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ABSTRACT 

This is intended as a survey article covering recent developments in the 
area of hamiltonian graphs, that is, graphs containing a spanning cycle. 
This article also contains some material on related topics such as trace- 
able, harniltonian-connected and pancyclic graphs and digraphs, as  well as 
an extensive bibliography of papers in the area. 

0. INTRODUCTION 

The hamiltonian problem; determining when a graph contains a spanning 
cycle has long been fundamental in graph theory. Named for Sir William 
Rowan Hamilton, this problem traces its origins to the 1850s. Today, how- 
ever, the flood of papers dealing with this subject and its many related 
problems is at its greatest; supplying us with new results as well as many 
new problems involving cycles and paths in graphs. 

To many, including myself, any path or cycle question is really a part of 
this general area. Although it is difficult to separate many of these ideas, 
for the purpose of this article, I will concentrate my efforts on results and 
problems dealing with spanning cycles (the classic hamiltonian problem) in 
ordinary graphs. I shall not attempt to survey digraphs, the traveling sales- 
man problem (see instead [107]), or any of its related questions. However, I 
shall mention a few related results. I shall further restrict my attention pri- 
marily to work done since the late 1970s; however, for completeness, I shall 
include some earlier work in several places. For an excellent general intro- 
duction to the hamiltonian problem, the reader should see the article by 
J. C. Bermond [23]. Those not familiar with this topic or with graphs in gen- 
eral are advised to begin there. Further background and related material 
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can be found in the following related survey articles: [31], [24], [108], [163], 
[51], [19], and [124]. 

This article concludes with a rather extensive list of references. I have 
also tried to include the Math Reviews reference whenever possible. I hope 
this will be of use to those interested in research problems in this field. 

Throughout this article we will consider finite graphs G = (V ,  E). We re- 
serve n to denote the order (IVl) of the graph under consideration and q the 
size (IEI). A graph will be called hamiltonian if it contains a spanning 
cycle. Such a cycle will be called a harniltonian cycle. If a graph G contains 
a spanning path it is termed a traceable graph and if G contains a spanning 
path joining any two of its vertices, then G is hamilfonian-connected. If G 
contains a cycle of each possible length I ,  3 I 1 I n, then G is said to be 
pancyclic. These are clearly closely linked ideas and by no means does this 
list exhaust the related concepts. 

There are four fundamental results that I feel deserve special attention 
here-both for their contribution to the overall theory and for their affect 
on the development of the area. In many ways, these four results are the 
foundation of much of today’s work. 

Beginning with Dirac’s theorem [53] in 1952, the approach taken to de- 
veloping sufficient conditions for a graph to be hamiltonian usually in- 
volved some sort of edge density condition; providing enough edges to 
overcome any obstructions to the existence of a hamiltonian cycle. Dirac 
saw a natural method for supplying the necessary edges, using the mini- 
mum degree 6(G). 

Theorem 0.1 [53]. 
is hamiltonian. 

If G is a graph of order n such that 6(G) 2 n/2, then G 

Dirac’s theorem was followed by that of Ore [132]. Ore’s theorem relaxed 
Dirac’s condition and extended the methods for controlling the degrees of 
the vertices in the graph. 

Theorem 0.2 [132]. If G is a graph of order n such that deg x + deg y 2 n, 
for every pair of nonadjacent vertices x , y  E V, then G is hamiltonian. 

This relaxation stimulated a string of subsequent refinements (see [44] or 
[23] for more details), culminating in the classic work of Bondy and Chv6tal 
[33] concerning stability and closure. In [33], as in Ore’s [132] motivating 
work, independent (mutually nonadjacent) vertices whose degree sum is at 
least n are fundamental. The following notation will be useful: 

l k  1 
deg ui( { u I , u 2 , .  . . ,uk} is independent in G (k 1 2) 

i = l  

In [33], Bondy and Chv6tal extended Ore’s theorem in a very useful way. 
Define the k-(degree) closure of G,  denoted Ck(G), as the graph obtained 
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by recursively joining pairs of nonadjacent vertices whose degree sum is at 
least k, until no such pair remains. Their fundamental hamiltonian result is 
the following: 

Theorem 0.3 [33]. A graph G of order n is hamiltonian if, and only if, 
CJG) is hamiltonian. 

Theorem 0.3 provides an interesting relaxation of Ore’s condition. Now 
we no longer need to verify that each pair of nonadjacent vertices has degree 
sum at least n, but rather, only enough pairs to ensure that the closure is 
recognizable as being hamiltonian. Since the closure is hopefully a denser 
graph, your chances should improve. However, the number of edges actually 
added in forming the degree closure can vary widely. It is easy to construct 
examples for all possible values from 0 to (1) - q. Thus, we might receive 
no help in deciding if the original graph is hamiltonian, or the degree closure 
may be the complete graph. 

be ,a property 
defined for all graphs or order n and let k be an integer. Then P is said to 
be k-degrse stable if, for all graphs G or order n, whemver G + uu has 
property P and deg u + deg u 2 k, then G has property P. Among the re- 
sults established in [33] were the following: 

This idea led naturally to the following definition. Let 

(i) The property of being hamiltonian is n-degree stable. 
(ii) The property of being traceable is n - l-degree stable. 

(iii) The property of containing a C, (5 I s I n) is (2n - 1)-degree stable. 

For other work related to the idea of closure, see [3], [ll], [a], [141,142], 
or [170]. 

The fourth fundamental result took a different approach. Let Po(G) de- 
note the independence number of G, that is, the size of a maximal inde- 
pendent set of vertices in G. 

Theorem 0.4 [47]. If G is a graph with connectivity k such that Po(G) I k, 
then G is hamiltonian. 

In the following sections, we shall see that each of these results has in- 
spired many others. 

1. GENERALIZATIONS OF THE FUNDAMENTALS 

Many generalizations of Theorems 0.1-0.4 have been found. Haggkvist and 
Nicoghossian [86] sharpened Dirac’s theorem by incorporating the connec- 
tivity of the graph into the degree bound. 

Theorem 1.1 [86]. If G is a 2-connected graph of order n, connectivity k 
and minimum degree S(G) 2 $(n + k), then G is hamiltonian. 
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This result itself was recently generalized in [16]. 

Theorem 1.2 [16]. If G is a 2-connected graph of order n and connectivity 
k such that a3(G)  2 n + k, then G is hamiltonian. 

A natural direction, taken by Bondy [32], was to further increase the 
number of vertices involved in the independent set. 

Theorem 1.3 [32]. If G is a k-connected graph of order n 2 3 such that 
u ~ + ~ ( G )  > ;(k + l ) (n  - l), then G is hamiltonian. 

Degree sum conditions like those of Theorems 0.2 and 1.3 do have a 
major shortcoming, however; they apply to very few graphs. Thus, it is 
natural to consider variations on such conditions, with the hope that these 
variations will be more applicable. 

Along these same lines, Bondy and Fan [34] provided an Ore-type result 
for finding a dominuring cycle, that is, a cycle that is incident to every edge 
of the graph. Harary and Nash-Williams [89] showed that the existence of a 
dominating cycle in C is essentially equivalent to the existence of a hamil- 
tonian cycle in the line graph of G, denoted L(G). 

Theorem 1.4 [34]. Let G be a k-connected (k I 2) graph of order n. If any 
k + 1 independent vertices xi (0 I i I k) with N ( x i )  f l  N(x,)  = 0 (0 I 
i # j I k) satisfy ak+ , (G)  1 n - 2k, then G contains a dominating cycle. 

This result has the immediate corollary that if G is k-connected with 
S(G) 2 (n - 2k)/(k + l), then G has a dominating cycle. This proves a 
conjecture of Clark, Colburn, and Erdos [48]. Fraisse [73] had independently 
proved this conjecture; however, his result is slightly weaker than that of 
Bondy and Fan. 

Bondy [32] also gave a sufficient condition for G to contain a cycle C 
with the property that G - V(C) contains no clique Kk. When k = 1, this 
result corresponds to Ore’s theorem. Veldman [162] further generalized this 
idea. A cycle C is said to be DA-cylic if and only if every connected sub- 
graph of order A has at least one vertex in common with C. This idea also 
generalizes the idea of a dominating cycle. Veldman [162] generalized 
Theorem 1.1 as well as others to D,-cycles. 

Another very interesting approach was introduced by Fan [59]. He 
showed that we need not consider “all pairs of nonadjacent vertices,” but 
only a particular subset of these pairs. 

Theorem 1.5 1591. If G is a 2-connected graph of order n such that 

n 
min{max(deg u,deg u) I dist(u,u) = 2) 2 - 2 ’  

then G is hamiltonian. 
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Fan’s theorem is significant for several reasons. First it is a direct general- 
ization of Dirac’s theorem. But more importantly, Fan’s theorem opened an 
entirely new avenue for investigation-one that incorporates some of the 
local structure, along with a density condition. Now, when attempting to 
find new adjacency results, one must not only consider the “degree 
bounds,” but the set of vertices for which this bound applies. A natural 
question will be: Can an even sparser set of vertices be used (thus expand- 
ing the number of graphs for which the result will apply)? We shall see later 
that this idea can be used in conjunction with other adjacency conditions 
and that incorporating more of the structure beyond the neighborhood of a 
vertex can be useful. 

Theorem 1.5 was strengthened in [22], where the same conditions were 
shown to imply the graph is pancyclic, with a few minor exceptions. 

Recently, a new “generalized degree” approach based upon neighborhood 
unions has proven to be useful. This idea is based on the adjacencies of a 
set S of vertices. The degree of a set S is defined to be 

deg(S) = u N(u) , 
1v.s I 

where N(u) = {x E V(G) I xu E E(G)kis the neighborhood of u. Typically, 
S is chosen to have some property P (for example, independence). This 
relaxation further generalizes the approach taken in the 1960s and early 
1970s and offers a wide variety of uses. 

The first use of the generalized degree condition was to provide another 
generalization of Dirac’s theorem. 

Theorem 1.6 [62]. If G is a 2-connected graph of order n such that deg(S) L 
(2n - 1)/3 for each S = {x, y} where x and y are independent vertices of G, 
then G is hamiltonian. 

Fraisse [74] extended this result to larger independent sets of vertices. 

Theorem 1.7 1741. Let G be a k-connected graph of order n. Suppose 
there exists some f 5 k, such that for every independent set S of vertices 
with cardinality f we have deg(S) 1 t(n - l)/(t + l), then G is hamiltonian. 

Very recently, Lindquester [110] was able to show that a Fan-type restric- 
tion to vertices at distance two could also be used with generalized degrees, 
providing an improvement to Theorem 1.6. 

Theorem 1.8 [110]. If G is a 2-connected graph of order n satisfying 
deg(S) 1 (2n - 1)/3 for every set S = {x ,y}  of vertices at distance 2 in G, 
then G is hamiltonian. 
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Independent sets are not the only ones that have been useful in conjunc- 
tion with generalized degrees. The collection of all pairs of vertices (or all 
t-sets of vertices) provides yet another generalization of Dirac's Theorem; 
one with a more combinatorial flavor. 

Theorem 1.9 [61]. If G is a 2-connected graph of sufficiently large order n 
such that deg(S) 1 4 2  for every set S of two distinct vertices of G, then G 
is hamiltonian. 

A similar result holds for sets of more than two vertices (see [61]); how- 
ever, at this time the best known lower bound is n/2 + c(k) ,  where c(k)  is 
a constant that depends upon k, the number of vertices in the set. 

A direct generalization of Ore's theorem was provided in [81]. We say 
that G satisfies IC,(G) L k if for any set oft independent verticesxl, . . . , x , ,  
In:=, N(xi)l 1 k. A ( r l ,  tz)-pair A, B is a pair of sets of independent vertices 
satisfying [A[  = t l ,  IBI = t 2  andA n B = 0. 

Theorem 1.10 [81]. Let G be a graph of order n satisfying IC*(G) 1 k ,  
(k 1 2). Further, let t l  and t z  be positive integers satisfying 2 I t l  + 
tZ I k + 1. If for every ( t i ,  tz)-pair A and B, deg(A) + deg(B) 2 n, then G 
is hamiltonian. 

Many other results have been discovered in the last few years using 
generalized degree (neighborhood union) conditions. For a survey of such 
results see [108]. 

By varying the typical degree sum approach to that of adjacent vertices 
rather than nonadjacent vertices, Brualdi and Shanny [42] obtained a 
hamiltonian result about the line graph, L(G),  of the given graph. 

Theorem 1.11 [42]. If G is a graph of order n 1 4 such that for any edge uu 
in G ,  deg u + deg u 2 n, then G contains a dominating circuit, hence 
L(G) is hamiltonian. 

Veldman [161] further developed this idea. His work can be viewed as yet 
another form of generalized degree. We follow his notation here. Call two 
subgraphs HI and H2 of G close in G, if they are disjoint and there is an 
edge of G joining a vertex in H ,  and a vertex of H2.  If H I  and H z  are dis- 
joint, but not close, then they are said to be remote. The degree of an edge e 
of G is the number of vertices of G close to e when e is viewed as a sub- 
graph of order two. We denote the edge degree as deg(e). Clearly, this is 
nearly the generalized degree of an adjacent pair of vertices. 

Theorem 1.12 [161]. Let G be a k-connected graph (k L 2) such that 
for every k + 1 mutually remote edges eo, e l , .  . . , ek of G ,  Z;"=, deg(e,) > 
$k(n - k), then G contains a dominating cycle. 
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Veldman further conjectures that this bound can be improved to ;(k + 1) 
(n - 2). In [20], this work was extended to pancyclic line graphs. Veldman 
also used this approach in [161] in studying DA-cycles. 

Ainouche and Christofides [2] combined P6sa [135] and Ore [132] type 
conditions on degrees to obtain interesting new results. In a graph G = 
(V,E),  with W C V ,  let 

be the degrees in G of the vertices in W. A subset W of V(G) is termed 
“good” if deg wi > i for every wi E W. With this in mind, Ainouche and 
Christofides [2] obtained the following: 

Theorem 1.13 [2]. Let G be a graph of order n and W be a good subset of 
V(G). If deg x + deg y 1 n for any two nonadjacent vertices x ,  y in 
V - W, then G is hamiltonian. 

Ainouche and Christofides also obtained descriptions of maximal non- 
hamiltonian graphs failing to satisfy their condition. 

Dirac’s condition (6(G) 1 (n/2)) implies that any m-regular graph of order 
at most 2m is hamiltonian. Jackson [95] has shown that every 2-connected, 
k-regular graph with n I 3k vertices has a hamiltonian cycle. The follow- 
ing improvement, given in [169], was originally conjectured by Jackson. 

Theorem 1.14 [l69]. Every 2-connected k-regular graph G is hamiltonian 
if its order n I 3k + 1, except the Petersen graph. 

Recently, a short proof of Theorem 1.14 was found by Bondy and 
Kouider [37]. 

Asratyan and Khachatryan [lo] introduced yet another Ore-type adja- 
cency condition that is reminiscent of Fan’s use of vertices at distance two. 
Let G2(x) denote the subgraph of G induced by those vertices at distance at 
most 2 from x .  

Theorem 1.15 [lo]. Let G be a graph of order n. Suppose that whenever 
deg x 5 (n - 1)/2 andy is a vertex at distance 2 fromx, deg x + degc;,(,,y 2 
[V(G2(x))l, then G is hamiltonian. 

Another Ore-type result is due to Hakimi and Schmeichel [87]. 

Theorem 1.16 [87]. Let G be a graph of order n 1 3 with a hamiltonian 
cycle C:x1,x2,. . . ,x,,xl. Suppose that deg x1 + deg X ,  2 n. Then G is 
either pancyclic, bipartite, or missing only an (n - 1)-cycle. 

Moreover, if case 3 occurs, they are able to provide a great deal more in- 
formation on the local structure around the vertices x I  and x ,  on C. 
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Denote by o(G), the number of components of a graph G. Using this 
parameter, ChvGtal [46] introduced the following concept: We say that G is 
t-tough if for every vertex cut-set S, o(G - S) I ISl/f. Chvltal showed that 
if G is hamiltonian, then t 1 1. He also conjectured that if G was 2-tough, 
then G was hamiltonian. Thomassen and others have produced examples of 
nonhamiltonian graphs with t > 3/2, while in [58] it is shown that there are 
nonhamiltonian graphs with toughness arbitrarily close to two. Molluzzo 
[126] also studied toughness. Note that recognizing toughness has recently 
been shown to be an NP-complete problem [17]. This had been a long- 
standing open problem. 

Toughness, when combined with other conditions, can be used to ob- 
tain both new results and improvements of existing results. (See also [25] 
and [99].) 

Theorem 1.17 [98]. 
az(G) I n - 4. Then G is hamiltonian. 

Let G be a 1-tough graph of order n 2 11 such that 

Theorem 1.18 [18]. Let G be a 2-tough graph of order n such that 
a3(G) 1 n. Then G is hamiltonian. 

Further generalizations of Theorem 1.17 can be found in [147] and gener- 
alizations of Fan’s theorem with regard to toughness can be found in [ls]. 
For a more complete survey of results relating toughness and hamiltonian 
properties, see [19]. 

Turning to work related to Theorem 0.4, we find that in [36] it was 
shown that a 2-connected graph with &(G) I 2 is either pancyclic, or onc 
of the graphs C4 or Cs. Amar, Fournier, Germa, and Haggkvist [7] showed 
that if G is k-connected with &(G) = k + 1, then for every maximum 
length cycle C of G ,  G - V ( C )  is complete. More recently, Benhocine and 
Fouquet [21] considered hamiltonian line graphs in this context. 

Theorem 1.19 [21]. If C is a 2-connected graph and Po(G) 5 k(G) + 1, 
then L(G) is pancyclic unless G is one of C4, C s ,  C6,  C, ,  the Petersen graph 
or the graph of Figure 1. 

FIGURE 1 
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Many results related to Theorems 0.1-0.2 have been found for digraphs. 
In 1981, Bermond and Thomassen [24] gave an outstanding survey of these 
and many other results on cycles in digraphs. I shall now briefly mention 
some subsequent work related to our four fundamental theorems. 

If D is a digraph and S C V ( D ) ,  we say that S is Po-independent if 
the digraph induced by S, denoted D[S], contains no arcs; we say that S is 
P,-independent if D[S] contains no cycles; we say that S is P+tdependent  
if D[S] contains no 2-cycles. Thus, Po I P I  5 P2 and if D is the digraph 
obtained from a graph G by replacing each edge of G by a directed 2-cycle, 
then Po = PI = P2.  Thus, each parameter may be considered a directed 
analogue of the undirected independence number Po. 

Thomassen [154] gave examples of nonhamiltonian 2-connected digraphs 
with &(D) = 2 and nonhamiltonian 3-connected digraphs with P I  = 3 
and Po = 2. Thus, the Erdos-Chvkal theorem does not completely gener- 
alize to digraphs. The following problem was posed by Jackson [96]: 

Problem. Determine if for every integer m, there exists an integer 
(smallest) J(m) (i = 0, 1, or 2) such that every fi(m)-connected digraph D 
with Pi(@ I m is hamiltonian. 

Jackson [96] and Jackson and Ordaz [97] have investigated this problem: 

Theorem 1.20 [96]. 

1. Let D be a digraph with P2(G) I r.  If k(D) L T(r + 2)!, then D 
is hamiltonian. 

2. Let D be a digraph such that V ( D )  can be covered with m complete 
symmetric subgraphs. If k(D) > m(m - l), then D is hamiltonian. 

A digraph is said to be 2-cyclic if any two of its vertices are contained in 
a common cycle. 

Theorem 1.21 [97]. If D is a k-connected digraph and 

1. if k 1 2P1(D) - 1, then D is 2-cyclic; 
2. if k 2 3, and po(D)  I 2, then D is 2-cyclic; 
3. if k 2 15 and Po(D) I 3, then D is 2-cyclic; 
4. if k L 1 and Po(D) = 1, then D contains cycles of length I for 

5. if k L 3 and P2(D)  I 2, then D contains cycles of all lengths I, 
3 1 1 s n ;  

2 r l 1 n .  

Jackson and Ordaz [97] also posed several more problems. 

Problem. 

1. Does there exist an integer k such that every k-connected digraph D 
with Po(D) = 2 is hamiltonian? 
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2. Does every k-connected digraph D with &(D) 5 k + 1 have a hamil- 
tonian path? 

Conjecture 1971. Given any integer m, there exists a smallest integer g(m) 
such that every g(m)-connected digraph D with p0(D)  I m is 2-cyclic. 

In a yet unpublished manuscript, Haggkvist (private communication) 
proved a Dirac type  result on digraphs, namely, that there exists a positive 
constant c such that every digraph of order n with minimum in- and 
outdegree at least (i - c)n is hamiltonian. Further, he showed that there 
exist infinitely many digraphs with minimum in- and outdegree at least 
(f + c)n that are not hamiltonian. A basic unsolved problem in this area is 
to find the best result of this type. 

In [30], it is shown that for every positive constant E ,  every sufficiently 
large tournament with minimum in- and outdegree at least ($ + ~ ) n  con- 
tains the kth power of a hamiltonian cycle. 

2. RANDOM GRAPHS AND THE USE OF PROBABILITY 

In this section we shall see that probabilistic methods are very useful in 
studying hamiltonian graphs (and many other graph properties). It is not 
my purpose to introduce the reader to random graph techniques. For those 
not familiar with these ideas, see [28]. 

We shall use P r ( X )  to denote the probability of event X. If R, is a model 
of random graphs of order n, we say almost every graph in R, has property 
Q if Pr(Q) + 1 as n + 03. Note that this is equivalent to saying that the 
proportion of all labeled graphs of order n that have Q tends to 1 as n + 00. 

These are two fundamental models for defining probability measures on 
the set of all 2M subgraphs (here M = (2)) of an n vertex complete graph. 
Both of these models have been extensively studied. 

(The edge density model) Suppose that 0 I p I 1. Let G,.p denote a 
graph on n vertices obtained by inserting any of the M possible edges 
with probability p. 
(The fixed size model) Suppose that N = N(n)  is a prescribed func- 
tion of n that takes on values in the set of positive integers. Then 
there are S = (t) different graphs with N edges possible on the vertex 
set {1,2,. . . , n}. We let G,,N denote one of these graphs chosen uni- 
formly at random with probability 1/S. 

The first major advance in this area was achieved independently by 
P6sa [136] and Korshunov [103], when they proved the following result: 

Theorem 2.1 [136,103]. There exists a constant c such that almost every 
labeled graph on n vertices and at least cn log n edges is hamiltonian. 
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It is also clear that if G is a hamiltonian graph, then its minimum degree 
S(G) 2 2. Thus, we see that 

Pr(G,,,M is hamiltonian) I Pr(S(G.,M) L 2). 

Komlos and Szemeredi [lo21 and Korshunov [lo41 were the first to link the 
threshold for S(G) 1 2 with the threshold for G being hamiltonian. It was 
known that 

Pr(S(G,M) 2 2 - 1 if, and only if, 

o ( n )  = 2M/n - log n - log log n - 00. 
They showed that this necessary condition was also sufficient to  ensure 
that almost every G.,M and G,,,p is hamiltonian. 

Theorem 2.3 [102,104]. Suppose o(n)  + 00 as n + 00,  and let 

1 
n 

p = -{log n + log log n + W(.)} 

and 

L(n) = -{log n + log log n + w(n)} . I: 1 
, is hamiltonian. Then almost every G,,,p is hamiltonian and almost every G. , 

In fact, they showed an even more direct relationship. 

Theorem 2.4 [102,104]. Assume that a random labeled graph is con- 
structed as follows: the first edge is chosen at random, the second edge is 
chosen at random from the remaining (;) - 1 possibilities, etc., until a 
graph with minimum degree 2 is formed. Then the probability that the 
resulting graph is hamiltonian approaches 1 as n + m. 

Theorem 2.4 provides us with an “almost sure decision rule” to decide if 
a graph is hamiltonian: Simply check whether it contains vertices of de- 
gree 0 or 1. The number of times we will be wrong is negligible for large n. 

Related investigations were made by Shamir [144], Bollobis [27], Bollobis, 
Fenner, and Frieze [29] and Frieze [75]. The algorithmic aspects of these 
improvements will be discussed in Section 4. 

Bollobb et al. [29] used the following strengthening of Theorem 2.3 due 
to Komlos and Szemeredi [lo21 to produce their algorithmic work. 
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Theorem 2.5 [102]. For L(n) = (42)  (log n + log log n + c,) 

0, ifc, - -a; 
lim Pr(G,,~ is hamiltonian) = e-‘-‘, if c ,  - c; 1 1, if c, - 00. n- rn 

For V,  = {1,2,. . . , n}, let u E V,  independently make m random (but not 
ncessarily distinct) choices c(u, i) E V,, i = 1,2,..  . . , m. This is done inde- 
pendently for each u E V,. Then consider the multigraph 

D(n, m) = (V,, E(n, m)),  where 

E(n, m )  = {(u,c(u, i)) I u E Vn,  1 I i I m, and u f c(u, i)}. 

(That is, we ignore the orientation on the edges (u,c(u,i)), but we do not 
coalesce multiple edges or remove loops. Then with this in mind, Fenner 
and Frieze [66] accomplished a major step when they verified these graphs 
are almost always hamiltonian. Their proof was the first example of the 
“coloring technique” that has proved most useful in this area. 

Theorem 2.6 [66]. For m 1 23, Pr(D(n, m) is hamiltonian) = 1. 

They further conjecture the naturally anticipated fact that this can be 
improved to m 2 3. Frieze [75] was able to improve this to m 1 10 as well 
as improve the time of the algorithm used to produce the cycle (see Sec- 
tion 4 for more details). 

Let R(n, r) denote the random regular graph chosen uniformly from the 
set of r-regular graphs on V,. Bollobik [26] and Fenner and Frieze [67] inde- 
pendently proved that there is a constant ro such that for any r 2 ro, 

lim Pr(R(n, r) is hamiltonian) = 1. 
n- m 

In [67], it was shown that ro = 796, while in [75], this was improved to 
ro = 85. Again, Frieze conjectures that the best value actually is ro = 3. 

One might hope that the problem of finding hamiltonian cycles in ran- 
dom bipartite graphs is easier then in G,,p. However, this is not the case. 
Progress was made by Frieze [76]. Here we let Gn,n:p denote a random bi- 
partite graph with n vertices in each partite set and probabilityp that any 
edge is in Gn,n;p. 

Theorem 2.7 [76]. 
bility that Gn.n:p is hamiltonian tends to e-”-‘ as c,  + c. 

Let p = ((log n + log log n + c,)/n).  Then the proba- 

As with random graphs, the obstacle to be overcome in random bipartite 
graphs turns out to be the existence of vertices of degree at most 1. 
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Turning to digraphs, we note that the analogous problem seems harder, es- 
pecially in view of the fact that the useful work of P6sa [136] (see Section 4 
for more details) does not have directed analogues. But despite this prob- 
lem, McDiarmid [122,123] was able to show that the probability that a ran- 
dom digraph Dfl ,p  is hamiltonian is not smaller than the probability that 
G,,,p is hamiltonian. Using this fact he deduced the following result: 

Theorem 2.8 [122,123]. If p = (I/n) (1 + E )  (log n) then 

1, if E > 0; 
0, if E c 0. 

Pr(D,,, is hamiltonian) + 

Other interesting results are due to Robinson and Wormald [140], who 
proved that the probability that a cubic graph is hamiltonian is at least 
0.974. They also showed that almost every cubic bipartite graph is hamilto- 
nian. However, Richmond, Robinson, and Wormald [137] showed that at 
times hamiltonian cycles are rare. 

Theorem 2.9 [137]. Almost every cubic planar graph is nonhamiltonian. 

3. FORBIDDEN SUBGRAPHS 

A new approach to the hamiltonian problem, although not new to graph 
theory in general, began with a rather innocent observation due to Good- 
man and Hedetniemi [77]. Before exploring this approach, some terms will 
be helpful. Given graphs F I ,  F 2 , .  . . , Fk, we say that G is { F 1 ,  F 2 , .  . . , Fk}- 
free if G contains no induced subgraph isomorphic to any Fi (1 I i I k). 

In considering graphs that are free of some set of graphs, we are restrict- 
ing our attention to a class of graphs defined with specific structural limita- 
tions. Thus, we may be able to avoid the pure density-type arguments seen 
earlier. Our hope, of course, is to find conditions that will work on graphs 
not previously covered by density results. In fact, what we tend to obtain 
are results that apply when the graphs are either dense or very sparse. 

Central to most forbidden subgraph results to date is the complete bipar- 
tite graph K 1 , 3  (sometimes called a claw) or graphs very closely related to 
Kl,3 (see Figure 2). Some other graphs that have proven to be useful are 
shown in Figure 3. 

We are now ready to state Goodman and Hedetniemi’s result. 

Theorem 3.1 [77]. If G is a 2-connected { K 1 , 3 ,  Z1}-free graph, then G is 
hamiltonian. 

The proof of Theorem 3.1 is very simple and in fact it is easy to show 
that the only graphs satisfying its hypothesis are complete graphs, complete 
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graphs with a matching removed, or a cycle. Goodman and Hedetniemi 
pointed out that this seemed to be the first result that actually applied to 
a cycle. 

In 1979, Oberly and Sumner [131] really opened the door to this ap- 
proach, by relating forbidden subgraphs with another property, local con- 
nectivity. We say a graph G is locally connected, if for each vertex x ,  the 
subgraph of G induced by N ( x )  is a connected graph. 

Theorem 3.2 [131]. A connected, locally connected, Kl,3-free graph of 
order n L 3 is hamiltonian. 

Further, Oberly and Sumner made the following interesting conjecture: 

Conjecture. If G is a connected, locally k-connected, Kl,k+z-free graph 
of order n L 3. then G is hamiltonian. 

The work of Oberly and Sumner spurred further investigations of the 
same type. Attempts were made to broaden the sets of graphs that were for- 
bidden. See Figures 2 and 3 for some of the graphs that have been used. 

Theorem 3.3 [54]. Let G be a graph of order n 2 3 that is { K 1 , 3 ,  F}-free. 
Then, 

(i) if G is connected, then G is traceable; 
(ii) if G is 2-connected, then G is hamiltonian. 
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This result was followed by other extensions of Theorem 3.1. 

Theorem 3.4 [79]. If G is a 2-connected {KI,3, Z2}-free graph, then either 
G is pancyclic or G is a cycle. 

Since I and A are induced subgraphs of F, every I-free or A-free graph is 
also F-free. Thus, the following corollary of Theorem 3.3 is obtained: 

Corollary 3.5. Let G be a 2-connected K1,3-free graph. 

(i) If G is Efree, then G is hamiltonian. 
(ii) If G is A-free, then G is hamiltonian. 

Zhang [168] considered degree sums in claw free graphs. In particular, he 
showed that if G is a k-connected, K1,3-free graph of order n such that 
U ~ + ~ ( G )  2 n - k, then G is hamiltonian. 

Broersma and Veldman [41] introduced a relaxation of the forbidden sub- 
graph condition by allowing certain of the forbidden graphs to exist, pro- 
vided their adjacencies outside their own vertex set are of the “proper 
type.” We say a subgraph H of G satisfies property +(u, u) if 

That is, u,  u E V ( H )  and u and u have a common neighbor in G outside of 
H. Using this idea, they obtained generalizations to several results, includ- 
ing Theorem 3.1. The vertices a, b l ,  and 62 are as in Figure 3. 

Theorem 3.6 [41]. Let G be a 2-connected K1,3-free graph. 

(i) If every induced Z1 of G satisfies +(a, bl )  or +(a, b2), then either G is 

(ii) If every induced Z2 of G satisfies &(al, b l )  or +(al ,  bZ), then either G 
pancyclic or G is a cycle. 

is pancyclic or G is a cycle. 

The nonhamiltonian KIV3-free graph of Figure 4 has the property that ev- 
ery induced Z2 satisfies + ( a l ,  b , )  or + ( a l ,  b2); hence, in Theorem 3.6, “ a n d  
cannot be replaced by “or.” Broersma and Veldman also obtained a gener- 
alization of Corollary 3.5(i) using these ideas. They also used some other 
related graphs (see Figure 3) to obtain the following result: 

Theorem 3.7 [41]. Let G be a 2-connected K1,3-free graph. If every in- 
duced subgraph of G isomorphic to P7 or P: satisifies +(a, b l )  or 4(a ,  b2)  or 
(+(a, cl) and +(u, c2)) ,  then G is hamiltonian. 

An immediate corollary of Theorem 3.7 was originally obtained in [78]. 

Corollary 3.8 [78]. If G is a 2-connected KI,,-free graph of diameter at 
most 2, then G is hamiltonian. 
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Broersma and Veldman [41] conjectured the following generalization of 
Corollary 3.5(ii) and Theorem 3.3. 

Conjecture. 

1. Let G be a 2-connected KI.3-free graph. If every induced A of G satis- 
fies &(a I ,  az) ,  then G is hamiltonian. 

2. Let G be a 2-connected KI,3-free graph. If every induced F of G satis- 
fies ( & ( a ~ , a d  and 4 4 a 1 , a d )  or (&(a1,a2)  and &a2,a3)) or (&(a1,a3) 
and &(az, a3)) ,  then G is hamiltonian. 

FIGURE 4 
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Recently, a different relaxation has been explored by Flandrin and Li [69] 
in which they showed that if a graph does not contain “too many” claws, 
then it is hamiltonian. 

Theorem 3.9 [69]. Let G be a 2-connected graph of order n 2 16 and 
minimum degree 6. If 6 2 (43) and if for any two nonadjacent vertices u 
and u, the number of induced subgraphs isomorphic to K1,3 containing u 
and u is less than 6 - 1, then G is hamiltonian. 

In [70], Flandrin and Li showed that if G is 2-connected and 

then G is hamiltonian. This bound was reduced to n + IN(u) n N(u)  n 
N(w)l in [68]. 

Matthews and Sumner [120,121] studied hamiltonian properties of graphs 
obtained from KI,3-free graphs. 

Theorem 3.10 [121]. Let G be a 2-connected, K1,3-free graph with 
6(G) 2 (n - 2)/3, then G is hamiltonian. 

Matthews and Sumner also made the following conjecture: 

Conjecture [120]. If G is a 4-connected K1,3-free graph, then G is hamil- 
tonian. 

It is interesting to note that we can reduce the connectivity from 4 to 2, 
when we have a reasonable neighborhood union condition present. 

Theorem 3.11 [63]. If G is a 2-connected K1,3-free graph of orderp 2 14 
and S = {x ,y } ,  where x and y are nonadjacent vertices of G, and for each 
such S,deg S > (2n - 2)/3, then G is pancyclic, 

Conjecture [63]. If G is a 3-connected KI,3-free graph of order n such that 
deg S > (2n - 5)/3, where S is any set of two nonadjacent vertices, then G 
is hamiitonian. 

Another problem in this area arose from consideration of the famous re- 
sult of Fleischner [71], showing that the square of any 2-connected graph is 
hamiltonian. (Recently, Riha [138] has obtained a short proof of this re- 
sult). The typical example that shows that the connectivity cannot be low- 
ered in Fleischner’s theorem is provided by S ( K , , 3 ) ,  the subdivision graph 
of the claw (see Figure 5), whose square is not hamiltonian. 

In [80], it was conjectured that the square of any connected S(Kl.3)-free 
graph must be hamiltonian. This conjccture was verified by Hendry and 
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Vogler [91]. We conclude this section with the following powerful result of 
Fleischner [72] concerning the square of a graph: 

Theorem 3.12 [72]. For a connected graph G ,  

(i) GZ is hamiltonian if and only if G2 is vertex pancyclic, and 
(ii) G 2  is hamiltonian-connected if and only if G2 is panconnected. 

4. ALGORITHMS 

Despite the fact that the hamiltonian problem is NP-complete, algorithms 
of a probabilistic nature and algorithms for special classes of graphs have 
been developed. As was mentioned in Section 2, P6sa [136] was the first to 
suggest an algorithm that converges almost surely for a graph of order n 
and size d o g  n,  c 2 3. The ideas behind his theoretic work suggested a 
probabilistic algorithm for determining the existence of a hamiltonian cycle. 
Tests of this algorithm were first performed by McGregor (see [lOO]) on 
graphs of order up to 500 and by Thompson and SinghalC1561 on graphs of 
order up to 1OOO. The ideas behind P6sa’s work have been refined in [29] 
and [75] to obtain improvements in time complexity. Here we naturally 
only consider graphs with minimum degree at least 2. 

The fundamental idea behind P6sa’s algorithm is a path transformation 
operation often called a rotation. It works as follows: Given a path P = 
uI,u2 ,..., uk and an additional edge e = UkU, (1 I i 5 k - 2), we  can 
create a new path, also of length k - 1, by deleting the edge U , U , + ~  and in- 
serting the edge e. Thus, define the path operation ROTATE ( P ,  e) as 

ROTATE (P ,e)  = ulru2 ,..., ui,uk,uk-lr. . . , u ; + I .  

The operation, ROTATE produces a new path with uI  as its initial vertex 
and u , + ~  as its end vertex. 

P6sa’s algorithm begins by selecting a vertexxo and trying to extend this 
trivial path, call it P, by including any unused neighbor of the end vertex 
(namely, x o )  of this path. At first this extension adds some neighbor, say x1 
to P. We now repeat this step from x1  and continue extending P from the 
nonfixed end vertex until we can no longer extend the path. At this point, 
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either we have a hamiltonian path and we stop, or we ROTATE from the 
nonfixed end vertex of the path. Since S(G) 2 2, we see that there must 
exist an edge e = uku, (1 5 i I k) and hence we can perform ROTATE 
(P ,e )  to obtain a new path, say P'. We now try to extend this new path, 
rotating when we are unable to extend the (nonhamiltonian) path. We con- 
tinue this process until a hamiltonian path is found or until the number of 
rotations exceeds some specified limit. This technique has come to be 
called the extension-rotation approach. 

Other early algorithms were due to Angluin and Valiant [8] and Shamir 
[144]. In 1984, Bollobis et al. [29] developed an improved algorithm for 
finding hamiltonian paths. Their algorithm almost always succeeded and 
had time complexity 0(n4+'). It was still based on the extension-rotation 
technique. Recently, Frieze [75] has shown that a careful modification of 
P6sa's techniques can be used to produce a O(n3 log n) time algorithm 
HAM 1, which satisfies 

lim Pr (HAM 1 finds a hamiltonian cycle in D(n,10)) = 1 .  
n - m  

Further, Luczak and Frieze (see [75]) have reduced the 10 above to 5. 

HAM 2, which satisfies 
Frieze [75] also has shown that there is an 0 (n3 log n) time algorithm 

lim Pr (HAM 2 finds a hamiltonian cycle in R(n, r)) = 1 ,  
n - m  

for any constant r 2 85. 
Another recent development is due to Gurevich and Shelah [83]. They 

used an edge coloring based algorithm (called HPA) to almost always con- 
struct a hamiltonian path from a fixed initial vertex to a fixed final vertex. 

Theorem 4.1 [83]. There is a positive real number c satisfying the follow- 
ing: For any fixed probabilityp, the expected run time of HPA on GnTP is 
(cn)/p + 44. 

Other special case algorithms can be found in [l], [9], [141], and [143]. 

5. MULTIPLE HAMILTONIAN CYCLES 

In trying to construct hamiltonian graphs, it is common to notice that in 
the transformation from a nonhamiltonian graph to a hamiltonian graph, 
often many different spanning cycles are created. Thus, at times we wish to 
count the number of distinct cycles that are present and at other times we 
wish to show the existence of several edge-disjoint cycles. We shall now 
consider both of these questions. 

We begin with results on edge-disjoint hamiltonian cycles. One of the 
first such results is due to Nebesky and Wisztova [129] and concerns powers 
of graphs. 
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Theorem 5.1 [129]. If G is a connected graph of order at least n L 6, then 
there exists a hamiltonian cycle C of G3 and a hamiltonian cycle C ,  of G5 
such that C and CI are edge-disjoint. 

This result strengthens the well-known results that G 3  is hamiltonian 
and if n 2 5, that G’ has a 4-factor. 

Other density conditions have been developed along the lines we investi- 
gated in Section 1. Nash-Williams [128] generalized Dirac’s theorem to ob- 
tain a result on multiple edge-disjoint hamiltonian cycles. 

Theorem 5.2 [129]. If G is a graph of order n such that S(G) 2 4 2 ,  then 
G contains @(n + a, + 10))/224] edge-disjoint hamiltonian cycles, where 

0, if n is even; 
1, otherwise. 

Jackson [94] investigated multiple hamiltonian cycles in regular graphs. 

Theorem 5.3 [94]. If G is a k-regular graph of order n (n L 14) and k 2 
(n - 1)/2, then G contains (3k - n + 1)/6 edge-disjoint hamiltonian cycles. 

Note that Jackson’s Theorem provides a strengthening of Theorem 5.2 in 
the case of regular graphs. Jackson also conjectured that if G is a k-regular 
graph on n vertices, where k L (n - 1)/2, then G contains k/2 edge-disjoint 
hamiltonian cycles. That this conjecture cannot be extended to small k 
(k = 4,5) has been shown by Zaks [165]. He demonstrated an infinite fam- 
ily of 4-regular, 4-connected graphs in which any two hamiltonian cycles 
shared at least of their edges and he demonstrated a family of kegular ,  
5-connected planar graphs without two edge-disjoint hamiltonian cycles. 
Such a family of 5-regular graphs was also found by Owens [133]. Owens 
[133] also showed the existence for every r L 3, and every k, 0 I k I 4 2 ,  
of an r-regular, r-connected graph that contains k edge-disjoint hamiltonian 
cycles, but not k + 1 edge disjoint hamiltonian cycles. 

Faudree, Rousseau, and Schelp [65] developed a degree sum condition 
implying the existence of multiple hamiltonian cycles and in so doing pro- 
duced another generalization of Ore’s theorem. 

Theorem 5.4 [65]. Let G be a graph of order n 1 3 and k be a positive 
integer. If the sum of the degrees of any pair of nonadjacent vertices is at 
least n + 2k - 2, then for n sufficiently large (n L 60k2 will suffice), G 
has k edge-disjoint hamiltonian cycles. 

They further conjectured that the degree sum condition could be de- 
creased to “ ~ n , ”  if an additional minimum degree condition was imposed. 
It should be noted that at the same time, Li and Zhu [lo91 independently 
proved the following: 
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Theorem 5.5 [109]. Let G be a graph of order n 1 20 and let 6(G) 2 5. If 
deg x + deg y 2 n for any pair of nonadjacent vertices x and y, then G 
contains at least two edge-disjoint hamiltonian cycles. 

Faudree et al. [65] were also able to generalize another of Ore's results (the 
k = 1 case below) based on the size of the graph. 

Theorem 5.6 [65]. 
and size (" T ') + 2k.  

Let k be a positive integer and G a graph of order n 

1. If n 2 6k ,  then G has k edge-disjoint hamiltonian cycles. 
2. If n 1 6k2, then G has k edge-disjoint cycles of length I ,  for any integer 1 

in the range 3 to n. 

The generalized degree condition discussed earlier has also been used to 
obtain a result on multiple edge-disjoint cycles. In order to do this, several 
additional conditions were necessary. The edge-connectivity, k , (G) ,  of a 
nontrivial graph is the minimum number of edges whose removal from G 
results in a disconnected graph. 

Theorem 5.7 [64]. Let k be a fixed positive integer. Then there is a 
constant c = c(k)  such that if G is a graph of sufficiently large order n 
satisfying 

1. IN(u) U N(u)l 2 ((2n + c) /3)  for each pairu, uof nonadjacent vertices, 

3. k l (G)  L 2k, and 
4. k l ( G  - u) 1 k for every vertex u,  

2. 6(G) 2 4k + 1, 

then G contains k edge-disjoint hamiltonian cycles. 

Any result that supplies sufficient conditions for a graph G to contain k 
edge-disjoint hamiltonian cycles and is based on a generalized degree condi- 
tion like condition 1 must have these types of added restrictions. Examples 
to show this are provided in [64]. However, at this time, only conditions 3 
and 4 are known to be sharp. 

A corresponding result using all pairs of vertices rather than nonadjacent 
pairs of vertices would be interesting, but at this time remains unknown. 
Also, extensions of Theorem 5.7 to the case of more than two vertices would 
be desirable. 

Bondy and Haggkvist [35] developed a generalization of the well-known 
result of Grinberg [82]. 

Theorem 5.8 [35]. Let G be a 4-regular plane graph that is decomposable 
into edge-disjoint hamiltonian cycles C and D. Denote by Fll, F12,  F21, and 
F22 the sets of faces of G interior to both C and D, interior to C but not D, 
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interior to D but exterior to C and exterior to both C and D, respectively. 
Then 

where g:2F - N defined by g ( X )  = Z f E x ( d ( f )  - 2) where d(f) is the 
number of edges in the boundary off. 

Note that Zaks [166] has another generalization of Grinberg's theorem. 
The question of counting the number of hamiltonian cycles has been 

considered in several papers. Sheehan and Wright [146] counted hamilto- 
nian cycles in dense graphs. 

Theorem 5.9 [146]. Let G be an (n, q)-graph with A(G) = p, let H(G) be 
the number of hamiltonian cycles in c, and let M = ((n - 1)!)/2 be the 
number of hamiltonian cycles in K,. Then, if 

4 
- - a c 00 as n - 00 and p = o(n), then 
n - e-2a as n - 0 0 .  

H(G) 
M 

Sheehan [145] also studied graphs with exactly one hamiltonian cycle. 

Theorem 5.10 [145]. Let G be a graph of order n containing exactly one 
hamiltonian cycle. Then the maximum number of edges in G is (n2/4) + 1. 

As usual, special classes of graphs also provide us with a chance to 
say more. 

Theorem 5.11 [88]. 

1. For all n 2 12, there exists a maximal planar graph of order n with ex- 

2. Every 4-connected maximal planar graph on n vertices contains at 
actly four hamiltonian cycles. 

least n/log2 n hamiltonian cycles. 

A. Thomason [153] provided the answer to several interesting problems. 
Smith (see [159]) proved that in a cubic graph, the number of hamiltonian 
cycles containing a given edge is even. Thomason [153] proved that if all ver- 
tices of G, with the possible exception of two (say u and u),  have odd de- 
gree, then the number of hamiltonian paths from u to u is even. Thomason 
also generalized in several ways the result of Kotzig (see [40]) that in a bi- 
partite cubic graph, the total number of hamiltonian cycles is even. 



UPDATING THE HAMILTONIAN PROBLEM 143 

Sloane [148] asked if the existence of a pair of edge-disjoint hamiltonian 
cycles in G implied the existence of another such pair. Thomason [153] an- 
swered this positively. 

Theorem 5.12 [153]. In a 4-regular graph of order n 1 3, the number of 
pairs of edge-disjoint hamiltonian cycles in which two fixed edges lie in the 
same cycle is even. 

Nincak [130] proved that if G contains k edge-disjoint hamiltonian 
cycles, then G contains at least k(2k - 1) hamiltonian cycles. Thomason 
[153] showed the following: 

Theorem 5.13 [153]. If a 2k-regular graph G of order n I 3 has a decom- 
position into k edge-disjoint hamiltonian cycles, then 

1. each edge of G is in at least 3k - 2 hamiltonian cycles, 
2. G has at least k(3k - 2) hamiltonian cycles, and 
3. G has at least (3k - 2) (3k - 5). . . (7) (4) (1) hamiltonian decomposi- 

tions. 

Tomescu [157] considered this question for regular graphs. 

Theorem 5.14 [157]. Let G be an m-regular graph of order 2m - k 
(mk = 0 mod 2). 

1. If k 2 1 and m 1 3k, then each edge of G is contained in at least 

2. The graph G has at least i (m!/(m - k - l)!) hamiltonian cycles. 
(m - 1) (m - 2)...(m - k) hamiltonian cycles of G. 

Finally, HorLk and TovLrek [93] studied the number of hamiltonian cycles 
in complete k-partite graphs. They obtained a recursive formula for such 
graphs. Using this, they were able to show the following: 

Theorem 5.15 [93]. Let G be a graph of order n with &(G) 2 m.  If H(G) 
is the number of hamiltonian cycles in G, then H(G) 5 i(k - m)! 
&(k - m + 1 - i). 

Note that in a very recent paper, Cooper and Frieze [50] have investi- 
gated the number of distinct hamiltonian cycles in a random graph. 

6. HIGHLY SYMMETRIC GRAPHS 

In 1968, LovLsz [116] conjectured that every connected vertex-transitive 
graph contained a hamiltonian path. This conjecture has been verified for 
several special orders and classes, and except for a few notable exceptions, 
such graphs contain a hamiltonian cycle. Babai (see [39] or [lll]) proved this 
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conjecture for graphs with prime orderp > 2. This follows from the work 
of Turner [158]. Babai [14] also showed that connected vertex-transitive 
graphs of order n 2 4 always contain a cycle of length at least (3n)”’. 
Alspach [4] showed that every connected vertex-transitive graph of order 
2p contained a hamiltonian cycle, unless the graph is the Petersen graph. 
Marusic [117] has shown that every connected vertex-transitive graph of 
order p’ ,p3 ,  2p2, or 3p have a hamiltonian cycle; while Marasic and Parsons 
[118] showed graphs of order 51, (and 4p) have a hamiltonian path. 

Babai [13] raised the problem of constructing an infinite family of con- 
nected vertex-transitive graphs that are nonhamiltonian. To date, only a 
few such graphs have been found. The Petersen graph, the Coxeter graph, 
and the two graphs obtained from these by replacing each vertex by a tri- 
angle are the simplest such graphs. Thomassen (see [23]) conjectures that 
there are only finitely many such graphs. 

Lipman [l l l]  took a different approach. He considered graphs with a cer- 
tain automorphism group, rather than a certain order. Let Aut G denote 
the full automorphism group of the graph G and let r be a group of permu- 
tations on V ( G ) .  We say r acts transitively if r has only one orbit. Using 
this approach Lipman was able to obtain a stronger general result. 

Theorem 6.1 [ 11 11. 

1. Let r I Aut G be transitive on V ( G )  and nilpotent. Then G has a 

2. If G is a connected vertex-transitive graph and IV(G)I = p k , p  a 
hamiltonian path. 

prime, then G has a hamiltonian path. 

Another interesting class of graphs are the generalized Petersen graphs, 
GP (n,  k), for n 2 2 and 1 5 k < (n/2), with V = {UU, u I , .  . . , u n - l r  U O ,  

u , , .  . . , u , - , }  and all edges of the form U , u , + I , U , u ,  and U I U , + h ,  for 0 I 
i I n - 1, where all subscripts are taken modulo ti. 

Robertson [139] proved that GP (n, 2) is hamiltonian unless n = 5 mod 6. 
Castagna and Prins [43] conjectured that all GP (n, k) were hamiltonian ex- 
cept for those isomorphic to GP (n, 2) for n = 5 mod 6. In [6], this conjec- 
ture was verified, provided n is sufficiently large. Finally, Alspach [5] 
succeeded in verifying the conjecture and extending the definition of 
GP (n, k)  to the nontrivalent case n = 2k, he showed that GP (n, n/2) is 
not hamiltonian if and only if n = 0 mod 4 and n L 8. 

Another related class of sparse regular graphs have proven to be a little 
more difficult to handle. The odd graphs, oh, have as their vertex set the 
(k - 1)-element subsets of a (2k - 1)-element set (denote these subsets as 
PL-,(2k - 1)). Two vertices X and Y are adjacent in oh if X n Y = 4. The 
odd graph 0, is isomorphic to the Petersen graph. 

The Boolean graphs, B k ,  have vertex set V = Pk ,(2k - 1) U Pk(2k - 1) 
and X is adjacent to Y in BL if X C Y. Thus, Br is the graph formed from 
the middle levels of the Boolean lattice of a (2k - 1)-element set by identi- 
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fying the subsets as vertices with adjacency if and only if one set is a proper 
subset of another. 

Several interesting problems have arisen on these two classes of graphs. 
We say one of these graphs has a hamiltonian decomposition if its edge set 
can be partitioned into hamiltonian cycles or hamiltonian cycles and a per- 
fect matching. 

Conjecture [125]. The graph Ok (k L 4) has a hamiltonian decomposition. 

Conjecture (Erdos, see [52]). The graph Bk (k 2 2)  is hamiltonian. 

Conjecture [%I. The graph Bk (k I 2) has a hamiltonian decomposition. 

To date, the graphs 04, 05, and O6 have been shown to have a hamil- 
tonian decomposition (see [125]), while 0, and Oe have been shown to be 
hamiltonian (see [125] and [119], respectively). 

As for the Boolean graphs, B1, B2, and B3 are easily seen to have a 
hamiltonian decomposition, while B4 was shown to have such a decomposi- 
tion in [loll. the Boolean graphs B5, B6,  B7, and B8 were all shown to be 
hamiltonian in [SS] ,  while independently Dejter [52] showed B8 and Bu were 
hamiltonian. 

In [55], it was noted that Bk is isomorphic to ok x K 2 ,  where X here rep- 
resents the weak product, that is, (x l , y l )  is adjacent to (x2 ,y2 )  in G I  x G 2  if 
and only i fx ,  is adjacent tox2  in G I  andyl  is adjacent toy2 in G2.  

Another interesting hamiltonian problem was posed by R. Roth (per- 
sonal communication). 

Problem. Let Bi(2k - 1) be the graph obtained from symmetrically op- 
posed levels of the Boolean Lattice of an odd ordered set. That is, 

and X is adjacent to Y if X C Y. Which generalized Boolean graphs 
B; (i 2 1) are hamiltonian? 

R. Roth (personal communication) conjectures that each B; (i L 1) is 
hamiltonian. 

Another generalization along these lines is due to Chen and Lih [45]. 
They define a uniform subset graph G (n, k ,  t )  to have all k-subsets of an 
n-set as vertices and two vertices are joined by an edge if and only if the 
corresponding k-subsets intersect in exactly t elements. For special values 
of n,  k, and t, the uniform subset graphs have appeared under various 
names. The Johnson schemes J (n, k) in the theory of association schemes 
is G (n, k, k - 1) (see [127]). Kneser’s graph (see [113]) is G (2n + k, n, 0), 
while G (2k - 1, k - 1,O) are the odd graphs. Chen and Lih make the fol- 
lowing conjecture: 
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Conjecture [45]. The graph G(n, k ,  t )  is hamiltonian for any admissible 
(n ,  k ,  t) except ( 5 , 2 , 0 )  and (5 ,3 ,1) .  

Heinrich and Wallis [90] proved the following: 

1. The graph G (n,  k,O) is hamiltonian if n 2 k + (k2”k/(2”k - 1)). 
2. The graph G (n,  k,O) is hamiltonian for 

(a) k = l , n  L 3; 
(b) k = 2 , n  2 6;  
(c) k = 3,n L 7 .  

Chen and Lih [45] settle their conjecture for the cases ( n , k , k  - l ) ,  
(n,  k ,  k - 2) ,  and ( n ,  k ,  k - 3) ,  as well as for suitably large n when k is 
given and t equals 0 or 1. This is not strong enough, however, to help with 
the odd graph conjecture. 

Yet another interesting class of graphs defined from products are the hy- 
percubes Hk, where Hk = Hk-l x K z  and where HI = K z  (note that here x 
denotes the usual Cartesian product). It has long been known that Hk is 
hamiltonian, when k 2 2. However, it was conjectured that the hypercubes 
actually had a hamiltonian decomposition. That this is true is a conse- 
quence of a more general result of Aubert and Schneider [12]. 

Theorem 6.2 [12]. Let C be a cycle and let G be a graph whose edge set 
can be decomposed into 2 hamiltonian cycles. Then G x C (Cartesian 
product) can be decomposed into 3 hamiltonian cycles. 

Corollary 6.3 [12]. 

a. The graph C, x C, x C, is decomposable into 3 hamiltonian cycles. 
b. The graph Kt+l x Kzs+l x Kacl is decomposable into 3s hamiltonian 

c. The graph Kzr x K2,  x K z ~  is decomposable into 3r - 2 hamiltonian 
cycles. 

cycles. 

Let S generate the group Define the Cayley graph Cay,(T) as follows: 
The vertex set V corresponds to the elements of r and ( x ,  xs) is an arc of 
Cay,(T) with initial vertex x and terminal vertex xs whenever x E r and 
s E S. Several natural problems concerning Cayley graphs have been studied. 

Problems. 

1. For what generating sets S does the group r have a hamiltonian Cay- 

2. Which groups T have the property that for all generating sets S for 
ley graph? 

Cay,(T) contains a hamiltonian path? 

A great deal of work has been done in this area. Witte and Gallian [163] 
wrote an excellent survey article on this subject. The interested reader 
should begin there. 
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7. MISCELLANEOUS TOPICS 

In this section I will consider several special hamiltonian problems. These 
will by no means exhaust such topics or even the results known on these 
topics. Rather, I hope merely to indicate the diversity of problems available 
and the many possible questions still to be asked. 

Hamiltonian properties of a variety of graph products have been studied 
in detail. In particular, Teichert (see [149,150,151,152]) has studied these 
properties in detail. 

Other graph valued functions also can be studied. For example, powers 
of graphs lend themselves naturally to hamiltonian problems since the 
higher the power (up to the diameter), the more dense the graph becomes. 
Powers of graphs were studied by Paoli [134]. 

Given a connected graph G ,  if we consider the sequence of graphs 

G, L(G), L2(G), L'(G), . . . 

where L'(G) = L(Li-'(G)), then for G f Pk, the graphs in this sequence 
eventually become hamiltonian. The minimum i such that L'(G) is hamilto- 
nian is called the hamiltonian index of G. Clark and Wormald [49] suggest 
studying not only the hamiltonian index, but similar concepts for edge- 
hamiltonian and hamiltonian-connected line graphs. 

Many results related to the hamiltonian index have appeared. Lai El061 
has most recently studied this topic. He also considered contractions and 
their relation to hamiltonian line graphs in [105]. Zhan [167] provided a re- 
sult on hamiltonian-connected line graphs. 

Theorem 7.1 [167]. If G is 4-edge connected, then L(G) is hamiltonian- 
connected. 

Another special class that has received considerable attention recently is 
the following: A graph G is said to be hamiltonian-connected from a ver- 
tex v, if a hamiltonian path exists from u to every other vertex w f v. In [XI, 
a recent survey of results on such graphs is given. 

Another strong hamiltonian property involves the existence of cycles 
through specified edges or vertices. Lovisz [114] conjectured that if G is 
k-connected (k 2 2), F = { e l ,  . . . , ek}  are independent edges of G and G - 
{ e l , .  . . , ek}  is connected when k is odd, then G contains a cycle using all 
the edges of F. In [115], he proved this conjecture fork = 3. Haggkvist and 
Thomassen [85] proved a weakened form of this conjecture requiring the 
graph to be (k + 1)-connected. 

Theorem 7.2 [851. 

(i) If L is a set of k independent edges in G such that any two vertices 
incident with L are connected by k + 1 internally disjoint paths, 
then G has a cycle containing all edges of L. 
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(ii) If G is a (Po + k)-connected graph, then any set of k independent 
edges of G is contained in a cycle. 

Conjecture [85]. If G is a Po(G)-connected graph and L is a set of inde- 
pendent edges such that G - L is connected, then G has a cycle contain- 
ing all edges of L. 

Thomassen [155] also showed that there exists a function f(k) such that 
every strongly f(k)-connected tournament has a hamiltonian cycle through 
any k specified edges. 

Haggkvist [84] also studied a related problem. We say G is F-hamiffonian 
(F-semihamilfonian) if 

(i) F is a set of independent paths, and 
(ii) F is contained in a hamiltonian cycle (path). 

Theorem 7.3 [84]. Let F be a 1-factor of G .  

(i) If G satisfies uz 1 n + 1, then G is F-hamiltonian. 
(ii) If G satisfies u2 1 n - 1, then G is F-semihamiltonian. 

Haggkvist [84] also studied the degree sum of pairs of edges (another 
generalized degree approach) in relation to F-hamiltonian graphs. The 
reader interested in this should also see Woodall [164]. Cycles and paths 
through specified vertices have also been studied. Here I shall mention 
only the following: Bondy and Lovisz [38] proved that a (k + 1)-connected 
nonbipartite graph contains an odd cycle through any k specified vertices. 
Locke [112] showed that in an (r + 2)-connected graph G with 6(G) 1 d 
and IV(C)l L 2d - r,  any path Q of length r and any vertex y not on Q 
are contained in a cycle of length at least 2d - r. In [56] the following 
were shown: 

Theorem 7.4 [56]. Let G be a k-connected (k L 2) graph with 6(G) L d 
and order at least 2d. Let X be a set of k vertices of G. Then G has a cycle 
C of length at least 2d such that every vertex of X is on C. 

Theorem 7.5 [56]. Let G be a k-connected graph (k 1 3) with 6(G) I d 
and order at least 2d - 1. Let x and z be vertices of G and Y be a subset of 
k - 1 vertices of G. Then G has a n x  - z path P of length at least 2d - 2 
such that every vertex of Y is on P. 

Tutte [160] showed that all 4-connected planar graphs are hamiltonian. 
Tutte [159] also showed that some 3-connected planar graphs are non- 
hamiltonian. Horton (see [39]) and Ellingham and Horton [57] have con- 
structed nonhamiltonian bipartite cubic 3-connected graphs. However, a 
long-standing conjecture remains. 
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Barnette’s Conjecture [see 39, p. 2481. Every cubic 3-connected bipartite 
planar graph is hamiltonian. 

In [92], some results lending support to Barnette’s conjecture are dis- 
cussed. In particular, all such graphs of order at most 66 are shown to be 
hamiltonian. They also provide further references to related work. 
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