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ABSTRACT

A graph G is called a sum graph if the vertices of G can be labeled with distinct
positive integers so that e = uv is an edge of G If, and only if, the sum of the
lables on vertex u and vertex v is also alabelin G. Itisclear thatif G isa
properly labeled sum graph, then the vertex receiving the highest label cannot be
adjacent to any other vertex. Thus, every sum graph must contain isolated
vertices. We consider the problem of finding a general upper bound on the
number of isolated vertices present in a sum graph, as well as the problem of
finding a lower bound, at least for certain graphs.

1. Introduction

All terms not defined here can be found in [3]. Throughout this paper we will
consider (p, q>-graphs, that is, graphs with p vertices and q edges. We denote the
vertex set of G as V(G), the edge set as E(G) and a label attached 1o a vertex v
as L(v).

Many different graph labeling problems have been studied (see for example [1]).
Recently, Harary introduced a new variation, called sum graphs. A sum graph is a graph
G in which each vertex x is labeled with a distinct positive integer L(x) such that
e=uv is an edge of G if, and only if, L(u) + L(v) = L(w), for some w & V(G). Itis
obvious that if G is properly labeled as a sum graph, then the vertex assigned the
highest label cannot be adjacent to any other vertex of G; thus, every sum graph must
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contain at least one isolated vertex. We denote by s(G) the number of isolated vertices
we must add to a given graph G in order to be able to label it as a sum graph. Harary
[4] posed the problem of finding an upper bound for s(G). The object of this paper is
to present a general upper bound and, at least for certain graphs, a lower bound on s{G).

In studying sum graphs, it becomes obvious that if we wish to minimize the number
of isolated vertices necessary for a proper labeling, then we must maximize the number
of duplicate sums; that is, the number of edges ¢ =uv, where L(uw) + L(v) =k, for some
fixed value of k.

2. Main Results

In this section we concentrate on obtaining general upper and lower bounds on f(G),
where f(G) = | V(G) | +s(G). Bounds for s(G) arc then immediate. We note that it is
shown in [2] that s(Kjp) € 2n — 3, with equality holding when n 2 6. This can be
achieved by labeling the vertices of K, using consecutive elements of an arithmetic
sequence, a fact that will prove useful to us later. For example, the labeling of 11, 21,
31,41 on K4 produces the need for five additional labels, namely 32,42, 52,62, 72.
A clique cover of G is a partition of V(G) into cliques. The set of all clique covers for

‘G will be denoted CIi(G), while for a particular cover Pe CI{Q), the number of

cliques in P will be denoted |P].

Theorem1 Let G bea(p, q)-graph. Then G can be labeled as a sum graph with
N 4
fG) <g+3p-3[P] - | U E(Cy,
i=1
where P isa clique cover in CI(G} containing the maximum number of edges of G
within its cligues Cj1, Ca, ..., CiBy}.

Proof Let G be a (p, Q~graph. We begin by decomposing V(G) into cliques. We
denote the classes of vertices in this cover by Cj, Cs, ..., Ck. Further, we assume that
lV(Ci) | =1t;, 1<i<k. Thus, each class of vertices in this partition has order ¢ and

. t
size (2' ) '
Selectintegers aj and d; and label vertex v; of C; with
L(v;) = a; + id;.
By labeling in this manner, we introduce at most 2t;— 3 new labels (hence, new isolated
vertices) relative to each clique C; (c.f. [2]). Further, the new labels necessary are
2a; + 3d;, 2a; + 4di, ..., 23; + (2 — 1d;.
In general, such a labeling is done for each class Cj, 1 Si<k.
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In performing this labeling, we select the integers aj and aj so that the labels
assigned to the vertices along with their subsequent implied sums for the edges between
cliques are all distinct. More precisely, for i# j, we want

aj +xd; # a;+yd; (1)
whenever x £2t;—3 and y £2t;- 3. Moreover, for {i,j}# [r, s}, we also want
(aj +xdp) + (aj+yd) = (ar +zdp) + (a5 + wdg). {2)
To see that such a labeling is possible, we may for example, select the integers using the
following ruies:

1. djyy > 2tdj for i=1,2,..,k-1 and t = , PAx, t.

2. aj—aj >> di, forevery i, j, 1<, jsk

3. a1 << a3 << a3 << ... << g,

Rule 2 insures us that equation (1) holds and that we never have the situation that for
{i,j} # {r, s)
aj +a; = ar +ag holds.
Further, it follows from Rule 3 that
(a3 +xdj) + (aj + ydj) = (ar + zdy) + (ag + wdy) 3
implies that
aj+aj = ar+ag,
Thus, by our previous statements, i=r and j=s. But then,
xdj + ydj = zd; + wds,
and in fact, we have that
(x—2)d = (w—y)dj. )
But, using Rule 1 and the fact that 1 £ w — y < 2t, and assuming without loss of
generality that i <j, we see that
(w-—y)dj 2 d; > 2td; 2 (x—2)d;,
contradicting equation (4), But, then (2) must hold. Thus, the labeling is as claimed.

Now, with this labeling in mind, how large is f(G)? The total number of vertices

(and hence labels) necessary for this labeling is

k
p+a+ Y, [2t-3) - ().
i=1 .
Thus, if Pe CHG) contains the maximum number of edges of G within its cliques,
then
" i
£G) < q+3p-3IP| - | U B,

i=1

completing the proof. O
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‘We now trun our attention to obtaining a lower bound on f(G). We begin with a
Lemma.

Lemmal Let p and d be positive integers satisfying
log ( eg-? ) y.a
og(3/) <4 <17

then
1
'%(;p‘j)ﬂd > 4. (*)

Proof The fact that

log (ep3) <d

log (5/4)
implies that

(5/4)9 > ep3

and hence that

1
e}j(lﬂd)d > (8d)d.

Now, using the fact that 10d <p, we infer that
1
—pt 5 (8)d
ol (8d)

which is equivalent to (*}. O

Theorem 2 Let
log (ep3) P
Tog (3F) <4< 10

then there exists a (p, q)—-graph G with g = (éu }—j where j <pd and
s(G) 2 q — ( +12)£p—-1) In(ep3) - p.

Proof Here we consider K, the class of graph with p vertices and
q= ( é’ ) - j edges (j < pd). To each member of K we assign the most economical

labeling possible, that is, a labeling that minimizes f(G). This labeling induces a system
of equations of type

1. L(vj) +L(vj) = L{vp) and

2. Livp) + L(v;)) = L{vi'} + L(vj).

For otherwise, we would have p + q labels, which is clearly not the best possible
labeling,

Now, for each graph G e K, only certain of the equations of type (1) or (2) actually
hold. Suppose we view this system of equations as a2 homogeneous system of linear
equations for the variables L(vj). Then, it follows from the fact that this system has a
nonzero solution, that there are at most p—1 equations with the property that all others
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are consequences of these equations (i.e. a linear combination of these equations). Thus,
we may assigntoeach Ge f(, a system of at most p—1 equations of type (1) and (2).

On the other hand, there are at most
(2)@-3

equations of type (1) and at most

1 -2

2(3)(P77) |
equations of type (2). Thus, the total number of possible equations of type (1) and (2) is
clearly less than p4. Hence, the number of ways in which we can choose this collection
of atmost p—1 equations is

4 4
= P b 3
| b=, &, ()< (T) < epdr. @1
We partition the graphs in K into b classes, say
K1, Kz, ... Kp

‘according to which tuple of equations was assigned to K; (1 £i<b). As a notational

m= (D),

convenience, in what follows let

and let

b
N=E IK;l.

=1

Since

gm”=N=§KT), @2

j<pd
then the average number of graphs in any of the classes is % Without loss of

generality, suppose Kj is a class containig at least the average number of graphs. Then

we have
N
Kl 25 (2.3)
Equations of type (1) and (2) satisfied in K; induce an equivalence relation Py, Py,
.., Px on the set of all pairs of vertices. The edge set of each graph G € K is equal to

Y
v Fii
i=1
where Pj,, Pj,, ..., Pj, 1s a subset of Pi, ..., P that satisfies
v
YIp;l = a2 (P) - pa. (2.4)

i=1
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As all labels of vertices of G need not correspond to sums of edge labels (for

example, the minimum label), the number of additional isolated vertices needed to label
G isatleast v—-p. If we set |]E’J | =4 (1<igk), then equation (2.4) implies that

v=_q-Z(IPji|—1) q- Et,+ k,
i=1 i=1
and hence,
k
fG) = s(G)+p2v2q-2ti+k = q-x (2.5)
i=1

k
where, x=z tj - k.
=
Tt is clear that
Z ( m - %) > Kyl
jepd
and hence, from equation (2.3}, it is clear that
Y(mrzIxlzg. 2.6)
jspd
Using equations (2A1) and (2.2) we also see that
52 2 (% )epd? 2 (1 )(ep3)-P. @7
j<pd
Therefore, (2.6} and (2.7) imply that
2.7 %) 2 () (2.8)
i<pd
2
Now, using the fact that (r) (L)s and the fact that (p) = 22-, we see that
( )(€P3)'p z [(‘P")d s I\

Comparing this and an obwous upper bound for the left hand side of equation (2.8),
we infer that

e 3 (P52 (@Y

ispd

1/d
2 pdlogz (3 (--) )-
As the assumptions of Lemma 1 are sansficd we mfcr that

logz (5 (—-—)”d) >2

and hence, m—x 2 2pd and thus,

and applying logy, we see that
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pd £ 1/2(m - x).
Using this new upper bound for pd, we obtain a new upper bound for
(73 )(ep)P, namely
m—-x m - X m 3y
a+pa(B7%) > 2 (7% 2 Qe @9
j=pd
Dividing both sides of (2.9) by (1+ pd)( ;‘é ) we see that
b
a-Ey1-
Then, using the largest of the factors, we obtain the fact that
X 1

(1- E)Pd 2 T+pd (ep3)P.

X X 1
m — 1)'"(1"m-pd+ 1)2 1 +pd(ep3)'P.

However, since (1-y)2 = eZn(l-y) < e, if we let

y = % and z=pd,

we see that
L emm s (1 Z9R0 > g > (eph P = PR,

Now since eV is an everywhere increasing function, we see that

:gnd_x_ > —(p+1)In (ep3)

or
% < (p+ 1) 1In(ep3).

Thus,
x SL;-—1§111 (epd). (2.10)

Now, from (2.5) and (2.10) we obtain the desired bound. Q

Our next goal is to restate Theorem 1 in order to show that in many cases the bound
of Theorem 2 is close to best possible. Recall that we denoted by K= ﬁ(p, d), the
class of all graphs with p vertices and (2]) ) —j edges, where j £pd.

In order to esitrnate the upper bound in Thoerem 1, we will actually find a lower
bound for

. IP!
slpl + | U E@
i=1
where P isaclique cover of G containing the maximum number of edges of G within
its cliques. In order to do this, we find it convenient to consider G, the complement of
G, and we shall consider colorings of the vertices of G with color classes Cj, Ca, oy
Cipl.
Let g(p,d) be the minimum of
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1Bl
max (3121 + Y |BC)I),

i=1
where the minimum is taken over all graphs G with atleast p vertices and at most pd
edges; while the maximum is taken over all colorings of G with color classes Cj,
--OQC Il';l -

We will show that

2
gp.d) 2 gy +d- 5= 10O ©

Qur proof is base on induction on p. For p =2 the statement trivially hold. Now, let
G be a graph with p vertices and at most pd edges. Let the largest independent set in
G be Cg (where I‘Co| = x) and consider the graph G --Cp. Since each vertex of
V(G) — Cp is joined to some vertex of Cp (due to the maximality of Co), the subgraph
G' induced on V(G)— Cp has at most pd — (p— x) edges; hence its average degree is
at most

d _pd__ 1.

Using Cp as one partition class and partitioning G' according to the induction
assumption we see that

gG) 2 3+(J) +g0) 2 3+(‘§)+f(P—x'p_L_dx -

Thus, it remains to show that ‘
34 () +1p-x 325 - 1) 2 . 9 )

We will prove (1) by induction on x.
Note that x 2 -ﬁ%_"f by Turan's Theorem [5] and thus, to verify the anchor of

the induction, we will show that the inequality holds for x = _ﬁv_"_l_ . (Note that we

do not assume that -z-a—%-i- is necessarily an integer.) Thus,

2d + 1 d
3+ (p/(z )) 2 f(p,d) - f(P— 2dp+ T p .p _ 1)
P-72a+1
2d 2d — 1
= f(p. ) ~ sz 7P =5 - e)
Substituting we see that
2 (-"'Zﬁd"-P)2 2
P Ggerf) L1 _ P P 1 _2d \,Ll__P
6d +6 6d+3 2 202d+1) 372d+1 d+1p] 2 2A2d+1)
- <P 1P L1

= -~ +
2(d+1p 22+1 27
which is obviously smaller than the left hand side of (2), verifying the anchor of the

induction.
Now we show the inductive step. This amounts to showing that
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(*;) 1 +Hip-x-1,5= xd_ -0 2{)) +f(p-x,5i&£— . (3
Equation (3) is clearly equivalent to
x> f(p-x,F%d-x—-l)-f(p-x_Lp—___%‘—l_—l-l), “)
which we now verify. ' '
First, we esitmate the right hand side of equation (4) as follows:
(p-xF (-x-1F pd _pd 1 _(-xF _ (-x-1f
6__1:11__ ; pd pP-x p-x-1 27 6pd 6pd
p—x p—x-1
< Hp-xP
6pd (5)
We will show that {5) is smaller than x. To this end it is enough to verify that
3(p-x) < 6pdx. 6

Since p2x20 and d 2 0, then the right hand side of equation (6) is increasing in x
while the left hand side of equation (6) is decreasing in x. Thus, as x 2 i-a%—i—', it is

enough to verify equation (6) for x = ﬁgﬁ . We leave this easy computation to the

reader. This completes the induction on x and hence verifies equation (1). Therefore,
our proof of the desired bound is completed.
Considering G e K, and substituting the just derived bound into the inequality of

Theorem 1 yields

2
P
fG) < q+3p- (g5 +d-5). %)
At the same time, Thoerem 2 tells us that there is G € K with
3(p+ ip - '
f(G) 2 q 2EX=Din (53, ®

Thus, we see these two bounds are reasonably close.

Finally, we set
f(p) = max {f(() IG has p vertices).

Using (7) and Theorem 2 we infer the following.

Theorem 3
(2)-NZTlerp <fio) < (§) -NaBp2+ L.

Proof First we outline the upper bound. Noting that g = (2p) —pd and maximizing

formula (7) over all d, we infer that the minimum is attained for

d+1=\/'%..

On the other hand, using the fact that formula (8) attains its maximum for
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d= ,\/'(p_+_1_2);p_-1_l l.n(e'ps) ,

we infer the lower bound. U
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