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Abstract 

A non-Hamiltonian cycle C in a graph G is extendable if there is a cycle C' in G with 
V(C')= V(C) with one more vertex than C. For any integer k~>0, a cycle C is k-chord 
extendable if it is extendable to the cycle C' using at most k of the chords of the cycle C. It will be 
shown that if G is a graph of order n, then 6(G)>3n/4-1 implies that any proper cycle is 
0-chord extendable, 6(G)>5n/9 implies that any proper cycle is 1-chord extendable, and 
6(G)>Ln/2 j implies that any proper cycle is 2-chord extendable. Also, each of these results is 
sharp in the sense that the minimum degree condition cannot, in general, be lowered. 

1. Introduction 

Only finite graphs without  loops or multiple edges will be considered. The degree of 

vertex v of G will be denoted by dG(v) or just d(v), and ds(v) will represent the degree 
relative to a subset S of vertices. The ne ighborhood  of v in S (vertices of S adjacent to 
v) will be denoted by Ns(v) or just N(v) when S = V(G), The minimum degree of G will 

be denoted by 6(G). 
In I-2,3] Hendry  introduced the concept  of cycle extendability in graphs and 

directed graphs. His definition of a cycle being extendable is the following. 

Definition 1. A cycle C in a graph G is extendable if there is a cycle C '  in G such that 

V(C) ~ V(C') and I V(C')[ = I V(C)I + 1. 
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Hendry, in studying extendability, considered, among other things, degree condi- 
tions on a graph G that imply that a graph is Hamiltonian, like the following classical 
condition of Dirac (see [-1]). 

Theorem 1 (Dirac [l l) .  I f  G is a graph of order n>~3 with 6(G)>~n/2, then G is 
Hamiltonian. 

In [2] Hendry showed that the condition of Dirac implies that each cycle of the 
graph can be extended except for cycles in some special classes of graphs. We will 
consider a more restricted form of cycle extendability by placing requirements on the 
number of edges in the original cycle that remain in an extended cycle. A chord of 
a cycle C is any edge between vertices in the cycle that is not in the cycle. 

Definition 2. For any integer k ~> 0, a cycle C is k-chord extendable if it is extendable to 
a cycle C' with the cycle C' using at most k of the chords of the cycle C. A graph G is 
k-chord extendable if each non-Hamiltonian cycle of G is k-chord extendable. 

We will consider Dirac type conditions that imply that a graph is k-chord extend- 
able. For any integer k/> 0, the following result, which determines the minimum degree 
in a graph that implies that the graph is k-chord extendable, will be proved. 

Theorem 2. Let G be a graph of order n >13. Then, 
6(G) > 3 n / 4 - 1  implies that G is O-chord extendable, 
6(G) > 5n/9 implies that G is 1-chord extendable, and 
6(G) > L n/2 J implies that G is 2-chord extendable. 

Also, each result is sharp for infinitely many integers n. 

Note that there exist graphs of order n and minimum degree n/2 with cycles that are 
not extendable, for example a complete bipartite graph. Therefore, no degree condi- 
tion less restrictive than 6 (G)> L n/2 J will alone imply k-chord extendability for any k. 

2. O-chord extendable graphs 

A cycle C is O-chord extendable if and only if there is a vertex x q~ V(C) that is 
adjacent to two consecutive vertices on the cycle. We next determine the minimum 
degree condition that insures that each cycle of length m in a graph of order n is 
O-chord extendable. First we will describe examples that give lower bounds on the 
minimum degree required to imply that a cycle is O-chord extendable. 

Example 1. For any m = 2k < n, consider the graph H,  (n even) of order n obtained 
from a C4 by replacing the four vertices (in cyclic order) by complete graphs of order k, 
k, [_(n- 2k)/2 J, and [-(n- 2k)/2 qp respectively, and by replacing each edge of the C4 by 
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an appropriate complete bipartite graph. Consider any cycle C,. in the complete 
bipartite graph K , . ,  of H, .  This cycle is not 0-chord extendable since each vertex not 

in C,, is adjacent only to alternating vertices on the cycle C,., and so is not adjacent to 
two consecutive vertices of the cycle. There are at most three distinct degrees of the 
vertices of H, ,  and so it is easy to verify that 

di(H,)=min n - ~ -  1, 2 " 

Example 2. Similar examples exist when the length of the cycle m is odd. In this case, 
start with the disjoint union of two complete graphs K,, w K n _  m. Fix a cycle Cm of 
length m in the K,,. Let H,  be the graph obtained by adding edges between the K,, and 
the K._, ,  such that each vertex not in the C., is adjacent to ( m -  1)/2 vertices of the 

cycle that are not pairwise consecutive. Also, the edges are added such that the degrees 
of the vertices in C,, do not differ by more than 1. Thus, the vertices not on the cycle 
have degree n - m - l + ( m - 1 ) / 2 = n - ( m + 3 ) / 2 ,  and the vertices on the cycle have 
degree either m -  1 + L ( n - m ) ( m -  1)/(2m)J or m -  1 + [ - ( n - m ) ( m -  1)/(2m)]. Thus, 

H,  is not 0-chord extendable and has minimum degree 

( 6 ( H . ) = m i n  n 2 ' 2m ' 

Theorem 3. Let G be a graph of  order n~>3, and O <~ m < n an integer. Then fi)r m even, 

6 ( G ) > m i n  n - ~ - - 1 ,  n + m - 2 2  " 

implies that each C,, is O-chord extendable, and for  m odd, 

( m+3 L(ml,(n+m, lt 6 (G )> m i n  n 2 ' 2m 

implies that each C,. is O-chord extendable. Also, the result is sharp. 

Proof. Let C,, be a cycle that is not 0-chord extendable in a graph G of order n that 
satisfies the minimum degree condition of Theorem 3. First consider the case of 
m even. Thus, each vertex not on the cycle is adjacent to at most m/2 vertices on the 
cycle, and so has degree at most n - m - 1  + m/2 = n - m / 2 - 1 .  Also, two consecutive 
vertices on the cycle cannot have a common adjacency off of the cycle, and so there is 
a vertex on C,, that has degree at most m - 1  +L ( n - m ) / 2  ]. This contradicts the 

minimum degree condition on G. 
When m is odd, each vertex not on the cycle C,. is adjacent to at most ( m -  1)/2 

vertices on the cycle. Thus, each vertex not on the cycle has degree at most 
n -  m -  1 - I - (m-  1)/2, and there are at most ( n -  m ) ( m -  1)/2 edges between the vertices 
on the cycle and of fof the  cycle. Hence, some vertex on the cycle C., has degree at most 



c

m - l + l ( n - m ) ( m - 1 ) / 2 m J .  This contradicts the minimum degree condition on 
G and completes the proof  that the stated minimum degree conditions are sufficient 
for 0-chord extendability. 

Examples 1 and 2 verify that Theorem 3 is sharp. [] 

An immediate consequence of Theorem 3 is the following corollary. 

Corollary 1. l f  G is a graph of order n>~3 with 6(G)> 3n /4 -1 ,  then G is O-chord 
extendable. Also, the result is sharp. 

3. 2-chord extendable graphs 

A cycle Cm = (Xl, X2 . . . . .  X,., X 1) of length m is 2-chord extendable in a graph G if and 
only if there is a vertex x ~ V(C,,) such that there is a cycle of length m + l containing 

Cm and x, and using at most two chords of C,.. For  example, this is true if there exists 

integers i < j < k (taken modulo m) such that xxi, xx  j, Xi + l Xk, X j + l Xk + 1 e E(G), since 

Urn+ 1 ~ ( x ,  x i , x i - 1 ,  . . .  ,Xk+ l ,X j+ l , X j +  2, . . .  ,Xk ,Xi+ l ,X i+  2, . . .  , X j _  1 ,Xj ,  X) 

is a cycle of length m +  1 using only two chords of Cm, namely Xi+lXk, Xi+lXk+I. 
Observe that if k = j +  1, then the cycle Cm+~ uses only one chord of Cm and we get 
1-chord extendability, and in the case k = j  = i+  1, then C,,+ 1 is a 0-chord extension of 

Cm. If there exist integers i < k < j  (taken modulo m) such that xxi ,xxi ,  x i+lx  k, 
x j+ xXk-~ eE(G), then C,, is also 2- chord extendable. There are other configurations 
that give 2-chord extendability, but the configurations just described will be sufficient 
for our purposes. 

Example 3. For  n even, the complete bipartite graph Kn/2, n/2 has minimum degree n/2, 
and no proper even cycle C,, is extendable since there are no odd cycles. If n is odd, 
then consider the graph H .  obtained from the complete bipartite graph 

K(n-1)/2,(n+l)/2 by adding a single edge e into the large part. The graph H.  has 
minimum degree ( n -  1)/2, and any even cycle Cm that does not contain both endverti- 
ces of the added edge e is not extendable, since any odd cycle must contain the edge e. 

Theorem 4. A graph G of order n>>-3 is extendable (in fact 2-chord extendable) if 
6(G)>ln/2 ]. Also, the minimal degree condition cannot be lowered without losing 
2-chord extendability. 

Proof. Assume that G is a graph of order n with 6(G) >[_ n/2J, and C = Cm is a proper 
cycle that is not 2-chord extendable. Let A be the vertices of G not in C. If each vertex 
of A has at most one adjacency in C, then there will be at most n -  m edges between 
C and A. This implies that each vertex of A has degree at most n -  m, and some vertex 
of C has degree at most m - 1 + ( n -  m)/m. The minimum degree condition implies that 
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n - m > [ n / 2 J ,  which gives that n>2m.  On the other hand, the min imum degree 
condit ion implies that m - 1  + ( n - m ) / m  >1 n/2,and this gives n ~ 2m. This gives a con- 

tradiction, so we can assume that  there is a vertex in A that is adjacent t at least two 

vertices of C. 

Let x ~ A  such that xxi ,  x x j~E(G)  with i < j .  I f j = i +  1, then C is 0-chord extendable, 

so we can assume that j > i +  1. If x~+lxj+~eE(G),  then 

(X, Xi ,Xi  1 , . . . ~ X j + I , X i + I , X i + 2 ~ . . . , X j ,  X) 

is a cycle of length m + 1, which implies that C is 1-chord extendable, a contradiction. 

Thus, we can assume that x i+lx j+x  q~ E(G). 

If there is an integer k with i <  j < k such that xi+ lXk, x j+ 1 xk + 1 ~ E(G), then we have 

already observed that C is 2-chord extendable in this case. Also, if there is an integer 

k with i < k < j such that xi + i xk, x j+ ~ Xk- ~ sE(G),  then C is 2-chord extendable. These 

two observations imply that 

dc(xi+ 1 )+dc(x j+ 1)~<m. 

If x i+1 and x j+l  have no c o m m o n  adjacency in A, then dA(Xi+l)+ dA(xj+~)<<, n- -m,  
which implies that d(x i+ l )+  d(Xj+l)<~ n and there is a vertex of degree at most  [_ n/2 J, 
a contradiction.  Hence, we can assume there is a y e A  commonly  adjacent to xi+ ~ and 

xj+ i. Note  that xi and xj  play the same role as Xi+l and x j+l ,  so dc(xO+dc(xj)<~m. 

Since C is not 0-chord extendable, dA(x i )+da(X i+ l )~n - - rn  and dA(Xj)+dA(xj+ 1)4 
n--m.  This implies that 

d(xl) + d(xi + 1) + d(x j) + d(x j+ 1) <<. 2 (n - rn )  + 2 m =  2n, 

which implies the existence of  a vertex of degree at most  [_n/2J. This contradict ion 

completes the positive proof  of Theorem 4. 
The graphs in Example 3 verify that  the condit ion in Theorem 4 cannot  be 

improved. [] 

Theorem 4 cannot  be improved because, for example, no even cycle Cm of K,/2.,/2 is 
extendable. For  small odd cycles C,, the min imum degree needed for 2-chord extenda- 

bility can be reduced to 6 > [ _ ( n - m ) ( m - l ) / ( 2 m ) + 2 J  and this is sharp. We shall see, 

however, in Section 4 that in fact this min imum degree condit ion implies that Cm is 

1-chord extendable, so we delay the proof  until Section 4. 

4. 1-chord extendable graphs 

A cycle C m = ( X I , X  2 . . . . .  Xm, X1) is l -chord  extendable if and only if there exists 
a vertex x not in Cm and an i such that xxi  and xxi  + 1 ~ E(G) (C,, is 0-chord extendable) 
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or there exist integers i and j such that xxi, xxj, and xi+ 1 xj+ 16E(G), so that there is 
the cycle 

Cm+ I : ( X ,  X i , X i - 1 ,  " " ,X j+  I ,Xi+ I,Xi+ 2, "" ,Xj ,  X)" 

Let 6.(m) denote the minimum integer such that if G is a graph of order n with 
6(G)>6.(m), then any cycle Cm of length m is 1-chord extendable. In this section, 
bounds on the function 6. will be given. 

We start with some examples that give lower bounds for the function 6.. Recall 
from Example 3 that no proper even cycle Cm is extendable in Kn/2,./2, and in 
K(n_l)/2,tn+l)/2+e (the edge e is added to the larger part) no proper even cycle not 
containing both endvertices of e is extendable. Therefore, 6.(m)>Ln/2J for m even. 

Example 4, For  n divisible by 3 and k<n/3,  consider the graph Kn_3kk.3gk,k,k ,  

a disjoint union of a complete graph of order n -  3k and a complete tripartite graph 
with parts of order k. Let A 1 , A  2 and A3 denote the vertices in the parts of the 
tripartite graph, and partition the vertices of the Kn_ak into three sets Ba, B2 and Ba, 
each with n / 3 - k  vertices. Let H.(3k) denote the graph obtained from the graph 
Kn_aRW Kk, k, k by adding the edges between Ai and B i for 1 ~<i~<3. For m=3k,  let 
C., denote a cycle of length m in the Kk,k, k in which every third vertex is from the same 
Ai. It is easy to verify that in the graph H.(3k) the cycle C,. is not 1-chord extendable 
(although it is 2-chord extendable), and 6(H.(3k))=min{n/3 + k, n - 2 k - 1 } .  In terms 
of the length of the cycle Cm, 

6(H,(m))=min , n - ~ - - -  1 . 

Therefore, 6,(m) > min { (n + m)/3, n - 2m/3 - 1 }. Note that for n/2 <. m <~ 3 ( n -  2)/4 we 
have min {(n + m)/3, n -  2 m / 3 -  1 } >1 n/2, and so this gives an improved lower bound 
for 6,(m) in this interval. When ( n + m ) / 3 = n - 2 m / 3 - 1  (i.e. when m=(2n-3) /3) ,  the 
maximum value of this minimum is attained, and it is ( 5 n -  3)/9. Hence, any minimum 
degree condition implies that the l-chord extendability of all proper cycles must 
exceed ( 5 n -  3)/9. 

Example 5. Let m be an odd integer with 3 ~< m < n. Start with the graph Cm W K,_  m, 
and let R. be the graph obtained by making each vertex of the K.-m adjacent to 
precisely ( m -  1)/2 nonconsecutive vertices of the Cm in such a way that the degree of 
any two vertices in the Cm differs by at most 1. Each vertex in the K.-m has degree 
(2n - m - 3)/2, and each vertex in the C,. has degree either [- (n - m) ( m -  1)/(2m) + 2-] or 
L (n -- m) (m -- 1)/(2m) + 2 J. Clearly in g .  the minimum degree is L (n -- m)(m -- 1)/(2m) + 2_] 
for n/> 8, and the cycle C,. is not 1-chord extendable. It is easily verified that the 
minimum degree L(n- m)(m-- 1)/(2m) + 2 J of Example 5 is greater than or equal to the 
minimum degree (n + m)/3 of Example 4 precisely when m <~ n/5. Thus, Example 5 gives 
a better lower bound for 6.(m) when m <~ n/5 and m is odd. 
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Example 6. For  integers m and n with m > n/2 ~> 2 start with the graph Cm u K,_, , .  

Select m - L  n/2_l vertices on the cycle by starting with some vertex and selecting every 

other  vertex along the cycle, and denote this set by A. Let B be the m - L n / 2 J + l  
neighbors of  the vertices of A along the cycle. Fo rm a graph S, by adding to 
C,. u K._, ,  all of the edges between the K,  ,, and A, and all of the edges between the 

vertices in the C,. except for those between vertices in B. The vertices in the K,_m have 

degree [ n / 2 ] - 1  and the vertices in B have degree [_n/2J-1. Thus, the minimum 

degree in S, is Ln/2J-  1, and the cycle C,. cannot  be 1-chord extended. I fm is an even 

cycle, then the bipartite graph of  Example 1 gives a better lower bound  for (~,(m), but 
for odd cycles C,, the bound  Ln/2J-1 of this example is greater than the bound  

n -  2m/3 - 1 of Example 4 if m ~>(3n + 3)/4. 

The examples give lower bound  for the function 6,. We now determine some upper 

bounds  for this function. We start with extending small cycles. 

Theorem $. I f  G is a graph of order n >~ 3 with 6(G) >L n/2 j and m <~ n/3, then any cycle 
C,, of length m is 1-chord extendable. 

Proof. Let C = C,. = (x 1, x2 . . . . . .  x,,, x l) be a cycle that is not  1-chord extendable, and 

we will show that this leads to a contradiction.  Denote  the vertices not in the cycle 

C by A. Select consecutive vertices u = x l  and v=x2 on the cycle C. 
Since C is not  1-chord extendabled, u and v have no c o m m o n  adjacency off of the 

cycle, so dA (u) + dA (v) ~< n -- m. Thus, by assumption, dc(u) + dc(v) > m. This implies that 

there is a vertex XkeC such that UXk and VXk+zSE(G); for otherwise, if UXkeE(G), then 

UXk + 2 ~ E(G), which implies that dc(v) <~ m -  dc(u), a contradiction. Then, let w = Xk + 1. 
Note  that if u and w have a c o m m o n  adjacency, say x off of the cycle C, then C is 
1-chord extendable by the following cycle: 

( X ,  U, X m ,  X m _ 1 ,  " • " , X k  + 2 ,  U, X 3 , . . .  , X k ,  W ,  X ) .  

Thus, when u and v have the 'skipped crossing pattern' that  produced the vertex w, we 

can assume that u and w have no c o m m o n  adjacencies off of the cycle, and likewise the 
same is true for v and w. This implies that the ne ighborhoods  of u, v and w in A are 
pairwise disjoint. 

Two cases will be considered, when dc(u)+dc(v)>(n+l)/2 and when 

m<dc(u)+dc(v)<~(n+ 1)/2. We consider the latter case first. Since dc(u)+dc(v)>m, 
u and v have a 'skipped crossing pattern' ,  so there is a vertex w on C such that the 

ne ighborhood  of u, v, and w in A are pairwise disjoint. Therefore 

3n n + 1 3n--  1 
~ < d ( u ) + d ( v ) + d ( w ) < , N ( n - m ) + ~ - + ( m - 1 ) < ~  2 ' 

a contradiction.  
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We are left with the case dc(u )+dc(v )>(n+ 1)/2. If u and v have a "double skipped 

crossin9 pattern' (u is ad jacen t  to Xk and Xk+ 1 and v is ad jacent  to Xk+2 and Xk+3), then 

w = X k + 1 and w' ---- Xk + 2 are  bo th  vertices in a ' sk ipped  crossing pat tern ' .  This gives that  

u, v, w, and  w' have pairwise  dis joint  ne ighbo rhoods  in A, which implies that  

2n < d(u) + d(v) + d(w) + d(w') <~ ( n - m )  + 4 ( m -  1)~<2n-4 ,  

a cont rad ic t ion .  Hence,  we can assume that  we do  not  have a ' doub le  sk ipped crossing 

pa t t e rn '  with u and  v. Thus,  in any interval  (xl, xi + 1, xl + 2, x~ + 3) of C, and  for any i with 

3 ~< i ~< m -  3, one of  uxi, ux~ + 1, vxl + z, vx~ + 3 is not  in E(G). Therefore,  count ing  mult i -  

plicities, there will be at least m - 5  edges from u or  v not  in E(G). N o  edge will be 

coun ted  more  than  twice in the missing collect ion,  so there are at least ( m - 5 ) / 2  

missing edges, and  dc(u) + dc(v) <<. 2 ( m -  1) - (m - 5)/2 = (3m + 1)/2. This gives 

n + l  3 m + l  n + l  
2 < dc(u) + dc(v) <~ ~ <~ 2 

a cont rad ic t ion ,  which comple tes  the p roo f  of  this case and of Theorem 5. [] 

F o r  small  odd  cycles the m i n i m u m  degree needed for 1-chord extendabi l i ty  is less 

than  tha t  required in Theorem 5, as the fol lowing theorem verifies. 

Theorem 6. I f  G is a graph o f  order n>~ 3 with 6 ( G ) > L ( n - m ) ( m - 1 ) / ( 2 m ) +  2 J, where 

m is an odd integer satisfyin9 3 <~ m <~, , /~,  then any cycle C,, is 1-chord extendable. 

Proof.  Let  C be a cycle of  length m that  is not  1-chord extendable.  Deno te  the vertices 

not  in C by A and  let v be a vertex in C such tha t  dc(v) = t is a max imum.  If t = 2 then 

C has no chords.  

Since C is not  1-chord extendable ,  each vertex of A is ad jacent  to at most  ( m -  1)/2 

vertices of C. Thus,  there  are at  most  ( n - m ) ( m - 1 ) / 2  edges between C and A. Hence,  

some vertex x of C has degree at mos t  I ( n - m ) ( m - 1 ) / 2 + 2 J  in G, con t rad ic t ing  the 

m i n i m u m  degree condi t ion .  Thus  t >i 3. 

Since t/> 3, there is a chord  vz such that  one of the pa ths  from v to z of C together  

with the chord  vz of C is an odd  cycle C '  of  o rde r  at mos t  m + 2 - 2 F t / 2  ~. Let C ' =  

(v, Vo, Wo, vl, w2 . . . . .  vt, wt = z, v), where then l <~ F(m - t)/2 7 -  1. 

Let 6 = [_(n-  m ) ( m -  1)/(2m)+ 3 A- Then for each vertex x of C, we have da(x)/> 6 -  t. 

Let  X, Y, and  Z be sets of J - t  vertices each such that  X ~ N A ( V O )  , Y c N a ( w o )  and 

Z C N A ( V l ) .  Note  tha t  X and  Y are dis joint  as are Y and Z, since G is not  1-chord 

extendable .  Let  S = A - X --  Y and  S '  = A - Y -  Z. F o r  1 ~< i ~< l, define 

X I = N A ( v i ) ~ X ,  Y i = N A ( w i ) ~  Y, Z i = N A ( l J i ) ~ Z .  

Cons ide r  X1. Since d A (vi ) >~ 6 -  t and  N A (V l ) c~ Y =  O, it follows that  N A (V l ) c  S u X 

and  so I X 11 ~> 6 - t - [ S I. Similarly,  consider ing wl and  Y, we see that  NA(wl ) c S'  ~ Y, 
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implying that  I Y1 ] >~ 6 - t - [S'] = 6 -- t - ] S [. Finally, considering v2 and Z, we see that  
]Zz[<~c~-t-]S]. More  generally, for i~<2 we have that  

N A( I ) i )~S  L) (Y-  Yi- 1) k_) X 

and 

Thus, 

and 

N A ( W i ) c S '  k _ ) ( Z - - Z i ) k J  Y. 

I X , l > a - t - I S l - l  Y -  Y, ll=l Y i - , I - ISI  

I El ~ - t - I S l - I Z - Z , I  =[Z,l-ISI. 

Consequently, 

IX21~>lYll-Ial>~6-t-21sI 

and 

I YzI>IZ21-1SI~6-t-21SI. 

Fur thermore ,  since vs and Z have the same relat ionship as do v2 and X, it follows that  

1231 >~6-t-21Sl. In general, we have 

I x , l > ~ - t - i l S I ,  I Yil~>,~-¢-/ISl, I z , l > ~ - t - ( i - l ) l S l .  

Let w be the vertex in V(C)- V(C') that  is adjacent  to w~. Then, as in the previous 

argument ,  if W=NA(W) C~X, then IWl>~6-t-(l+l)lSI. We will show that  I Wl>0. 
Now,  

,n ,,m 1, j 
F-t= L 2m + 3 - t  > + 2 - t - -  

Also, 

ISl = n - m -  2 ( f - t ) <  n- + 2t-- 5. 
m 

Thus, 

/ / m - t + l . )  n 2t 

Therefore  6 - t > ( l +  1)1SI if 

(n) (~21)4-2- - t - -~-21>(m-- ;+l ) (n+2t - -5)  

or, equivalently,  if 

( ) m_l > m--t+12 ( 2 t - - 5 ) + t + ~ - 2 .  

m - I  
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Since 3<<.t<<.m-1 and m <  n , , ~ ,  we conclude that I w l > 0 .  Let w'eW. Then 

w', Vo, Wo, vl, wa . . . .  , vt, wl = z, v, P, w, w' is a 1-chord extension of C, where P is a v -  w 
subpath of C disjoint from C'  except for v. This contradiction completes the proof  of 

Theorem 6. ½ 

Note that Example 5 shows that the condition in Theorem 6 is the best possible. 

Also, since L(n-m)(m-1) / (2m)+2J<ln /2J ,  Theorem 6 is an improvement of 
Theorem 5. 

The same proof  techniques used in Theorem 5 can be used to verify the following. 

Theorem 7. I f  G is a graph of order n>~ 3 with 6(G)>(n+ 3m)/4 and m~n/3, then each 
cycle Cm is 1-chord extendable. 

Proof. As was done in the proof  of Theorem 5, let C=Cm=(x l , x2 , . . . , x , , x l )  be 
a cycle that is not 1-chord extendable, denote the vertices not in the cycle C by A, 
and select consecutive vertices u=xl  and v=x2 on the cycle C. Since u and v have 
no common adjacencies in A, dc(u)+dc(v)>2(n+3m)/4-(n-m)=(5m-n)/2>>.m 
because n ~< 3m. 

We will first consider the case m <dc(u)+dc(v)<~(3m + 2)/2. From previous argu- 
ments we know that u and v have a 'skipped crossing pattern', so there is a weC such 
that u, v, and w have pairwise disjoint neighborhoods in A. This implies that 

3(n+3m) 3 m + 2  3m 
4 < d ( u ) + d ( v ) + d ( w ) < ~ ( n - m ) + ~ 2 - - + ( m - 1 ) = n + 2 -  

However, this inequality is equivalent to m < n/3, a contradiction. 
Next we consider the case when dc(u)+dc(v)>(3m+2)/2. In an argument of 

Theorem 5 it was shown that this degree condition is sufficient to imply u and v have 
a 'doubly skipped crossing pattern'. Thus there exist vertices w and w' in C such that u, 
v, w, and w' have pairwise disjoint neighborhoods in A. Thus, we have 

n+ 3m<d(u)+d(v)+d(w)+d(w')<~(n-m)+4(m- 1 ) = n + 3 m - 4 ,  

a contradiction, which completes the proof of this case and of Theorem 7. [] 

The upper bound on the function 6,(m) from the previous result can be improved 
significantly for large values of m. The next result is such an improvement for m >~ n/2. 

Theorem 8. I f  G is a graph of order n>~3 with 6(G)>(3n-m)/4, then any cycle Cm is 
1-chord extendable. 

Proof. Again, let C = C,, = ( x l ,  x2 . . . . .  x m, xl)  be a cycle that is not 1-chord extend- 
able, and denote the vertices not in the cycle C by A. If there were no edges between 
C and A, then in one of the components of G there would be a vertex of degree less 



R.J. Faudree et al. / Discrete Mathemat ics  141 (1995)  109 122 119 

than  n/2, a cont rad ic t ion .  Select consecut ive vertices u=x~ and  v = x 2  on the cycle 

X such tha t  at least  one of these vertices is ad jacent  to a vertex in A. Since u and v have 

no c o m m o n  adjacency  in A, dA(u)+dA(V)<~n--m, SO we can assume that  

dA(v)<~(n--m)/2 and  u is ad jacent  to a vertex w~A. 

Cons ide r  the nonad jacen t  pa i r  v, w of  vertices, and  note that  if VXk and WXk - 1 ~ E(G), 

then C,, is 1-chord ex tendable  by the cycle 

Crn+ l ~ ( W , U ,  X2  . . . .  , X k ,  V ,X  3 , . . . , X k -  l , X ) .  

We can assume that  this does not  occur,  so dc(w)<~ m - d e ( v ) ,  since each ad jacency  of 

v on C forces a nonad jacency  of  w on C. Hence, we have 

(3n - m)/2 < d(u) + d(v) <~ (n - m)/2 + (n - m - 1) + m = (3n - m)/2 - 1, 

a con t rad ic t ion ,  which comple tes  the p roo f  of Theorem 8. E_J 

The  next two lemmas will be needed in the p roo f  of the next theorem.  

L e m m a  1. Let C be a cycle in a graph G of  order n ~ 3 that is not 1-chord extendable. U 

6(G)>~n/2, then each vertex o f  C is adjacent to a vertex not in C. 

Proof .  Let  C = ( x l , x 2  . . . . .  x, , ,x~) be a cycle that  is not  1-chord extendable ,  and 

denote  the vertices not  in the cycle C by A. Assume tha t  there is a vertex in C with no 

ad jacency  in A. If there  were no edges between C and  A, then in one of  the c ompone n t s  

of  G there would  be a vertex of  degree less than n/2, a cont radic t ion .  

Wi th  no loss of general i ty  we can assume that  u = x l  has no ad jacency  in A but  x 2 is 

ad jacen t  to v~A. If VXk~E(G), then UXk- 1 q~ E(G), because the fol lowing cycle C '  would  

imply  that  C was 1-chord extendable .  

C ' ~ ( U ,  X k -  l , X k -  2,  . . .  , X 2 ,  U, X k , X k  + I , . . .  , X m ,  U ). 

Therefore,  dc(u)<<,m-dc(v). Since u has no adjacencies  in A, it follows that  

d(u)+d(v)<n ,  and so one of u or  v has degree less than  n/2. This con t rad ic t ion  

comple tes  the p r o o f  of  L e m m a  1. 

P r o o f  techniques s imilar  to those used in the p roo f  of L e m m a  1 can be used to prove 

the fol lowing more  special ized lemma.  

L e m m a  2. Let  G be a graph o f  order n >~ 3 with 6(G) > n/2 + In for  some positive number 

I, and let C be a cycle o f  length n/2 + pn for  some p that is not 1-chord extendable. I f  there 

is a vertex u c A  with dc(u)= rn, then there is a vertex v in C with d A (V)> (r + l--p)n. A Iso, 

for  each vertex w6C,  dA(w)> 21n+ 1. 

Proof.  Let  C = ( x l , x 2  . . . . .  x , , ,X l )  be the cycle that  is not  l - c h o r d  ex tendable  with 

m = n / 2 + p n .  Let u be a vertex in A with dc(u)=rn, let R be the rn neighbors  o f u  in C, 
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and let R + be the successors of  the set R along the cycle C. If v is a vertex in R +, then 

v is not  adjacent to any vertex in R ÷, for if so, then C would be 1-chord extendable. 

Thus, dc(v) <~ n/2 + pn - rn, and so  d A (1)) > n/2 + ln-- (n/2 + pn--  rn) = (r + I-- p)n. 

Each vertex u' in A has dc(u') > n/2 + l n -  ( n / 2 -  p n -  1) = In + pn + 1. Also, each 

vertex w ~ C  is the successor along C of some neighbor  in C of a vertex u'~A,  since by 

Lemma 1 each vertex of C has a neighbor in A. A repeat of the a rgument  of 

Lemma 1 with u' replacing u and w replacing v implies that d A ( w ) > ( I n + p n +  1)+ 
I n - p n  = 21n + 1. This completes the proof  of Lemma 2. [] 

Note  that  I > 0 in the previous lemma, but p can be negative as well as positive. With 

these two lemmas, we are ready to prove the following. 

Theorem 9. I f  G is graph of  order n >7 3 with 6(G) > 5n/9, then any proper cycle C of  G is 

1-chord extendable. Also, the minimal degree condition 6(G)~>(5n-3)/9 will not insure 

1-chord extendability. 

Proof. Example 2 shows that  6(G)>~(5n-3)/9 will not  insure 1-chord extendability. 

For  the positive proof, let C = C m = ( x l , x 2  . . . . .  x , , ,x~)  be a cycle that is not  1-chord 

extendable, with m =  n /2+pn  for some number  p. We will show that this leads to 

a contradiction.  

Let u be a vertex in C such that dA(U)=tn is a maximum. Let v be a neighbor of 

u along the cycle C; in fact, we can assume that u = x ~  and v = x 2 .  By Lemma 2, each 
vertex in C has at least 2 ( 5 n / 9 - n / 2 ) + l = ( n + 9 ) / 9  adjacencies in A. Thus 
dA(v) =(n  + 9)/9 + rn for some nonnegative number  r. Since C is not  1-chord extend- 

able, the ne ighborhoods  of u and v in A are disjoint, and their union contains 

t n + ( n + 9 ) / 9 + r n  vertices. This implies that t n + ( n + 9 ) / 9 + r n < ~ ( 1 / 2 - p ) n ,  and so 

p + t < 7 / 1 8 .  
Let A'  be the vertices of A that are not adjacent to either u or v. Hence, 

Also, 

] A'[ = n / 2 - p n -  (tn + (n + 9)/9 + rn) = ( 7 / 1 8 - p -  t -  r) n -  1. 

5n) n + 9 
dc(u)+dc(v)>~2 ~ -  - t n  9 r n = ( 1 - - t - - r ) n - - 1 .  

This implies that, using the same count ing techniques as in Theorem 5, there are at 
least (1 -- t - r) n - 1 -- (n/2 + pn) = (1/2 - t -- p - r) n -- 1 different 'skipped crossing pat- 
terns'  from u and v (i.e. uxk and vxk+2~E(G) and the central vertex Xk+l has no 

c o m m o n  adjacencies with either u or  v in A). Let B be the set of central vertices in the 
'skipped crossing patterns'.  Thus [B] >~ (1/2 - t - p - -  r)n - 1. 

Each vertex of  B has at least (n + 9)/9 adjacencies in A, and all of these adjacencies 
must  be in A'. Therefore, the number  of edges between A' and B is at least 
((n+9)/9)]B[. Thus, there is some vertex in w ~ A '  with dc(w)>~((n+9)/9)lB[/]A'l .  By 
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the maximality of tn=da(u) and by Lemma 2, we have dc(w)~tn-(n/18-pn)= 
( t+p-  1)/18)n. Hence, 

\ ( , ~ - p - t - r ) n -  I/' \ 

The inequality, 

which is independent of r, follows from the previous inequality, since 

( ? 8 - p - t - r ) n - l J  \ (~ -p - t )nJ"  

If we substitute x=p+t, replace (n+9)/9 by just n/9, and divide by n, we have the 
more compact inequality 

l 
l ~ / < x - - - -  \ r ~ -  x/' 18 ' 

However, since x<7/18, this last inequality is equivalent to 

18(1 - 2 x ) < ( 1 8 x -  1) ( 7 -  18x), 

which is equivalent to (18x-5)1< 0, a contradiction which completes the proof that 
6(G) > 5n/9 implies that any proper cycle is 1-chord extendable. 

Example 4 implies that the minimum degree condition cannot be decreased to 
(5n-3)/9, and completes the proof of Theorem 9. ~£ 

(~ ,_s)  2 s s (~, ~) (-~ ~) 
9 

' 
/ \ 

1 / 3 (  rrz 

. . . .  . / / \ _ ,'),rz 

I 1 ] I (~,~) (~,~) (~,-~) ( l , ' , )  

I I I - -  I F I . . . .  I ',)' 

1 I I  I 2 :~ 7 ] 

F i g .  1. B o u n d s  o n  6.(m). 
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The diagram in Fig. 1 illustrates the upper and lower bound on 6.(m) given by the 
previous theorems, except for some small odd cycles Cm. 

5. Questions 

We have investigated Dirac type (minimum degree) conditions that imply k-chord 
extendability. It is natural to consider any condition that implies that a graph G is 
Hamiltonian, and ask what is the corresponding condition that implies G in k-chord 

extendable. In particular, it would be interesting to know that the nature of degree 
sum conditions, neighborhood conditions or generalized degree conditions that imply 
k-chord extendability, and we have begun the study of such conditions. 

A particular problem left unanswered in this paper is the minimum degree condi- 
tion in a graph G of order n that implies 1-chord extendability for small odd cycles. 

For  small even cycles 6(G)> L n/2 J implies that C,, is 1-extendable if m <~ n/3 and even, 
and this condition is sharp. However, for odd cycles a smaller minimum degree is 
needed as Theorem 6 indicates. Perhaps Theorem 6 can be extended to all odd cycles 

of length at most n/5. 

Of course it would be nice to determine precisely the function 6,(m). 
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