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Abstract

A caterpillaris a tree with the property that the vertices of degree
at least 2 induce a path. We show that for every graph G of order n,
either G or G has a spanning caterpillar of diameter at most 2logn.
Furthermore, we show that if G is a graph of diameter 2 (diameter 3),
then G contains a spanning caterpillar of diameter at most cn®/* (at
most n}. 1 ‘
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1. INTRODUCTION

It is easy to show that for every graph G, either G or the complement G
is connected. Consequently, if 7,, denotes the family of all trees of order n,
_then for every graph G of order n, either G or @ contains a member of 7,
(as a spanning subgraph). Such a family is called complete, that is, a family
Fy of graphs of order n is complete if for every graph ' of order n, either
G or G contains a member of ¥,. Thus, 7, is complete and it is easy to
show that the subfamily 7,(4) of trees of order n and diameter at most 4 is
also complete. In Section 2, we will discuss other complete families of trees
and show, in particular, that C,(2logn) is complete, where Cp(2logn) is
the family of caterpillars of order n and diameter at most 2logn. In Section
3 we will investigate graphs of order n and diameter at most 3 and show that
if ¢ has diameter 2 (diameter 3), ther G contains a spannmg caterpillar
of diameter at most cn®4 (at most n).

2. COMPLETE FAMILIES oF TREES

We begin this section by proving a theorem from graph theory folklore. For
vertices = and y of a graph G, dg(z,y) wiil denote the distance between z
and ¥ in G, i.e., the number of edges in a shortest path from z to y. The
diameter of G, denoted diam(G), is the largest distance between pairs of
vertices of G.

Theorem 1. Let 7,(4) denote the family of trees of order n and diameter
at most 4. Then T,(4) is complete.

Proof. Without loss of generality, we may assume n > 5. Let G bea graph
of order n. If diam(G) < 2, then clearly G contains a spanning tree with
diameter at most 4. Thus we may assume that either & is disconnected or
G has diameter at least 3. In either case, G contains nonadjacent vertices
% and v which have no common neighbors. Therefore, in &, u and v are
adjacent and every other vertex is adjacent to at least one of % and ». Thus,
G contaius a spanning tree of diameter at most 4. n

Let G be the graph of order 55 obtained by replacing each vertex of a
5-cycle with a copy of the complete graph K, and adding edges between
two vertices in different copies of K, if the corresponding vertices of the
. 5-cycle were adjacent. Then neither G nor G contains a spanning tree of
diameter at most 3. Thus, with respect to diameter, Theorem 1 cannot be
improved.
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Recently, Bialostocki, Dierker and Voxman [1] investigated other complete
families of trees. Moreover, they conjectured that the family 5, of brooms
of order n is complete, where a broom (of order n) is a tree consisting of a
star and a path, with one end of the path identified with the central vertex
of the star. The brooms of order 6 are shown in Figure 1.

In [2], Burr settled their conjecture in the affirmative and suggested
that, in fact, only about half of B, is needed for a complete family, We
note that any complete subfamily of B,, necessarily contains the broom of
diameter n — 1, i.e. the path of order n.

000000 Soooo

Figure 1

One property of brooms is that all non-endvertices lie along a single path.
In the remainder of this paper we will focus primarily on complete families
of trees with this property having small diameter.

A caterpillar is a tree with the property that the vertices of degree
at least 2 induce a path. These vertices form the spine of the caterpillar.
Note that if § is the spine of a caterpillar €' of order at least 3, then
diam(C) = |§[+1. In Theorem 2, we will show that C,(2logn) is complete,
where C,(2logn) is the family of caterpillars of order n and diameter at
most 2logn. (Here, logn is log, n.) The following lemma will be useful.

Lemma 1. Let G be a graph of order n and diameter 2. If G contains a
caterpillar C of diameter d, then G contains a spanning caterpillar with
diameter at most d + (|V(G)| - |V(C)]).
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Proof. Let wy,v2,...,04—1 be the vertices in the spine of C, where
vwi1 € E(C),1 £ 4 € d—2. We first construct a caterpillar C’ such
that (i) |V(C)| = [V(C)|+1 and (ii) diam(C") £ diam(C) + 1.

Without loss of generality we may assume that if z is an endvertex
of ¢ and z is adjacent to v;, then =z is mot adjacent to w; for j < 4.
For convenience, we will say that the end vertices have been "shifted left”.
Furthermore, we may assume that no vertex in the spine is adjacent to a
vertex of V(G) — V(C) since in that case we immediately obtain ¢’ with
diam(C") = diam(C). Let y € V(G) ~ V(C). Then, since dg(y,v1) = 2
it follows that there is a vertex = of C such that zv; € E(C) and yz €
E(G). Thus we obtain C’ with spine {z,v1,%z,...,%-1} and diam(C’) =

diam(C) + 1.
Clearly, by repeating this procedure we obtain the desired spanning
caterpillar. ‘ B

A set X of vertices in a graph G is a dominating set if every vertex of
V(G)— X is adjacent to at least one vertex of X. In [3] it was shown that
for every graph G of order n, either G or G has a dominating set X with
| X[ < logn. This result will be used in the proof of Theorem 2.

Theorem 2. Let Cr(2logn) denote the family of caterpillars of order n
and diameter at most 2logn. Then Cn(2logn} is complete.

Proof. It is straightforward to verify the result for n < 4. Thus we assume
n> 5. If G or G is complete, then G or G contains a spanning caterpillar
of diameter 2 (i.e., a spanning star), where 2 < 2logn. Furthermore, if G
or (G is disconnected or has diameter at least 3 then, as in the proof of
Theorem 1, either G' or G contains a spanning caterpillar of diameter at
most 3 and 8 < 2logn. Thus we may assume that diam(G) = diem(G) = 2.

Let uv € E(G) and let A denote those vertices adjacent to neither u
nor v in G. Suppose |4} < 2logn—3. Then,in G'—A, u and v are either
in different components or at distance at least 3. Consequently, as in the
proof of Theorem 1, G — A contains a spanning caterpillar of diameter at
most 3. Thus G contains a caterpillar of diameter at most 3 and it follows
from Lemma 1 that G contains a spanning caterpillar of diameter at most
3+ |A| € 2logn. Thus we may assume that if wo € E(G) then u and v
have at least 2logn — 3 common neighbors in G. Similarly, if wv € E(G),
then u and v have at least 2logn — 3 common neighbors in G.

Let X C V(G) with |X} < logn such that X is a dominating set in
G or G. (The existence of such a set is guaranteed by the aforementioned
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result in. [3]). Assume, without loss of generality, that X dominates G and
X = {v1,v2,...,v}. We claim that thereis a vy — v path in ¢ containing
the vertices of X in the order v,vs,...,%; and such that between v; and
vi41 there is at most one veriex. Suppose such a vy — v; path P has been
constructed for ! < t. If vymyq € E(G) then we may extend P to include
V1. I v € E(G) then v and vy have at least 2logn—32> 21 -1
common neighbors in G. Consequently there is a common neighbor w €
V(G)-V(P)~X and P can be extended to include vry1. Thus G contains
a vy — v path of order at most 2t — 1 containing X and this path forms
the spine of a spanning caterpillar of diameter at most 2logn. |

In [3] it was shown that for fixed &€ > 0 there exists ng = no(e) such
that for each m > no there is a graph G of order n such that no set of
at most (1 — £)logn vertices dominates either & or G. Thus the bound
in Theorem 2 on the diameter of the spanning caterpillars is, in fact, the
correct order of magnitude.

In the proof of Theorem 2, we began with either a caterpillar of diameter
at most 3 or a dominating set of cardinality at most logn and built a
spanning caterpillar of diameter at most 2logn. The same proof technique
can be used to establish Theorem 3.

Theorem 3. If D, denotes the family of trees of order n with diameter
at most 6 and domination number at most logn, then Dy is complete.

3. SPANNING TREES OF SMALL DIAMETER GRAPHS

If G is the graph of Figure 2, then G has diameter 4 and no spanning
caterpillar. In this section we will show that every graph of diameter at
most 3 has a spanning caterpillar.

Figure 2




116 R. FAUDREE, R. GouLp, M. JACOBSON AND L. LESNIAK

Theorem 4. If G is a graph with diameter at most 3, then G contains
a spanning caterpillar. ‘

Proof. If diam(G) =1 then @ is complete and contains a spanuing star.
If diam(G) = 2 then Lemma 1 guarantees the existence of a spanning
caterpillar. Thus we need ounly show that if @ is a graph of diameter 3
then G has a spanning caterpillar. Assume, to the contrary, that G is
an edge-maximal counterexample. Thus, by edge maximality, G contains
two vertex disjoint caterpillars that together span G. Among all such pairs
C1,Cy of disjoint caterpillars that together span (& select a pair such that
[V(Ch)]| is as large as possible. Let v1,%2,..., 9 be the vertices (in order)
of the spine of €y and vi11,vi42,. ..,y be the vertices of the spine of (.
As in the proof of Lemma 1, assume that the endvertices of (1 have been
“shifted left”. Let w be an endvertex of (1 adjacent to v and let u be
an endvertex of €y adjacent to V1. IE Oy s trivial, let w = vpyq. Cleaxly,
da(u, w) # 1 since, by assumption, G' has no spanning caterpillar. Thus,
2 < da{u, w) < 3. Furthermore, by the choice of Cy and C3 we know that:

(1) w is adjacent to no vertex of Cj,

(2) w is adjacent to no ;, 1 < I,

(3) v is adjacent to no vertex of Cs,

(4) v is adjacent to no v;, i < I, and

(5) there is no u — w path whose interior vertices are all endvertices of
01 and Cg.

By (1) and (2), every adjacency of w other than v in G is an endvertex
of C1. Thus, by (4) and (5) there isno v — w path of length 2. Therefore,
dg(u,w) = 3. Let w,21,22,w be a u — w path of length 3. Then by (1)
and (2), either x5 = v or z, is an endvertex of Cy. If 25 = v theu by (3)
and (4) it follows that 2 is an endvertex of Ci. Subsequently C; can be
extended by including z; in the spine and u as an endvertex, contradicting
the maximality of Cj. Therefore zs is an.endvertex of C1. However, then
by (4) and (5), z1 must be a spine vertex of C; and again the maximality
of C1 is contradicted, and the proof is complete. ]

For even n, lét @ be the graph of order n obtained from the graph K, /o U
I?n/z by adding a matching between the set of n/2 isclated vertices and
the remaining n/2 vertices. Then every spanning caterpillar has diameter
n/2+ 1. Thus the (implied) bound in Theorem 4 of n ~ 1 on the smallest
diameter of a spanning caterpillar is the correct order of magnitude for
graphs of diameter 3. For graphs of diameter 2, some improvement can be
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made. The following notation will be useful. Let G be a graph, u a vertex
of G, and H a subgraph of G. Then

Nalu] = {w € V(H)|ww € E(G)}TU {u}.

Theorem 5. There is a constant ¢ such that if G is a graph with

diam(G) = 2, then G contains a spanning caterpillar of diameler at most
end/4,

Proof. We first show that G contains a dominating set with at most
9n3/4 vertices. Let u; be a vertex of G with deggu; > n'/* and set
Uy = Nglui]. Let uy € V(G) with deggiqus 2 /4 and set Uy =
Ng_u; [uz]. Continue in this fashion to obtain a maximal length sequence

of vertices uy,tg,...,us,t > 1, where dego_iy—tye..~th_, % = n*/* and
U = NG—-ul—l(g—...—Hg_l[uI] for { = 1,2,...,t, and let A = V(G) — U —
Ly —...—U. Then t < n3/4 and A(< A >) < n'/% ¥ |A] < n%/4, then

AU {ug,ug,...,u} is the desired dominating set. We show that this must
be the case. Assume, to the contrary, that {A| = kn3/%, where k > 1.
Fach of the (1/2”) pairs of vertices of A are at distance 1 or 2in G. Since
A(< A >) < nlf4, < A > hasfewerthan (|A|'n/4)/2 edges. Furthermore,
the number of pairs of vertices of A with a common neighborin A is less

than |4]- (""12/4). Thus, more than

© { kn3/4 kn 3/4 ptft
(2 )_?“’"” "\ g

pairs of vertices of A have a common neighbor in V(G) — A, implying that

more than
En3/2  kn  knd/t
2 2 2
pairs of vertices in A have a common neighbor in V(G) — A. However, each
vertexin V(G)— A is adjacent to fewer than n!/* vertices of A. Therefore
the number of pairs of vertices in A with a common neighbor in V(G) - A

is lgss than

We conclude that

E2n3l2  kn knS/t pdl2 pdlt

2 ) g <3 T2




118 R. FAuDrEE, R. Gourp, M. JACOBSON AND L. LESNIAK

which is a contradiction for k£ > 1 and n sufficiently large. Thus G has a
dominating set X with ¢ < 2n3%/* vertices.

‘We complete the proof by showing that the vertices of X are contained
in the spine 5 of a caterpillar of G in which

(1) consecutive vertices of X in < § > are at distance at most 3 in
< & > and

(2) < § > begins and ends with a vertex of X,

Suppose [ < t vertices of X are contained in such a caterpillar ¢ with
spine §’. We assume that no vertex of X is an endvertex of ¢ and that
the endvertices of C' have been “shifted left.,” Furthermore, we assume that
if ue V(G)—- X~ 5 and u is adjacent to a vertex in §’, then % is an
endvertex of C. Let 23 € X be the rightmost spine vertex of C and let
z3 € X —V(C). Furthermore, let w be an endvertex of C adjacent to z.
If no such w exists, then we may replace z; in X by its predecessor on
the spine §' and continue. Then dg(w,z;) < 2. If wzy € E(G) we can
easily extend C toinclude w and z; as spine vertices. If dg(w,=s) = 2,
then, as in the proofs of previous results, w and z; must have a common
neighbor y that is not on the spine of C (where y may or may not be in
X.) In either case, we can extend the spme of C toinclude w,y,z5, and
the proof is complete. =
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