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Abs t r ac t  

It is known that ff a 2-connected graph G of suiBciently large order n satis- 
fies the property that the union of the neighborhoods of each pair of vertices has 
cardinallty at least ~-, " then G is hamiltonian. In this paper, we obtain a similar gen- 
eralization of Dirac's Theorem for K(1, 3)-free graphs. In particular, we show that 
if G is a 2-connected K(1, 3)-free graph of order n with the cardinality of the union 
of the neighborhoods of each pair of vertices at least (,+1) then G is hamiltonian. 

3 '  
We also investigate several other related properties in K(1, 3)-free graphs such as 
traceability, hamiltonian-connectedness, and pancyclicity. 

1. I n t r o d u c t i o n  

In [3] it was shown that  if a 2-connected graph G of sufficiently large order n 
satisfies the property that  the union of the neighborhoods of each pair of vertices has 
cardinality at least ~, " then G is hamiltonian. This is a generalization of the well- 
known theorem of Dirac [1], which states that  if the neighborhood of each vertex of 
a graph of order n contains at least ~ vertices, then the graph is hamiltonian. In [8], 
Matthews and Sumner proved that  if G is a 2-connected K(1,  3)-free graph of order 
n such that  the neighborhood of each vertex contains at least ~ vertices, then 
G is hamiltonian. We provide a natural  generalization of this result for K(1,  3)- 
free graphs. In particular, we determine a lower bound on the cardinality of the 
neighborhood union of arbi t rary pairs of vertices that  is sufficient to ensure that  
the graph is hamiltonian. 

If  u and v are arbi t rary vertices in V(G),  for convenience we define the gen- 
eralized degree 

deg{u, v} = IlV(u) u lV(v)l. 
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We then denote by the generalized minimum degree 62(G), the minimum of 
deg{u, v}, where this minimum is taken over all pairs of distinct vertices u, v in 
V(G).  

We prove the following theorem in Section 2. 

THEOREM A. I f  G is a 2-connected K(1, 3)-free graph of order n such that 

62(G) > (n + 1_____~) 
- -  3 ' 

then i f  n is sufficiently large, G is harniltonian. 

We also obtain analogous traceability results for K(1, 3)-free graphs in Section 2. 
In Section 3 we utilize related conditions to explore stronger • properties such as 
hamiltonian-connectedness, pancyclicity, and a variation of panconnectedness. 

2. Hamil tonian Cycles and Paths  

Since we will assume generalized degree conditions that  do not imply connec- 
tivity, we must impose some minimum connectivity conditions. Throughout this 
paper we will let fl(G) denote the vertex independence number of G. 

In the proofs of the subsequent lemmas and theorems, we will make use of the 
following known results: 

THEOREM B. [4] I f  G is a K(1, 3)-free graph of order n such that 

~( G) > 3 

and 
62(G) >_ r, 

then fl(G) < s, where s is the larger solution to rs(s - a) = 2(n - s)(2s - 3). 

Note that  when r is a positive fraction of n, fl(G) is bounded and independent 
of n. In particular, when r = (,+1), then ¢~(G) _< n .  

THEOREM C. [3]Let G be a graph of order n with 3 < s < ~ and 62(G) >_ s. 
i.) I f  G is connected, then G contains a path of order at least 2s - 1. 
ii.) I f  G is 2-connected, then G contains a cycle of order at least 2s - 2. 

THEOREM D. [2] I f  G is a graph of order n >_ 9 such that 62(G) >_ ~ and 
6(G) >_ 3, then G is hamiltonian-connected. 

For convenience we define for a path  P = z x , . . . ,  z, in a graph G, z~- to be the 
predecessor of zi and z + to be the successor of zi along the path P .  For standard 
notation not given here see [7]. Also note that  in the proofs o f  the subsequent 
lemmas and theorems the fact that  fl(G) > 3 is an immediate consequence of the 
assumptions and techniques used. 
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LEMMA 1. Let G be a connected K(1,  3)-free graph of order n such that 

> (n + 1_____2) 
- 3 

In addition, i f  there exists a path P in G containing a vertex of degree less than 
(2,+26) then for n sufficiently large, G contains a or equal to nine, and IPI  > 3 , 

hamiltonian path. 

PROOF. We m a y  assume tha t  P = Xl,X2 . . . .  , i t  is a longest pa th  in G of 
order greater  than  (2n+2~ containing a vertex of degree less than  or equal to nine, 3 
but  tha t  P is not a hamil tonian path.  Consider the graph H = (V(G) - V (P) ) .  
Suppose H consists of a single vertex v, and v is adjacent to some vertex xi on P .  
(Clearly v is not adjacent to xl  or x~ or a pa th  longer than  P is obtained.)  

Without  loss of generality, suppose v is adjacent to some other vertex x j ,  for 
i < j ,  on P .  Then x, + ¢ N ( q )  or we obtain the pa th  

x l , . . . ,  v, 

which is longer than  P.  Since fl(G) <_ 11, this implies tha t  v is adjacent to at  mos t  
nine vertices on P .  (Clearly xl ,  the successor of any adjacency of v on P ,  and v are 
independent.)  But P already contains a vertex of small degree by our assumption,  
whence 62(G) is not satisfied for n sufficiently large. 

Thus,  ]H I _> 2. Select two adjacent vertices u, v E V(H) .  (This is possible 
otherwise for n sufficiently large, the bound on 6~(G) would be violated.) Now 

degp{u ,v}  _< 9 since fl(G) _< 11. So IH] >_ (n+D -- 9 = ~n-26)3 . But since IPl > 
(2.+26) 

3 , we obtain our contradiction. 
Therefore, P must  be a hamil tonian path.  • 

LEMMA 2. Let G be a K(1,  3)-free graph of order n such that 

> (n + z) 
- 3 

For n sufficiently large the following statements hold: 
i.) I f  G is a nontraceable, connected graph with P a longest path in G, and H = 
(V(G) - V(P)) ,  then one of four possibilities exists: 

a . )  H ~ K1 
b.) H ~_ H I t.J K1, where H I is a component of H.  
c.) H is connected and contains one vertex v with deg(v) < 3. 
d.) H is connected with 6(H) >_ 3. 

ii.) I f  G is a nonhamiltonian, 2-connected graph with C a longest cycle in G, and 
H = (V(G) - V(C))  then one of the above four possibilities holds. 

PROOF. We will prove (i.) and omit  the proof  of (it.) since the me thod  of 
proof  for bo th  is the same. 

Suppose tha t  P is a longest pa th  in G with H = (V(G) - V(P) ) .  Then f rom 
Theorem C we have that  [P[ = t > (2n-l) Assume that  H ~ K1. 

- -  3 " 



4 0  F A U D R E E ~  G O U L D ~  J A C O B S O N ~  L E S N I A K y  L I N D Q U E S T E R :  O N  D I R A C ~ S  T H E O R E M  

I f  H consists of two or more components  where more than one component  
consists of at  least two vertices, then observe tha t  there must  exist a m in imum 

component  with at  least two vertices but  at  most  (~+D vertices. Call such a com- 6 
ponent  H ' .  Suppose vertex u E V(H') is adjacent to xi on P and vertex v E V(H')  
is adjacent to x i on P ,  with i < j .  Since H '  is connected, x + • Y ( x  +)  or we obtain 

x l , . . . , x i , u , . . . , v ,  xj,...,x+i , x ~ , . . . , x t ,  

which is a pa th  longer than P ,  a contradiction. Similarly, successors of neighbors 
of v on P are not adjacent and successors of neighbors of u are not adjacent.  Since 
fl(G) _< 11 f rom Theorem B, this implies tha t  u and v together are adjacent to at  
most  nine vertices on P .  (Clearly, x l  is not adjacent to u, v and any successors of 
neighbors of  u and v on P . )  Thus for n sufficiently large, the condition 82(G) is 
violated. 

Thus H -~ H ~ U  K1 or H is connected. (If  H consists of more than  one 
component  where each component  contains exactly one vertex, then since fl(G) < 
11, clearly the generalized degree condition is not satisfied.) Note tha t  if H is 
connected and contains a ver tex v with degH(v ) < 3, then v is the only vertex with 
degree less than three in H .  Otherwise, if there were another  vertex u E V(H) with 
deg(u) < 3, then deg(v) + deg(u) < 13 and the condition 8~(G) is not satisfied. 
(Since H is connected, both  u and v together can be adjacent to at  most  nine 
vertices on P ,  or ~(G)  < 11 is not satisfied.) Therefore, we have completed the 
proof  of the lemma.  • 

LEMMA 3. Let G be a connected K(1,3)-free graph of order n such that 

62(G) > (n + 1______2) 
- 3 

If  P is a longest path in G, then for n sufficiently large, I P I  = n o r  I P I  = n - 1. 

PROOF. Let P --- x l ,  x 2 , . . . ,  xt be a longest pa th  in G. From Theorem C we 
have tha t  IPI ~ t > (2,-1) Assume tha t  the subgraph H induced by V(G) - V(P) 

- -  3 " 

is not isomorphic to K1, and tha t  G is not traceable. I t  follows tha t  IH] < (,+1) 
- -  3 ' 

and H satisfies one of the three remaining conditions in Lemma  2. We proceed with 
arguments  to contradict  our assumpt ion tha t  IP[ ¢ n. 

Consider a m a x i m u m  component  H '  of H .  Then observe tha t  IH~I > ~ > 
9 since otherwise any two vertices, say u, v of V(H') would satisfy deg{u, v} < 17, a 
contradict ion to the generalized min imum degree condition for n sufficiently large. 

Suppose tha t  H -- H ~ U K1 or H consists of a single component  containing 
a vertex of degree less than  3. (If  H consists of a single component  containing a 
vertex v of degree less than  3, then denote by H '  the graph induced by V(H) - {v).)  

Then 6(H') > 3, and for n sufficiently large, 62(H') > ([H'I-5) Thus,  by Theorem - -  - -  2 " 

D, H I is hamiltonian-connected.  
(~+1) Since G is K(1,3)-free ,  there Suppose IHII = s, where 9 < s < 3 • 

must  exist three vertices between any two consecutive neighbors on P of any pair  
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of vertices u, v E V ( H ' ) ,  otherwise we could form a pa th  longer than  P .  Now 

n3~-~-2, so there exists some pair of vertices in H' tha t  must  be 62(G) > a d j a c e n t  

to at  least [ ~ a ~  -~] - s vertices on P .  But since there exists at  least three vertices 
between any two consecutive adjaceneies on P of pairs of vertices in V(H'),  we see 
tha t  there are at  least 

vertices covered between the first and last adjacency of the pair u, v in V(H').  We 
subtract  three to account for the three vertices on the pa th  to the right of the last  
adjacency of the pair  Up v which are not included in the count for T. 

Hence, using H and half  of P ,  we obtain a pa th  of order 

T t 

By our assumption,  
T t 

t > y + ~ + s + l ,  

and  since n = t + s + 1, this implies tha t  t < ~n3LL~, a contradiction. 
In the case where H contains no vertices of degree less than  3, we must  show 

("+D In other words, the tha t  IHI < (,+1). Assume to the contrary, tha t  IHI = 3 

order of the longest pa th  P is t = ~2n-1) Since G is connected, there exists at  
3 " 

least one adjacency f rom some vertex u E V(H) to some vertex xi on P .  As before, 
because G is K(1 ,  3)-free, then x~-x + e E(G). Without  loss of generality, assume 
tha t  i > ½. Then the pa th  

x l ,  . . . , x ? ,  u ,  . . . , V ( n ) ,  . . . 

is a pa th  of order at  least (~+l)a + ½ (~9_~=1)__ + 1 =  (4,+7)s > 2~3~-~, a contradiction. 

Thus IHI < ("+D With  this fact at  hand we use the same argument  for H as we 
3 " 

did for H ~ to show tha t  t < ~ also a contradiction. 
Therefore, IPI = n. • 

Wi th  the help of the lemmas and the previously s ta ted theorems we can now 
prove: 

THEOREM 4. I f  G is a connected K(1,  3)-free graph of order n such that 

62(G) > (n + 1) 
- -  3 ' 

then for n sufficiently large G is traceable. 

PItOOF. Let P be a longest pa th  in G. Then  f rom L e m m a  3, IPI = n or 
IPI = n - 1 .  Assume tha t  G is not traceable. Then P --- y = xl ,  ¢2 , . . .  ,'Xn-1 = z and 
the graph H = (V(G) - V(P)) ~- g l .  Let the se tR,  represent the region containing 
the first s vertices on P ,  and  let the set R~ represent the region containing the last  
s vertices of P .  
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Assume that  V(H) = {x} and let zi E N(x)  for some x~ on P.  Of course, 
since G is K(1, 3)-free, x~-x + e E(G). Observe that  if xl, z~ • Y(x),  for i < j ,  then 
i - j  > (--17) Otherwise, the path 

- -  3 " 

X l , . . . ,  x;, x;, 

contains x as well as more than (2,+26) vertices. Consequently, we obtain a con- 
3 * 

tradiction using Lemma 1. Similarly, we see that  ~ < i, j < (2,+20) - -  - -  3 o r  w e  c a n  

force the appropriate path in Lemma 1. Thus, if iN(x)[ > 3, then P contains at 
least 

2 ( n 3 2 0 ) ÷ 2 ( n 3  l - - - - Z )  

vertices. For n sufficiently large, we reach a contradiction. Hence JN(x)J = 1 or 
J N ( x ) l -  2. 
Case 1: Suppose IN(x)l = 2. 

Let N(x) : {xi, xj} with i < j.  Then 

( n - 2 0 )  < i < i +  ( n - 1 7 )  < . j <  ( 2 n + 2 0 )  
3 - 3 3 

Since there can be no path containing x with greater than (2,+26) vertices, then 
3 

xi has no adjacencies in R ~ - s  or R~_ s. Furthermore, zi has no adjacencies in 
the region Rj containing the last ~ - 7 vertices that  precede xj. Moreover, the 

sets R ~ - s ,  R~ Rj, and N(xi) are disjoint. Since deg{x, xl} > (n+l) then 
3 - - 8 ,  - -  3 ' 

INP(x,)[ > L ~ .  For n sufficiently large, this implies that  IP( > n - 1, which is a 
contradiction. 
Case 2" Suppose that  iN(x)[ : 1. 

Let N(x) = {zi}. As in Case 1, (,,-20) < i < (2,,+20) where xi has no 
3 - -  - -  3 ' 

adjacencies in R~_s  and xi has no neighbors in R ~ - s .  Likewise y has no adjacencies 
in R~_s ,  and z has no adjacencies in R ~ - s .  

If xixj, yxk • E(G) with j < k < i, then the path 

x, x i , x~ , . . . , y ,  x k , . . . , x ~ - , x + , . . . , z  

contains x and all of the vertices of P except those between xj and xk. Hence to 

avoid a path that  gives a contradiction using Lemma l, k - j > (,-ua) We can 
obtain a similar path  if i < j < k. Symmetrically, we see that  these statements are 
true for adjacencies of xi and z as well. Whence, the adjacencies of y precede the 
adjacencies of xi, which precede the adjacencies of z. (Note that  there could exist 
one vertex y' with y' • IN(y) U N(xi)J, where y' is on the boundary between these 
two regions. Similarly, we might have z' • IN(z) U N(xi)J on P.)  

For any set S of vertices on P ,  we denote as S + the set of successors of vertices 
in S, and S -  is the set of predecessors of vertices in S. From the above arguments 
and the fact that  P is a longest path, the sets N(y)-, N(z) +, and Np(xi), are 
disjoint sets such that  the first two contain at least ~ vertices, and the last 
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contains  at  least hal ~ vertices. Thus  we obta in  a par t i t ion  of  either P - {zi}  or 
P - {zi,  z j }  for some z j .  Now each vertex u E N ( y ) -  can play  the same  role 
as y, since u is the end vertex of  a p a t h  of  order n - 1, so we can assume t h a t  
N(u) C_ N(y). Analogously we can assume that, N(v) C_ N(z) for any v E N(z) +. 

Let 
• V(G) - (N(y) V {y} U N(z) U {z} U {x, x,}). 

Then 
(N(x) u n (NCy)- u U = 0, 

for otherwise there exists a path which leads to a contradiction by Lemma 1. This 
implies that IN(a) U N(~)I < ~s~ -~, which is a contradiction and completes the 
proof of this case and of the theorem. • 

The example below illustrates the sharpness of the result. 

Fig. 1. A l-connected K(1,3)-free graph that is not traceable 

We now proceed with preliminary results that will be used to obtain sufficient 
conditions to get a hamiltonian cycle in a K(1, 3)-free graph: 

LEMMA 5. Let G be a 2-connected K(1 ,  3)-free graph of order n such that 

$2(G) > (n + 1) 
- 3 

I f  there exists a cycle C in G containing a vertez of degree less than or equal to ten, 

and ICl _> t then for n suI~iciently large G is hamiltonian. 

PROOF. Suppose that G is not hamiltonian and choose a longest cycle C 
containing a vertex x where deg(z) < 10 such that C has order at least [(2n+6)I 

- -  L S J "  

Let H be the subgraph induced by V(G - C). Since z is a vertex of degree less 
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than or equal to 1Q, H can contain no vertices of degree less than (,+1) _ 10 or 
the generalized minimum degree condition is violated for n sufficiently large. In 
addition, [H I _> 9. Hence from Theorem D, H is hamiltonian-connected. 

( n + l )  . _ / ( 2 n + 6 ~ /  Because $~(G) >_ ~-T-' ,  ana  ICI > L 3 J, every pair of vertices in V(H) has 
at least three adjaeencies on C. From this fact and the knowledge that  [HI > 3, we 
can easily obtain a 3-matching from H to C. (A 3-matching is simply a set of three 
pairwise independent edges from H to C.) Wi th  a 3-matching and the knowledge 
that  H is hamiltonian-eonnected, we obtain a cycle containing x of order at  least 

2 / ( 2 " + 6 ) / + 3 +  ( n - 6 )  _ ( 7 n + 2 1 )  

3 L J 3  3 9 

Thus [C[ > (7n+21) From Theorem B, as before, we know that  ~(G) < 11. Thus, 
for every pair of vertices u, v in V(H), degc{u , v} < 10, and since the number 

of vertices off the cycle is at most  (n-30) contradict the generalized minimum 3 , w e  

degree condition. 
Therefore, G is hamiltonian. • 

LEMMA 6. Let G be a 2-connected, K(1,3)-free graph of order n such that 
62(G) > (n+l) and C is a longest cycle in G. Then for n sufficiently large, [C[ = n 

- -  3 

o r  ICI = n - 1 .  

PROOF. Let C = Xl, x 2 , . . . ,  x,, za be a longest cycle in G such that  [C[ # n - 1  

and assume that  G is not hamiltonian. Since 62(G) > ~ ,  from Theorem C, we 

obtain a cycle of order at least (2,-4) Denote as H,  the subgraph induced by 
3 " 

V(G)  - v ( c ) .  
Consider a maximum component F of H.  Since G is 2-connected, there exist 

at least two vertices u, v in F such that  u E N(xi)  and v E N(z j )  for some 
zi, z i E V(C), where i # j .  (Note that  from Lemma 2, the only other component  
of H other than F that  could exist is a component isomorphic to K1.) Since G is 
g(1, 3)-free, certainly z~-x + and z~-z + e E(G). 

Suppose that  F = H with [H[ = s. As seen in Lemma 3, if there exists 
a vertex w E V(H) with degH(w ) < 3, we may simply consider the subgraph 
H' = (V(H) - {w}). Then for n sufficiently large, since IH'[ >_ 9 we see that  H '  is 
hamiltonian-connected. 

Assuming that  this vertex of degree less than 3 exists in H ,  we will use the 
above observations and the edges uxi and vzi (select u, v here such that  u # ~ and 
v # w), to build a cycle of order at least 

+ ( s -  1 ) + 4 .  

However, f rom our choice of the cycle C, we know that  

n - s - 2 )  + ( s - 1 ) + 4 < n - s ,  
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which implies that  s - 1 _< na~ ~ .  Since IH'I = s -  1 and a2(G) > ~aLe-~ 2, then nearly 
all pairs of vertices in H '  have at least three adjacencies on C. (Pairs of vertices in 
V(H' )  tha t  include at least one neighbor of w may not possess this property. Since 
IHI is large enough, this fact does not affect the argument.)  Hence we can 'obta in  a 
3-matching uzl, vxj ,  and zxk, i < j < k, from H '  to C. Without  loss of generality, 
assume that  the two largest of the three regions on C between zl, z j ,  and z t  are 
Rx = { x + , . . . , x j ' }  and R2 = {x+ , . . . , x~-} .  Then the cycle 

. . ,  . x -  + . . . , V ( H ' ) . .  u U, Zi,~'~,Xi'~,. Xj,. ., k , X k  , X k ,  Z,  . ,  

is a cycle of order at least 

2 
~ ( n -  s -  3) + ( s -  1) + 5. 

We add the five at the end to account for xi, z j ,  zk, z~" and zk +. 
Since C is a longest cycle then 

2 
5 ( n -  s -  3) + ( s -  1) + 5  < n -  s 

which implies that  s < ~4~ -~. This fact leads to a contradiction since it forces too 
many adjacencies on C from vertices in H ' ,  and the upper bound on j3(G) is not  
satisfied. Certainly if H is connected with no small degree vertex, we can use similar 
arguments to reach a contradiction. 

If H is disconnected, and there exists a component isomorphic to Kx in ad- 
dition to the component F ,  then F cannot contain a low degree vertex or there 
would exist a pair of low degree vertices, which is a contradiction. Thus we are not 
forced to delete a vertex from the maximum component,  and we can argue as we 
did previously to get the same upper bound for s and a contradiction. 

Therefore, G is hamiltonian. • 

By simply strengthening the connectivity condition in Theorem 4 we obtain 
a hamiltonian cycle in the graph G with the same lower bound on 62(G). 

THEOREM 7. [f G is a 2-connected K(1,3)-free graph of order n such that 

> (n + 1) 
- -  3 ' 

then for n su1~ieiently large G is hamiltonian. 

PROOF. Assume that  G is not hamiltonian. Let C = z l ,  z 2 , . . . ,  zn-1 ,  z l  be a 
cycle of order n - 1 in G, assured by Lemma 6. Let z be the vertex not on C. Then  
since ~(G) < 11 and G is 2-connected, 2 < deg(x) < 10. To resolve this case we will 

a t tempt  to locate x on a cycle of order at least ~ J .  Once this is accomplished 
we can use Lemma 5 to conclude that  G is hamiltonian. 

Suppose x has exactly two adjacencies zi, xj on C with i < j .  Let Region 
I be denoted by R1 = { x + + , . . . , x j - - }  and let Region 2 be denoted by R2 = 
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Fig. ~. A K(1, 3)-lree nonhamiltonian graph 

{ x + + , . . . ,  x~'-}. Assume that  zk is the closest adjacency of zj to zl in Region 1 
on C. Then if $1 = {z+ , . . . , z~-} ,  we see that  ISll > [9] or 

is a cycle of order at least I(2n+6)I containing x. Also if xz is the closest adjacency t 3 J 

ofzj to zi in Region 2 on C, then the set $2 = {x+, ..., z~-} is such that IS~[ >_ [9]" 

From the hypothesis, IN(x~)UN(x)I > f(~+i)I Moreover, $1, $2 and IN(xi)U 
- -  / 3 / "  

N(x)[ are disjoint sets of vertices. Hence, there must be at least ,f(n+D]3 , + [9] + [9] 
vertices in the graph, which is too many. Thus we have reached our contradiction. 

If  z has degree > 3, then we automatically get a cycle of length at least (2n+10) 
- -  3 

containing z. From Lemma 5 we obtain the desired contradiction. 

Therefore, G is hamiltonian. • 

This result is sharp as seen by the example in Figure 2. There 62(G) >_ 9, G 
is K(1,  3)-free, and G is not hamiltonian. 
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3. H i g h e r  H a m i l t o n l a n  P r o p e r t i e s  

In this section we supply generalized degree conditions that  guarantee that  
a graph is hamiltonian-connected, pancyclic, and 8-panconnected. (We define a 
graph G of order n to be 8-panconnected if and only if for every pair of vertices 
u, v E V(G)  there exists a uv-path of length 1 for each 8 < 1 < n - 1.) 

LEMMA 8. Let G be a connected K(1,  3)-free graph of sufficiently large order 
n such that 

62(G) > (n + 24) 
- 3 

In addition, for vertices z,  y E V(G),  if  there exists an zy-path P in G containing 

(~,+9) then P contains a vertex of degree less than or equal to eleven, and IPI > z , 
all of the vertices of G. 

PROOF. Suppose that  P is a longest zy-path  in G containing a vertex of 
degree less than or equal to eleven, but that  P is not a hamiltonian zy-path.  Con- 
sider the subgraph H -: (V(G)  - V (P) ) .  If H consist of a single vertex v, then 
deg(v) < 11, since from Theorem B we know that  ;3(G) < 11. (The only si tuation 
where deg(v) = 11 occurs is if v is adjacent to both  z and y, otherwise deg(v) < 10.) 
However, P already contains a vertex of small degree, whence 62(G) is not satisfied 
for n sufficiently large. 

Thus IHI > 2. For adjacent vertices u, v E V(H) ,  since ;3(G) < 11, Igp (u )  U 
Np(v)] < 11. (Certainly we can find two adjacent vertices in H since otherwise for 
n sufficiently large the ~2(G) condition would be violated.) Since ~2(G) > (,+24) 

• - -  3 ' 

then IH I _> (,+24)3 - 11 = (--9)a . But IPI > ~ which shows that  the order of 
H is not large enough, and we obtain a contradiction to the generalized minimum 
degree condition. 

Therefore, P must be a hamiltonian xy-path. • 

LEMMA 9. Let G be a 3-connected K(1,3)-free graph of order n such that 
62(G) > (n+24) and P is a longest zy-path in G for vertices z, y e V(G) .  Then for 

- -  3 

n sufficiently large, [Pl = n or IPI = n - 1. 

PROOF. Let P : x = a:l, x 2 , . . . ,  x~ = y be a longest xy-path in G, Assume 
IPI < n - 2. We will proceed with arguments to reach a contradiction. 

Consider a maximum component H '  in H = ( (V(G)  - V (P) )  where IHI - s. 
(As before, select H I such that  it is a maximum connected subgraph of H with 
~(H')  >__ 3. With  arguments similar to those of Lemma 2, since ~ < 11, we know 
that  IH'I = IHI or IH'I = I H I -  1.) For n sufficiently large, IH'I >_ 9. Thus f rom 
Theorem D, we have that  H '  is hamiltonian-connected. Now since G is 3-connected 
we can locate a 3-matching from H '  to P .  With  this information, we can form an 
zy-path  of order at least 

(n - s - 2) 

2 
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But  
(n - s - 1) 

+ 2 + ( s - 1 )  < n - s  
2 

since we are assuming tha t  P is a longest xy-path.  This implies tha t  s < (n - l )  
Consequently, every pair of vertices must  have at least nine adjacencies on P .  Wi th  
this m a n y  neighbors on P for every pair, using the above method,  we can show tha t  
the pa th  P is long enough to force [Htl < (n-lO) This  would then contradict  the 
fact that  every pair  of vertices has at  most  11 adjacencies on the pa th  P .  

Therefore, [P[ = n and we have proven the lemma.  • 

We can now prove a theorem involving the hamil tonian-connected proper ty  
and a generalized degree condition with the help of Lemmas  8 and 9 and Theorem 
D: 

THEOREM 10. I f  G is a 3-connected K(1,3)-free graph of order n such that 

&9.(G) > (n + 24) 
- -  3 ' 

then for n sufficiently large G is hamiltonian-connected. 

PROOF. Assume that  G is not hamiltonian-connected. Then there are vertices 
x ,y  E V(G) such that  there exists no xy-hamil tonian path.  Let P -- 
x = xl ,  z 2 , . . . ,  x~ = y be a longest xy-pa th  in G. Then f rom the previous lem- 
ma,  P has order n - 1. I f  z is the vertex off the pa th  P ,  then 3 < deg(z) < 11 since 
G is 3-connected and j3(G) < 11. (In the special case where z is adjacent  to bo th  
and y, the degp(z)  can be equal to eleven with/3(G) < 11 still satisfied.) 

C a s e  1: Suppose 4 _< deg(z) _< 11. 
The worst case occurs when z is adjacent to bo th  z and y since this s i tuat ion 

leads to the shortest  zy -pa th  to be considered in the arguments  below. Thus  we 
will assume tha t  there are at  least four neighbors of z on P ,  namely x, y, zi ,  and xj 
for some i < j .  As before, since G is K(1,3)-free,  z~'x~ + and z ' fz~ E E(G). Since 

z is adjacent to both  x and y and 4 < deg(z) < 11, then degp(xi )  > n+24 _ 12. 
- -  - -  - -  3 

We part i t ion sections of the pa th  P into three regions accordingly: 
Let 

R1 - { x + , . . . , x ~ - - } , R 2  = { z i + + , . . . , x T - } ,  and R3 = { x f + , . . . , y - } .  

Now clearly IR31 = ~ (since IH'I > 9), otherwise we could form the xy-pa th  

• , . . . ,  x 7 ,  x~,  x i ,  z, y 

(n-9) ~ containing z. By Lemma  8 we would reach of order greater than  n -  3 -- 
a contradiction to the assumption tha t  there is no xy-hamil tonian path.  Similarly, 
JR1[ = -~___29 and IR2[ = , - 9  

3 " 
Suppose tha t  zl has an adjacency wl in R1. Then 

x, z, x i , ~ l ,  • • •, x~', z + , . . . ,  y 
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is an xy-path containing the small degree vertex z with order greater than or equal 
to 

2 ( ~ - ~ )  + 1 0 -  (2n+12)3 

Thus, by Lemma 8 this pa th  is a hamiltonian xy-path,  and we reach a contradiction. 
So we see that  there exist no adjacencies of xi into R1. Similarly, if x~ has an 
adjacency ~3 into R3, then the xy-path  

z , . . . ,  x?, x + , . . . ,  x i , . . . ,  ~3, xi, z, y 

is of order greater than or equal to (2~+t~) containing z. Once again, f rom Lemma 
3 

8 we obtain a hamiltonian xy-path.  Lastly, for w2 in R2 such that  w2 E N(x i )  the 
pa th  

x, xZ, x,+, . . . ,  ~ ,  x,, z, xi, x f ,  ~ f , . . .  ,~ 

is an zy-pa th  of order at least (2n+12) Hence, xi has no adjacencies into R2. 
3 " 

Thus there exist three distinct regions of P each of order greater than or equal 
to hal ~ where zi has no adjacencies. But as mentioned previously, degp(xi )  > 

(n-12) Whence, for n sufficiently large we have forced more than n vertices in 
3 " 

V(G), and P must be a hamiltonian xy-path. 

Case 2: Suppose deg(z) = 3. 
As in Case 1, we will assume that  x, y E N(z )  since this is the worst si tuation 

possible. Suppose also that  z is adjacent to some other vertex xi on P .  
Since deg(z) = 3, we have that  each of deg/,(x),  degp(y),  and degp(zi)  >_ 

(n+24)a - 4 = (n+12)3 . As in Case 1, xi has no adjacencies among the final ~ and 

first nzf ~ vertices of P ,  (except for possibly x and y) otherwise we can create as 

before a path  in each case containing z and of order greater than (2n+s) Hence 
3 

x~ has at least (~+s) adjacencies (expect for possibly x and y) in the 'middle'  3 
region of P .  Since these regions are disjoint, this means that  there are at least 
2 ( ~ )  + ~ = n - 32- vertices on the path  P .  This is a contradiction, however, 
since this implies tha t  IPI  = n. 

Therefore, P is a hamiltonian xy-path and we have proven this case and hence 
the theorem. • 

Before we present a result involving a variation of the panconnected property, 
we must  make some preliminary observations: 

LEMMA 11. I f  G is a K(1,3)-free 2-connected graph of order n such that 

3n 
62(G) > T '  

k > 4, then the diameter of G, denoted diam(G), is less than 3F~] - 1. 

PROOF. Suppose that  diam(G) >_ 3[~] - 1. Then there exists a pa th  P of 
order at  least 3[~] such that  the vertices on P have no additional adjacencies on 
P .  
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Select x to be an end vertex of this path P. For 1 < t < k, let N~(x) denote 
the set of vertices at distance t from x. Since G is 2-connected, there exist at least 
two vertices in NI(x). Now/is(G) > ~ ,  so I{z} 13 NI(X) t2 N2(z)] > ~ .  Similarly, 
for t = 3s (1 < s < 3 [ ~  - 1), IN~_l(x) t.) N~(x) U N~+I(x)I > ~ .  Thus we have at 
least 3 [§] pairs of vertices with disjoint neighborhoods, and each pair has greater 
than ~ vertices in its neighborhood. But this requires that  there exist more than 
n vertices in V(G). Therefore, we obtain a contradiction. • 

Note that  the above argument implies that  if 62(G) > ~, then diam(G) < 7. 
In the next lemma we use a result from [6] that  provides the structure needed 

to construct paths of different lengths in the graph G. 

THEOREM E. [6] Let H ba a graph of order n > 2 with fl(G) < 2, and let 
G = K I + H .  Then eitherG ispanconnected orH = KrUKp-r  forsome 1 < r <p.  

LEMMA 12. If G is a 3-connected K(!,3)-free graph of order n such that 

n 6 (c) > 

then for n su~ciently large, there exist xy-paths of length i, for each 8 < 1 < ~, 
and for all x, y E V(G). 

12 PROOF. Since 62(G) > ~ there exists at most one vertex of degree < ~. 
Consider two vertices x, Y E V(G), and without loss of generality assume deg(x) > 
-~. Let H be the subgraph induced by N(z)  tA z. Then fl(tt) _< 2 since G is K(1,  3)- 
free. H e n c e / / i s  panconnected or H - z is the union of two complete graphs from 
Theorem E. 
i.) S u p p o s e / / i s  panconnected. If y E N(x),  clearly we get xy-paths of all lengths 
up to -~ + 1. If Y g iV(x), since the diameter of G is less than or equal to seven 
(Lemma 11), we get all xy-paths of length 1 for each 8 < 1 < ~ + 1. 
ii.) Suppose H - z is the union of two complete graphs. Let L be the largest 
complete component o f / / -  x so that  [L[ > ~ .  Denote by S the smaller of the 
two components. Consider the shortest path P from y to z. Assume tha t  P goes 
through L. Since L is complete and diam(G) < 7, we obtain paths of each length 
from 8 to "-- 

12"  

Now consider the 2-connected graph G - {x}. We form a new graph G I with 
V(G') -- V(G - (x} + {u, v}), where u is a new vertex adjacent to exactly two 
vertices in L, and v is a new vertex adjacent to y and a vertex in S. Since G ~ is 
2-connected, there exist at least two internally disjoint uv-paths in G ~. One path  
contains a path from y to L, and the other path contains a path from L to S. Select 
a pair of shortest disjoint uv-paths. Let P1 be the path from y to L, and let P2 
represent the path  from L to S. (Note that  the end vertex of P1 in L and the end 
vertex of P2 in L are distinct.) Then IPll < 8 and ]P2] _< 8. Otherwise, using 
arguments similar to those in Lemma 11, we can select alternating pairs of vertices 
on P1, for example, such that  these pairs have disjoint neighborhoods. Since these 
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pairs must satisfy the generalized minimum degree condition, this forces too many 
vertices in our graph. Now for n sufficiently large, 16 < ~ .  

Using P1 and P~, and the vertices of both L and S, we can get all xy-paths 
of lengths from @ to -~. 

Assume the P goes through S. Then once again we are able to get all paths 
of lengths up to { with the use of P1 and P2. • 

With these lemmas at hand, we provide a sufficient generalized degree condi- 
tion for a graph G to be 8-panconnected. As a corollary, the graph G is pancyclic 
given the same generalized degree condition. 

THEOREM 13. Let G be a &connected K(1, 3)-free graph of order n. Then 
there ezists a constant c such that if 

n 
~2(c)  > -ff + c, 

then G is 8-panconnected. 

PROOF. In this proof we show that c = 128 is sufficient (but not necessarily 
the best possible constant) to obtain the desired result. Assume that G is not 8- 
panconnected. Since n is large enough, from Lemma 12, we get all xy-paths of 
lengths 8, 9,. "',3"~ 

Select t _> ~ such that there exists apath  Pj(z, y), of length j,  for all 8 < j < t, 
but no Pt+t(x, y). For n < 193 the theorem is trivially true, so for n _> 193 we 
proceed by induction on n, the order of G. First notice that if G is a 3-connected 
K(1,3)-free graph of order 193 such that 62(G) > 193/3 + 128, then G is complete, 
which implies that G is 8-panconnected. So assume the result for graphs of order 
k, for 193 < k < n - 1, that is, they are 8-panconnected. Using this hypothesis, we 
will build paths of the desired lengths. 

n Claim 1: We claim that t > ~. 
Suppose this is not the case. Let P,(x,  y) : x = zl, x2 , . . . ,  xt = y and consider 

H = (V(G)  - V(Pt(z, y))). Then -~ _< IHI _< ~ ,  from our assumption and Lemma 
12. Once again, from Theorem B we know that ~(G) < 11. Consider a vertex v in 
H. If v ~ N ( z , )  and v E N(zj),  for xi, zj, i < j,  on Pt(z, Y), since G is K(1, 3)-free, 
certainly z~-z +, x f z  + E E(G).  Also z~-z~- ~ E(G)  since otherwise the path 

X = X l , . . . , X  i ~Xj  , . . . , X i + , X i ,  V, X j ~ . . . , X t  = y 

is a Pt+I(r,  Y), which is forbidden. Without loss of generality, assume that v is 
adjacent to z. (If v is adjacent to both z and y, the argument is the same.) Then 
v ~ N(z2) O N(zs) since we would obtain a Pt+t(r,  V)- But for any ri E N(v ) ,  r2 f~ 
N(z +) or the path 

X ,  V ~ . . . ,  Z i ~  • • . ,  X2~  X / t ' ,  • • • ,  y 

is a P~+t(z,y). Hence, since B(G) _< 11, degp,(v) < 11. 
We now investigate the connectivity of H by showing that H contains a large 

3-connected subgraph K (one with at least ~ vertices with 52(K) > -~). If H is 
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3-connected, we have located our 3-connected subgraph. So assume that  H is not 
3-connected. 

Delete any vertex u of H such that  degH(u ) _< 4. (There is at most one such 
vertex.) If  the resulting graph H ~ is 3-connected, we are done. If not, there is a 
outset S, with IS[ <_ 2, such that  H '  - S is disconnected. The number of resulting 
components is two, for otherwise a K(1, 3) would occur. Let these two components 
be denoted / /1  a n d / / 2 .  

Without  loss of generality, consider u, v E H1. Since f~(G) _< 11, [NG_HI(U)(.J 
NG-H,(V)[ < 24. (Each of u and v can have at most 11 adjacencies on P ,  and u 
and v might also be adjacent to two vertices in the cutset.) Thus, ~2(H1) _> ~ + 104 
which implies that  [Hi[ _> ~ + 104. Hence if HI is 3-connected, then H1 is the 
desired subgraph. I f / / 1  is not 3-connected~ then there exists some cutset $1, with 
[$1[ < 2, such that  //1 - $1 has two components Hl l  and H12. Each o f / / 2 ,  HI~, 
and His  has at least ~ vertices, which contradicts the order of G. Therefore, H 
must contain a 3-connected subgraph K with the needed properties. 

Certainly g is K(1,3)-free and 62(K) > ~. Since [g[ = p < ~ ,  then 
82(K) >__ § + 128. From the induction hypothesis, K is 8-panconnected. Since G is 
3-connected, we can locate disjoint paths P1 = x , . . . ,  u and P2 = y , . - .  v from x to 
K and from y to K,  respectively. From Lemma 11, the shortest paths from K to 
the path  P have length less than  or equal to 8. Thus we can get an xy-path 

x , . . . , u , . . . , v , . . . , y  

of length at most 24. Now since [K I < -~ and is 8-panconnected, we get all paths of 
lengths up to -~ ÷ 2. Hence, we have shown that  t > ~ and have proven Claim 1. 

Claim 2- We claim that  t >_ ~. 
Using methods similar to those utilized in Claim I we can prove this statement.  

Once again, consider G -  Pt(x, y) = H.  By previous methods H contains a 3- 
connected subgraph K with the appropriate properties. By induction, K is 8- 
panconnected and we get all zy-path of desired lengths up to ~. 

Clalm 3, Building further, we assert that  t > ~ _ ! .  Again consider H = G-Pt (x ,  y). 
Suppose that  H is not 3-connected, and assume that  when removing the outset of 
H the result is at least two components each with at least two vertices. Since it has 
been established that  t >_~,n then this implies that  the smallest component has order 
less than equal to ~. This fact contradicts the generalized degree condition since 
any pair of vertices in one component can have at most 22 adjacencies on the path. 
Thus H contains a 3-connected component K with [K[ > (n - t) - 1. By induction, 
K is 8-panconnected. Since G is 3-connected, there exists a 3-matching from K to 
P~(x, y). Since diam(G) < 8, we can get all paths of lengths t to ~ + (n - t) - 1. 
Thus, ~ + (n - t) - 1 _< t which implies that  t _> 2n-la 

Now if t > 2n- 1 - "T'- ' ,  we immediately obtain that  t > n - 1, since when t > 2n-.1 
- -  - -  3 ' 

every pair of vertices in V(H) = V(G - P~(z, y)) must have 128 adjacencies on 
Pt(z, y). This violates fl(G) _< 11. We see that  t -- n from Theorem 10, which 
states that  G is hamiltonian-connected. 
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Therefore, G is 8-panconnected. • 

COROLLARY 14. Let G be a 3-connected K(1,  3)-free graph of order n. 
there exists a constant c such that if  

n 
62(c) >_ + c, 

then G is pancyclic. 

Then 

PROOF. Since G is 8-panconnected for c = 128, we get cycles of each length 
1 for ea~:h 8 < l < n - 1. But since 82(G) > ~ + c and G is g ( 1 ,  3)-free, we obtain 
cycles of lengths 3 to 7 by considering the neighborhoods of pairs of vertices. 

Therefore, G is pancyclic. • 
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