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ABSTRACT 

For a graph G = (V, E)  and integer p, a p-intersection representation is a family = 

{Sx: x E V} of subsets of a set S with the property that IS, n S,,l 2 p - {u, u }  E E. 
It is conjectured in 111 that 8,(G) I B(K,,/2,,,/2)(1 + o(1)) holds for any graph with 
n vertices. This is known to be true for p = 1 by [41. In [ I ] ,  O(K,,/2,,,/2) 1 (n2 + (2p - 
l)n)/4p is proved for any n and p. Here, we show that this is asymptotically best 
possible. 

Further, we provide a bound on 8,(G) for all graphs with bounded degree. In 
particular, w e  prove O,(G) 5 O(nl/P) for any graph G with the maximum degree 
bounded by a constant. 

Finally, we also investigate the value of 8, for trees. Improving on an earlier result 
of M. Jacobson, A. Kezdy, and D. West, (The 2-intersection number of paths and 
bounded-degree trees, preprint), w e  show that 62(T) 5 O(d f i )  for any tree T with 
maximum degree dand @ ( r )  5 O(n3’4) for any tree on n vertices. We conjecture that 
our result can be further improved and that & ( T )  I O(&$ as long as A(r)  5 ,h. If 
this conjecture is true, our method gives & ( T )  I O(n2l3) for any tree Twhich would 
be the best possible. 0 1996 John Wiley & Sons, Inc. 

1. INTRODUCTION 

For terms not defined here see [8]. 
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Graphs have long been used as models for a wide variety of different systems. In particular, 
the representation of a graph as the intersections of sets has drawn considerable attention. 
More precisely, given a graph G = (V, E )  with vertex set V and edge set E ,  a family 
’J = {A,: x E V} of (not necessarily distinct) sets is called an intersection representation 
of G if 

for every pair x,y of distinct vertices of G; conversely G is called an intersection graph of 
’f. Unlike other types of graph representations, every graph is the intersection graph for some 
family of sets. 

Erdos, Goodman, and P6sa [4] introduced the question of finding the minimum number of 
elements in the set S = UXEVA, used to represent G. They showed the following: 

Theorem 1. If G is any graph with n vertices, then there is a set S with [n2/4] elements and 
a family of n subsets of S that represent G. Further, [ n2 /4 ]  is the smallest such number. 

Their proof introduced an important way of working with intersection representations, 
namely as edge clique coverings. An edge clique cover is a family, C ,  of cliques such that for 
all e E E ,  there exists C E c such that e C C. 

Suppose y = {A~r: x E V} is an intersection representation of G and let 1 U ’fl = t 
denote the cardinality of the union of all sets in y. Then Ci = {x: i E A,} provides a 
bijection between [ t ]  = (0, 1 , .  . . , t - I}  and c = {C;: i E [ t ] }  and C is an edge clique cover. 
Also, if C is an edge clique cover with Ic( = t ,  an intersection representation is given by 
7 = {A,r: x E V} where A, = { j :  x E Cj} .  

Over the years the original intersection question has been altered in a variety of ways. 
One refinement has recently drawn considerable attention. Given a positive integer p, and 
graph G = (V ,  E ) ,  a family 7 = { A x :  x E V} of (not necessarily distinct) sets is called a 
p-intersection represeiztatinn of G if 

for every pair x, y of distinct vertices of G. Define 0, (G) to be 

where 3’ is taken over all p-intersection representations of G. Then O,,(G) is called the 
p-intersection number of G. 

Also, for an integer n, let 

O,,(n) = max{@,,(G): IV(G)l = n } .  

Clearly, for any graph G and integer p 2 2, a p-intersection representation of G exists 
since we know an intersection representation of G exists and given a ( p  - 1)-intersection 
representation we may add 1 element to the universe and include it in each set. This gives 
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Analogous to the characterization of intersection representations by edge clique covers, there 

We define ap-edge cover (also known as p-generator) of a graph G = (V,  E )  to be a family 
is a characterization of p-intersection representations. 

23 of subsets of V,  such that 

{x,y} E E I{P E 5": {x,y} C P}I 2 p 

In a manner similar to before, if = {A.r: x E V} is a p-intersection representation 
of G = ( V , E )  with I U 3'1 = t then P i  = {x: i E A.,} gives a bijection between [ r ]  and 
5" = { P i :  i E [ r ] } .  Thus, 

where the minimum is taken over all p-edge covers, 5", of C. 

so we may say 
From the proof of Theorem 1, the graph which attains the maximum 01 value is Kn/2,,1/2, 

It is natural to ask if Kn/2,,,/2 also provides the maximum value for O,,(G) when p > 1 .  
Chung and West [ l ]  conjecture that 

for all G. Thus, the problem of determining 19,(K~/2,,~/2) for p > 1 takes on added significance. 
In Section 2, we will show that for any E > 0, there exists an no such that n > no implies 

In Section 3, we discuss the relationship between Ol(G) and O,(G), p 2 2 and give bounds 

In Section 4 we provide a general bound on 0, for graphs of bounded degree. 
In Section 5, we answer a conjecture of Jacobson, KCzdy dnd West [9] concerning 02 for trees 

of bounded degree. Further, we provide a general upper bound for &(T)  where T is any tree. 

on O,(G) for graphs G without 3-cycles. 

2. plNTERSECTlON NUMBERS FOR Z&,!, . . . ,nlr 

As was mentioned earlier, the problem of finding bounds on O,(G) has led to consideration 
of the value of $,(Kn/2,n12). Theorems 2 and 3 are due to M. Chung and D. West [l]. 

Theorem 2. For G = Kn12,,,12, and p 2 2, 
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Theorem 3. For n odd, n # 0 (mod 3), 

Here we give the value of O,, for a larger class of graphs. For each r, KiY!..,n is the complete 
r-partite graph with n vertices in each independent set. It is mentioned in [ l ]  that P. Frankl 
and V. Rijdl's result [6], given below as Theorem 4, provides an asymptotic upper bound 
for 6',,(Kn/2,n/2). We generalize that result to K,,lr,,,,,nl,. in Theorem 5 .  (Note: We have recently 
learned that a similar result has been shown by Z. Furedi [7], so we shall only sketch our 
proof here. A complete proof can be found in [2].) 

A hypergraph 3f is an ordered pair, (X, F ) ,  of vertices X and edges F such that T C T(X).  
In a d-uniform hypergraph, each edge has order d. The point covering number t ( 3 f )  is the 
minimum number t so that there exist t edges of 3f whose union is the whole set X. The 
following theorem by P. Frankl and V. Rod1 applies the probabilistic approach of [ 1 I ]  to show 
that for a wide class of d-uniform hypergraphs, near pe$ect coverings exist. Also note that for 
a set A, deg A = I{E: A C E}I and we use the notation [AI2 to be the 2-element subsets of A. 

Theorem 4. Let E > 0 be arbitrary, 3f a d-uniform hypergraph on X, 1x1 = n,  and a > 3 
a real number. If there exists a positive real 6 = 6 ( ~ )  such that if for some D one has 
(1 - 6 ) D  < deg(u) < (1 + 6 ) D  for all u E X and deg({u, u}) < D/(log n)' holds for all 
distinct u ,u  E X, then for all n > no(S) ,  

( r )  

t(3-f) 5 n(1 + E)/d holds. 

Theorem 5. For > 0 and p 2 2, there exists an integer no such that for n > no, 

( r )  Proof. (Sketch) Consider Knlr,...,nlr with vertex set V = V1 U Vz U ... U V r .  In order 
to demonstrate a p-edge cover of K,,lr, . . , n / r ,  we construct a (rp/2)-uniform hypergraph 
3f = (X, T )  satisfying the hypothesis of Theorem 4. The edge of 3-f will correspond to 
sets in a p-edge cover of Knlr,...,nlr. 

To provide a p-edge cover of K$!,..,,nl,. we take subsets of size rp of the vertex set V ,  with 
p vertices in each of the r independent sets, making sure that we cover the inside pairs, pairs 
with each vertex within some V, ,  at most p - I times each and the crossing pairs, pairs with 
each vertex from different independent sets Vi, V j ,  i # j ,  at least p times. 

Thus we construct the vertex set X of 3-f by taking p - 1 copies of the r("[) inside pairs 
together with p copies of the ( i )  ( n / r ) 2  crossing pairs. Thus, 

( r )  

b-) 

1x1 = r(";')(P - 1) + (;)$ 
The edges of our ('2" )-uniform hypergraph consist of all sets E that can be formed in the 

following way. For each i, 1 5 i 5 r ,  select a subset Pi C Vi, lPil = p ,  then E E T will 
consist of ('2" ) vertices in X selected by choosing a copy of each pair in U P i .  
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It is straightforward to see that 

38 1 

Each vertex of has one of two possible degrees based on whether it was derived from an 
inside pair or a crossing pair. If A is the degree of a vertex from an inside pair and B that of 
an outside pair, a direct count shows that 

while 

and hence limn+% A / B  = 1. Thus, 3f- satisfies the regularity condition for degrees of vertices 
of the hypothesis of Theorem 4 with D - A - B where 

where c , , ,  is a constant depending only on p and r. Applying Theorem 4 completes the 
proof. I 

( r )  Theorem 6 gives a lower bound on the p-intersection number for K,,/,,,,,,,,l, and extends 
Theroem 2 to the r-partite case. We first state a lemma whose proof is elementary and hence 
omitted. 

Lemma 1. If a = (a l ,a2 , .  . . ,a , )  is a vector and such that ( l / r ) x ; = l  a;  = s, then 

(;) 2 r(  i) and a;aj  5 (;)s*. 
I =  I i < j  

Using this Lemma the following result can be obtained. We omit the proof here, but it can 
be found in [2]. We note that a slightly weaker bound then that of Theorem 6 (but of the same 
order of magnitude) can be obtained directly using Theorem 2. 

Theorem 6. For G = Knlr ,..., n ~ r ,  and p 2 2, 
( I )  

( r )  As can be seen by the last two results, I ~ ~ ( K ~ , , , . . . , ~ / , )  - n*/(r*p). 
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3. COMPARING 0, AND el 

An easy comparison between O,(G) and Ol(G) for any graph G gives O,(G) 5 Ol(G) + p - 
1, see (1). There exist graphs G with equality holding, such as G = K , .  But this is not always 
the case. Theorem 7, gives the lower bound for O,,(G) as O(O,(G)”J’). We will see that this 
lower bound is attained for some classes of graphs, see ( 5 ) ,  (6) and Proposition 1. 

Theorem 7. For p 2 2 and any graph G on n vertices, 

Proof. Let 1/ = {Vl ,  V 2 , .  . . , V,} be a p-edge clique cover of G where t = O,(G). Let 
‘P C 1/ such that I ‘PI = p and consider the set C = n ‘P. This intersection must be a clique 
since only pairs of vertices that are edges can be contained in p different sets. Also, each edge 
in C must be in the intersection of some choice of p sets in 1/. Therefore, the set of all such 
intersections forms an edge clique cover for G. There are ( i)  such intersecting sets, thus 

We turn our attention to a smaller class of graphs. For graphs G with no 3-cycles, 
Ol(G) = IEl, since in an edge clique cover, we must use each edge separately. So, as a 
corollary to Theorem 7, we have 

Corollary 8. Let p 2 2 and G = ( V , E )  be a graph which contains no %cycles. Then, 

Corollary 9. Let G = ( V , E )  be a graph which contains no 3-cycles. Then, 

This lower bound is known to be obtained for stars. It is an easy exercise to show that for 
S,, the star on n vertices, 

Note that, in 191 it was shown that for paths P,,, 



ON p-INTERSECTION REPRESENTATIONS 383 

4. THE plNTERSECTlON NUMBER OF GRAPHS WITH BOUNDED DEGREE 

In Section 3 we have shown that for p > 1, and all graphs G, O,(G) 2 cB1 (G)"" where c is an 
absolute constant. Notice that for a d-regular triangle free graph, this gives B,(G) 2 c (dn) ' / / ' .  

Theorem 1 1  gives an upper bound on the value of B,](G) for p > 1 and graphs G of bounded 
degree. We show that if A(G) 5 d then 8,(G) 5 C(dn)"/' where C is a constant dependent 
on both p and d. Thus this is the best possible up to the constant c. The techniques used in 
the proof of Theorem 1 1  are similar to those found in [3]. In the proof, we make use of the 
well-known LovaSz Local Lemma [51. 

Theorem 10. Let G = (V ,  E )  be a graph with maximum degree D and vertices U I ,  u?, . . . , u,. 
For each u, let us associate an event A ,  and suppose that A, is totally independent of the set 
of events 

Also suppose 

1 
4 0  ' 

Prob(Ai) 5 - 

Then 

Theorem 11. Let G be a graph on n vertices with A(G) f d and p > 1 be an integer, then 

where C = 3epd2(d  + l)"/'. 

Proof. Let 

C = 3epd2(d + 

and 

Let [m]P be the set of all p-element subsets of [m] and consider the uniform probability space 
of all 1-1 assignments qb:  E ( G )  H [m]P. We will show that there exists one such assignment 
qb such that the function S4: V ( G )  - P ( m )  defined by: 

is a p-intersection representation of G. 
Clearly, for any function qb, S4 has the property that 
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We need only show that there exists a map 4 such that 

W u ,  u }  @ E(GL IS, n S,l < P . 

Let u,u E V ( G )  be such that { u , u }  is not an edge. Suppose 

S,  = B I  U B2 U . . .  U B, and S ,  = CI U C2 U . . .  U Cl 

where s , t  9 d .  Then, 

We can give an upper bound on Prob(lS, n S,I 2 p )  by considering IS,I and lS,I to be as 
large as possible. Since for all edges e l ,  e2 E E(G) the events 4(el)  = B and 4(e2 )  = C are 
independent, we may consider S, and S ,  to be arbitrary subsets of [ m ]  of size d p .  Thus, 

Let I be the set of all nonedges of G, so that I is the set of all independent pairs of vertices 
of G. For { u ,  u }  E I ,  let E,,, be the event that IS, n S,I 2 p .  We will use the LovaSz Local 
Lemma, Theorem 10 to show that 

Let { u ,  u} ,  { w , x }  E I .  Then events E , , ,  and E w , x  are dependent if and only if there exists 
z E { u ,  u }  and z' E {w,.} such that (2, z ' }  E E or I{u, u ,  w,x} l  9 3. For each {u,  u }  E I ,  
there are at most 2dn pairs { w , x }  E I that meet the first criteria and at most 2n pairs that 
meet the second. On the other hand, E, , ,  is independent of all other events Ey,z. Thus, the 
maximum degree D of the dependency graph of the LovaSz Local Lemma, is maxE,,, deg(E,, ,) 
which is at most 2dn + 2n. We need only show that for all { u , u }  E I ,  

1 
4 0  ' 

Prob(E,,,) 9 - 

or from (7), 

1 
8(d + 1)n 

As we chose 

m = 3epd2(d  + l ) " P n " P ,  
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we have that 

which is equivalent to Eq. (8). I 

5.  THE 2-INTERSECTION NUMBER FOR TREES 

Jacobson, KCzdy and West [9] as well as Scheinerman [13] conjecture that for order n trees 
T with maximum degree bounded by a constant, &,(T) 5 O(fi), thus meeting the lower 
bound obtained in Corollary 9. In [9] it was shown that for any E > 0, there exists an no such 
that n 2 no implies &(T)  5 c(fi) '+' and that for paths P,l, & ( P n )  is asymptotic to 2 6 .  
Theorem 13 improves this result for trees with maximum degree d and answers the conjecture 
positively when d is a constant. 

We also provide an upper bound of order n3I4 for general trees in Theorem 14. We believe, 
however, that the correct bound for trees of order n that have maximum degree fi is on the 
order fi. If true, the approach of this paper yields that for any tree, T, & ( T )  5 where 
c is an absolute constant. To support these conjectures we offer Proposition 1 concerning the 
class =', = { T :  T is a rooted tree on n + 1 vertices, with root of degree n l - y  and each vertex 
adjacent to the root is adjacent to nY leaves}. Also note, in [9] it is shown that for T E '2&, 
o ~ ( T )  2 cn2I3. 

We will also make use of Theorem 12 by Sauer and Spencer [ 121. First consider the following 
definition. 

Definition 1. 
of an embedding of E(G1 U G2) into K,. 

Theorem 12. 

Proposition 1. 
c5 such that 

Let G I  and G2 be two graphs on n vertices. A packing of G I  and G2 consists 

If 2A(Gl)A(G2) < n ,  then there is a packing of G I  and G2. 

Let 0 5 y 5 1 and T E 5fy,  then there exist constants c I ,  c2, c3, c4, and 

The proof of this Proposition is long and uses ideas on partial affine planes similar to those 
applied in the proof of Theorem 14, hence we omit it. The interested reader may find it in [2j. 

Notice that when y = 1/2, we have an example of a tree T with A(T) = f i  and 
&(T)  = O(fi) which supports our second conjecture. Also note that as y - 1 the tree 
T y  - K I , ~  and 02(Ty) - cnI'* (as it should). 

We begin the proof of Theorem 13 by giving several lemmas, the first of which appears 
in [9]. 
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Lemma 1. 
disconnecting it into two components T I  and T2 such that 

Let T,  be a tree of order n. If A(T,) 5 d ,  then we can remove one edge of T,, 

Lemma 2. 
SI U . . .  U S ,  with 

Given a tree T,, of order n luith A(T,) 9 d ,  there exists a partition V(T,) = 

and so 

& c  f < (d  + I ) & ,  

where the induced graph on S ,  is a tree for each i and at most t - 1 edges are not contained 
in the sets SI ,  S2, .  . . ,Sf.  

Proof. We apply Lemma 1 successively to break T,  into smaller components. We stop as 
soon as a component has order smaller than fi. If A and B are components obtained by a 
split of a component of size greater than f i  with [ A ]  2 IBI, then by Lemma 1 

so that 

Since the classes of our partition SI, Sz,  . . . , Sf are trees and therefore connected, there can 
be no more than t - 1 edges of T,, that are not contained in one of these classes. 

Theorem 13. 

I 
Let T be a tree with A ( T )  5 d. Then 

t92(Tn) 9 ( 1  Id + 3)& 

ProoJ: 

First we apply Lemma 2 to break T into 

We construct a 2-edge cover C for T, that is, we show how to find a collection of 
sets covering each edge at least twice and each nonedge at most once. 

t 5 (d + l)& (9) 

subtrees SI, S2,.  . . , S, ,  where each has order at most f i , leaving at most (d + 1)f i  edges 
not contained in any one of these subtrees. Note that V(T) = V(S1) U V(S2) U ... U V(S,). 
For each edge e,  not contained in one of these subtrees, we consider a copy of e,  say e'. Let 

f 1 e :  e U E(s;) , M' = {e': e E M I .  
i = l  
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Then 

The 2-edge cover C will contain the individual edges in M U M ’ ,  and the sets SI ,  . . . , S,. 
That is. 

c 3 { V ( S l ) ,  V (S2) , . .  . ,V (S , ) }  u M u M’ 

Thus, we need only cover the edges in each subtree S; one more time; noting that no two 
edges from the same tree Si can appear again in the same set (since there are no 3-cycles). 

We form a new partition V ( T )  = F1 U F2 U . . .  U F ,  of forests by forming the union of 
the subtrees S; until there are at most r 5 JK/d forests and the order of each forest is less 
than (d + 1)fi. This can be done since if we continue to combine trees Si while there are 
less than d f i  vertices in the resulting forest, we can add another tree Si without exceeding 
(d + 1 ) f i  vertices. 

Next, we devise a way to select one edge from each of F1, F2,. . . , F,  to form a new set 
in the cover, but we must guard against the following: Given the situation shown in Figure I ,  
if, in order to cover the edges { y ; , ~ ; } ,  {yi,x;}, { y , ; , x j } ,  and {yl,x,} we include the vertices 
y i , x i , y , ; , x j  together in a set in the cover, and the vertices yi,xi,y;,xj together in another set, 
then we would cover a nonedge (namely { x ; , x j } )  twice, destroying our cover. 

We are going to construct the cover C with the following properties: 

( 1 )  Each edge of F ,  U F2 U .. .  U F,  appears in one set C E c.  
( 2 )  IE(F;) n CI 5 1 for each C E C and all i = 1,2, .  . ., r .  
(3) If h i , h j  E C and hj and hi are incident to h;  and hj respectively (see Figure I ) ,  then 

hjhi E C’ for no C’ E C. 

FACT. For integers 1 5 d 5 n and r 5 &/d let L I ,  . . . , L ,  be graphs with order at most 
(d  + 1)f i  and maximum degree at most 2 d .  Then these graphs can be packed on a set H of 
size at most 8 d f i .  That is, there exist graphs L ; , .  . . , L :  with 

( i )  V ( L I )  C H for each i = 1 ,2 , .  . . ,  r .  
(ii) L;  

(iii) E ( L i )  f l  E(L:)  = 0 for each 1 5 i , j  5 r ,  i f j 
L( for each i = 1,2, .. . , r .  

FIGURE 1.  The situation to avoid 
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Proof of FACT. It is an application of Theorem 12. Suppose that for s < r we found 
graphs L ; ,  . . . , L: satisfying properties (i)-(iii). Clearly, 

and hence, by Theorem 12, there exists L: + which together with L{ , . . . , L: satisfies properties 
(i)-(iii). I 

Now in order to find a cover C satisfying 1-3 consider the line graphs L ( F , )  = L ,  for each 
of the forests F1, . . . , F ,  and apply the FACT to obtain a packing L ; ,  . . . , L: of L I ,  . . . , L ,  in 
the set H ,  where [HI 5 8d&. Let 4,:  L ,  - L: be an isomorphism required by (ii). To each 
k E H and i = 1 ,2 , .  . ., r such that k E V ( L : )  let h, = { x i , y i }  be a vertex of L ,  (hence, an 
edge of F , )  such that $(h , )  = h.  We set 

c h  = u { { x i , y i >  E E(Fi)Ih E v ( L : ) )  
I 

and set C = {Ch I k E H } .  

which is packed onto some h E H we get that {x,y} E C,,, hence property (1) holds. 

E ( F , )  fl Ch = { 4 ( h ) }  otherwise. 

k , h  E H ,  then due to the fact that {h,,h,} E E ( L , )  and {h,,h,} E E(L, )  we get that 

Now we venfy properties (1)-(3). As each edge { x , y }  of F,  corresponds to a vertex of L ,  

Similarly, property (2) follows from the fact that E ( F , )  f l  ch is empty if k @ V ( L : )  and 

Finally, if h, = {x,, y,}, k ,  = {x,, y,} E C,, and %, = {x,, y,},  %, = {x,,y,} E CT; for some 

{ 4 ( h I ) >  +(h,)I = { 4 ( h , L  4(h,)} = {khl 

contradicting the fact each pair {h, h’} can be covered by at most one edge. 
Since IHI 5 8 d f i ,  we infer that 

Note that this result can be extended to forests. 
We now turn our attention to all trees and give an upper bound on 82 regardless of the vertex 

degrees. We will use Theorem 13 applied to subtrees resulting from the following dismantling 
of the tree. 

Suppose T is a tree of order n. Suppose further that T contains vertices of degree at least 
d = nu. Consider the set X C V ( T )  composed of all vertices of T of degree more than d.  
Then T - X consists of a collection of subtrees 

each of which has maximum degree at most d. 

than np for some fixed p and B,  those subtrees of order at least np .  
We can further divide these subtrees into two collections, S ,  those subtrees of order less 

We now describe a partition of E ( T )  based on our dismantling of T. 

C-I The edges contained within subtrees in B. 
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C-I1 To each subtree Ti E S we choose some x E X with the property that there exists 
some y E V ( T ; )  with {x,y} E E(T) .  In this way we will consider a mapping 
4: S - X such that $(Ti )  = x. We set S(x) = { ( x , y )  E E ( T ) :  y E V ( T ; )  and 
4 ( T ; )  = x}. In a similar manner we define T ( x )  = S(x) ux=4(T,) T;.  We now set 

All other edges. That is, any edges 

(a) connecting vertices in X ,  
(b) connecting vertices of X to subtrees in 3, 
(c) all edges {x,y} such that x E X ,  y E V ( T ; )  where Ti E S and 4 ( T ; )  # x ,  

that is, edges, which were not covered in case C-11, connecting vertices in 
X with “small” trees. 

c-I1 = U x E X E ( T ( X ) ) .  
C-Ill 

With this partition in mind, we now turn to bounding 82 for all trees. We make no attempt 
to determine the constant in this result, since we feel the true upper bound has magnitude 
O(n2’3). Thus all constants are merely referred to as c. 

Theorem 14. If T is a tree of order n, then & ( T )  5 cn3/4 where c is an absolute constant. 

Proof. Let T be a tree of order n. We may assume that T contains vertices of degree at 
least n1’4 or we would be done by Theorem 13. Throughout the proof, let d = n N ,  CY = ;, 
and f l  = 4. From our earlier discussion we obtain a set X ,  two classes of subtrees S and 3 
and a partition of the edges of T as described by the classes C-I, C-11, and C-111 above. 

For our proof we build sets corresponding to the vertices, so that the resulting sets form 
a 2-intersection representation of T. We consider that each vertex begins by being assigned 
the empty set and at each stage of the proof, we simply add elements to the already existing 
set corresponding to that vertex. We continue adding elements to that set until every edge 
incident with that vertex has been represented, that is, the sets M,,M,  corresponding to the 
end vertices x ,y  of the edge e = xy intersect in at least two elements. On the other hand, 
we will maintain a 2-representation, that is, IM, n M y  I < 2 if xy @ E ( T ) .  Then I U . r t T  M,I 
will provide our bound. 

I 

I 

Case 1. Consider the edges of C-I. Apply Theorem 13 (see the note after the proof of 
Theorem 13) to the union of trees in 3 with d = We see that the forest F B  =  UTE^ T 
can be 2-represented on a set of cardinality at most I l(d + 1 ) f i  = O(n”/“). In other words, 
to each vertex x E V ( F 3 )  we assigned a set M,: in such a way that I U M j I  = O ( ~ Z ’ / ~ )  and 
{ M j :  x E V ( F 3 ) )  represents F B .  

Case 2. Let d,r = degs(x)(x) denote the degree of x in the substar S(x). Further, let 

where t = 1x1. For each i, 1 5 i 5 t we denote by Tl(x,), T2(x,), . . . , Td,, (x,) the trees 
belonging to S with 4 ( T , ( x , ) )  = x,, 1 5 J 5 d,. Next we distinguish two cases, depending 
upon whether d, is less than f i . 

Case 2.1. In this subcase we represent the C-I1 edges contained in the trees 
T ( x l ) ,  T ( x ~ ) ,  . . . , T ( x , ) .  We represent these edges in two stages: 

(i) we represent the edges of the stars S(xl), . . . , S(x,) and separately 
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(ii) for each j = 1,2 , .  . . , s the edges of U4(T,)=n, T,.  

In both cases we make use of a structure which we call a partial affine plane. 
Recall that an affine plane A = (X, L ) of order m is a structure of m2 points, X ,  and 

rn2 + rn lines L each containing m-points of X, with the following properties: every pair of 
points is contained in exactly one line, the lines can be partitioned into m + 1 parallel classes 
containing m lines each, and 2 lines from different parallel classes intersect in exactly 1 point. 
Let L = L l  U Lm U . . . U Lm be the partition into parallel classes of A. Consider e lines 
from the parallel class Ll  , and Y,  the me points on these lines. Then we call ( Y ,  uy=, L [ )  a 
partial afine plane of order (m ,  e )  with me points and m2 lines each containing 4 points of 
Y.  We also use L (A(@,()) for the set of all lines in A(m,e).  

Let A1 = A(n3/8,2n1/4). This partial affine plane has 2n51s points and n3l4 lines, each of 
length 2n1I4. Consider the 1-1 mapping 

$ :{ l ,2 ,  . . . ,  s } -  L ( A 1 )  

(This is possible as s 5 1x1 5 n3/4 = IL (AI) I . )  Also, for each j = 1,2 , .  . . , s, consider a set 
system with vertex set L = $ ( j )  2-representing a star S(x,). (Such a set system exists as 
&(S(x,)) 5 2 f l  = 2n'/4 = ILI.) For a vertex z E S(x,), j = l , 2 , .  . .,s, let M,' be the 
corresponding set from the 2-representation of S(x,). 

Let A2 = A(,/n, 2n'/4) be a partial affine plane with n lines of length 2n'14. Each tree T,(x,), 
1 5 i 5 s, 1 5 j 5 d,, 5 f i  requires at most 2n'/4 elements in its 2-representation and there 
are clearly at most n such trees. Consider a 1 - 1 mapping 

with the property 

that is, lines $*( 1, i ) ,  . . . , $'(dx,, i) are contained in a parallel class. 
Also for each pair ( j ,  i), 1 5 i 5 s, 1 5 ,i 5 dx,, consider a set system with vertex 

set L = & ( j ,  i) 2-representing the tree T j ( x ; ) .  For each vertex z E Tj(x;), let MZ be the 
corresponding set from the 2-representation of T,(xi). 

Note that the assignment z H M: U M: is a legal 2-representation of 
T ( x l ) ,  T ( x * ) ,  . . . , T ( x S ) .  This follows by a simple inspection using Eq. ( 1  1) and the 
fact that the trees T I  ( x i ) ,  . . . , T(,\, ( x i )  are represented on pairwise disjoint sets. 

Also, clearly 

Case 2.2. In this subcase, we represent the C-I1 edges contained in the trees, 

As in Case 1.1, consider first the edges of the stars S(x,+ I ) ,  S(x,+*), . . . , S(xc). 
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This time however, we subdivide each S ( x ; ) ,  s + 1 5 i 5 4 into smaller stars S(x,) = 

S'(x;) U . . .  U Sq ' (x ; ) ,  each of cardinality at least f i / 2  but not bigger than fi. Clearly, 
&(Si(x;))  5 2n'''' for each i = s + 1 , .  . . , e and 1 5 j 5 4,. Consider the 2-representation 
z +-+ M! of Sj (x ; )  on a set K j ,  lKll 5 2n'/4. Let K = u K J  be a disjoint union. As 
the total number of edges in S ( x , + ~ ) , S ( x , + ~ ) , .  . . ,  S(x0 is smaller than tz we infer that 

To represent the remaining part of the trees T ( X , ~ +  I), T ( x s + 2 ) ,  . . . , T ( x r ) ,  that is, the trees 
Tk with qf~(Tk) = x,, i = s + 1 , .  . . ,e, consider a partial affine plane A? = A ( f i ,  2n""). For 
each i = s + 1,. . . , e  and j = 1,2, .  . . , q i  let 

I K I  5 (n/(fi/2)2n1/4 = 4~ = 0 ( ~ 3 / 4 ) .  

Let IT;jI = f i j .  We will consider a mapping 

$0 that for every i = s + 1 , .  . . , e and j = 1,. . . , q, the members of each T,, get mapped into 
a set of parallel lines. 

For each T E T,, let z H M y  be a 2-representation establishing & ( T )  5 2n"". An 
easy inspection shows that z +-+ M:' U M J  is a 2-representation of edges belonging to 
T ( X , + l ) ,  . . . 1  T ( x t ) .  

Altogether, this subcase requires at most 

elements. 

Case 3. Finally, we consider the edges of C-111. Consider a forest F with vertex set 
X U 3, that is, each u E V ( F )  corresponds to either an element of X or a tree from 3. 
As IV(T')I 2 n1/4 for each T' E B ,  we have lBl 5 O(n'/") and as 1x1 5 U(n'/') we see 
that the number of edges in F (which are precisely type (a) and (b) edges of C-111) does not 
exceed O(n""). 

We show next that the number of edges of type (c) is bounded by O(n3l4) as well. Let 
S, C S be a set of trees T* E S which are connected to at least two vertices of X .  For each 
T" E S, let N ~ ( T * )  = {x E X :  y E ~ ( ~ * ) , { x , y }  E E(T)} .  

The sets {Nx(T*) :  T* E S,} viewed as edges of a hypergraph do not form any cycles and 
thus, 

(c.f. [lo], page 77). As the number of edges of type (c) equals zT*,s,(lNx(T*)l - l),  we 
infer that the number of edges of type (c) is bounded by U(n3l4) as well. 

We now construct a 2-representation of edges belonging to C-Ill. To each edge e E C-111, 
assign a two-element set Me with the property that M e  f l  Me( = 0 for distinct e ,  e' E C-I11 
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and for each z E V ( T )  set 

Clearly, IM;, n M;>I 2 2 if and only if { z , , z 2 }  E C-111 and due to the fact that the total 
number of edges in C-I11 is bounded by O(n’l4) we see that 

In summary then, z H M ;  = u:=, Mil is a 2-representation of T,  that is, IM,, U Mz,I 2 2 
if and only if {ZI, ~ 2 )  E E ( T )  and I U7EV,T)  1 5 O(n”‘), establishing the bound. I 
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