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Abstract

A non-Hamiltonian cycle C in a graph G is extendable if there is a cycle C' in G with
V(C')o V(C) with one more vertex than C. For any integer k>0, a cycle C is k-chord
extendable if it is extendable to the cycle C' using at most k of the chords of the cycle C. It will be
shown that if G is a graph of order n, then 6(G)>3n/4—1 implies that any proper cycle is
O-chord extendable, (G)>5n/9 implies that any proper cycle is 1-chord extendable, and
8(G)>| n/2 | implies that any proper cycle is 2-chord extendable. Also, each of these results is
sharp in the sense that the minimum degree condition cannot, in general, be lowered.

1. Introduction

Only finite graphs without loops or multiple edges will be considered. The degree of
vertex v of G will be denoted by d¢(v) or just d(v), and ds(v) will represent the degree
relative to a subset S of vertices. The neighborhood of v in § (vertices of S adjacent to
v) will be denoted by Ng(v) or just N(r) when S= V(G). The minimum degree of G will
be denoted by 6(G).

In [2,3] Hendry introduced the concept of cycle extendability in graphs and
directed graphs. His definition of a cycle being extendable is the following.

Definition 1. A cycle C in a graph G is extendable if there 1s a cycle C’ in G such that
V(C)c V(C') and | V(C")|=|V(C)|+ 1.
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Hendry, in studying extendability, considered, among other things, degree condi-
tions on a graph G that imply that a graph is Hamiltonian, like the following classical
condition of Dirac (see [1]).

Theorem 1 (Dirac [1]). If G is a graph of order n=3 with 8(G)=n/2, then G is
Hamiltonian.

In [2] Hendry showed that the condition of Dirac implies that each cycle of the
graph can be extended except for cycles in some special classes of graphs. We will
consider a more restricted form of cycle extendability by placing requirements on the
number of edges in the original cycle that remain in an extended cycle. A chord of
a cycle C is any edge between vertices in the cycle that is not in the cycle.

Definition 2. For any integer k>0, a cycle C is k-chord extendable if it is extendable to
a cycle C’ with the cycle C’ using at most k of the chords of the cycle C. A graph G is
k-chord extendable if each non-Hamiltonian cycle of G is k-chord extendable.

We will consider Dirac type conditions that imply that a graph is k-chord extend-
able. For any integer k>0, the following result, which determines the minimum degree
in a graph that implies that the graph is k-chord extendable, will be proved.

Theorem 2. Let G be a graph of order n=3. Then,
0(G)>3n/4—1 implies that G is 0-chord extendable,
0(G)>5n/9 implies that G is 1-chord extendable, and
6(G)>| n/2 | implies that G is 2-chord extendable.

Also, each result is sharp for infinitely many integers n.

Note that there exist graphs of order n and minimum degree n/2 with cycles that are
not extendable, for example a complete bipartite graph. Therefore, no degree condi-
tion less restrictive than 8(G)>| n/2 | will alone imply k-chord extendability for any k.

2. 0-chord extendable graphs

A cycle C is 0-chord extendable if and only if there is a vertex x ¢ V(C) that is
adjacent to two consecutive vertices on the cycle. We next determine the minimum
degree condition that insures that each cycle of length m in a graph of order n is
O-chord extendable. First we will describe examples that give lower bounds on the
minimum degree required to imply that a cycle is 0-chord extendable.

Example 1. For any m=2k <n, consider the graph H, (n even) of order n obtained
from a C, by replacing the four vertices (in cyclic order) by complete graphs of order k,
k,| (n—2k)/2 |, and [ (n—2k)/27], respectively, and by replacing each edge of the C, by
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an appropriate complete bipartite graph. Consider any cycle C,, in the complete
bipartite graph K, , of H,. This cycle is not O-chord extendable since each vertex not
in C,, is adjacent only to alternating vertices on the cycle C,,, and so is not adjacent to
two consecutive vertices of the cycle. There are at most three distinct degrees of the
vertices of H,, and so it is easy to verify that

S8(H,)=min {n—%——l, ["”;‘”ZJ}.

Example 2. Similar examples exist when the length of the cycle m is odd. In this case,
start with the disjoint union of two complete graphs K,,u K, _,,. Fix a cycle C,, of
length min the K,,,. Let H, be the graph obtained by adding edges between the K,, and
the K,_,, such that each vertex not in the C,, is adjacent to (m—1)/2 vertices of the
cycle that are not pairwise consecutive. Also, the edges are added such that the degrees
of the vertices in C,, do not differ by more than 1. Thus, the vertices not on the cycle
have degree n—m—1+(m—1)/2=n—(m+3)/2, and the vertices on the cycle have
degree either m—1+| (n—m)(m—1)/2m) | or m—1+] (n—m)(m—1)/(2m)7]. Thus,
H, is not 0-chord extendable and has minimum degree

m+3 l(m— 1)(n+m)J}

H.)=mi —
o(H,) mln{n 5 o

Theorem 3. Let G be a graph of order n=3, and 0 <m<n an integer. Then for m even,

5(G)>min {n—%-ll'”#zﬂ

implies that each C,, is 0-chord extendable, and for m odd,

m+3 [(m—1)(n+m)
2 ’l 2m }}

4(G)>min {n —
implies that each C,, is 0-chord extendable. Also, the result is sharp.

Proof. Let C,, be a cycle that is not 0-chord extendable in a graph G of order » that
satisfies the minimum degree condition of Theorem 3. First consider the case of
m even. Thus, each vertex not on the cycle is adjacent to at most m/2 vertices on the
cycle, and so has degree at most n—m—1+m/2=n—m/2—1. Also, two consecutive
vertices on the cycle cannot have a common adjacency off of the cycle, and so there is
a vertex on C, that has degree at most m—1+| (n—m)/2 |. This contradicts the
minimum degree condition on G.

When m is odd, each vertex not on the cycle C,, is adjacent to at most (m— 1)/2
vertices on the cycle. Thus, each vertex not on the cycle has degree at most
n—m—1+(m—1)/2, and there are at most (n —m)(m— 1)/2 edges between the vertices
on the cycle and off of the cycle. Hence, some vertex on the cycle C,, has degree at most
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m—1+| (n—m)(m—1)/2m |. This contradicts the minimum degree condition on
G and completes the proof that the stated minimum degree conditions are sufficient
for 0-chord extendability.

Examples 1 and 2 verify that Theorem 3 is sharp. [

An immediate consequence of Theorem 3 is the following corollary.

Corollary 1. If G is a graph of order n=3 with 6(G)>3n/4—1, then G is O-chord
extendable. Also, the result is sharp.

3. 2-chord extendable graphs

Acycle C,,=(xy,X3, ..., Xm, X1 ) of length m is 2-chord extendable in a graph G if and
only if there is a vertex x ¢ V'(C,,) such that there is a cycle of length m+ 1 containing
C,, and x, and using at most two chords of C,,. For example, this is true if there exists
integers i <j <k (taken modulo m) such that xx;, xX;, X;41 X, Xj+1 X3 +1€E(G), since

Cm+1=(X,xiaxi—1a---’xk+1,xj+1>xj+2’-~'7xkaxi+1:xi+2a--->xj—1,xjax)

is a cycle of length m+1 using only two chords of C,,, namely x;;Xx, Xj4+1Xg+.
Observe that if k=j+ 1, then the cycle C,,.; uses only one chord of C,, and we get
1-chord extendability, and in the case k=j=i+1, then C,,. is a O-chord extension of
C,. If there exist integers i<k <j (taken modulo m) such that xx;,xx;, X;4+ X,
Xjt1%k—1€E(G), then C, is also 2- chord extendable. There are other configurations
that give 2-chord extendability, but the configurations just described will be sufficient
for our purposes.

Example 3. For n even, the complete bipartite graph K,/, ,/, has minimum degree n/2,
and no proper even cycle C,, is extendable since there are no odd cycles. If n is odd,
then consider the graph H, obtained from the complete bipartite graph
K- 1y2,m+1y2 by adding a single edge e into the large part. The graph H, has
minimum degree (n— 1)/2, and any even cycle C,, that does not contain both endverti-
ces of the added edge e is not extendable, since any odd cycle must contain the edge e.

Theorem 4. A graph G of order n=3 is extendable (in fact 2-chord extendable) if
o(G)>| n/2 |. Also, the minimal degree condition cannot be lowered without losing
2-chord extendability.

Proof. Assume that G is a graph of order n with 6(G)>{ n/2 |, and C=C,, is a proper
cycle that is not 2-chord extendable. Let 4 be the vertices of G not in C. If each vertex
of A has at most one adjacency in C, then there will be at most n—m edges between
C and A. This implies that each vertex of 4 has degree at most n —m, and some vertex
of C has degree at most m— 1 + (n—m)/m. The minimum degree condition implies that
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n—m>| n/2 |, which gives that n>2m. On the other hand, the minimum degree
condition implies that m — 1 +(n—m)/m = n/2,and this gives n<2m. This gives a con-
tradiction, so we can assume that there is a vertex in 4 that is adjacent t at least two
vertices of C.

Let xe A such that xx;, xx;e E(G) with i < j. If j=i+ 1, then C is O-chord extendable,
so we can assume that j>i+1. If x;, ,x;,;€E(G), then

(X, Xis i 1 eee s Xjb 15 X 15 X 25 o205 X5 X)

is a cycle of length m + 1, which implies that C is 1-chord extendable, a contradiction.
Thus, we can assume that x;4,x;+( ¢ E(G).

If there is an integer k with i < j <k such that x;, ; x4, x;4 ; X, +  €E(G), then we have
already observed that C is 2-chord extendable in this case. Also, if there is an integer
k with i <k < j such that x; 1 Xx, X;4+ 1 x,- €E(G), then C is 2-chord extendable. These
two observations imply that

de(xiy1)+de(xjep)<m.

If x;+1 and x;,; have no common adjacency in A, then d (x;.{)+d(x;+ 1) <n—m,
which implies that d(x;,,)+d(x;+)<n and there is a vertex of degree at most | n/2 |,
a contradiction. Hence, we can assume there is a ye A commonly adjacent to x;,  and
X;4+1. Note that x; and x; play the same role as x;,; and x;,,, so dc(x;) +de(x;)<m.
Since C is not O-chord extendable, d 4(x;)+d (x; ) <n—m and d,(x;)+d(x;; )<
n—m. This implies that

d(x;))+d(xiy ) +d(xj)+d(xj41)<2(n—m)+2m=1n,

which implies the existence of a vertex of degree at most | n/2 |. This contradiction
completes the positive proof of Theorem 4.

The graphs in Example 3 verify that the condition in Theorem 4 cannot be
improved. [J

Theorem 4 cannot be improved because, for example, no even cycle C,, of K5 .2 15
extendable. For small odd cycles C,, the minimum degree needed for 2-chord extenda-
bility can be reduced to §>| (n—m)(m-—1)/(2m)+2 | and this is sharp. We shall sce,
however, in Section 4 that in fact this minimum degree condition implies that C,, is
1-chord extendable, so we delay the proof until Section 4.

4. 1-chord extendable graphs

A cycle C,,=(xy,%2,...,%m, X1) is 1-chord extendable if and only if there exists
a vertex x not in C,, and an i such that xx; and xx;, ;€ E(G) (C,, is 0-chord extendable)
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or there exist integers i and j such that xx;, xx;, and x;+1x;+;€E(G), so that there is
the cycle

C,,,+1=(x,x,~,x,-_1,...,xj+1,xi+1,xi+2,...,xj,x).

Let 8,(m) denote the minimum integer such that if G is a graph of order n with
0(G)>d,(m), then any cycle C,, of length m is 1-chord extendable. In this section,
bounds on the function §, will be given.

We start with some examples that give lower bounds for the function §,. Recall
from Example 3 that no proper even cycle C, is extendable in K, 2, and in
K- 1)2,m+ 12 +€ (the edge e is added to the larger part) no proper even cycle not
containing both endvertices of e is extendable. Therefore, ,(m) =| n/2 | for m even.

Example 4, For n divisible by 3 and k<n/3, consider the graph K,_3 v Kj 4.1,
a disjoint union of a complete graph of order n— 3k and a complete tripartite graph
with parts of order k. Let A,,4, and A; denote the vertices in the parts of the
tripartite graph, and partition the vertices of the K, _ 5, into three sets B;, B, and B,
each with n/3—k vertices. Let H,(3k) denote the graph obtained from the graph
K, -3 U K} .x by adding the edges between A; and B; for 1<i<3. For m=3k, let
C,, denote a cycle of length m in the K, ; ; in which every third vertex is from the same
A;. It is easy to verify that in the graph H,(3k) the cycle C,, is not 1-chord extendable
(although it is 2-chord extendable), and §(H,(3k))=min{n/3 +k, n—2k—1}. In terms
of the length of the cycle C,,

3 ,n—7—1

3(H,,(m))=min {"“L'" am }

Therefore, d,(m)>min{(n+m)/3, n—2m/3—1}. Note that for n/2<m<3(n—2)/4 we
have min{(n+m)/3, n—2m/3—1} =n/2, and so this gives an improved lower bound
for d,(m) in this interval. When (n+m)/3=n—2m/3—1 (i.e. when m=(2n—3)/3), the
maximum value of this minimum is attained, and it is ( 5n — 3)/9. Hence, any minimum
degree condition implies that the 1-chord extendability of all proper cycles must

exceed (5n—3)/9.

Example 5. Let m be an odd integer with 3 <m <n. Start with the graph C,,u K,,_,,,
and let R, be the graph obtained by making each vertex of the K,_,, adjacent to
precisely (m— 1)/2 nonconsecutive vertices of the C,, in such a way that the degree of
any two vertices in the C,, differs by at most 1. Each vertex in the K,_,, has degree
(2n—m—3)/2, and each vertex in the C,, has degree either [ (n —m)(m—1)/2m)+27 or
L(n—m)(m—1)/2m)+2 |. Clearly in R, the minimum degree is | (r—m)(m—1)/2m)+2 |
for n=8, and the cycle C,, is not 1-chord extendable. It is easily verified that the
minimum degree | (n—m)(m—1)/(2m)+ 2 | of Example 5 is greater than or equal to the
minimum degree (n +m)/3 of Example 4 precisely when m <n/5. Thus, Example 5 gives
a better lower bound for §,(m) when m<n/5 and m is odd.
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Example 6. For integers m and n with m>n/2>2 start with the graph C,,u K, _,,.
Select m—| n/2 | vertices on the cycle by starting with some vertex and selecting every
other vertex along the cycle, and denote this set by A. Let B be the m—| n/2 |+1
neighbors of the vertices of A4 along the cycle. Form a graph S, by adding to
C,.u K,_,, all of the edges between the K,,_,, and A, and all of the edges between the
vertices in the C,, except for those between vertices in B. The vertices in the K, _,, have
degree [ n/2]—1 and the vertices in B have degree | n/2 |— 1. Thus, the minimum
degree in S, is| n/2 |—1, and the cycle C,, cannot be 1-chord extended. If m is an even
cycle, then the bipartite graph of Example | gives a better lower bound for ¢,(m), but
for odd cycles C,, the bound | n/2 |—1 of this example is greater than the bound
n—2m/3—1 of Example 4 if m>(3n+ 3)/4.

The examples give lower bound for the function §,. We now determine some upper
bounds for this function. We start with extending small cycles.

Theorem 5. If G is a graph of order n=3 with 6(G)>| n/2 | and m<n/3, then any cycle
C. of length m is 1-chord extendable.

Proof. Let C=C,,=(xy,X3,,...,Xm, X1 ) be a cycle that is not 1-chord extendable, and
we will show that this leads to a contradiction. Denote the vertices not in the cycle
C by A. Select consecutive vertices u=x,; and v=x, on the cycle C.

Since C is not l-chord extendabled, u and v have no common adjacency off of the
cycle, so d 4(u)+d 4(v) <n—m. Thus, by assumption, dq(u) +d¢(v)>m. This implies that
there is a vertex x,€C such that ux, and vx, , ,€E(G); for otherwise, if ux,€E(G), then
UXk 4+ 2 ¢ E(G), which implies that d-(v) <m —dc(u), a contradiction. Then, let w=x,, ;.
Note that if u and w have a common adjacency, say x off of the cycle C, then C is
1-chord extendable by the following cycle:

(X Uy Xy Xy 15+ o s Xkt 20 Uy X35 evn s Xpgy W, X).

Thus, when v and v have the ‘skipped crossing pattern’ that produced the vertex w, we
can assume that u and w have no common adjacencies off of the cycle, and likewise the
same is true for v and w. This implies that the neighborhoods of u, v and w in A are
pairwise disjoint.

Two cases will be considered, when dc(u)+dc(v)>(n+1)/2 and when
m<dc(u)+de(v)y<(n+1)/2. We consider the latter case first. Since d¢(u)+dc(v)>m,
u and v have a ‘skipped crossing pattern’, so there is a vertex w on C such that the
neighborhood of u, v, and w in 4 are pairwise disjoint. Therefore

1 3n—1
37n<d(u)+d(v)+d(w)<(n—m)+%—+(m—I)S%,

a contradiction.



116 R.J. Faudree et al. | Discrete Mathematics 141 (1995) 109—-122

We are left with the case d¢(u)+dc(v)>(n+1)/2. If u and v have a ‘double skipped
crossing pattern’ (u is adjacent to x; and x; 1 and v is adjacent to x; ;. , and x4 3), then
w=x,,; and w =X, , are both vertices in a ‘skipped crossing pattern’. This gives that
u, v, w, and w' have pairwise disjoint neighborhoods in 4, which implies that

2n<du)+d@v)+dw)+dw)<(n—m)+4(m-—1)<2n—4,

a contradiction. Hence, we can assume that we do not have a ‘double skipped crossing
pattern’ with u and v. Thus, in any interval (x;, X; + 1, X;+2, X;+3) of C, and for any i with
3<i<m—3, one of ux;, ux;, 1, vX;+2,0X;+3 is not in E(G). Therefore, counting multi-
plicities, there will be at least m—5 edges from u or v not in E(G). No edge will be
counted more than twice in the missing collection, so there are at least (m—5)/2
missing edges, and d¢(u)+dc(v)<2(m—1)—(m—5)/2=(3m+ 1)/2. This gives

n+1 3m+1 n+1
T<dc(u)+dc(v)< 3 ST,

a contradiction, which completes the proof of this case and of Theorem 5. [

For small odd cycles the minimum degree needed for 1-chord extendability is less
than that required in Theorem 5, as the following theorem verifies.

Theorem 6. If G is a graph of order n=3 with 5(G)>| (n—m)(m~—1)/(2m)+2 |, where
m is an odd integer satisfying 3<m<./n/3, then any cycle C,, is 1-chord extendable.

Proof. Let C be a cycle of length m that is not 1-chord extendable. Denote the vertices
not in C by A and let v be a vertex in C such that d¢(v)=t is a maximum. If t =2 then
C has no chords.

Since C is not 1-chord extendable, each vertex of 4 is adjacent to at most (m—1)/2
vertices of C. Thus, there are at most (n—m)(m— 1)/2 edges between C and 4. Hence,
some vertex x of C has degree at most | (n—m)(m—1)/2+2 | in G, contradicting the
minimum degree condition. Thus = 3.

Since t > 3, there is a chord vz such that one of the paths from » to z of C together
with the chord vz of C is an odd cycle C’ of order at most m+2—2[t/27] Let C'=
(0,00, Wo, U1, W3, ..., U, wy=2,0), where then I<[(m—1)/27]— 1.

Let 6=| (n—m)(m—1)/(2m)+ 3 |. Then for each vertex x of C, we have d4(x) =5 —t.
Let X, Y, and Z be sets of 6 —t vertices each such that X = N 4(ve), Y= N 4(we) and
Z <N 4(vy). Note that X and Y are disjoint as are Y and Z, since G is not 1-chord
extendable. Let S=4—X—Y and S'=4—Y—Z. For 1<i</|, define

X;=N,v)n X, Yi=N,w)nY, Zi=N,v;)n Z.

Consider X ,. Since d 4(v;)=Jd—t and N 4(v;) n Y =0, it follows that N ,(v;)cSu X
and so | X{|>6—t—[S|. Similarly, considering w, and Y, we see that N 4(w;)=S' U ¥,
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implying that | Y|=d—t—|S’'|=0—1t—|S|. Finally, considering v, and Z, we see that
|Z,|<d—t—]S|. More generally, for i <2 we have that

Njw)eSu(Y=Y, ) )u X

and
Nw)cS' u(Z-Z)u'Y.
Thus,
| Xi|Z0—t—|S|=|Y—=Yi_y|=|Y;—y|—|S]
and
|Yil20—1—|S|—1Z~Zi|=|Zi| = |S|.
Consequently,
X212 Y| —|S]|26—1t—2|S]
and

| V2|21 Z,|—[S[Z6—t—2|S].

Furthermore, since v3 and Z have the same relationship as do v, and X, it follows that
|Z3]=6—1t—2|S|. In general, we have

| Xi|=28—1—i|S|, |Yi=0—1~i|S|, |Z]|=é—t—(i—~1)|S)

Let w be the vertex in V(C)— V(C’) that is adjacent to w;. Then, as in the previous
argument, if W=N_ (w)n X, then |W|=6—t—(I+1)|S|. We will show that | W|>0.
Now,

_|a=)ym=1) ny m—1 o m—
S O N T CE e

Also,

|S|=n—m—2(6—t)<%+2t—5.

Thus,

(1+1)|S|< [E}lsK("’_’H) <"+2z—5).
2 2 m )

Therefore 6 —t>(I+1)|S| if

)5 o) e

or, equivalently, if

n\/t=2 m—t+1 m—1
() (E2) (= 50"
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Since 3<t<m—1 and m<./n/3, we conclude that |W|>0. Let weW. Then
W, vg, Wo, Uy, Wy, ..., 0, Wy=2z,0, P, w,w is a 1-chord extension of C, where Pisav—w
subpath of C disjoint from C’ except for v. This contradiction completes the proof of
Theorem 6. [

Note that Example 5 shows that the condition in Theorem 6 is the best possible.
Also, since | (n—m)(m—1)/(2m)+2 |<| n/2 |, Theorem 6 is an improvement of
Theorem 5.

The same proof techniques used in Theorem 5 can be used to verify the following.

Theorem 7. If G is a graph of order n=3 with 6(G)>(n+3m)/4 and m=n/3, then each
cycle C,, is 1-chord extendable.

Proof. As was done in the proof of Theorem 5, let C=C,,=(x,Xx3,...,X,,X1) be
a cycle that is not 1-chord extendable, denote the vertices not in the cycle C by A4,
and select consecutive vertices u=x, and v=x, on the cycle C. Since u and v have
no common adjacencies in A4, dc(u)+de(v)>2(n+3m)/d—(n—m)=(5m—n)/2=2m
because n<3m.

We will first consider the case m<dg(u)+dc(v)<(3m+2)/2. From previous argu-
ments we know that u and v have a ‘skipped crossing pattern’, so there is a we C such
that u, v, and w have pairwise disjoint neighborhoods in A. This implies that

3(n+3m) 3m+2 3m

y) <dWw)+d@)+dw)y<(n—m)+ 3 +(m——1)=n+7.

However, this inequality is equivalent to m <n/3, a contradiction.

Next we consider the case when dc(u)+dc(v)>(3m+2)/2. In an argument of
Theorem 5 it was shown that this degree condition is sufficient to imply u and v have
a ‘doubly skipped crossing pattern’. Thus there exist vertices w and w’ in C such that u,
v, w, and w’ have pairwise disjoint neighborhoods in 4. Thus, we have

n+3m<dw)+d@)+dw)+dw)<(n—m)+4m—1)=n+3m—4,
a contradiction, which completes the proof of this case and of Theorem 7. [J

The upper bound on the function 8,(m) from the previous result can be improved
significantly for large values of m. The next result is such an improvement for m=n/2.

Theorem 8. If G is a graph of order n=3 with 6(G)>(3n—m)/4, then any cycle C,, is
1-chord extendable.

Proof. Again, let C=C,,=(xy,X3,...,Xm, X1) be a cycle that is not 1-chord extend-
able, and denote the vertices not in the cycle C by A. If there were no edges between
C and A, then in one of the components of G there would be a vertex of degree less
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than n/2, a contradiction. Select consecutive vertices u=x, and v=x, on the cycle
X such that at least one of these vertices is adjacent to a vertex in A. Since « and v have
no common adjacency in A, du(u)+d (v)<n—m, so we can assume that
d.(v)<(n—m)/2 and u is adjacent to a vertex weA.

Consider the nonadjacent pair v, w of vertices, and note that if vx, and wx, _ ;€ E(G),
then C,, is 1-chord extendable by the cycle

Crie1=W U X5, .0, Xgy U, X3, 00 s Xp_ 15 X).

We can assume that this does not occur, so d¢(w)<m—d(v), since each adjacency of
v on C forces a nonadjacency of w on C. Hence, we have

Bn—m)2<dw)+dwy<(n—m)2+(n—m—1}+m=(3n—m)/2—1,

a contradiction, which completes the proof of Theorem 8. [
The next two lemmas will be needed in the proof of the next theorem.

Lemma 1. Let C be a cycle in a graph G of order n =3 that is not 1-chord extendable. If
0(G)=n/2, then each vertex of C is adjacent to a vertex not in C.

Proof. Let C=(x,,x,,...,Xu X1) be a cycle that is not 1-chord extendable, and
denote the vertices not in the cycle C by A. Assume that there is a vertex in C with no
adjacency in A. If there were no edges between C and A, then in one of the components
of G there would be a vertex of degree less than n/2, a contradiction.

With no loss of generality we can assume that u = x, has no adjacency in 4 but x, is
adjacent to ve 4. If vx, € E(G), then ux, _; ¢ E(G), because the following cycle C’ would
imply that C was 1-chord extendable.

’ -
C = (U Xk 15X s 25 e X2, Uy Xjey Xt 14 00 v s Xy ).

Therefore, dc(u)<m—dc(v). Since u has no adjacencies in A4, it follows that
d(u)+d(v)<n, and so one of u or v has degree less than n/2. This contradiction

—

completes the proof of Lemma 1.

Proof techniques similar to those used in the proof of Lemma 1 can be used to prove
the following more specialized lemma.

Lemma 2. Let G be a graph of order n = 3 with 6(G) > n/2 + In for some positive number
I, and let C be a cycle of length n/2 + pn for some p that is not 1-chord extendable. If there
is a vertex ue A with d-(u)=rn, then there is a vertex v in C with d 4(v)>(r+1—p)n. Also,
for each vertex weC, d (w)>2Iln+1.

Proof. Let C=(xy,x;,...,Xm, X1} be the cycle that is not l-chord extendable with
m=n/2+ pn. Let u be a vertex in A with d-(u)=rn, let R be the rn neighbors of u in C,
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and let R* be the successors of the set R along the cycle C. If v is a vertex in R™, then
v is not adjacent to any vertex in R*, for if so, then C would be 1-chord extendable.
Thus, de(v)<n/2+pn—rn, and so d,(v)>n/2+In—(n/2+pn—rn)=(r+1—p)n.

Each vertex u’' in A has d¢o(u')>n/24+In—(n/2—pn—1)=In+pn+1. Also, each
vertex weC is the successor along C of some neighbor in C of a vertex u’e 4, since by
Lemma 1 each vertex of C has a neighbor in 4. A repeat of the argument of
Lemma 1 with u' replacing u and w replacing v implies that d (w)>(ln+pn+ 1)+
In—pn=2in+ 1. This completes the proof of Lemma 2.

Note that />0 in the previous lemma, but p can be negative as well as positive. With
these two lemmas, we are ready to prove the following.

Theorem 9. If G is graph of order n=3 with 3(G)> 5n/9, then any proper cycle C of G is
1-chord extendable. Also, the minimal degree condition 6(G)=(5n—3)/9 will not insure
1-chord extendability.

Proof. Example 2 shows that §(G)>(5n—3)/9 will not insure 1-chord extendability.
For the positive proof, let C=C,,=(xy, x,, ..., X, X1) be a cycle that is not 1-chord
extendable, with m=n/2+ pn for some number p. We will show that this leads to
a contradiction.

Let u be a vertex in C such that d,(u)=tn is a maximum. Let v be a neighbor of
u along the cycle C; in fact, we can assume that u=x, and v=x,. By Lemma 2, each
vertex in C has at least 2(5n/9—n/2)+1=(n+9)/9 adjacencies in A. Thus
d (v)=(n+9)/9 +rn for some nonnegative number r. Since C is not 1-chord extend-
able, the neighborhoods of u and v in A are disjoint, and their union contains
tn+(n+9)/9+rn vertices. This implies that tn+(rn+9)/9+rn<(1/2—p)n, and so
p+t</18.

Let A’ be the vertices of 4 that are not adjacent to either u or v. Hence,

|[A'|=n2—pn—(tn+(n+9)/9+rn)=(7/18—p—t—r)n—1.
Also,

5
de(u)+de(v)>2 <3">—m—"9i9-—m=(1 P —

This implies that, using the same counting techniques as in Theorem 5, there are at
least (1—t—rjn—1—(n/2+pn)=(1/2—t—p—rjn—1 different ‘skipped crossing pat-
terns’ from u and v (i.e. ux; and vx;+,€E(G) and the central vertex x;., has no
common adjacencies with either u or v in A). Let B be the set of central vertices in the
‘skipped crossing patterns’. Thus |B|=(1/2—t—p—r)n—1.

Each vertex of B has at least (n+9)/9 adjacencies in A, and all of these adjacencies
must be in A’. Therefore, the number of edges between 4' and B is at least
((n+9)/9)| B|. Thus, there is some vertex in we A’ with d¢(w)=((n+9)/9)|B}/|A’]. By
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the maximality of tn=d,(u) and by Lemma 2, we have d¢c(w)<tn—(n/18—pn)=
(t+p—1)/18)n. Hence,

9 L p—t—rin-1 1
ne9)(Gopotmin=1) (1Y,
9 (yg—p—t—rin—1 18
The inequality,
N[ (G—p—t 1
) (Gop=omy (1, 1Y,
9 (1s—p—"tn 18
which is independent of r, follows from the previous inequality, since
(trmtornty, (o)
(fa—p—t=rin—1)"\Ga—p~0in)
If we substitute x=p+t, replace (n+9)/9 by just n/9. and divide by n, we have the
more compact inequality

1 1_x - 1
) J<x——.
9/ \ g —x 18

However, since x < 7/18, this last inequality is equivalent to

18(1—2x)<(18x — 1) (7—18x),

which is equivalent to (18x—5)* <0, a contradiction which completes the proof that
0(G)>5n/9 implies that any proper cycle is 1-chord extendable.

Example 4 implies that the minimum degree condition cannot be decreased to
(5n—3)/9, and completes the proof of Theorem 9. [
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Fig. 1. Bounds on §,(m).
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The diagram in Fig. 1 illustrates the upper and lower bound on 4,(m) given by the
previous theorems, except for some small odd cycles C,,.

5. Questions

We have investigated Dirac type (minimum degree) conditions that imply k-chord
extendability. It is natural to consider any condition that implies that a graph G is
Hamiltonian, and ask what is the corresponding condition that implies G in k-chord
extendable. In particular, it would be interesting to know that the nature of degree
sum conditions, neighborhood conditions or generalized degree conditions that imply
k-chord extendability, and we have begun the study of such conditions.

A particular problem left unanswered in this paper is the minimum degree condi-
tion in a graph G of order n that implies 1-chord extendability for small odd cycles.
For small even cycles 8(G)>| n/2 |implies that C,, is 1-extendable if m<n/3 and even,
and this condition is sharp. However, for odd cycles a smaller minimum degree is
needed as Theorem 6 indicates. Perhaps Theorem 6 can be extended to all odd cycles
of length at most n/5.

Of course it would be nice to determine precisely the function d,(m).
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