2

OFFPRINTS FROM GRAPH THEORY AND ITS APPLICATIONS T@
° ALGORITHMS AND COMPUTER SCIENCE

Edited by Y. Alavietal.
Copyright @ 1985 by John Wiley & Sons, Inc.

A RECURSIVE ALCORITHM FOR HAMILTONIAN CYCLES
IN THE (1,j,n)-CAYLEY GRAPH OF THE ALTERNATING GROUP
Ronald J. Gould*
Emory University

Robert L. Roth
Emory University

ABSTRACT

A recursive algorithm is presented which accepts as input
& permutation length (n > 5) and a permutation W ¢ An {(where
W sends 1 + n). As output, the algorithm produces a directed
Hamiltonian path in the (1,j,n)-Cayley Graph Dn of An that
begins with the vertex representing the identity element of
A.n and ends with the vertex representing W. The algorithm
makes use of a collection ¢f twelve distinct Hamiltonian paths

in DS'

*Research supported by Emory University Research Crant No. 8399/02

351

352 . . Gould and Roth .

1. Notaticn.

a0

We use the standard cycle notation for permutations; and the

compesition, Hl o Hz, will always mean Hl followed by H2'

We denote the identity permutation by i. We often abbreviate) b

ol = & by writing "I sends h > k". let A~ demote the

alternating group on n letters, We define

Hn(hl’ h2""’hm; kl’ kz,...,km) =

{TeA_ : W ek, re {1, 2,...,m}}. Clearly H (k;k) 1s the
n T i n

stabilizer of k in An. The coset Hn(j;k) will often be
called the j coset when the value of k is clear from the
context. We denote by Tj the element (1,j,n) and we let '

Bn = {Tj ? ie {2, 3,...,0 — 1}}. For n 2_3, we let Dn denote
the Cayley Graph of Ah with respect to Bn. That is Dn is the

directed graph with V(Dn) = An and
E(D) = nal FE. where E, =
n j=u j]
{(IL,Y)y : HL,Y e An and Il o Tj = ¥}, We refer to the elements

of Ej as j—edges. . }

Because V(Dn) = An’ we will feel free to use the terms

permutation and vertex interchangeably.
2. iIntroduction

Recently interest has arvisen (see [4}, [5], [6], [7] and
[2]) in generating a sequencing of the elements of a permutation

group subject to various constraints. Of special interest is the

problem of generating a sequencing Hl’ Hz’.'.’anl of the
elements of a permutation group & so that the total cost
- jel-r -1
o= ool ® Ligy)

fa 1 + .
ig minimized, where c ! G+ R is a cost function. 0f course

A Recursive Algorithm for Hamiltonian Cycles 353

T, o m, L

4 i ° Hi+l) =1

so that C(Hi—l o Il is the cost

i+1°? 1+1)
of '"proceeding by multiplication" from 1l to Hi+1 in the

sequencing.

Tapnenbaum, in [61, raised the problem of finding such a
sequencing when G = An(n,i_3) with its natural action on
{1, 2,...,n}, cfll) = {1 : jH # 13| so that () >3 for each
non—-identity element I € An’ and the set of allowable multipliers
for ugse in the sequencing is B = {(1,i,m) : 1€ {2,3,...510 -11}
which is a minimal generating set of An' This question was
answered in [2]. In this paper we present -an glgorithm fox
determining many such sequencingé for each n > 5. Terms not

defined in this article can be Fownd in [1} or [3].

3. Overview of the Algorithm

In constructing sequencings for An, several results from

[2} will be useful. We state them below.

Proposition 1 ([2}). For k€ {1, 2,...,n}, the left cosets of
the stabilizer, Hn(k;k), of k in An are precisely the sets
Hn(l;k), Hn(Z;k),...,Hnﬁn;k}.

When n > 4 and ke {2, 3,0..,0 - 1}, the induced subgraph
(Hn(h;k)} of D 1s isomorphic to D 4 for each

we {ly 2,...,0}. Further, every j-edge of D (j # k) ds an
edge of exactly one of these n induced subgraphs, and every
k-edge of Dn has its end vertices in two of these induced
subgraphs. More precisely, if

Ie Hn(hl’ h2, h3; k, 1, n} and I o T = ¥ then,

¥ e Hn (b hy; ks 1, n).

o» Bgs By3
Proposition 2 ¢([2]). For = =3 and n > 5, given any
We An = V(Dn) such that W sends 1 +n, there exists a

directed 4 — W Hamiltonian path. For =n =4, there exists

354 Gould and Roth

a directed 4 - (1, 4}{2, 3) Hamiltonian path.

We remark that if a directed 4 — W Hamiltonian path exists
then a directed I -1 oW Hamiltenian path exists since

premeltipiication by any Il € An is an automorphism of Dn'

Proposition 3 {[21). If = > 5, AY¥ e Aﬁ : there exists‘?
directed T - ¥ Hamiltonian path in D to> {¥YeA :mn =
ln‘l} ‘ oo n

Our goal is to explicitly comstruct a Hamiltonian path in
Dn from the vertex representing the identity element to a
specified vertex W, where W sends 1 ~+mn (by Proposition 2

such a path exists).

. The algorithm PATHFINDER,acceﬁts as ipput a permutation
length N(¥ > 3), the permutation W we wish to be the end
vertex of the directed { - W path and twelve basepaths in A
used in our recursive constyuction.' We require that W be a
permutation that sends 1 + N, Each of the basepaths is a
directed Hamiltonian path in A5 having initial vertex 4 and
rerminal vertex one of the twelve elements of A5 which send
1+ 5, The output is a directed Hamiltonian path in the Cayley

Graph D, of AN that begins with the identity element of

N
AN and ends with W.

The main idea cof the algorithm is to use the cosets
HN(j;k) (for a fixed value of k which is moved by W and
i=1 2,...,8) as much as possible in the construction of the
path., Some care must be taken to ensure we do not enter the coset
contalning W too early in our coset process. It is alsc impor-
tant to maintain cemtrol of the vertices we traverse first and
1ast in each subgraph representing these cosets. Tt is fairly
easy to convince oneself that it is mot possible to traverse

211 N of the cosets one by one in some fiwed order. Thus, we

A Recursive Algorithm for Hamiltonian Cycles 355

must break out of at least oﬁe coset at scme time and return latexr
to traverse the yemaining vertices in that coset. We choose to
begin our path with the identity vertex {which of course is in
Hka;k)) and immediately move across to (1,k,N) (and hence

to the coset HN(k;N)). We now traverse all of HN(k;N) and

return to traverse the remainder of ,HN(k;k) (see Tigure 1).

At this point we must determine if a problem exists with the
next coset, Since our target vertex W represents a permutation
in HN(HSTAR;R}, where HSTAR is the inverselimage of K under
W, we must be sure at this point that we do not enter this coset
next. LIf on multiplying the terminal vertex of HN(k;k) by
(1,k,N) we determine that our next vertex lies in HN(HSTAR;k),
we modify the path constructed so far to avoid this problem.

This 1s done by conjugating the elements of the path by the
{nvelution CYC2Z = {HSTAR, co0DC0S3) . The values of HSTAR and
00DCOS3 are chosen to avold entering the HYTAR coset upon
leaving HN(k;k).

Having thus modified cur path, we are now able to traverse
the remalning cosets, ending with HN(HSTAR;k), and construct the
Hamiltonian path beginning With‘the identity of AN and ending
with W.

4. The PATHFINDER Algordithm

We now describe the PATHFINDER Algorithm (see Appendix 1) in
detail. The PATHFINDER Algorithm relies on the'straightforward
routines that perform permutation composition (COMPOSE), permuta—
tion conjugation (CON.J) » upsbifﬁing (UPSHFT), downshifting
(DWNSHFT), and permutétion invérsidn {INVERSE) . Algorithms for
these routines are listed in Appendix 2. '

Tf the permutation length N equals 5, then we have
recursed to a base case. The path is taken to be the unique one

of the twelve basepaths Whidh hags W (that is a W suitably

~o)" 75y (T
CERVISI) 1)) m 172y) (<%)
o DR |
. | E Tz, €
. AVISH T-4 b "
I aiGiHuH °h Hﬁi\lm T U1 o
Ia
’ , .
- \‘hﬁaMTmu \.‘ e
- ; ,]
\\ rd 7 \\
. / (ueT) |/ ,
s . \.
\ / [E X R , _’
g \ ! \\ [&
=D / /o RICE R
~
AL
T+Ty I
L

s B

1

'

1
A (ua°1)
1

!

256

A Recursive Algorithm for Hamlitonian Cycles 357 i

modified by the downshifting described bhelow) as its terminal
vertex. The terminal vertex W 1is compared to the terminal
vertices of each of the twelﬁe basepaths in order to find the
proper basepath toc use for PATH.

i1f N > 5 we begin the coset process. We first compute X,
the smallest lettexr between 2 and N - 1 (inclusive) which is
moved by W. The value of ‘K is used to determine the coset
decomposition of AN' We next compute HSTAR which is the inverse
image of K under W. The HSTAR coset will be the last coset
traversed in our coset process since W £ HN(HSTAR;K).

We are now ready to begin to construct PATH. TFirst the
identity vgrtex-is placed in TMPLST {a temporary storage array for

the first two cosets. As noted later, this much of the path

sometimes must be modified.) Wext the values Tl and T2 are
computed. These are the two smallest values in the set
{2,3,...,8 - 1} other than K. The values T1 and T2 are used
in computing the first permutation in P51 and the second permuta- b
tion in PI. The permutations in ¥l represent the first vertices
to be traversed in each of the cesets, while those of PSI repre-
sent the last vertices to be traversed in each of the cosets.
The first and Kth rows of PI are the permutaticns (1,K,1)
and (1,N)(T1, T2) respectively; while the first and Kth rows
of PST are (L,K)(T1l, T2) and the identity respectively.
The permutation WW1l is computed to be the composition of
the inverse of the first permutation in PI with the first permu-
tation of PSI. That is, WWl = (1,K,N)~1 ¢ (1,K)(TLl, T2) =
(i,N)(Tl, T2) € HN(K;K). The permutation WW2 is the composi-
¢ion of the inverse of the Kth permutation of PI with the Kth
permutation of FSI. 8o wW2 = (1,%)(T1l, T2). The permutation
Wil (the terminal vertex of the automorphic copy of the 1 coset)
is downshifted to Wi, ‘that is, WL is the permutation of

A

S acting as S = {1, 2,...,NN\{K} which agrees with

358 Gould and Roth

Wwl on SKf {We observe that K is fixed by WWl.) The routine
is then recursively called to cbtain a directed Hamiltonian path

in Dn 1 from the identity to wl., This path is returned as
SMLPATH. The vertices of SML,PATH are now guccessively upshifted

to AN {being stored in UU), premultiplied by the first row of

PI (to obtain a path heginning at (1,%,N and ending at

(1, &y (T, T2)) and placed in TMPLST. We now repeat the actions
zaken on WWL for ww2 and the K coset éxcept that we omit

the last vertex of the path obtained (since it is the identity.
which has already appeared) .

We have now ;raversed the first two cosets of AN in our
process (see Figure 1), At this polnt some care must be taken.
We must checlk the lastlvertex of TMPLST and 1f N is sent to
HSTAR under this permutation, then the path must be modified to
free the HSTAR coset to be the last one rraversed. (We recall
that W e HN {HSTAR;K).) Thus, in this case vwe conjugate all of
the vertlces in TMPLST using the involution (HSTAR, GOODC033) .
The value of GOODCOS3 i{s set to be the smallest value in
{2, 3,...,N — 1} other than K and HSTAR. The involution
cyc2 is set equal to (BSTAR GOo0ODCOS3) to perform the conjugation.

" mhe vertices of TMPL.ST are then conjugated (if necessary) and
gtored in PATH. In any case, GOODCOS3 is computed to be the -
image 6f ¥ under the permutation which represents the last
vertex presently in PATH. .

The distinct values K, GOCDCOS3 and HSTAR are sorted in
ascending order and stored in BADL, BADZ and BAD3, These
represent the distinguished cosets that must be treated first,
third and last in the coset process. We now place these and the
remaining ¥ - 3 cosets into COBET, which is a listing of the
order in which the cosets will be traversed.

The COSET(3)-th row of PI1 is computed to be the permutation

A Recursive Algorithm for Hamiltonian Cycles 359

(€;N,COSET(3)) = (1,N,COSET(3)) ° (LK.M which is correct since

(l,N,COSET(B)) is the last permutation presently in PATH (whether

or not conjugation by CYC2 was necessary) because it (or its

pre—image under the conjugaticn by CIC2) was the penultimate

vertex in the traversal of the R coset which terminated with the

identity. ‘
Next, for I =3, &y.nosN .1, the COSET(I)-th row of P8I

and the COSET{I+l)-th row of PI are computed. The COSET(I)-th row

of PSI is computed to be (l,N)(COSET{I),K) if N = COSET(I+L),

(l,N,K,TA,COSET(I+1)) {where T4. is the smallest letteTr

different from I,N,K, and COSET (I+1)) if W = COSET(I)_ and

(1,N,COSET(I),K,COSET(I+1)) otherwise. The COSET (I+1)-th row of

pT is computed to be (K,COSET(L),N} 1f N = COSET(I+1),

'(K,TA,COSET(IH)') {f N = COSET(I), and (K, COSET (T-+1)) (COSET (10,1

ctherwise. ‘ '
Finally, the COSET(N)-th rvow of PSI {g computed to be W.

- We are now ready to generate the paths in the vemaining !
cosets. Their order, beginning vertices and ending vertices have |
been computed to allow us to move from a completed coset to the
next coset via multiplication in AN by {1,K,N}. Writing ¢
for COSET(I) we see that for each HN(ci; K}, 1= 3, hyveesNs

i

the directed Hamiltonian path constructed has initial vertex
HC (the cith entry of P1) which sends 1 + 1 and for
i
i=3, hy.-anN -1 this path has terminal vertex WC (the
. i
cith entry of PSI) which sends 1 + N and ¢, i. Thus
¥, "o (1,K,N) =1 as is required.
i €1+ 1
For the remaining cosets, WWL is computed to be the composi-
tion of the inverse of the thh entry of PT with the thh entry
of PSI. That is, WWL 1s the terminal vertex for the automorphic

image of the thh coset. As before, WWI is downshifted to WL

360 Gould and Roth

in AN -1 and the PATHFINDEi{ routine is recursively called to
obtain a directed Hamiltonian path from the identity to

WL in AN -1 This path is returned as SMLPATH and the vertices
of SMLPATH are successively upshifted to AN {and stored in Tyu) »
premultiplied by the thh entry of PI and placed into PATH.

APPENDIX 1

/% This is the PATHFINDER Algorithm described in section 4.

Input to the algorithm is the permutation length N, ‘the final
permutation W and the basepaths in the group A(5). Output from
the algorithm is a Hamiltonian path in PATH in the group A(N)
that begins with the identity and ends with W. The Algorithm

is written in a C-like pseudocode. ®f

PATHFINDER (W, W, PATH)
/% Compare the downshifted W to the end vertlces of the base-
paths to choose the correct path, */
if =51 T=1
while (I<= 12) { IT =
1£(W does not equal BP[60][I]) {1 +=13 1}
1f (I=IT) { for (11 =13 TI<=60; HII} {
PATH[II] = BR[ILI[I]; 1
I=13

}

return;

}

/% We begin the coset process by finding K and HSTAR */
else { I=Z;
while (2<=I and I<=N- -1) {
if (W does not send 1 —> 1) { K=1; I=N; }
else T =1+ 1;
}
I=23
while(2<=I and I<= N DR
1f (W sends I —> K) { HSTAR = Iy T = N+1; }
else T =1+ 1;

361

362 Gould and Roth

/% Place the {dentity first, then ¢4nd TL and T2 the smallest
values other than XK. */
TMPLST[1] = identity;
g (r=2) {T=3 T2eh;
else { T1=2;
if (K=3) T2=4;
else T2=3;
3
/% Store PT and PSI for the 1 and ¥ cosets. */
PI[1]=(1,K,N) 5 PI[K]=(1,N) (Tl,TZ) H
PSI[1]=(1,K)(T1,T2); PSI[K]=1ldentity;

-1
/% Compute WWl= PI(1) © psI(l) */
inverse (N,PI[l],PIlINV) 3
compose (¥, PIL1INV, ps1[1l], wl)

/% Compute WW2 in a similar manner. #*/
{inverse (N,PI[K],PIKINV) 3
compose (N, PIKINV, PSI[K], WW2) 3

/% Downshift to A(N-1) and recurse. *f
dwnshft (N, XK, WWl, W1)
PATHFINDER (N-1, Wl SMLPATH) 3

/% Rebuild the vertices by upshifting to AN, premultiplying by
PI(1) to adjust the path, and'store'the vertices. */
for (I=1; <= FACT[N-l]/Z;-++I) {
upshft (w-1, K, SMLPATH[I], vV s
compose (N, pI[1l, VV, PILVV)
MPLET[1+1] = PILVV 3

A Recursive Algorithm for Hamiltonian Cycles 363

/% Repeat the process on w2, %/
dwmshft (N, K, WW2, W2)
PATHFINDER (N-1, W2, SMLPATH)
for (1=1; 1<=FACT[N-11/2 -13 1) { ;
upshit (¥-1, K, SMLPATHILI, W)
compose (N, PSI[K], VV, PIKVV) 3
TMPLAT FACT [N-1] /2 + I+1] = PIKVV; i
}
/% Determine if the third coset must be adjusted to avoid the HSTAR
coset. Then .set oye? for conjugating and adjust the temporaty |
path. .
%/ ,
if (TMPLST FACT[N-11] sends N —> HSTAR) [1=2; 2
while {2<=1 and I<= N {
if (I does not equal K,andll.does not egual HSTAR}
feoopcos3 = I; 1 = N+13} .
else I =1+ 13 i
cyc2 = (GOODCOS3,HSTAR); ' 1
for (I=l; I<= FACT[N-113 +I) { , |
conj (N, CYC2, TMPLSELIL, PATH{I] 3 :

}
[* No adjusting, just copy to PATH, then get GOODCOS3. */
else 1 for (I=1; T<= FACT[N-1]; 1) { PaTH[I] = TMPLSTII]; }
cooDCOS3 = the image of N in TPMLST[FACT{N-111;
}
/# Build the coset order for processing. #/
BADL = K; BAD2 = GOODCOS3; BAD3. = HSTAR;
SORT (BAD1,BAD2,BAD3) ; _
COSET[1} = 1; GCOSET{2] = K; COSET[3] = GOODCOS3;
GOSET[N] = HSTAR; '

364 Gould and Roth

J = 2; JJ = 33
‘while (2<=J and J<= 1)

1f {J = BADL) J += 1,
if (J = BAD2) I += 13
if (J = BAD3) J += 13
JJ += 1;

i£(J<=N) COSET[JI] = J;
J 4= 1;

}
/% Construct the PI and PSI permutations for the remaining
cosets. ®/

PI[COSET[3]] = (K,N,COSET[31);

for (I=3; I<= N-1j3 D) {

if (COSET[I+1]=N { pPsI[COSET[I]] = (l,N)(COSET[I],K);

PT[COSET[I+1]] = (K,COSET[I],N);

} .
else 1

if (cosEri{i} =W {

for(J=2; J<=N-1; +I) {
if (J does not egual K and J does not equal COSET{I+1])
{m4=1Jy0=N; 11} .

PST[COSRT[T1] = (1,§,K,T4,COSETIIHIT);
PI[COSET[I+1]] = (¥,T4,COSET[T+1])
¥ |
elge { PSI[COSET[I]] = (l,N,COSET[I],K,COSET[I+1]);
PI[COSET[I+1]] = (K,COSET[I+L]) (COSET[I],N) 3 }
)
1
PST[COSET [N}] = W3

A Recursive Algorithm for Hamiltonian Cycles . 365

/% Now construct paths in the remaining cosets in a manner

gimilar to thatrused on the special cosets. COSET determineé the

order. %/ '

for (L=3; L<=N; LY 2

inverse (N, PI[COSET{L}], PTICLINV); i
compose (N, PICLINV, PST{COSET[L]], WWL) 3
dvnshft (N, K, WWL, WL) 3
PATHFINDER (N-1, WL, SMLPATH) ;

for (I=l; I<= FACT[N-11/2; ++1) {
upshft (N-1, K, SMLPATE[I],),
compose (H§, PI[COSET[L]], VV, PICLVV) ;
PATH[((L-1)*FACT[N-11/2 +D)] = PICLVV: i
} :

return;

¥

366 Gould and Roth

APPENDIX 2

/% ROUTINE INVERSE to compute the inverse of a permutation of
length N. The routine accepts a permutation length N, a permu—
tation alfa, and returns alfa's inverse in invalfa. Both alfa

and invalfa are thought of as arrays of length N. &/

inverse (¥ alfa , invalfa)

{ ,
for (I=1; I =N; +I) invalfal alfalI]] = T;
returns; |

¥

/% ROUTINE COMPOSE to multiply permutations of tength N. The o
routine accepts 2 permutation length ¥ and permutations alfa and 1

beta (thought of a8 arrays of length). The composition is

returned in athenb. That 18, athenb = alfa © beta. */

compose { M, alfa, beta, athenb)

1

for (i=1; 1 =N; i) athenb(i] = betal aifal1l 13
I

[ROUTINE CONJ to conjugate permutations. This routine accept
a permutation length ¥ and two permutations of length N, namely
alfa and beta. The routine computes the conjugation of beta by
alfa. That is, 4aba = ipvalfa © beta o alfa. Note the temporar

variables iab and laba to pass returned values. ®/ :

conj (N,alfa,beta,iaba)

{ .

inverse(N,alfa,invalfa);
compose(N,invalfa,beta,iab);
compose(N,iab,alfa,iaba);

}

A Rec'ursive Algorithm for Hamiltonian Cycles 367

j# ROUTINE DWNSHFT to downshift a permutaticn to ope in A(n-1).
The routine éccepts a permutation length N, a specified value k,
and a permutation of length ¥ in VV. Thé permutation to be
downshifted is VV and the returned permutation of length W-1 is
v, */ '

gwmshEt (1, K, V7, V)

{

for (i=1; i<= k-1 1)
e o(vidl < B viEl = VUi i
else V[i] = WW[il - 13

}

for(imktl; i<=N; +1) 1 -
1F (Wil < K V[i-1] = wiil;
slee VIi-1] = W[il-13 ' i

return; . ' F

} |

/% ROUTINE UPSHFT toc reverse the process of dwnshft and inserﬁ
the &k -> k element of a permutation of length N-1 to build it to
a permutation of length N. The routine accepts & permutation
length N, a value k, and a permutation to rebuild V {thought of
as an array of length N-1). The routine returns the rebuilt

permutation in vy, a permutation of length N. */

upshft(N,k,V,VV)

{

for (i=1; i<= k=1; ++i) {
1f (v[i] < K) yy[i] = VIil;
e VV[4] = VIi13

368 Gould and Roth

VV[k] = k3

for (i=k+l; i<= M+1; ++i) |
iF(V[i-1] < k) yy{i] = V[i-1};
else Vvii] = V[1i-1] +1;

}

return;

}

/* ROUTINE SORT, a routine to sort three values into ascending

order., Any sorting technique will work here. %/

A Recursive Algorithm for Hamiltonian Cycles 369

REFERENCES

M. Behzad, G- Chartrand, and L. TLesniak-Foster, "'graphs and
Digraphs", Wadsworth Tnternational Mathematics Series, 1979.

R.J. Gould and R. Roth, Cayley Graphs and (l,j,n)—Sequencings

of the Alternating Group. preprint.

j.J. Rotman, 'The Theory of Groups (Second Fdition)", Allyn

and Bacon Series in Advanced Mathematics, 1973.

R. Sedgewick, Permutation Generation Methods, Computer Surveys

9(1977) » 137-164.

p.J. Slater, Generating all Permntations_by_Graphical
fransportations, Ars Combinatoria 5(1978), 219-225. s

P, Tanmenbaum, Minimal Cost Permutation Generating Algorithms,

Proceedings.of the Fourteenth Southeastern Conference on

" Combinatorics, Graph Theory. and Computing, to appear.

D,s. Witte, On Hamiltonian Circuits in Cayley Diagrams,

Discrete Mathematics 38 (1982) , 99-108.

