Neighborhood conditions and edge-disjoint perfect matchings

R.J. Faudree*
Department of Mathematical Sciences, Memphis State University, Memphis, TN 38152, USA

R.J. Gould*
Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA

L.M. Lesniak
Department of Mathematics and Computer Science, Drew University, Madison, NJ 07940, USA

Received 2 February 1988
Revised 1 December 1989

Abstract

Faudree, R.J., R.J. Gould and L.M. Lesniak, Neighborhood conditions and edge-disjoint perfect matchings, Discrete Mathematics 91 (1991) 33-43. A graph G satisfies the neighborhood condition $\operatorname{ANC}(G) \geqslant m$ if, for all pairs of vertices of G, the union of their neighborhoods has at least m vertices. For a fixed positive integer k, let G be a graph of even order n which satisfies the following conditions: $\delta(G) \geqslant k+1 ; \mathscr{K}_{1}(G) \geqslant k$; and $\mathrm{ANC}(G) \geqslant n / 2$. It is shown that if n is sufficiently large then G contains k edge-disjoint perfect matchings.

A matching in a graph is a set of edges of which no two have a common incident vertex. An s-matching is a matching with s edges and a perfect matching in a graph of order n is a matching with $n / 2$ edges. The classic theorem of Tutte [8] characterizing those graphs with perfect matchings states that a nontrivial graph G has a perfect matching if and only if, for every proper subset S of $V(G)$, the number of components of $G-S$ with an odd number of vertices is at most $|S|$. Anderson's proof of Tutte's Theorem [1] employs Hall's Theorem [5], one form of which can be stated as: Let G be a bipartite graph with partite sets V_{1} and V_{2}, where $\left|V_{1}\right|=\left|V_{2}\right|$. Then G contains a perfect matching if and only if for every subset S of V_{1},

$$
\left|N_{G}(S)\right| \geqslant|S|
$$

where $N_{G}(S)$ denotes the set of all vertices adjacent to at least one vertex of S.

[^0]Recently, a number of 'neighborhood conditions' guaranteeing s-matchings in graphs have been obtained. For a vertex x of a graph G, let $N_{G}(x)$ denote $N_{G}(\{x\})$. In [2] it was shown that if $\left|N_{G}(x) \cup N_{G}(y)\right|$ is sufficiently large for every pair x, y of non-adjacent vertices of G, then G contains an s-matching. ('Sufficiently large' is a function of s and the number of vertices of G.) Later in [3], a related result gave a condition on neighborhood unions of pairs of nonadjacent vertices that guarantees many edge-disjoint perfect matchings in a graph. In [4], it was shown that if G is a connected graph of order n and $\left|N_{G}(x) \cup N_{G}(y)\right| \geqslant s$ for all pairs x, y of vertices of $G, 1 \leqslant s \leqslant n / 2$, then G contains an s-matching. In particular, if G is connected and $\left|N_{G}(x) \cup N_{G}(y)\right| \geqslant$ $n / 2$ for all pairs x, y of vertices of G, then G has a perfect matching. Here we cxtend this result.

A graph G satisfies the all pairs neighborhood condition $\mathrm{ANC}(G) \geqslant m$ if, for each pair x, y of vertices of G, we have

$$
\left|N_{G}(x) \cup N_{G}(y)\right| \geqslant m .
$$

Theorem 1. Let k be a positive integer and G a graph of even order n which satisfies the following conditions:

> the minimum degree $\delta(G)$ of G is at least $k+1$;
> the edge-connectivity $\mathscr{K}_{1}(G)$ is at least k; and
> $\operatorname{ANC}(G) \geqslant n / 2$.

Then if n is sufficiently large, G contains k edge-disjoint perfect matchings.
The following examples illustrate that each of conditions (1), (2), and (3) is necessary for G to contain k edge-disjoint perfect matchings. If G is the complete bipartite graph $K(n / 2-1, n / 2+1)$, then for n sufficiently large G satisfies conditions (1) and (2), but not (3). In this case, G contains no perfect matchings. Next, let G be the graph obtained by adding $k-1$ edges between two disjoint copies of the complete graph $K_{n / 2}$. Then for $n \equiv 2(\bmod 4)$ and n sufficiently large, G satisfies (1) and (3) but not (2), and the maximum number of edge-disjoint perfect matchings in G is $k-1$. Finally, let G be any graph obtained by identifying one vertex of a copy of $K_{n / 2}$ with one vertex of another copy of $K_{n / 2}$ and then adding a vertex x of degree k so that in the resulting graph, x is adjacent to the only vertex of degree $n-1$. Then for $n \equiv 0(\bmod 4)$ and n sufficiently large, G satisfies (2) and (3) but not (1), and the maximum number of edge-disjoint perfect matchings in G is $k-1$.

The following results will be useful in the proof of Theorem 1.

Theorem \mathbf{A} [4]. If G is a 2-connected graph of order n sufficiently large which satisfies $\mathrm{ANC}(G) \geqslant n / 2$, then G is hamiltonian.

Theorem \mathbf{B} [7]. If $\operatorname{ex}(n, K(s, s))$ denotes the maximum number of edges in a graph of order n which does not contain the complete bipartite graph $K(s, s)$, then

$$
\operatorname{ex}(n, K(s, s)) \leqslant \frac{1}{2}(s-1)^{1 / s} n^{(21 / s)}+\mathrm{O}(n)
$$

Theorem C [6]. If G is a spanning subgraph of the complete bipartite graph $K(n / 2, n / 2)$ and $\delta(G) \geqslant n / 4$, then G has a perfect matching.

Lemma 1. Let k be a fixed positive integer and G a graph of odd order n which satisfies $\operatorname{ANC}(G) \geqslant(n-1) / 2+2 k$. Then for any sequence $u_{1}, u_{2}, \ldots, u_{k}$ of vertices of G (where the u_{i} 's are not necessarily distinct), there are k edge-disjoint matchings $M_{1}, M_{2}, \ldots, M_{k}$ such that for $i=1,2, \ldots, k, M_{i}$ is a perfect matching of $G-u_{i}$.

Proof. We first observe that $G-u_{1}$ has order $n-1$ and satisfies $\operatorname{ANC}\left(G-u_{1}\right) \geqslant$ $(n-1) / 2+2 k-1 \geqslant(n-1) / 2+1$. This implies that $G-u_{1}$ is connected and, as indicated earlier, that $G-u_{1}$ has a perfect matching. Assume now that for some $t, 1 \leqslant t<k$, we have constructed the desired matchings $M_{1}, M_{2}, \ldots, M_{t}$. Consider

$$
G^{\prime}=G-\left(\bigcup_{i=1}^{t} M_{i}\right)-u_{t+1} .
$$

Then G^{\prime} has order $n-1$ and satisfies

$$
\begin{aligned}
\operatorname{ANC}\left(G^{\prime}\right) & \geqslant(n-1) / 2+2 k-(2 t+1) \geqslant(n-1) / 2+2 k-(2(k-1)+1) \\
& \geqslant(n-1) / 2+1
\end{aligned}
$$

Again, this implies that G^{\prime} has a perfect matching M_{t+1} and the proof is complete.

Lemma 2. Let t and k be positive integers and let G be a graph of order n satisfying $\operatorname{ANC}(G) \geqslant t$. Then for n sufficiently large, G contains k edge-disjoint t-matchings.

Proof. Since $\operatorname{ANC}(G) \geqslant t$ it follows, of course that $\left|N_{G}(x) \cup N_{G}(y)\right| \geqslant t$ for every pair x, y of non-adjacent vertices of G. It follows from Theorem 1(a) and (b) of [2] that for n sufficiently large, G contains at least one t-matching M_{1}. Suppose, then, that edge-disjoint t-matchings $M_{1}, M_{2}, \ldots, M_{p}$ have been constructed, $p<k$, and let $G^{\prime}=G-\bigcup_{i=1}^{p} M_{i}$. Let F be a maximum matching in G^{\prime}. We wish to show that $|F| \geqslant t$. Suppose, to the contrary, that $|F|<t$. Let W be the set of vertices of G^{\prime} incident with no edge of F. Then, by the maximality of F, no two vertices of W are adjacent in G^{\prime}. Now, since at most $2 t p$ vertices of W are incident (in G) to edges in $\bigcup_{i=1}^{p} M_{i}$, it follows that for n sufficiently large there are at least four vertices in W incident with none of the edges in $\bigcup_{i=1}^{p} M_{i}$. Let W^{\prime}
be the set of these vertices. Thus $\left|N_{G^{\prime}}(u) \cup N_{G^{\prime}}(v)\right| \geqslant t$ for every u, v in W^{\prime}. This implies, however, that for some edge $e=x y$ in F and some u, v in W^{\prime}, both $u x$ and $v y$ are edges of G^{\prime}. But then $F-\{x y\} \cup\{u x, v y\}$ is a matching in G^{\prime}, which contradicts the maximality of F.

Proof of Theorem 1. Assume first that G has a cutvertex v. Then, since G satisfies $\mathrm{ANC}(G) \geqslant n / 2$, we must have that $G-v$ consists of exactly two complete components A and B, one of order $n / 2-1$ and the other of order $n / 2$. Since $\mathscr{K}_{1}(G) \geqslant k$, if follows that in G the vertex v is adjacent to at least k vertices of A and k vertices of B. Certainly, for n sufficiently large, G has k edge-disjoint perfect matchings. Thus we may assume that G is 2 -connected. By Theorem A, the graph G is hamiltonian and so contains at least two edge-disjoint perfect matchings. Thus if the result fails to hold, $k \geqslant 3$ and we may assume that G is an edgc-maximal counterexample.

Let x, y be non-adjacent vertices of G. The maximality of G implies that the graph $G+x y$ contains k edge-disjoint perfect matchings $M_{1}, M_{2}, \ldots, M_{k}$ with $x y \in M_{k}$. Furthermore, if H is the graph obtained from G by removing $M_{1}, M_{2}, \ldots M_{k-1}$, then H contains an ($n / 2-1$)-matching but no perfect matching. It follows, from Tutte's Theorem and the maximality of G, that there is a proper subset S of $V(H)$ such that $H-S$ has exactly $s+2$ odd components, where $s=|S| \geqslant 0$ and x and y are in different components of $H-S$. Furthermore, $\operatorname{deg}_{H} z=\operatorname{deg}_{G} z-(k-1)$ for every vertex z of H. In particular, if u and v are any two vertices of H, then $\left|N_{H}(u) \cup N_{H}(v)\right| \geqslant n / 2-2(k-1)$, i.e., $\mathrm{ANC}(H) \geqslant n / 2-$ $2(k-1)$.

Assume first that $s=0$. Thus H has exactly two odd components and, perhaps, some even components. Since $\delta(G) \geqslant k+1$, it follows that $\delta(H) \geqslant 2$ and so each component of H has at least three vertices. Let C be any component of H and let u, v be two vertices in C. Since $\mathrm{ANC}(H) \geqslant n / 2-2(k-1)$, it follows that C has at least $n / 2-2(k-1)$ vertices. This implies, for n sufficiently large, that H has exactly two components C_{1} and C_{2}, each of odd order at most $n / 2+2(k-1)$, and $\mathrm{ANC}\left(C_{i}\right) \geqslant n / 2-2(k-1)$ for $i=1,2$. Thus, for n sufficiently large,

$$
\mathrm{ANC}\left(C_{i}\right) \geqslant n / 2-2(k-1) \geqslant(n / 2+2(k-1)-1) / 2+2 k
$$

and so Lemma 1 applies to each of C_{1} and C_{2}. Finally, since $\mathscr{K}_{1}(G) \geqslant k$, there are at least k edges in G between the vertices of C_{1} and C_{2}. This, however, together with Lemma 1, implies that G has k edge-disjoint perfect matchings, producing a contradiction. Thus, $s \geqslant 1$.

Let $C_{1}, C_{2}, \ldots, C_{s+2}$ be the odd components of $H-S$, where $n_{i}=\left|C_{i}\right|$ for $1=1,2, \ldots, s+2$, and $n_{1} \leqslant n_{2} \leqslant \cdots \leqslant n_{s+2}$.

We first show that $n_{1}=1$. Assume, to the contrary, that $n_{1} \geqslant 3$. Then

$$
n \geqslant \sum_{i=1}^{s+2} n_{i}+s \geqslant 3(s+2)+s
$$

implying that $s<n / 4$. Now, let $u, v \in V\left(C_{1}\right)$. Since

$$
\left|N_{H}(u) \cup N_{H}(v)\right| \geqslant n / 2-2(k-1)
$$

and

$$
N_{H}(u) \cup N_{H}(v) \subseteq V\left(C_{1}\right) \cup S,
$$

it follows that $n_{1}+s \geqslant n / 2-2(k-1)$. Furthermore, since C_{1} is the smallest odd component of $H-S$, necessarily $n_{1} \leqslant(n-s) /(s+2)$. Consequently,

$$
\frac{(n-s)}{(s+2)}+s \geqslant \frac{n}{2}-2(k-1)
$$

Simplifying, we find that

$$
n s \leqslant 2 s^{2}+2 s+4(k-1)(s+2)
$$

Since $s \geqslant 1$, have

$$
n \leqslant 2 s+2+\frac{4(k-1)(s+2)}{s}
$$

Since $s<n / 4$, for n sufficiently large,

$$
2 s+2+\frac{4(k-1)(s+2)}{s}<n
$$

and we reach a contradiction. Thus, $n_{1}=1$.
Now, consider the case $n_{2}>1$. We first show that $s=1$. Assume, to the contrary, that $n_{2} \geqslant 3$ and $s \geqslant 2$. Since $n_{1}=1$ and $n_{2} \geqslant 3$, we have

$$
n \geqslant \sum_{i=1}^{s+2} n_{i}+s \geqslant 3(s+1)+s+1
$$

implying that $s<n / 4$. Choose $u, v \in V\left(C_{2}\right)$. Since

$$
N_{H}(u) \cup N_{H}(v) \subseteq V\left(C_{2}\right) \cup S
$$

and

$$
\left|N_{H}(u) \cup N_{H}(v)\right| \geqslant n / 2-2(k-1),
$$

we have $n_{2}+s \geqslant n / 2-2(k-1)$. Also, since $n_{2} \leqslant n_{3} \leqslant \cdots \leqslant n_{s+2}$, it follows that $n_{2} \leqslant(n-1-s) /(s+1)$. Thus,

$$
\frac{(n-1-s)}{(s+1)}+s \geqslant \frac{n}{2}-2(k-1)
$$

and so

$$
n(s-1) \leqslant 2 s^{2}-2+4(k-1)(s+1) .
$$

Since $s \geqslant 2$, we have

$$
n \leqslant \frac{\left(2 s^{2}-2\right)}{(s-1)}+\frac{4(k-1)(s+1)}{(s-1)}
$$

As before, $s<n / 4$ implies that for n sufficiently large,

$$
\frac{\left(2 s^{2}-2\right)}{(s-1)}+\frac{4(k-1)(s+1)}{(s-1)}<n
$$

Thus, if $n_{2}>1$, then $s=1$. But then in H, the single vertex z of C_{1} has degree at most one, so that $\operatorname{deg}_{G} z \leqslant k$. This contradicts $\delta(G) \geqslant k+1$. We conclude that $n_{2}=1$.

Thus $n_{1}=n_{2}=1$. Let u, v be the vertices in C_{1} and C_{2}. Then $\mid N_{H}(u) \cup$ $N_{H}(v) \mid \geqslant n / 2-2(k-1)$ and $N_{H}(u) \cup N_{H}(v) \subseteq S$, so that $s \geqslant n / 2-2(k-1)$. Furthermore, since $H-S$ has at least $s+2$ vertices, we have $s<n / 2$.

We may assume then that for every pair x, y of non-adjacent vertices of G there are $k-1$ perfect matchings $M_{1}, M_{2}, \ldots, M_{k-1}$ whose removal from G results in a graph H with the following properties:
(i) there is a set S of s vertices of H whose removal results in a graph with exactly $s+2$ odd components;
(ii) $n / 2-2(k-1) \leqslant s<n / 2$;
(iii) x and y belong to different components of $H-S$.

For each such pair x, y choose one such graph and denote it by $H_{x, y}$ and let $S_{x, y}$ denote the corresponding set S.

We next observe that

$$
\begin{equation*}
x y \notin E(G) \Rightarrow\left|N_{G}(x) \cup N_{G}(y)\right|<n / 2+4(k-1) . \tag{4}
\end{equation*}
$$

This follows by considering $H=H_{x, y}$ and $S=S_{x, y}$. Then

$$
\left|N_{G}(x) \cup N_{G}(y)\right| \leqslant 2(k-1)+\left|N_{H}(x) \cup N_{H}(y)\right| .
$$

Also, if C_{x} is the component of $H-S$ containing x and C_{y} is the component of $H-S$ containing y, then

$$
\left|N_{H}(x) \cup N_{H}(y)\right| \leqslant s+\left|C_{x}\right|+\left|C_{y}\right|-2 .
$$

However, $\left|C_{x}\right|+\left|C_{y}\right| \leqslant n-2 s$ and, since $s \geqslant n / 2-2(k-1)$, it follows that

$$
\left|N_{H}(x) \cup N_{H}(y)\right| \leqslant n / 2+2(k-1)-2 .
$$

Thus,

$$
\left|N_{G}(x) \cup N_{G}(y)\right|<n / 2+4(k-1)
$$

Select non-adjacent vertices u, v of G and consider $H=H_{u, v}$. Let $A=S_{u, v}$. Then $n / 2-2(k-1) \leqslant|A|<n / 2$. Furthermore, $H-A$ has $|A|+2$ odd components. Suppose that m of these odd components contain three or more vertices.

Then

$$
n \geqslant 3 m+(|A|+2-m)+|A|,
$$

so that

$$
m \leqslant(n-2|A|-2) / 2 \leqslant(4(k-1)-2) / 2=2(k-1)-1 .
$$

Thus $H-A$ has at least $|A|+2-m$ isolated vertices, where

$$
\begin{aligned}
|A|+2-m & \geqslant n / 2-2(k-1)+2-2(k-1)+1 \\
& =n / 2-4(k-1)+3 .
\end{aligned}
$$

Let B be the set of isolated vertices in $H-A$ that have degree at least $n / 4$ in G. Since $\operatorname{ANC}(G) \geqslant n / 2$, at most one vertex of G has degree less than $n / 4$. Thus

$$
|B| \geqslant n / 2-4(k-1)+2 .
$$

We conclude that G has $k-1$ edge-disjoint perfect matchings whose removal results in a graph H with disjoint sets A and B of vertices such that:
(i) $n / 2-2(k-1) \leqslant|A|<n / 2$;
(ii) $|B| \geqslant n / 2-4(k-1)+2$;
(iii) in H, each vertex of B is adjacent only to vertices of A; and
(iv) in H, each vertex of B is adjacent to at least $n / 4-(k-1)$ vertices of A.

Now, let $\bar{G}(A, B)$ denote the bipartite graph with vertex set $A \cup B$ and edge set $\{a b \mid a \in \Lambda, b \in B$, and $a b \notin E(G)\}$. Then $K(2(k-1), 2(k-1))$ is not a subgraph of $\bar{G}(A, B)$; otherwise, select two vertices x and y of B that are vertices in the copy of $K(2(k-1), 2(k-1))$ in $\bar{G}(A, B)$. Then, by (i) and (iii) above,

$$
\left|N_{H}(x) \cup N_{H}(y)\right|<n / 2-2(k-1),
$$

which contradicts $\operatorname{ANC}(G) \geqslant n / 2$.
Thus, an application of Theorem B yields that $\bar{G}(A, B)$ has fewer than $c_{k} n^{2-1 /(2(k-1))}$ edges, where c_{k} is a constant depending on k.

Let \boldsymbol{x} be a vertex of A which is adjacent, in G, to at least $n / 4+5(k-1)$ vertices of B, and let y be any vertex of B. Then

$$
\begin{aligned}
\left|N_{G}(x) \cup N_{G}(y)\right| & \geqslant\left|N_{G}(x) \cup N_{H}(y)\right| \\
& \geqslant \frac{n}{4}+5(k-1)+\frac{n}{4}-(k-1) \\
& =\frac{n}{2}+4(k-1) .
\end{aligned}
$$

By (4), it follows that $x y \in E(G)$. Thus, in G, if a vertex of A is adjacent to at least $n / 4+5(k-1)$ vertices of B, then it is adjacent to every vertex of B.

Let m denote the number of vertices of A which are adjacent in G to fewer than $n / 4+5(k-1)$ vertices of B. Thus, in $\bar{G}(A, B)$, each of these vertices of A is
adjacent to more than $n / 4-9(k-1)+2$ vertices of B, so that $\bar{G}(A, B)$ contains more than $m(n / 4-9(k-1)+2)$ edges. However, $\bar{G}(A, B)$ has fewer than $c_{k} n^{2-1 /(2(k-1))}$ edges. Thus, $m \leqslant c_{k}^{\prime} n^{1-1 /(2(k-1))}$, where c_{k}^{\prime} is a constant depending only on k. Let A^{\prime} denote the vertices in A which are adjacent in G to all vertices of B. Then $\left|A^{\prime}\right| \geqslant n / 2-d_{k} n^{1-1 /(2(k-1))}$, where d_{k} is a constant depending only on $k,|B| \geqslant n / 2-4(k-1)+2$, and, in G, every vertex of A^{\prime} is adjacent to every vertex of B. Consider any vertex $x \in V(G)-\left(A^{\prime} \cup B\right)$ with $\operatorname{deg}_{G} x \geqslant n / 4$. Then x is adjacent in G to at least $n / 48$ vertices of A^{\prime} or $n / 48$ vertices of B for n sufficiently large. This follows from the fact that $\left|A^{\prime} \cup B\right| \geqslant n / 3+n / 2-4(k-$ $1)+2$ for n sufficiently large. Thus $\left|V(G)-\left(A^{\prime} \cup B\right)\right| \leqslant n / 6+4(k-1)-2$. Since $\operatorname{deg}_{G} x \geqslant n / 4$, it must be that x is adjacent to at least

$$
n / 4-(n / 6+4(k-1)-2)=n / 12-4(k-1)+2>n / 24
$$

vertices of $A^{\prime} \cup B$. If x is adjacent to at least $n / 48$ vertices of A^{\prime}, then x is adjacent to every vertex of A^{\prime}; otherwise, there is a vertex z in A^{\prime} which is not adjacent to x in G but for which

$$
\left|N_{G}(x) \cup N_{G}(z)\right| \geqslant \frac{n}{48}+\frac{n}{2}-4(k-1)+2 \geqslant \frac{n}{2}+4(k-1)
$$

for n sufficiently large, contradicting (4). Similarly, if x is adjacent to $n / 48$ vertices of B, then x is adjacent to every vertex of B. Inductively, we conclude that there are disjoint sets $A^{\prime \prime}$ and $B^{\prime \prime}$ of vertices of G such that:
(i) $n-1 \leqslant\left|A^{\prime \prime} \cup B^{\prime \prime}\right| \leqslant n$;
(ii) in G, every vertex of $A^{\prime \prime}$ is adjacent to every vertex of $B^{\prime \prime}$; and
(iii) $n / 2-d_{k} n^{1-1 /(2(k-1))} \leqslant\left|A^{\prime \prime}\right| \leqslant\left|B^{\prime \prime}\right|$.

Note that there may be adjacent vertices of $B^{\prime \prime}$.
We next show that $A^{\prime \prime}$ and $B^{\prime \prime}$ can be chosen satisfying (i), (ii) and (iii) and satisfying $\left|B^{\prime \prime}\right|-\left|A^{\prime \prime}\right|<12 k$. Suppose, to the contrary, that for all disjoint sets $A^{\prime \prime}$ and $B^{\prime \prime}$ of vertices satisfying (i), (ii) and (iii), we also have $\left|B^{\prime \prime}\right|-\left|A^{\prime \prime}\right| \geqslant 12 k$. Choose one such pair $A^{\prime \prime}, B^{\prime \prime}$ for which $\left|B^{\prime \prime}\right|-\left|A^{\prime \prime}\right|$ is minimum. Since $\left|B^{\prime \prime}\right|-$ $\left|A^{\prime \prime}\right| \geqslant 12 k$ and n is even, it follows that $\left|B^{\prime \prime}\right| \geqslant n / 2+6 k$. Now, the subgraph of G induced by $A^{\prime \prime}$, denoted $\left\langle A^{\prime \prime}\right\rangle_{G}$, is complete; otherwise there are non-adjacent vertices x, y in $A^{\prime \prime}$ for which

$$
\left|N_{G}(x) \cup N_{G}(y)\right| \geqslant\left|B^{\prime \prime}\right| \geqslant n / 2+6 k,
$$

which contradicts (4). Furthermore, by the minimality of $\left|B^{\prime \prime}\right|-\left|A^{\prime \prime}\right|$, no vertex y in $B^{\prime \prime}$ is adjacent to every other vertex of $B^{\prime \prime}$; otherwise, y could be added to $A^{\prime \prime}$. This implies that each vertex of $B^{\prime \prime}$ is adjacent to fewer than $d_{k} n^{1-1 /(2(k-1))}+$ $4(k-1)$ vertices of $B^{\prime \prime}$; otherwise, there are nonadjacent vertices x and y of $B^{\prime \prime}$ for which

$$
\left|N_{G}(x) \cup N_{G}(y)\right| \geqslant n / 2-d_{k} n^{1-1 /(2(k-1))}+d_{k} n^{1-1 /(2(k-1))}+4(k-1),
$$

which contradicts (4).

Now, let x and y be nonadjacent vertices of $B^{\prime \prime}$, and consider the graph $H=H_{x, y}$ with corresponding set $S=S_{x, y}$. Since $n / 2-2(k-1) \leqslant|S|<n / 2$ and $H-S$ has at least $|S|+2$ components, it follows that each component of $H-S$ has at most $4(k-1)-1$ vertices. Consequently, for each vertex z in $V(H)-S$, we have $\operatorname{deg}_{H} z<n / 2+4(k-1)$. However, in G, each vertex of $A^{\prime \prime}$ has degree at least $n-2$ since $\left\langle A^{\prime \prime}\right\rangle_{G}$ is complete and $\left|A^{\prime \prime} \cup B^{\prime \prime}\right| \geqslant n-1$, so that every vertex of $A^{\prime \prime}$ has degree at least $(n-2)-(k-1)$ in H. Since, for n sufficiently large, $(n-2)-(k-1)>n / 2+4(k-1)$, we conclude that $A^{\prime \prime} \subseteq S$. Furthermore, since $|S| \geqslant n / 2-2(k-1)$, it follows that $|V(H)-S| \leqslant n / 2+2(k-1)$. But $\left|B^{\prime \prime}\right| \geqslant n / 2+$ $6 k$. Thus, $\left|B^{\prime \prime} \cap S\right| \geqslant 4 k$. Choose $4 k$ vertices of $B^{\prime \prime} \cap S$; call this set D.

We now count the number of edges in G between D and $V(G)-S$. As observed, each vertex of $B^{\prime \prime}$ is adjacent in G to fewer than $d_{k} n^{1-1 /(2(k-1))}+4(k-$ 1) other vertices of $B^{\prime \prime}$. Since $A^{\prime \prime} \subseteq S$, it follows that the number of edges in G between D and $V(G)-S$ is at most

$$
(4 k)\left(d_{k} n^{1-1 /(2(k-1))}+4(k-1)\right) .
$$

Furthermore, for n sufficiently large,

$$
(4 k)\left(d_{k} n^{1-1 /(2(k-1))}+4(k-1)\right) \leqslant \frac{n}{2}-1 .
$$

However, $|V(G)-S| \geqslant n / 2+1$. Thus there are two vertices z, w of $V(G)-S$ which are adjacent, in G, to none of the vertices of D. But then

$$
N_{H}(w) \cup N_{H}(z) \subseteq(S-D) \cup V\left(C_{w}\right) \cup V\left(C_{z}\right),
$$

where C_{w} and C_{z} are the components of H containing w and z, respectively. (Note that we may have $C_{w}=C_{z}$.) Then

$$
\begin{aligned}
\left|N_{H}(w) \cup N_{H}(z)\right| & \leqslant|S|-4 k+\left|C_{w} \cup C_{z}\right| \leqslant|S|-4 k+(n-2|S|) \\
& =n-|S|-4 k \leqslant n-\left(\frac{n}{2}-2(k-1)\right)-4 k \\
& <\frac{n}{2}-2(k-1) .
\end{aligned}
$$

This, however, contradicts $\mathrm{ANC}(G) \geqslant n / 2$. Thus, G has disjoint sets $A^{\prime \prime}$ and $B^{\prime \prime}$ of vertices satisfying (i), (ii), (iii) and $\left|B^{\prime \prime}\right|-\left|A^{\prime \prime}\right|<12 k$.
Assume first that $\left|A^{\prime \prime} \cup B^{\prime \prime}\right|=n$. Then $\left|A^{\prime \prime}\right|=n / 2-t$ and $\left|B^{\prime \prime}\right|=n / 2+t$, where $t<6 k$. Since $\operatorname{ANC}(G) \geqslant n / 2$, it follows that $\operatorname{ANC}\left(\left\langle B^{\prime \prime}\right\rangle_{G}\right) \geqslant t$. Since t is bounded by $6 k$, we may apply an argument like that given in Lemma 2 to conclude that $\left\langle B^{\prime \prime}\right\rangle_{G}$ contains k edge-disjoint t-matchings $N_{1}, N_{2}, \ldots, N_{k}$. Let $V_{1}, V_{2}, \ldots, V_{k}$ be the sets of vertices of $B^{\prime \prime}$ incident with edges in $N_{1}, N_{2}, \ldots, N_{k}$, respectively. Note that these sets of vertices are not necessarily disjoint. Consider the complete bipartite subgraph G_{1} of G with partite sets $B^{\prime \prime}-V_{1}$ and $A^{\prime \prime}$. Certainly, G_{1} has a perfect matching M_{1}, which together with N_{1} produces a perfect matching M_{1}^{\prime} of
G. Consider now $G-M_{1}^{\prime}$, and the bipartite subgraph G_{2} of $G-M_{1}^{\prime}$ with partite sets $B^{\prime \prime}-V_{2}$ and $A^{\prime \prime}$. Although G_{2} is not a complete bipartite graph, it is true that for every $w \in V\left(G_{2}\right)$ we have $\operatorname{deg}_{G_{2}} w \geqslant\left|A^{\prime \prime}\right|-1 \geqslant n / 2-t-1$. However, G_{2} has order $n-2 t$, and $n / 2-t-1 \geqslant(n-2 t) / 4$ for n sufficiently large. Thus, G_{2} has a perfect matching M_{2} by Theorem C, and then $M_{2}^{\prime}=M_{2} \cup N_{2}$ is a perfect matching of G, disjoint from M_{1}^{\prime}. We continue in this fashion to produce edge-disjoint perfect matchings of G. Suppose $M_{1}^{\prime}, M_{2}^{\prime}, \ldots, M_{p}^{\prime}$ have been constructed, where $p<k$. Consider $G-\bigcup_{i=1}^{p} M_{i}^{\prime}$, and the bipartite subgraph G_{p+1} of $G-\bigcup_{i=1}^{p} M_{i}^{\prime}$ with partite sets $B^{\prime \prime}-V_{p+1}$ and $A^{\prime \prime}$. Then $\operatorname{deg}_{G_{p+1}} w \geqslant n / 2-t-p$ for every $w \in V\left(G_{p+1}\right)$. Again, G_{p+1} has order $n-2 t$ and $n / 2-t-p \geqslant(n-2 t) / 4$ for n sufficiently large, so that G_{p+1} has a perfect matching M_{p+1}. Then $M_{p+1}^{\prime}=$ $M_{p+1} \cup N_{p+1}$ is a perfect matching of G, disjoint from $M_{1}^{\prime}, M_{2}^{\prime}, \ldots, M_{p}^{\prime}$. Thus G contains k edge-disjoint perfect matchings, contradicting our assumption that no such matchings exist. It follows that, necessarily, $\left|A^{\prime \prime} \cup B^{\prime \prime}\right|=n-1$.

Since $\left|A^{\prime \prime} \cup B^{\prime \prime}\right|=n-1$ and $\left|B^{\prime \prime}\right|-\left|A^{\prime \prime}\right|<12 k$ we have that $\left|B^{\prime \prime}\right|=n / 2+t$ and $\left|A^{\prime \prime}\right|=n / 2-t-1$ where $t<6 k$. Let x be the vertex of G not in $A^{\prime \prime} \cup B^{\prime \prime}$. Then $k \leqslant \operatorname{deg}_{G} x<n / 4$. Let $a_{1}, \ldots, a_{m}, b_{m+1}, \ldots, b_{k}$ be k vertices of G adjacent to x where each $a_{i} \in A^{\prime \prime}$ and each $b_{i} \in B^{\prime \prime}$. Since $\operatorname{ANC}(G) \geqslant n / 2$, it follows that $\operatorname{ANC}\left(\left\langle B^{\prime \prime} \cup\{x\}\right\rangle_{G}\right) \geqslant t+1$. Since t is bounded by $6 k$ and $\operatorname{deg}_{G} x<n / 4$ we may apply an argument like that given in Lemma 2 to conclude that $\left\langle B^{\prime \prime} \cup\{x\}\right\rangle_{G}$ contains k edge-disjoint ($t+1$)-matchings $N_{1}, N_{2}, \ldots, N_{k}$, none of which contains an edge incident with x. Let $V_{1}, V_{2}, \ldots, V_{k}$ be the sets of vertices in $B^{\prime \prime}$ incident with the edges in $N_{1}, N_{2}, \ldots, N_{k}$, respectively. Consider the complete bipartite graph G_{1} of G with partite sets $B^{\prime \prime}-V_{1}$ and $A^{\prime \prime}-\left\{a_{1}\right\}$. Then G_{1} has a perfect matching M_{1} which together with $N_{1} \cup\left\{x a_{1}\right\}$ is a perfect matching M_{1}^{\prime} of G. Suppose edge-disjoint perfect matchings $M_{1}^{\prime}, M_{2}^{\prime}, \ldots, M_{p}^{\prime}$ have been constructed, where $p<m$. Consider the bipartite subgraph G_{p+1} of $G-\bigcup_{i=1}^{p} M_{i}^{\prime}$ with partite sets $B^{\prime \prime}-V_{p+1}$ and $A^{\prime \prime}-\left\{a_{p+1}\right\}$. Then $\operatorname{deg}_{G_{p+1}} w \geqslant n / 2-t-2-p$ for every vertex w of G_{p+1}. Also, G_{p+1} has order $n-2 t-4$ and

$$
n / 2-t-2-p \geqslant(n-2 t-4) / 4
$$

for n sufficiently large, so that G_{p+1} has a perfect matching M_{p+1}. Then $M_{p+1}^{\prime}=M_{p+1} \cup N_{p+1} \cup\left\{x a_{p+1}\right\}$ is a perfect matching of G disjoint from $M_{1}^{\prime}, M_{2}^{\prime}, \ldots, M_{p}^{\prime}$. Thus G contains edge-disjoint perfect matchings $M_{1}^{\prime}, M_{2}^{\prime}, \ldots, M_{m}^{\prime}$ where $x a_{i} \in M_{i}^{\prime}$ for $i=1, \ldots, m$.

For $i=m+1, \ldots, k$, let N_{i}^{\prime} be a t-matching contained in N_{i} such that no edge of N_{i}^{\prime} is incident with b_{i} and let V_{i}^{\prime} be the vertices incident with the edges in N_{i}^{\prime}. Consider the bipartite subgraph G_{m+1} of $G-\bigcup_{i=1}^{m} M_{1}^{\prime}$ with partite sets $B^{\prime \prime}-$ $\left\{b_{m+1}\right\}-V_{m+1}^{\prime}$ and $A^{\prime \prime}$. Then $\operatorname{deg}_{G_{m+1}} w \geqslant n / 2-t-1-m$ for every w in G_{m+1}. Also, G_{m+1} has order $n-2 t-2$ and

$$
n / 2-t-1-m \geqslant(n-2 t-2) / 4
$$

for n sufficiently large. Thus G_{m+1} has a perfect matching M_{m+1} and $M_{m+1}^{\prime}=$ $M_{m+1} \cup N_{m+1}^{\prime} \cup\left\{x b_{m+1}\right\}$ is a perfect matching of G disjoint from $M_{1}^{\prime}, M_{2}^{\prime}, \ldots, M_{m}^{\prime}$. Clearly we can continue to construct k edge-disjoint perfect matchings of G. Thus our assumption that a maximal counterexample exists leads us to a contradiction and the proof is complete.

References

[1] I. Anderson, Perfect matchings of a graph, J. Combin. Theory Ser. B 10 (1971) 183-186.
[2] R.J. Faudree, R.J. Gould, M.S. Jacobson and R.H. Schelp, Extremal problems involving neighborhood unions, J. Graph Theory 4 (1987) 555-564.
[3] R.J. Faudree, R.J. Gould and R.H. Schelp, Neighborhood conditions and edge disjoint hamiltonian cycles, Congr. Numer. 59 (1987) 55-68.
[4] R.J. Faudree, R.J. Gould, M.S. Jacobson and L.M. Lesniak, A generalization of Dirac's theorem, Discrete Math., to appear.
[5] P. Hall, On representations of subsets, J. London Math. Soc. 10 (1935) 26-30.
[6] W. Jackson, Hamilton cycles in regular 2-connected graphs, J. Combin. Theory Ser. B 29 (1980) 27-46.
[7] T. Kovari, V.T. Sós and P. Turán, On a problem of Zarankiewicz, Colloq. Math. 3 (1954) 50-57.
[8] W.T. Tutte, Λ short proof of the factor theorem for finite graphs, Canad. J. Math. 6 (1954) 347-352.

[^0]: * Research supported under ONR Contract \#N00014-88-K-0070.

