og k )(k/log k - 1 )  

> ~ ( k 2 ) + k l o g k - 2 k l o g l o g k .  [] 

In [3] Erd6s and Spencer defined the size spectrum s(G) of a graph G by 

s(G) = {jIG has an induced subgraph of size j}. 

Thus s(G) = ~1 v tG ~1 Sk(G).  They showed that if Mn is the largest cardinality among the k.Jk= 1 

size spectra of graphs of order n, then Mn ~< (~) - O(n log log n). It follows from the 
construction of the graph S(k) in Theorem 2 (by considering n = log (k + k) that 

Mn >~ (~) - n log n. 

Corollary 1. Let Mn be the largest cardinality among the size spectra of graphs of 
order n. Then 

3. Properties of k-spectra of graphs 

For a fixed integer k, every graph of sufficiently large order n has at least one of 
0 and (k) in its k-spectrum. This follows, of course, by choosing n to be at least as large 
as the diagonal Ramsey number r(k, k). We will say that a set S of integers is 
k-realizable if there is an integer Nk such that for every n >>, Nk there is a graph G of 
order n for which Sk(G) = S. Thus two necessary conditions for S to be k-realizable are 
that S ___ {0, 1 . . . . .  (k2) } and that either 0 or (k) is in S. As a corollary of our next result 
we determine a necessary condition for a set S ~_ {0, 1, ...,(k2)} containing both 0 and 
(k) tO be k-realizable. 

For  disjoint graphs G and H, let G w H denote the graph with vertex set 
V(G) w V(H) and edge set E(G) w E(H). By adding all edges to G u H between the 
vertices of G and those of H we obtain the graph G + H. 
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Theorem 3. Let I k denote the set of all integers that are in the k-spectrum of every graph 
G of order n >~ r(k2 k + l, k2 k + 1)for which 0,(k) e Sk(G). Then 

lk = (e=~o Sk(Ae(k ))) ~ CN=o Sk(A~(k )) ) 

where 

Ae(k) = (Kk + l(e) u l(k-e. 

Proof. We first observe that Ae(k) is an induced subgraph of(K,-k  + /(e) w /(k-e, for 

every n 1> 2k. Furthermore, Sk(Ae(k)) = Sk((K,-k + KI) W I(k-e). Similarly, Ae(k) is 

an induced subgraph of (l( ,-k ~ Ke) + Kk-e for every n ~> 2k and sk(Ae(k)) = 

s~((I(,_k ~ Ke) + Kk-e). Since 0,(k) e sk(Ae(k)) and 0,(k) e sk(Ae(k)) for 0 ~< f ~< k, it 
follows that if X e l k ,  i.e., if x is in the k-spectrum of every graph of order 
n >1 r(k2 k + l ,k2 k + 1) that has 0 and (k) in its k-spectrum, then 

Thus, 

k 

t 
We complete the proof by showing that if G is a graph of order 

n >1 r(k2 k + 1,k2 k + l) such that 0,(k) e Sk(G) then G contains either A~(k) or At(k) as 

an induced subgraph for some ~ satisfying 0 <~ ~ <~ k. Thus, either 

Sk(Ae(k)) ~_ Sk(G) or Sk(Ae(k)) c_ Sk(G), 

which implies 

(e=~-~o Sk(Ae(k )) ) r'~ (e=~-7o Sk(Ae(k ))) ~-- Ik. 

Since n >~ r(k2 k + 1, k2 k q- 1), G contains either a complete graph of order k2 k + 1 or 

an independent (k2 k + 1)-set of vertices. Suppose first that G contains a complete 
graph of order k2 k + 1. Thus G contains disjoint sets A and B such that (A  ~ = Kk2 k 
and ( B )  = /(k. Let $1,$2 . . . . .  $2~ denote the distinct subsets of B and, for 1 ~< i ~< 2 k, 

2 k let T/= {veAINB(v )=  Si}. Then Ui=~T~ = A and, since JA] = k2 k, it follows that 
I T~[ >~ k for some j. But then 

Ae(k)-< ( T j ~  B~, 

where t ~ = ]Sjl. The case in which G contains an independent (k2 g + 1)-set of vertices 
follows from a symmetric argument. [] 



R.J. Faudree et al. / Discrete Mathematics 150 (1996) 103-113 109 

Corollary 2. I f  S is k-realizable and 0,(k) ~ S, then Ik ~-- S. 

It is worth noting that Sk(Ae(k)) and Sk(Ae(k)), are straightforward to calculate. 
Thus, I k can be determined for small k. 

By definition, {0,(k)} ~_ lk. It is easy to check that for some values of k (k = 5, for 
example), Ik = {0,(k)}. In such a case, Corol lary 2 gives no new information. The case 
k = 5 follows from our  next result. 

Propositon 1. l f  k is an inte,qer for  which (k - 1) z + k s is prime, then lk = {0,(k)}. 

Proof. We 
{(~): 1 ~ a 
for some k if and only if there are integers 1 < a < k and 1 < b < k for which 

first note that Sk(Ak(k))= {(k)_(bE): 1 ~< b ~< k} and Sk(Ak(k))= 

k} for every positive integer k. Thus sk(Ak(k)) c~ sk(Ak(k)) -- {0,(k)} ~: 0 

Setting n = 2k - 1, x = 2a - 1 and y = 2b - 1, Eq. (1) becomes 

n 2 + 1 = X 2 q- y2.  (2) 

Since every odd prime divisor o fn  z + 1 is of the form 4q + 1 (see [4, Theorem 3.1], for 
example), it follows that  the prime decomposi t ion of n 2 + 1 is 

n 2 +  1 = 2  ~ ( I  PT', (3) 
i=1 

where Pi -= 1 (rood 4). It follows from Eq. (3) that Eq. (2) has precisely 4 I]'i= 1(~i + 1) 
ordered pairs (x, y) of integer solutions. Thus Eq. (2) has only the eight trivial solutions 
(x,y)  = ( i n ,  _+1) and (_+1, ___n) if and only i f n  2 + 1 = 2"pl.  However,  

n z + 1 = 2((k - 1) 2 + k2), 

where (k - 1) 2 + k 2 is odd. Thus Eq. (2) has only the eight trivial solutions if and only 
if (k - 1) 2 + k 2 is prime. Therefore, if (k - 1) 2 + k 2 is prime, then a = ½(x + 1) = 1 

1( and b = ~ y + 1) = ½(n + 1) = k are the only integers 1 ~< a ~< b ~< k satisfying Eq. (1) 

and, consequently,  Ik = Sk(Ak(k)) C~ Sk(Ak(k)) = {0,(k)}. [] 

F rom Proposi t ion 1 we see that lk = {0,(~)} for k = 2,3,5,8 . . . . .  However,  it is 
unknown whether  (k - 1) 2 + k 2 is prime for infinitely many k and, consequently,  we 
do not  know if 1k = {0,(k)} for infinitely many k. But it is worth noting that 
Proposi t ion 1 does not give a necessary condit ion for I ~ -  {0, (2 k)}. For  example, 
I7 = {0,21} even though 62 + 72 = 85, which is not  prime. 

If Ik ~ {0,(k)}, then Corol lary 2 gives a nontrivial necessary condit ion for a set 
S ~_ {0, 1, . . . ,(k)} containing 0 and (~) to be k-realizable. As our  next result shows, 
there are infinitely many k for which this happens. 
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Proposition 2. For infinitely many k, lk ~ {0, (k)}. 

Proof. Let k be an integer such that (k) = 2(~), for some a ~> 3. We first show that 
(~) e lk .  Note  that IE(l(k- ,  u K,)[ = (~), and [E(Kk_~ +/( , )1 = (k) _ (~) = (~). 

Let 0 ~< f ~< k be fixed. If a ~< E, then 

K k - a  + l (a ' ( (Kk + K:) u I(k_: = Ae(k), 

and 

I( k ~ u K~'<(Kk u Ke) + Kk-e = At(k). 

Thus (~)esk(At(k)c~ sk(Ar(k)). If, on the other  hand, a > f ,  that is, k -  a < k -  •, 
then 

l (k - ,  u K , - (  l(k-r u Kk~((K~ + I(~) ~ I(~_¢ = At(k), 

and 

Kk-a + l(a '<Kk-e + I(k <(l(k U Kr) + K k - t  = Ae(k) 

implying that (])eSk(Ae(k))~Sk(Ae(k)).  Hence, by Theorem 3, ( ] ) e l k .  Since 
0 < (]) < (k), it follows that lk ~ {0,(k)} for every value o f k  satisfying (k) = 2(]). 

We conclude the proof  by showing that this last equation, or, equivalently, 
2a 2 - 2a - k 2 + k = 0 has infinitely many  positive integer solutions (k, a). Solving 
this equat ion for a, we see that a is a positive integer if(k - 1) 2 + k 2 is a perfect square. 

Consider  the Pell-equation x 2 - 2y 2 = 1, which has infinitely many positive integer 
solutions (x,y). (See [41, for example.) For  any such solution x > y > 0, set 
k = 2 y ( x - y ) .  Since 2y 2 + l = x  2, we have k - l = y 2 - ( x - y ) 2 .  Therefore, 
(k - 1) 2 q -  k z = (y2 _ (x - y ) 2 ) 2  -4- 4 y 2 ( x  - y)2 = (y2 + (x - y ) 2 ) z ,  and the proof  is 

complete. [] 

4. k-realizable sets for k ~< 5 

It is an open problem to characterize k-realizable sets for general k. For  k ~< 4, 
however, the k-realizable sets have been characterized. The case k ~< 2 is trivial. For  
k = 3, the results are summarized in Table 1. As can be seen, there are only four 
'missing' sets, namely {1}, {2}, {1,2} and {0, 3} for k = 3. The first three of these fail to 
be 3-realizable since Ramsey's theorem says that a 3-realizable set contains either 0 
or 3. Interestingly, each of these sets is the 3-spectrum of at least one graph G. In 
particular, $3(P3) = {2}, s3(Kl t..; K2) = { 1 }  and sa(P4) = {1,2}. Finally, it follows 
from the 'Gap  Theorem',  whose proof  can be found in [1], that {0, 3} is the 3-spectrum 
of no graph. 
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Table 1 

3-realizable sets S Graphs G with ss(G) = S 

~0j~ ~ Ko {uniquel 
~3, Ko {unique! 
[O, 11~ tK2 w in - 2t)Kl {unique) 
,0,2~ K , , ,  (unique) 
{1,3} K, w K,_, {uniquel 
¢ t2,3j K, - tK2 {unique) 
[0, 1, 21 P. 
{0, 1,3} K, wK ~w K t ,  r + s + t = n  
{0,2,3} K, u K s w K , ,  r + s + t = n  
f "( ~1,2,3~ p~ 
{0,1,2, 3} See Theorem I 

111 

Gap Theorem. I f  S = {al < a2 < ."  < a,} is the k-spectrum o f  some graph then 

ai+ l - ai <~ k -  2 except  when ai = al = 0 or ai+ l = a, = (k). In these latter cases, 

ai+l -- ai ~ k - 1. 

For  the case k = 4, some prel iminary results are helpful in our  analysis. Since 

(5) = 2(3), the p roof  of Proposi t ion  2 gives that  3 e I4. Thus,  if G is a graph of 
sufficiently large order  with 0, 6 e s4{G) then 3 e s4iG). This result can be strengthened 

to include all graphs  with 0, 6 e s41G). 

Theorem 4. I f  G is a graph for  which 0,6 ~ s4(G) then 3 ~ s4(G). 

Proof. Let G be a graph for which 0,6 e s , (G).  Since 6 e sa(G), it follows that  G has 

a triangle. If G is not  connected then G contains K a w K ~ as an induced subgraph  and 

3 e s4(G). Thus  we m a y  assume that  G is connected. Fur thermore ,  we may  assume 
that  the distance between any pair  of vertices of G is 1 or 2; for otherwise, G contains 
'°4 as an induced subgraph  and 3 e s , (G).  

Let {vt, v2, va, v,} be a set of 4 independent  vertices of G. Then for each pair  vi, v~ 

(i # j )  there is a vertex x e V(G) - {v~, v2, v3, v4} such that  xvi,  xvj  e E(G). Moreover ,  

we m a y  assume that  if x v i , x v j  e E(G) then XVk $ E(G) for k q: i, j; for otherwise, 
G contains KL3 as an induced subgraph  and hence 3 e s,(G).  Thus  there are vertices 

x and y such that  vt ,  x, v2, y, va is a pa th  in G and for which the only possible chord is 
xy.  Then G contains  either P4 or K3 w K~ as an induced subgraph  depending on 
whether  x y  e E(G). In either case, 3 e sa(G). [] 

The p roof  of  Theorem 4 depends only on the fact that  G contains K 3 and [~3 as 
induced subgraphs.  Thus we also have the following results. 

Corollary 3. I f  G is a graph for  which at least one o f  0, 1 and one o f  5,6 is in s4(G) 

then 3 e sa(G). 
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Using Ramsey's Theorem, the Gap Theorem, Corollary 3 and case-by-case analysis 
we can describe precisely the situation for 4-spectra. In what follows we will use, for 

example, 013 to denote the set {0, 1, 3}. Also, 013 will denote the complement of 013, 
that is, {2, 4, 5, 6}. 

4-realizable sets: 

0 6 01 03 36 56 012 013 023 034 035 136 236 346 356 456 0123 0124 

0136 0234 0235 0345 0356 1236 1346 2346 2456 3456 01 02 04 05 12 15 

16 25 26 45 46 56 0 1 2 4 5 6 0123456 

Sets that are the 4-spectrum of some graph but are not 4-realizable: 

1 2 3 4 5 12 13 23 24 34 35 45 123 124 134 234 235 245 345 1235 

1345 2345 1234 06 

The remaining subsets of {0, 1,2, 3, 4, 5, 6} are the 4-spectra of no graphs. 
Using similar techniques, although much more detailed, to those used in Theorem 4 

we can show the following. 
(a) If G is a graph for which 0, 8 ~ ss(G) then 4 ~ ss(G). 
(b) If G is a graph for which 0, 1,9, I0 e ss(G) then 5 e s5(G). 

(c) If G is a graph of sufficiently large order for which 0, 14 e s6(G) then 5 e s6(G ). 
We close with three open questions based on our knowledge of k-spectra for k ~< 5. 

According to Theorem 4 and (a) above, {0, 1 . . . . .  (~)} - {k - 1 } is not k-realizable for 

k =4 ,5 .  

Question 1. For k >1 4, is {0, 1 . . . . .  (k)} _ {k - 1} k-realizable? 

As mentioned earlier, the proof of Theorem 4 depends only on the fact that 
G contains K3 and/( '3 as induced subgraphs. Therefore, if 0, 3 e sa(G) then 3 e s4(G). 

We can also show that if0, 4, 6 e s4(G) then 4 e s5 (G). Thus for k = 4, 5 we have that if 
G has a complete (k - 1)-spectrum, then k - 1 e Sk(G). 

Question 2. For k >1 4, if G has a complete (k - 1)-spectrum, is k - 1 ~ Sk(G)? 

Finally, for k ~< 4 we know that if S is the k-spectrum of at least one graph and 

either 0 or (k) is in S, then, in fact, S is k-realizable. 

Question 3. For k >>. 1, if  S is the k-spectrum of  at least one #raph and either 0 or ( k ) is in 

S, then, is S k-realizable? 
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