BRUCE L. CHILTON, RONALD GOULD, AND ALBERT D. POLIMENI

A NOTE ON GRAPHS WHOSE NEIGHBORHOCODS
ARE n-CYCLES

ABsTRACT. Let G be a graph, and let ¢ be a vertex of G. We denote by N(v) the set of
vertices of G which are adjacent to v, and by <M(p)> the subgraph of G induced by N(v).
We call {N(1)» the neighborhoad of v. In a paper of 1968, Agakishieva has, as one of her
main theorems, the statement:

“Graphs in which every neighborhood is an n-cycle exist if and only if 3ssn=<6”

1t it is the object of this note 1o provide a list of counter examples to this statement.

By an automorphism of a graph we mean a permutation of its vertices which
preserves adjacency. The automorphisms of a graph form a group, which we
call the group of the graph.

By a map we mean a decomposition of an unbounded surface into N,
non-overlapping simpiy-connected regions (called faces) by N, arcs {called
edees) joining pairs of N, points {called vertices). By an automorphism of a .
map we mean a permutation of its vertices which sends faces to faces and
edges to edges, and which preserves incidence. Thus, for any two corre-
sponding faces or vertices, the edges incident with one correspond to the
edges incident with the other in the same (or opposite} cyclic order. The
automorphisms of a map form a group, which we call the group of the map.

An automorphism of a map is completely determined by its effect on any
one face: If we fix a face, with all its sides and vertices, then each neighboring
face is likewise fixed, so that such an automorphism must be the identity.
A map is said to be regular if its group contains two particular automorph-
isms: one, say g, which cyclically permutes the successive edges of one face,
and another, say ¢, which cyclically permutes the successive edges meeting
at one vertex of this face. It follows that the group of automorphisms of a
reguiar map is transitive on its N, vertices, ¥, edges, and ¥, faces, We declare
such a map to be of type {p, ¢} if p edges belong to a face and g to each ver-
tex. The notation {p, g} is due to Schidfli.

Each regular map of type {p, ¢} has a polygon P of which any two con-
secutive edges belong to a face of the map, but no three do so. P is calied a
Petrie polygon of the map. Due to the transitivity of the group, all the Petrie
polygons of the map have the same length. The largest map of type {p, ¢} that
possesses 2 Petrie polygon of r sides is denoted by {p, ¢}, For example,
{3, 6},, represents a regular map whose faces are triangles, 6 at each vertex,
and whose Petrie polygons all have length 2n. For a thorough discussion of
regular maps see [2],
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The five regular polyhedra have the symbols {3, 3}4, {3, 4}s {4, 3}s,
{3, 5}40, and {5, 3},,, denoting the tetrahedron, octahedron, cube, icosa-
hedron, and dodecahedron, respectively. From the last four we can derive
simpler ‘elliptic’ maps by identifying pairs of “antipodal’ vertices.

The vertices and edges of any map M may be regarded as forming a graph
G. If M is {p, q},, a convenient symbo! for the corresponding graph G is
(p, 9),. It is clear that any automorphism of M induces an automorphism of
G, and the group of M is a subgroup of the group G. For exampie, the group
of {3, 5}, is A5, but (3, 5)5 is K, whose group is S. The icosahedral group
A is transitive on the 6 Petrie polygons such as vsvst,050,05 in Figure |
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Fig. 1.

(where a specimen of {3, 5}s is shown, unfolded to form a planar ‘net’).
But the symmetric group is transitive on 72 pentagons such as v, 00504485
Each map {p, ¢}, has a companion {r, g}, in which the roles of faces and
Petrie polygons are interchanged; therefore (p, g),=(r, ¢),-

One requirement for a graph (p, g), to have neighborhoods all of which
are g-cycles is evidently p=3. This is satisfied by (3, 3)q, (3, 4)s, and (3, 5)y0.
whose neighborhoods are 3-cycles, 4-cycles, and 5-cycles, respectively. When
g =5, there is a second requirement; namely:

THEOREM. If g=5, then the graph (3, q), has neighborhoods which are all
g-cycles only if r27. o

" Proof. Assume ¢>5 and that every neighborhood of G=(3,9), is a
g-cycle. Let v be a vertex of G and consider the subgraph G, which consists of
v, the edges incident with v, and the g-cycle that forms the neighborhood of




GRAPHS WHOSE NEIGHBORHOODS ARE n-CYCLES 291

Vo V4

Fig, 2,

ir. Let P=up,0,...0,0, be an r-cycle of G which corresponds to a Petrie polygon
of {3, ¢}, and assume that P has an edge in common with G,. Then P has

exactly four edges in common with G,, as shown in Figure 2. Relabel the-

vertices of P, if necessary, so that these edges are v v,, p20a, 040, and vy,
Clearly r= 3. We shall now exclude the cases r=35 and r=6, If r=3, then
50, ts the remaining side of £, and is an extraneous edge of the neighborhood
of v, Here v=t;.

{3,8}7 1 21 vertices
B4 edges |
56 faces
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{3,7}9 36 vertices
126 edges
84 faces

Fig. 4.

{3,7} . 24 vertices
8 84 edges
56 faces

Fig. 5.
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If r=6, then v does not belong to G, However, in this case psvg and
v vy are two sides of a triangle. The third side is vsv;, and is an extraneous
edge of {N(v)).

The graphs (3, 6),, exist for each n>4 and provide an infinite class of
graphs, the neighborhoods of which are all 6-cycles, The map {3, 6},, hasn*
vertices, 3n® edges, and 2n? faces. It can be drawn on the surface of a torus.

It is interesting that the neighborhoods of the graph (3, 5)s are isomorphic
to the complete graph K, while those of (3, 6), are isomorphic to the com-
plete bipartite graph (Thomsen graph) K5, 5. The map {3, 5} can be drawn
on the real projective plane, and can be obtained by identifying opposite
vertices of an icosahedron.

On page 139 of [2] there is a listing of the known regular maps of the form
!p.q},. Among the entries on the list (or rather, their duals), we have in-
vestigated {3, 8}4, {3, 7}s, {3, 7)o, {3, 9}, and {3, 7};», and have found
that each of these yields an example of (3, ¢),, r=7, in which every neigh-

fa,g} . 28 vertices
126 edges
B. faces

Fig. 6.
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borhood is a g-cycle. It is likely that the other graphs (3, ¢),, r=7, that can be
obtained from the list in [2] are also exampies.

In Figures 2-5 we have depicted the regular maps {3, 8}, {3, 7},, {3, 7},
and {3, 9},, respectively, each one ‘unfolded’ to form a planar map. To
‘re-fold’ these maps, one would bring together vertices that bear the same l
letter.
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