Discrete Mathematics 91 (1991) 33-43 North-Holland

Neighborhood conditions and edge-disjoint perfect matchings

R.J. Faudree*

Department of Mathematical Sciences, Memphis State University, Memphis, TN 38152, USA

R.J. Gould*

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA

L.M. Lesniak

Department of Mathematics and Computer Science, Drew University, Madison, NJ 07940, USA

Received 2 February 1988 Revised 1 December 1989

Abstract

Faudree, R.J., R.J. Gould and L.M. Lesniak, Neighborhood conditions and edge-disjoint perfect matchings, Discrete Mathematics 91 (1991) 33-43.

A graph G satisfies the neighborhood condition $ANC(G) \ge m$ if, for all pairs of vertices of G, the union of their neighborhoods has at least m vertices. For a fixed positive integer k, let G be a graph of even order n which satisfies the following conditions: $\delta(G) \ge k + 1$; $\mathcal{K}_1(G) \ge k$; and $ANC(G) \ge n/2$. It is shown that if n is sufficiently large then G contains k edge-disjoint perfect matchings.

A matching in a graph is a set of edges of which no two have a common incident vertex. An s-matching is a matching with s edges and a perfect matching in a graph of order n is a matching with n/2 edges. The classic theorem of Tutte [8] characterizing those graphs with perfect matchings states that a nontrivial graph G has a perfect matching if and only if, for every proper subset S of V(G), the number of components of G - S with an odd number of vertices is at most |S|. Anderson's proof of Tutte's Theorem [1] employs Hall's Theorem [5], one form of which can be stated as: Let G be a bipartite graph with partite sets V_1 and V_2 , where $|V_1| = |V_2|$. Then G contains a perfect matching if and only if for every subset S of V_1 ,

$$|N_G(S)| \ge |S|,$$

where $N_G(S)$ denotes the set of all vertices adjacent to at least one vertex of S.

* Research supported under ONR Contract #N00014-88-K-0070.

0012-365X/91/\$03.50 (C) 1991 --- Elsevier Science Publishers B.V. (North-Holland)

Recently, a number of 'neighborhood conditions' guaranteeing s-matchings in graphs have been obtained. For a vertex x of a graph G, let $N_G(x)$ denote $N_G(\{x\})$. In [2] it was shown that if $|N_G(x) \cup N_G(y)|$ is sufficiently large for every pair x, y of non-adjacent vertices of G, then G contains an s-matching. ('Sufficiently large' is a function of s and the number of vertices of G.) Later in [3], a related result gave a condition on neighborhood unions of pairs of nonadjacent vertices that guarantees many edge-disjoint perfect matchings in a graph. In [4], it was shown that if G is a connected graph of order n and $|N_G(x) \cup N_G(y)| \ge s$ for all pairs x, y of vertices of G, $1 \le s \le n/2$, then G contains an s-matching. In particular, if G is connected and $|N_G(x) \cup N_G(y)| \ge n/2$ for all pairs x, y of vertices of G, then G has a perfect matching. Here we extend this result.

A graph G satisfies the all pairs neighborhood condition $ANC(G) \ge m$ if, for each pair x, y of vertices of G, we have

$$|N_G(x) \cup N_G(y)| \ge m.$$

Theorem 1. Let k be a positive integer and G a graph of even order n which satisfies the following conditions:

the minimum degree $\delta(G)$ of G is at least k + 1; (1)

the edge-connectivity $\mathscr{K}_1(G)$ is at least k; and (2)

$$\operatorname{ANC}(G) \ge n/2. \tag{3}$$

Then if n is sufficiently large, G contains k edge-disjoint perfect matchings.

The following examples illustrate that each of conditions (1), (2), and (3) is necessary for G to contain k edge-disjoint perfect matchings. If G is the complete bipartite graph K(n/2-1, n/2+1), then for n sufficiently large G satisfies conditions (1) and (2), but not (3). In this case, G contains no perfect matchings. Next, let G be the graph obtained by adding k-1 edges between two disjoint copies of the complete graph $K_{n/2}$. Then for $n \equiv 2 \pmod{4}$ and n sufficiently large, G satisfies (1) and (3) but not (2), and the maximum number of edge-disjoint perfect matchings in G is k-1. Finally, let G be any graph obtained by identifying one vertex of a copy of $K_{n/2}$ with one vertex of another copy of $K_{n/2}$ and then adding a vertex x of degree k so that in the resulting graph, x is adjacent to the only vertex of degree n-1. Then for $n \equiv 0 \pmod{4}$ and n sufficiently large, G satisfies (2) and (3) but not (1), and the maximum number of edge-disjoint perfect matchings in G is k-1.

The following results will be useful in the proof of Theorem 1.

Theorem A [4]. If G is a 2-connected graph of order n sufficiently large which satisfies $ANC(G) \ge n/2$, then G is hamiltonian.

Theorem B [7]. If ex(n, K(s, s)) denotes the maximum number of edges in a graph of order n which does not contain the complete bipartite graph K(s, s), then

 $ex(n, K(s, s)) \leq \frac{1}{2}(s-1)^{1/s}n^{(2-1/s)} + O(n).$

Theorem C [6]. If G is a spanning subgraph of the complete bipartite graph K(n/2, n/2) and $\delta(G) \ge n/4$, then G has a perfect matching.

Lemma 1. Let k be a fixed positive integer and G a graph of odd order n which satisfies $ANC(G) \ge (n-1)/2 + 2k$. Then for any sequence u_1, u_2, \ldots, u_k of vertices of G (where the u_i 's are not necessarily distinct), there are k edge-disjoint matchings M_1, M_2, \ldots, M_k such that for $i = 1, 2, \ldots, k$, M_i is a perfect matching of $G - u_i$.

Proof. We first observe that $G - u_1$ has order n - 1 and satisfies $ANC(G - u_1) \ge (n-1)/2 + 2k - 1 \ge (n-1)/2 + 1$. This implies that $G - u_1$ is connected and, as indicated earlier, that $G - u_1$ has a perfect matching. Assume now that for some $t, 1 \le t < k$, we have constructed the desired matchings M_1, M_2, \ldots, M_t . Consider

$$G' = G - \left(\bigcup_{i=1}^{t} M_i\right) - u_{t+1}$$

Then G' has order n-1 and satisfies

ANC(G')
$$\ge$$
 $(n-1)/2 + 2k - (2t+1) \ge (n-1)/2 + 2k - (2(k-1)+1)$
 $\ge (n-1)/2 + 1.$

Again, this implies that G' has a perfect matching M_{t+1} and the proof is complete. \Box

Lemma 2. Let t and k be positive integers and let G be a graph of order n satisfying $ANC(G) \ge t$. Then for n sufficiently large, G contains k edge-disjoint t-matchings.

Proof. Since ANC(G) $\geq t$ it follows, of course that $|N_G(x) \cup N_G(y)| \geq t$ for every pair x, y of non-adjacent vertices of G. It follows from Theorem 1(a) and (b) of [2] that for n sufficiently large, G contains at least one t-matching M_1 . Suppose, then, that edge-disjoint t-matchings M_1, M_2, \ldots, M_p have been constructed, p < k, and let $G' = G - \bigcup_{i=1}^p M_i$. Let F be a maximum matching in G'. We wish to show that $|F| \geq t$. Suppose, to the contrary, that |F| < t. Let W be the set of vertices of G' incident with no edge of F. Then, by the maximality of F, no two vertices of W are adjacent in G'. Now, since at most 2tp vertices of W are incident (in G) to edges in $\bigcup_{i=1}^p M_i$, it follows that for n sufficiently large there are at least four vertices in W incident with none of the edges in $\bigcup_{i=1}^p M_i$. Let W'

be the set of these vertices. Thus $|N_{G'}(u) \cup N_{G'}(v)| \ge t$ for every u, v in W'. This implies, however, that for some edge e = xy in F and some u, v in W', both ux and vy are edges of G'. But then $F - \{xy\} \cup \{ux, vy\}$ is a matching in G', which contradicts the maximality of F. \Box

Proof of Theorem 1. Assume first that G has a cutvertex v. Then, since G satisfies $ANC(G) \ge n/2$, we must have that G - v consists of exactly two complete components A and B, one of order n/2 - 1 and the other of order n/2. Since $\mathcal{H}_1(G) \ge k$, if follows that in G the vertex v is adjacent to at least k vertices of A and k vertices of B. Certainly, for n sufficiently large, G has k edge-disjoint perfect matchings. Thus we may assume that G is 2-connected. By Theorem A, the graph G is hamiltonian and so contains at least two edge-disjoint perfect matchings. Thus if the result fails to hold, $k \ge 3$ and we may assume that G is an edge-maximal counterexample.

Let x, y be non-adjacent vertices of G. The maximality of G implies that the graph G + xy contains k edge-disjoint perfect matchings M_1, M_2, \ldots, M_k with $xy \in M_k$. Furthermore, if H is the graph obtained from G by removing $M_1, M_2, \ldots, M_{k-1}$, then H contains an (n/2 - 1)-matching but no perfect matching. It follows, from Tutte's Theorem and the maximality of G, that there is a proper subset S of V(H) such that H - S has exactly s + 2 odd components, where $s = |S| \ge 0$ and x and y are in different components of H - S. Furthermore, $\deg_{HZ} = \deg_{GZ} - (k - 1)$ for every vertex z of H. In particular, if u and v are any two vertices of H, then $|N_H(u) \cup N_H(v)| \ge n/2 - 2(k - 1)$, i.e., $ANC(H) \ge n/2 - 2(k - 1)$.

Assume first that s = 0. Thus *H* has exactly two odd components and, perhaps, some even components. Since $\delta(G) \ge k + 1$, it follows that $\delta(H) \ge 2$ and so each component of *H* has at least three vertices. Let *C* be any component of *H* and let u, v be two vertices in *C*. Since ANC(H) $\ge n/2 - 2(k - 1)$, it follows that *C* has at least n/2 - 2(k - 1) vertices. This implies, for *n* sufficiently large, that *H* has exactly two components C_1 and C_2 , each of odd order at most n/2 + 2(k - 1), and ANC($C_i \ge n/2 - 2(k - 1)$ for i = 1, 2. Thus, for *n* sufficiently large,

ANC(
$$C_i$$
) $\ge n/2 - 2(k-1) \ge (n/2 + 2(k-1) - 1)/2 + 2k$,

and so Lemma 1 applies to each of C_1 and C_2 . Finally, since $\mathcal{X}_1(G) \ge k$, there are at least k edges in G between the vertices of C_1 and C_2 . This, however, together with Lemma 1, implies that G has k edge-disjoint perfect matchings, producing a contradiction. Thus, $s \ge 1$.

Let $C_1, C_2, \ldots, C_{s+2}$ be the odd components of H-S, where $n_i = |C_i|$ for $1 = 1, 2, \ldots, s+2$, and $n_1 \le n_2 \le \cdots \le n_{s+2}$.

We first show that $n_1 = 1$. Assume, to the contrary, that $n_1 \ge 3$. Then

$$n \ge \sum_{i=1}^{s+2} n_i + s \ge 3(s+2) + s,$$

implying that s < n/4. Now, let $u, v \in V(C_1)$. Since

$$|N_H(u) \cup N_H(v)| \ge n/2 - 2(k-1)$$

and

$$N_H(u) \cup N_H(v) \subseteq V(C_1) \cup S,$$

it follows that $n_1 + s \ge n/2 - 2(k-1)$. Furthermore, since C_1 is the smallest odd component of H - S, necessarily $n_1 \le (n-s)/(s+2)$. Consequently,

$$\frac{(n-s)}{(s+2)}+s \geq \frac{n}{2}-2(k-1).$$

Simplifying, we find that

$$ns \leq 2s^2 + 2s + 4(k-1)(s+2).$$

Since $s \ge 1$, have

$$n \leq 2s+2+\frac{4(k-1)(s+2)}{s}$$

Since s < n/4, for *n* sufficiently large,

$$2s+2+\frac{4(k-1)(s+2)}{s} < n,$$

and we reach a contradiction. Thus, $n_1 = 1$.

Now, consider the case $n_2 > 1$. We first show that s = 1. Assume, to the contrary, that $n_2 \ge 3$ and $s \ge 2$. Since $n_1 = 1$ and $n_2 \ge 3$, we have

$$n \ge \sum_{i=1}^{s+2} n_i + s \ge 3(s+1) + s + 1,$$

implying that s < n/4. Choose $u, v \in V(C_2)$. Since

$$N_H(u) \cup N_H(v) \subseteq V(C_2) \cup S$$

and

$$|N_H(u) \cup N_H(v)| \ge n/2 - 2(k-1),$$

we have $n_2 + s \ge n/2 - 2(k - 1)$. Also, since $n_2 \le n_3 \le \dots \le n_{s+2}$, it follows that $n_2 \le (n - 1 - s)/(s + 1)$. Thus,

$$\frac{(n-1-s)}{(s+1)} + s \ge \frac{n}{2} - 2(k-1),$$

and so

$$n(s-1) \leq 2s^2 - 2 + 4(k-1)(s+1).$$

Since $s \ge 2$, we have

$$n \leq \frac{(2s^2-2)}{(s-1)} + \frac{4(k-1)(s+1)}{(s-1)}.$$

As before, s < n/4 implies that for *n* sufficiently large,

$$\frac{(2s^2-2)}{(s-1)} + \frac{4(k-1)(s+1)}{(s-1)} < n.$$

Thus, if $n_2 > 1$, then s = 1. But then in H, the single vertex z of C_1 has degree at most one, so that $\deg_G z \le k$. This contradicts $\delta(G) \ge k + 1$. We conclude that $n_2 = 1$.

Thus $n_1 = n_2 = 1$. Let u, v be the vertices in C_1 and C_2 . Then $|N_H(u) \cup N_H(v)| \ge n/2 - 2(k-1)$ and $N_H(u) \cup N_H(v) \subseteq S$, so that $s \ge n/2 - 2(k-1)$. Furthermore, since H - S has at least s + 2 vertices, we have s < n/2.

We may assume then that for every pair x, y of non-adjacent vertices of G there are k-1 perfect matchings $M_1, M_2, \ldots, M_{k-1}$ whose removal from G results in a graph H with the following properties:

(i) there is a set S of s vertices of H whose removal results in a graph with exactly s + 2 odd components;

(ii) $n/2 - 2(k-1) \le s < n/2;$

(iii) x and y belong to different components of H - S.

For each such pair x, y choose one such graph and denote it by $H_{x,y}$ and let $S_{x,y}$ denote the corresponding set S.

We next observe that

$$xy \notin E(G) \Rightarrow |N_G(x) \cup N_G(y)| < n/2 + 4(k-1).$$
(4)

This follows by considering $H = H_{x,y}$ and $S = S_{x,y}$. Then

$$|N_G(x) \cup N_G(y)| \le 2(k-1) + |N_H(x) \cup N_H(y)|.$$

Also, if C_x is the component of H - S containing x and C_y is the component of H - S containing y, then

$$|N_H(x) \cup N_H(y)| \le s + |C_x| + |C_y| - 2.$$

However, $|C_x| + |C_y| \le n - 2s$ and, since $s \ge n/2 - 2(k-1)$, it follows that

$$|N_H(x) \cup N_H(y)| \le n/2 + 2(k-1) - 2.$$

Thus,

$$|N_G(x) \cup N_G(y)| < n/2 + 4(k-1).$$

Select non-adjacent vertices u, v of G and consider $H = H_{u,v}$. Let $A = S_{u,v}$. Then $n/2 - 2(k-1) \le |A| < n/2$. Furthermore, H - A has |A| + 2 odd components. Suppose that m of these odd components contain three or more vertices.

38

Then

$$n \ge 3m + (|A| + 2 - m) + |A|,$$

so that

$$m \le (n-2|A|-2)/2 \le (4(k-1)-2)/2 = 2(k-1)-1.$$

Thus H - A has at least |A| + 2 - m isolated vertices, where

$$|A| + 2 - m \ge n/2 - 2(k - 1) + 2 - 2(k - 1) + 1$$
$$= n/2 - 4(k - 1) + 3.$$

Let B be the set of isolated vertices in H - A that have degree at least n/4 in G. Since ANC(G) $\ge n/2$, at most one vertex of G has degree less than n/4. Thus

$$|B| \ge n/2 - 4(k-1) + 2.$$

We conclude that G has k - 1 edge-disjoint perfect matchings whose removal results in a graph H with disjoint sets A and B of vertices such that:

- (i) $n/2 2(k-1) \le |A| < n/2;$
- (ii) $|B| \ge n/2 4(k-1) + 2;$
- (iii) in H, each vertex of B is adjacent only to vertices of A; and
- (iv) in H, each vertex of B is adjacent to at least n/4 (k 1) vertices of A.

Now, let $\overline{G}(A, B)$ denote the bipartite graph with vertex set $A \cup B$ and edge set $\{ab \mid a \in A, b \in B, and ab \notin E(G)\}$. Then K(2(k-1), 2(k-1)) is not a subgraph of $\overline{G}(A, B)$; otherwise, select two vertices x and y of B that are vertices in the copy of K(2(k-1), 2(k-1)) in $\overline{G}(A, B)$. Then, by (i) and (iii) above,

 $|N_H(x) \cup N_H(y)| < n/2 - 2(k-1),$

which contradicts $ANC(G) \ge n/2$.

Thus, an application of Theorem B yields that $\overline{G}(A, B)$ has fewer than $c_k n^{2-1/(2(k-1))}$ edges, where c_k is a constant depending on k.

Let x be a vertex of A which is adjacent, in G, to at least n/4 + 5(k-1) vertices of B, and let y be any vertex of B. Then

$$|N_G(x) \cup N_G(y)| \ge |N_G(x) \cup N_H(y)|$$
$$\ge \frac{n}{4} + 5(k-1) + \frac{n}{4} - (k-1)$$
$$= \frac{n}{2} + 4(k-1).$$

By (4), it follows that $xy \in E(G)$. Thus, in G, if a vertex of A is adjacent to at least n/4 + 5(k-1) vertices of B, then it is adjacent to every vertex of B.

Let *m* denote the number of vertices of *A* which are adjacent in *G* to fewer than n/4 + 5(k-1) vertices of *B*. Thus, in $\overline{G}(A, B)$, each of these vertices of *A* is

adjacent to more than n/4 - 9(k - 1) + 2 vertices of *B*, so that $\overline{G}(A, B)$ contains more than m(n/4 - 9(k - 1) + 2) edges. However, $\overline{G}(A, B)$ has fewer than $c_k n^{2-1/(2(k-1))}$ edges. Thus, $m \leq c'_k n^{1-1/(2(k-1))}$, where c'_k is a constant depending only on *k*. Let *A'* denote the vertices in *A* which are adjacent in *G* to all vertices of *B*. Then $|A'| \geq n/2 - d_k n^{1-1/(2(k-1))}$, where d_k is a constant depending only on *k*, $|B| \geq n/2 - 4(k-1) + 2$, and, in *G*, every vertex of *A'* is adjacent to every vertex of *B*. Consider any vertex $x \in V(G) - (A' \cup B)$ with deg_G $x \geq n/4$. Then *x* is adjacent in *G* to at least n/48 vertices of *A'* or n/48 vertices of *B* for *n* sufficiently large. This follows from the fact that $|A' \cup B| \geq n/3 + n/2 - 4(k - 1) + 2$ for *n* sufficiently large. Thus $|V(G) - (A' \cup B)| \leq n/6 + 4(k-1) - 2$. Since deg_G $x \geq n/4$, it must be that *x* is adjacent to at least

$$n/4 - (n/6 + 4(k-1) - 2) = n/12 - 4(k-1) + 2 > n/24$$

vertices of $A' \cup B$. If x is adjacent to at least n/48 vertices of A', then x is adjacent to every vertex of A'; otherwise, there is a vertex z in A' which is not adjacent to x in G but for which

$$|N_G(x) \cup N_G(z)| \ge \frac{n}{48} + \frac{n}{2} - 4(k-1) + 2 \ge \frac{n}{2} + 4(k-1),$$

for *n* sufficiently large, contradicting (4). Similarly, if x is adjacent to n/48 vertices of B, then x is adjacent to every vertex of B. Inductively, we conclude that there are disjoint sets A'' and B'' of vertices of G such that:

- (i) $n-1 \leq |A'' \cup B''| \leq n$;
- (ii) in G, every vertex of A'' is adjacent to every vertex of B''; and
- (iii) $n/2 d_k n^{1-1/(2(k-1))} \le |A''| \le |B''|$.

Note that there may be adjacent vertices of B''.

We next show that A'' and B'' can be chosen satisfying (i), (ii) and (iii) and satisfying |B''| - |A''| < 12k. Suppose, to the contrary, that for all disjoint sets A''and B'' of vertices satisfying (i), (ii) and (iii), we also have $|B''| - |A''| \ge 12k$. Choose one such pair A'', B'' for which |B''| - |A''| is minimum. Since $|B''| - |A''| \ge 12k$ and *n* is even, it follows that $|B''| \ge n/2 + 6k$. Now, the subgraph of G induced by A'', denoted $\langle A'' \rangle_G$, is complete; otherwise there are non-adjacent vertices *x*, *y* in A'' for which

$$|N_G(x) \cup N_G(y)| \ge |B''| \ge n/2 + 6k,$$

which contradicts (4). Furthermore, by the minimality of |B''| - |A''|, no vertex y in B'' is adjacent to every other vertex of B''; otherwise, y could be added to A''. This implies that each vertex of B'' is adjacent to fewer than $d_k n^{1-1/(2(k-1))} + 4(k-1)$ vertices of B''; otherwise, there are nonadjacent vertices x and y of B'' for which

$$|N_G(x) \cup N_G(y)| \ge n/2 - d_k n^{1-1/(2(k-1))} + d_k n^{1-1/(2(k-1))} + 4(k-1),$$

which contradicts (4).

Now, let x and y be nonadjacent vertices of B'', and consider the graph $H = H_{x,y}$ with corresponding set $S = S_{x,y}$. Since $n/2 - 2(k-1) \le |S| < n/2$ and H - S has at least |S| + 2 components, it follows that each component of H - S has at most 4(k-1) - 1 vertices. Consequently, for each vertex z in V(H) - S, we have deg_Hz < n/2 + 4(k-1). However, in G, each vertex of A'' has degree at least n-2 since $\langle A'' \rangle_G$ is complete and $|A'' \cup B''| \ge n-1$, so that every vertex of A'' has degree at least (n-2) - (k-1) in H. Since, for n sufficiently large, (n-2) - (k-1) > n/2 + 4(k-1), we conclude that $A'' \subseteq S$. Furthermore, since $|S| \ge n/2 - 2(k-1)$, it follows that $|V(H) - S| \le n/2 + 2(k-1)$. But $|B''| \ge n/2 + 6k$. Thus, $|B'' \cap S| \ge 4k$. Choose 4k vertices of $B'' \cap S$; call this set D.

We now count the number of edges in G between D and V(G) - S. As observed, each vertex of B" is adjacent in G to fewer than $d_k n^{1-1/(2(k-1))} + 4(k-1)$ other vertices of B". Since $A'' \subseteq S$, it follows that the number of edges in G between D and V(G) - S is at most

$$(4k)(d_k n^{1-1/(2(k-1))} + 4(k-1)).$$

Furthermore, for *n* sufficiently large,

$$(4k)(d_k n^{1-1/(2(k-1))} + 4(k-1)) \leq \frac{n}{2} - 1.$$

However, $|V(G) - S| \ge n/2 + 1$. Thus there are two vertices z, w of V(G) - S which are adjacent, in G, to none of the vertices of D. But then

$$N_H(w) \cup N_H(z) \subseteq (S-D) \cup V(C_w) \cup V(C_z),$$

where C_w and C_z are the components of H containing w and z, respectively. (Note that we may have $C_w = C_z$.) Then

$$|N_{H}(w) \cup N_{H}(z)| \leq |S| - 4k + |C_{w} \cup C_{z}| \leq |S| - 4k + (n - 2|S|)$$
$$= n - |S| - 4k \leq n - \left(\frac{n}{2} - 2(k - 1)\right) - 4k$$
$$< \frac{n}{2} - 2(k - 1).$$

This, however, contradicts ANC(G) $\ge n/2$. Thus, G has disjoint sets A" and B" of vertices satisfying (i), (ii), (iii) and |B''| - |A''| < 12k.

Assume first that $|A'' \cup B''| = n$. Then |A''| = n/2 - t and |B''| = n/2 + t, where t < 6k. Since ANC(G) $\ge n/2$, it follows that ANC($\langle B'' \rangle_G \rangle \ge t$. Since t is bounded by 6k, we may apply an argument like that given in Lemma 2 to conclude that $\langle B'' \rangle_G$ contains k edge-disjoint t-matchings N_1, N_2, \ldots, N_k . Let V_1, V_2, \ldots, V_k be the sets of vertices of B'' incident with edges in N_1, N_2, \ldots, N_k , respectively. Note that these sets of vertices are not necessarily disjoint. Consider the complete bipartite subgraph G_1 of G with partite sets $B'' - V_1$ and A''. Certainly, G_1 has a perfect matching M_1 , which together with N_1 produces a perfect matching M'_1 of

G. Consider now $G - M'_1$, and the bipartite subgraph G_2 of $G - M'_1$ with partite sets $B'' - V_2$ and A''. Although G_2 is not a complete bipartite graph, it is true that for every $w \in V(G_2)$ we have $\deg_{G_2} w \ge |A''| - 1 \ge n/2 - t - 1$. However, G_2 has order n - 2t, and $n/2 - t - 1 \ge (n - 2t)/4$ for n sufficiently large. Thus, G_2 has a perfect matching M_2 by Theorem C, and then $M'_2 = M_2 \cup N_2$ is a perfect matching of G, disjoint from M'_1 . We continue in this fashion to produce edge-disjoint perfect matchings of G. Suppose M'_1, M'_2, \ldots, M'_p have been constructed, where p < k. Consider $G - \bigcup_{i=1}^p M'_i$, and the bipartite subgraph G_{p+1} of $G - \bigcup_{i=1}^p M'_i$ with partite sets $B'' - V_{p+1}$ and A''. Then $\deg_{G_{p+1}} w \ge n/2 - t - p$ for every $w \in V(G_{p+1})$. Again, G_{p+1} has order n - 2t and $n/2 - t - p \ge (n - 2t)/4$ for nsufficiently large, so that G_{p+1} has a perfect matching M_{p+1} . Then $M'_{p+1} =$ $M_{p+1} \cup N_{p+1}$ is a perfect matching of G, disjoint from M'_1, M'_2, \ldots, M'_p . Thus G contains k edge-disjoint perfect matchings, contradicting our assumption that no such matchings exist. It follows that, necessarily, $|A'' \cup B''| = n - 1$.

Since $|A'' \cup B''| = n - 1$ and |B''| - |A''| < 12k we have that |B''| = n/2 + t and |A''| = n/2 - t - 1 where t < 6k. Let x be the vertex of G not in $A'' \cup B''$. Then $k \le \deg_G x < n/4$. Let $a_1, \ldots, a_m, b_{m+1}, \ldots, b_k$ be k vertices of G adjacent to x where each $a_i \in A''$ and each $b_i \in B''$. Since $ANC(G) \ge n/2$, it follows that $ANC(\langle B'' \cup \{x\} \rangle_G) \ge t + 1$. Since t is bounded by 6k and $\deg_G x < n/4$ we may apply an argument like that given in Lemma 2 to conclude that $\langle B'' \cup \{x\} \rangle_G$ contains k edge-disjoint (t + 1)-matchings N_1, N_2, \ldots, N_k , none of which contains an edge incident with x. Let V_1, V_2, \ldots, V_k be the sets of vertices in B'' incident with the edges in N_1, N_2, \ldots, N_k , respectively. Consider the complete bipartite graph G_1 of G with partite sets $B'' - V_1$ and $A'' - \{a_1\}$. Then G_1 has a perfect matching M_1 which together with $N_1 \cup \{xa_1\}$ is a perfect matching M'_1 of G. Suppose edge-disjoint perfect matchings M'_1, M'_2, \ldots, M'_p have been constructed, where p < m. Consider the bipartite subgraph G_{p+1} of $G - \bigcup_{i=1}^p M'_i$ with partite sets $B'' - V_{p+1}$ and $A'' - \{a_{p+1}\}$. Then $\deg_{G_{p+1}} w \ge n/2 - t - 2 - p$ for every vertex w of G_{p+1} . Also, G_{p+1} has order n - 2t - 4 and

 $n/2 - t - 2 - p \ge (n - 2t - 4)/4$

for *n* sufficiently large, so that G_{p+1} has a perfect matching M_{p+1} . Then $M'_{p+1} = M_{p+1} \cup N_{p+1} \cup \{xa_{p+1}\}$ is a perfect matching of *G* disjoint from M'_1, M'_2, \ldots, M'_p . Thus *G* contains edge-disjoint perfect matchings M'_1, M'_2, \ldots, M'_m where $xa_i \in M'_i$ for $i = 1, \ldots, m$.

For i = m + 1, ..., k, let N'_i be a *t*-matching contained in N_i such that no edge of N'_i is incident with b_i and let V'_i be the vertices incident with the edges in N'_i . Consider the bipartite subgraph G_{m+1} of $G - \bigcup_{i=1}^m M'_1$ with partite sets $B'' - \{b_{m+1}\} - V'_{m+1}$ and A''. Then $\deg_{G_{m+1}} w \ge n/2 - t - 1 - m$ for every w in G_{m+1} . Also, G_{m+1} has order n - 2t - 2 and

$$n/2 - t - 1 - m \ge (n - 2t - 2)/4$$

for *n* sufficiently large. Thus G_{m+1} has a perfect matching M_{m+1} and $M'_{m+1} = M_{m+1} \cup N'_{m+1} \cup \{xb_{m+1}\}$ is a perfect matching of *G* disjoint from M'_1, M'_2, \ldots, M'_m . Clearly we can continue to construct *k* edge-disjoint perfect matchings of *G*. Thus our assumption that a maximal counterexample exists leads us to a contradiction and the proof is complete. \Box

References

- [1] I. Anderson, Perfect matchings of a graph, J. Combin. Theory Ser. B 10 (1971) 183-186.
- [2] R.J. Faudree, R.J. Gould, M.S. Jacobson and R.H. Schelp, Extremal problems involving neighborhood unions, J. Graph Theory 4 (1987) 555-564.
- [3] R.J. Faudree, R.J. Gould and R.H. Schelp, Neighborhood conditions and edge disjoint hamiltonian cycles, Congr. Numer. 59 (1987) 55-68.
- [4] R.J. Faudree, R.J. Gould, M.S. Jacobson and L.M. Lesniak, A generalization of Dirac's theorem, Discrete Math., to appear.
- [5] P. Hall, On representations of subsets, J. London Math. Soc. 10 (1935) 26-30.
- [6] W. Jackson, Hamilton cycles in regular 2-connected graphs, J. Combin. Theory Ser. B 29 (1980) 27-46.
- [7] T. Kovari, V.T. Sós and P. Turán, On a problem of Zarankiewicz, Colloq. Math. 3 (1954) 50-57.
- [8] W.T. Tutte, A short proof of the factor theorem for finite graphs, Canad. J. Math. 6 (1954) 347-352.