Note

On isomorphic subgraphs

Ronald J. Gould* and Vojtech Rödl**
Emory University, Department of Mathematics and Computer Science, Atlanta, GA 30322, USA
Received 20 March 1990
Revised 18 October 1991

Abstract

Gould, R.J. and V. Rödl, On isomorphic subgraphs, Discrete Mathematics 118 (1993) 259-262.
We prove that every 3 -uniform hypergraph with q edges contain two edge disjoint isomorphic subgraphs with at least $\left\lfloor\frac{1}{23} \sqrt{q}\right\rfloor$ edges. This answers a question of Erdős, Pach and Pyber.

Recently, the following question was independently raised by M.S. Jacobson (personal communication) and J. Schönheim (see [1]).

In an arbitrary graph or hypergraph G, what is the maximum possible s such that G contains a pair of edge disjoint isomorphic subgraphs of size s ?
Erdős et al. [1] provided bounds on the maximum size of such isomorphic subgraphs for graphs and hypergraphs. Let $f_{k}(q)$ denote the maximum integer such that in every graph ($k=2$) or k-uniform hypergraph $(k \geqslant 3)$ of size q, one can find a pair of edge disjoin isomorphic subgraphs of size $f_{k}(q)$. In [1] it is shown that therc exist constants c_{1} and c_{2} (that depend only on k) such that

$$
\begin{equation*}
c_{1} q^{\frac{2}{2 k-1}} \leqslant f_{k}(q) \leqslant c_{2} q^{\frac{2}{k+1}} \frac{\log q}{\log \log q} . \tag{1}
\end{equation*}
$$

For graphs (i.e., $k=2$), the bounds given by (1) are quite tight. In [1], the authors further asked about the proper behavior when $k=3$? The purpose of this note is to answer their question. For terms not defined here see [2].

[^0]Theorem. If G is a 3-hypergraphs of size q, then G contains two edge disjoint isomorphic subgraphs of size at least $\left\lfloor\frac{1}{23} \sqrt{q}\right\rfloor$.

Proof. Let $G=(V, E)$ be as above and let $|V|=n(\geqslant 3)$. Without loss of generality we assume that

$$
\begin{equation*}
q \geqslant(23)^{2} \tag{2}
\end{equation*}
$$

for otherwise the statement of the Theorem is vacuous.
We begin by partitioning the vertex set of G into three sets, X, Y and Z so that as many 3-edges as possible have a vertex in each set. A simple averaging argument shows that every 3-hypergraph with q edges contains such a 3-partite subhypergraph with at least $\frac{2}{9} q$ edges. Let G_{1} be such a subhypergraph. We will find two large edge disjoint subgraphs of G_{1}. To do this we use the following.

Claim. If F is a forest with q edges consisting of disjoint stars, then F contains two edge disjoint isomorphic subgraphs, each of size at least $(q-1) / 3$.

Proof of Claim. Let $s_{1} \geqslant s_{2} \geqslant \cdots \geqslant s_{t}$ be the sizes of the stars. Let m be the largest index with $s_{m}>1$. We will split all stars with $s_{j}>1$ as equally as possible and match the remaining edges. This leaves us with two subgraphs each with at least

$$
\begin{equation*}
\sum_{i=1}^{m}\left|\frac{s_{i}}{2}\right|+\left|\frac{t-m}{2}\right| \tag{3}
\end{equation*}
$$

edges. Expression (3) is minimized when $s_{1}=s_{2}=\cdots=s_{m}=3$ and $t-m$ equals 0,1 or 2 depending on the congruence class of $q \bmod 3$. This leaves us with two edge disjoint isomorphic subgraphs, each of size at least $(q-1) / 3$, as desired, completing the proof of the claim.

Our next goal is to infer that two of the sets X, Y and Z contain small subsets (with less than $c \sqrt{q}$ vertices, $c \geqslant \frac{1}{23}$) with the property that there are $\frac{1}{27} q$ edges meeting both of these sets.

In order to see this, suppose we select a star forest F in G_{1} containing the maximum number of edges. If this forest contains at least $3 c \sqrt{q}+1$ edges, then by the claim we would find two edge disjoint isomorphic star forests, each with size at least $c \sqrt{q}$. Thus, the forest F must contain less than $3 c \sqrt{q}+1$ edges. But then, since this forest is maximal with respect to size, every other edge must meet $V(F)$, hence one of the sets $V(F) \cap X, V(F) \cap Y, V(F) \cap Z$ (which contains at most $3 c \sqrt{q}$ vertices) must meet at least $\frac{1}{3}\left|E\left(G_{1}\right)\right|={ }_{2}^{2} q$ edges of G_{1}. Without loss of generality assume that $\bar{X}=V(F) \cap X$ is that set and let G_{2} be the graph induced by the set of all such edges.

Next let I be the largest system of disjoint pairs $\{y, z\}$ such that $y \in Y, z \in Z$ and $\{y, z\}$ is a subset of an edge of G_{2}. For each such pair $\{y, z\} \in I$ select a representative $x \in X$ such that $\{x, y, z\} \in E\left(G_{2}\right)$. The collection of representatives for the pairs of I, along
with the pairs, induces a star forest in G_{2}. Thus, if $|I| \geqslant 3 c \sqrt{q}+1$, we can apply the claim to obtain two isomorphic edge disjoint star forests each of size at least $c \sqrt{q}$. Thus, we assume that $|I| \leqslant 3 c \sqrt{q}$. This however means that for Y or Z (say Y) there exists a subset $\bar{Y} \subset Y$ with $|\bar{Y}| \leqslant 3 c \sqrt{q}$ such that at least $\frac{1}{2}\left|G_{2}\right|=\frac{1}{27} q$ edges of G_{2} meet both \bar{X} and \bar{Y}. Let G_{3} be the subgraph of all such edges. Further, let \bar{Z} be the minimum subset of Z such that there are at least $\frac{1}{2}\left|G_{3}\right|=\frac{1}{54} q$ edges of G_{3} which meet each of \bar{X}, \bar{Y} and \bar{Z}.

We now recognize two cases.
Case 1: Suppose that $|\bar{Z}| \geqslant 3 c \sqrt{q}+1$.
Consider a maximal integer $m=t_{1}+t_{2}+\cdots+t_{k}$ such that there exists a system S of edges

$$
\left\{x_{i}, y_{i}, z_{i}^{j}\right\} \in G_{3}, \quad 1 \leqslant j \leqslant t_{i}, \quad i=1,2, \ldots, k
$$

satisfying:
(i) $x_{i} \in \bar{X}, y_{i} \in \bar{Y}$ and $z_{i}^{j} \in Z$ for $i=1,2, \ldots, k$ and $j=1,2, \ldots, t_{i}$,
(ii) $t_{i}>1$ for all $i=1,2, \ldots, k$ and,
(iii) all $t_{1}+t_{2}+\cdots+t_{k}$ vertices z_{i}^{j} are distinct.

Due to the maximality of the above system of edges, for every pair $\{x, y\}, x \in \bar{X}, y \in \bar{Y}$ different from $\left\{x_{i}, y_{i}\right\}, i=1,2, \ldots, k$, there exists at most one $z \notin\left\{z_{i}^{j} \mid i=1,2, \ldots, k\right.$, $\left.1 \leqslant j \leqslant t_{i}\right\}$ such that $\{x, y, z\} \in G_{3}$. Hence there are at most

$$
\begin{equation*}
|\bar{X}||\bar{Y}| \leqslant 9 c^{2} q<\frac{1}{2}\left|G_{3}\right|=\frac{1}{54} q \tag{4}
\end{equation*}
$$

such edges $\{x, y, z\}$. (Again note that (4) holds for $c=\frac{1}{23}$.) Thus, all other edges ($>\frac{1}{2}\left|G_{3}\right|$) of G_{3} intersect the set

$$
Z^{*}=\left\{z_{i}^{j} \mid i=1,2, \ldots, k, 1 \leqslant j \leqslant t_{i}\right\}
$$

Hence, (due to the minimality of \bar{Z}), $\left|Z^{*}\right| \geqslant|\bar{Z}| \geqslant 3 c \sqrt{q}+1$. Consider now the permutation

$$
\phi: \bar{X} \cup \bar{Y} \cup Z^{*} \rightarrow \bar{X} \cup \bar{Y} \cup Z^{*}
$$

that fixes each point of \bar{X} and \bar{Y}. To define how ϕ acts on Z^{*}, split the stars $\left\{x_{i}, y_{i}, z_{i}^{j}\right\}$ in a manner similar to the claim. The same argument gives the existence of two edge disjoint subgraphs S_{1}, S_{2} of S with

$$
\left|S_{1}\right|=\left|S_{2}\right|=c \sqrt{q}
$$

such that $\phi: S_{1} \rightarrow S_{2}$ is an isomorphism between S_{1} and S_{2}.
Case II: Suppose that $|\bar{Z}| \leqslant 3 c \sqrt{q}$.
In this case we have three sets $\bar{X}, \bar{Y}, \bar{Z}$ each of cardinality at most $3 c \sqrt{q}$ and at least $\frac{1}{54} q=q_{1}$ edges of the form $\{x, y, z\}, x \in \bar{X}, y \in \bar{Y}, z \in \bar{Z}$. Let G_{4} be the subgraph of all such edges. Consider a random permutation

$$
\phi: \bar{X} \cup \bar{Y} \cup \bar{Z} \rightarrow \bar{X} \cup \bar{Y} \cup \bar{Z}
$$

such that $\phi(\bar{X})=\bar{X}, \phi(\bar{Y})=\bar{Y}$ and $\phi(\bar{Z})=\bar{Z}$. Then for two distinct edges e_{1} and e_{2}

$$
\operatorname{Prob}\left(\phi\left(e_{1}\right)=e_{2}\right)=\frac{1}{|\bar{X}||\bar{Y}||\bar{Z}|}=\frac{1}{27 c^{3} q^{3 / 2}} .
$$

Thus,

$$
\begin{align*}
\left.\operatorname{Ex}\left(\left|\left\{e_{1}, e_{2}\right)\right| \phi\left(e_{1}\right)=e_{2} \text { and } e_{1} \neq e_{2}\right\} \mid\right) & =\frac{q_{1}\left(q_{1}-1\right)}{|\bar{X}||\bar{Y}||\bar{Z}|} \\
& =\frac{\frac{q}{54}\left(\frac{q}{54}-1\right)}{(3 c \sqrt{ } q)^{3}}>3 c \sqrt{q} . \tag{5}
\end{align*}
$$

(We note that in order to insure that the subgraphs are edge disjoint, we can use at most $\frac{1}{3}$ of the pairs. Hence, the above inequality). Inequality (5) is true for $c \leqslant \frac{1}{23}$ since $q \geqslant(23)^{2}$ recalling (2). Thus, we can find two edge disjoint subgraphs of G_{4}, each with at least $\left\lfloor\frac{1}{23} \sqrt{q}\right\rfloor$ edges.

Our result leads us to the following conjecture.
Conjecture. If G is a k-hypergraph of size q, then G contains two isomorphic subgraphs of size $c q^{2 /(k+1)}$.

References

[1] P. Erdős, J. Pach and L. Pyber, Isomorphic subgraphs in a graph, preprint.
[2] R.J. Gould, Graph Theory (Benjamin/Cummings, Menlo Park, CA, 1988).

[^0]: Correspondence to: Ronald J. Gould, Emory University, Department of Mathematics and Computer Science, Atlanta, GA 30322, USA.

 * Research supported by O.N.R. Grant No. N00014-88-K-0070 and N00014-91-J-1085.
 ** Rescarch supported by N.S.F. Grant No. DMS-9011850.

