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a b s t r a c t

A cycle of order k is called a k-cycle. A non-induced cycle is called a chorded cycle.
Let n be an integer with n ≥ 4. Then a graph G of order n is chorded pancyclic if G
contains a chorded k-cycle for every integer k with 4 ≤ k ≤ n. Cream, Gould and
Hirohata (Australas. J. Combin. 67 (2017), 463–469) proved that a graphof ordern satisfying
degGu + degGv ≥ n for every pair of nonadjacent vertices u, v in G is chorded pancyclic
unless G is either K n

2 , n2
or K3 □ K2, the Cartesian product of K3 and K2. They also conjectured

that if G is Hamiltonian, we can replace the degree sum condition with the weaker density
condition |E(G)| ≥ 1

4n
2 and still guarantee the same conclusion. In this paper, we prove this

conjecture by showing that if a graphG of order nwith |E(G)| ≥ 1
4n

2 contains a k-cycle, then
G contains a chorded k-cycle, unless k = 4 and G is either K n

2 , n2
or K3 □ K2, Then observing

that K n
2 , n2

and K3 □ K2 are exceptions only for k = 4, we further relax the density condition
for sufficiently large k.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we only consider finite simple graphs. A k-cycle is a cycle of order k. A graph G of order n ≥ 3 is pancyclic if
G contains a k-cycle for every k with 3 ≤ k ≤ n.

To determine whether a given graph G is Hamiltonian is an NP-complete problem. Therefore, there is little hope in
obtaining a criterion for the existence of a Hamiltonian cycle which can be described in a polynomial-time algorithm. The
hardness of the problem also affects sufficient conditions. Many sufficient conditions for the existence of a Hamiltonian
cycle make a graph G so dense that G is not only Hamiltonian but it also satisfies stronger cycle properties. This situation is
highlighted by Bondy’s Meta-Conjecture.

Bondy’s Meta-Conjecture. Almost all sufficient conditions for the existence of a Hamiltonian cycle make a graph pancyclic,
possibly with a small number of well-described families of exceptional graphs.

Bondy’s Meta-Conjecture has long served as a driving force in the research of cycles in graphs. Bondy [3] himself proved a
result to support it. For a non-complete graph G, we let σ (G) denote the minimum degree sum over all pairs of nonadjacent
vertices in G. If G is complete, we let σ (G) = +∞. The classical Ore’s Theorem states that every graph G of order n ≥ 3
with σ (G) ≥ n is Hamiltonian. Bondy proved that under the same hypothesis, G is actually pancyclic unless n is even and
G is K n

2 , n2
. Moreover, he proved that once we have a Hamiltonian cycle, we no longer need the degree sum condition, but a

simple density condition makes the graph pancyclic.
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Theorem A (Bondy [3]). Every Hamiltonian graph G of order n with at least 1
4n

2 edges is pancyclic unless n is even and G is K n
2 , n2

.
In particular, if |E(G)| > 1

4n
2, then G is pancyclic.

Theorem A has shed a new light on the distribution of cycle lengths. When we require a Hamiltonian cycle, the density
condition of TheoremA is not strong enough. The union ofK1 andKn−1 contains 1

2 (n−1)(n−2) edges but it is not Hamiltonian.
Even if we restrict ourselves to the class of k-connected graphs for some constant k, we still have Kk ∨

(
kK1 ∪ Kn−2k

)
, which

is k-connected and contains 1
2n

2
− o(n2) edges, but it is not Hamiltonian. However, once we have a Hamiltonian cycle in a

graph G of order n, |E(G)| > 1
4n

2 guarantees the existence of cycles of all possible lengths.
Inspired by Theorem A, several studies have been conducted concerning the relationship between the density of a graph

and cycles of a variety of lengths. Note that a bipartite graph is not pancyclic and since K n
2 , n2

appears as an exception in
Theorem A, it is natural to restrict ourselves to non-bipartite graphs to further pursue this line of research. Then Häggkvist,
Faudree and Schelp [8] relaxed the density condition.

Theorem B (Häggkvist, Faudree and Schelp [8]). Every non-bipartite Hamiltonian graph of order n with more than 1
4 (n−1)2+1

edges is pancyclic.

Both Theorems A and B assume Hamiltonicity in the hypothesis. However, Brandt [4] proved that the existence of a
Hamiltonian cycle is not related with the relationship between the density of a graph and the distribution of cycle lengths.
Let g(G) and c(G) be the lengths of a shortest and a longest cycle in G, respectively.

Theorem C (Brandt [4]). A non-bipartite graph G of order n with more than (n − 1)2/4 + 1 edges contains a k-cycle for every
integer k with 3 ≤ k ≤ c(G).

A graph G is weakly pancyclic if G contains a k-cycle for every integer k with g(G) ≤ k ≤ c(G). In the same paper, Brandt
conjectured the density condition can be further relaxed if we consider weak pancyclicity.

Conjecture 1 (Brandt [4]). A non-bipartite graph G of order n with more than (n− 1)(n− 3)/4+ 4 edges is weakly pancyclic.

Note that (n− 1)(n− 3)/4+ 4 = n2/4− n+ 19/4. Bollobás and Thomason [2] gave a partial answer to this conjecture.

Theorem D (Bollobás and Thomason [2]). A non-bipartite graph G of order n with at least ⌊n2/4⌋ − n + 59 edges contains a
k-cycle for every integer k with 4 ≤ k ≤ c(G).

A chord of a cycle C is an edge joining two non-consecutive vertices of C . If there exists a chord of C , we say that C is a
chorded cycle. A chorded cycle of order k is called a chorded k-cycle. A chord is one of themain tools in the study of cycle length
distribution. Intuitively speaking, chords in a cycle enrich the cycle space of a graph and raise the chance of finding a cycle
of required length or property. Actually, the proofs in [3] locate a cycle of desired length by using chords in a Hamiltonian
cycle. In this sense, it is worth studying the distribution of chords in a cycle. And the first step in this direction is to find a
chorded cycle.

Cream, Gould and Hirohata [6] studied a degree sum condition for a graph to have chorded cycles of all possible lengths.
A graph G of order n ≥ 4 is chorded pancyclic if G contains a chorded k-cycle for every integer k with 4 ≤ k ≤ n. Cream
et al. proved that a graph satisfying Ore’s degree sum condition is not only pancyclic but also chorded pancyclic, except for
a balanced complete bipartite graph, plus one more. For graphs G and H , let G□H denote the Cartesian product of G and H .

Theorem E (Cream, Gould and Hirohata [6]). A graph of order n ≥ 4 with σ (G) ≥ n is chorded pancyclic unless G is K n
2 , n2

or
K3 □ K2.

Cream et al. also conjectured that if a graph G is Hamiltonian, we can replace the degree sum condition with the density
condition |E(G)| ≥ 1

4n
2.

In this paper, we affirmatively answer the above conjecture and further clarify the relationship between the density of a
graph and the existence of a chorded cycle of specified length. The following is the main theorem of this paper.

Theorem 1. Let G be a graph of order n with |E(G)| ≥ 1
4n

2 and let k be a positive integer. If G contains a k-cycle, then it contains
a chorded k-cycle unless k = 4 and G is either K n

2 , n2
or K3 □ K2.

By combining this theorem with Theorem A, we affirmatively answer the conjecture of Cream et al.

Corollary 2. A Hamiltonian graph G of order n ≥ 4 with |E(G)| ≥ 1
4n

2 is chorded pancyclic unless G is K n
2 , n2

or K3 □ K2.

Theorem 1 suggests that the existence of a chorded cycle in a dense graph is independent of Hamiltonicity and
pancyclicity. In a dense graph, we can discuss the existence of a chorded cycle of a specified length from the existence
of a cycle of the same length. In this setting, we may be able to obtain a refined density condition. For example, a bipartite
graph does not have a chorded 4-cycle. Therefore, as long aswe seek a chorded 4-cycle, it is difficult to improve the condition
|E(G)| ≥ 1

4n
2 in Theorem 1. However, if n ≥ 6, K n

2 , n2
contains a chorded 6-cycle. Also, when we require a chorded 5-cycle
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under the assumption of the existence of a 5-cycle, bipartite graphs are automatically ruled out. Furthermore, if we obtain
a Hamiltonian cycle in a graph G of order n ≥ 4, then |E(G)| ≥ n + 1 guarantees the existence of a chorded n-cycle. These
observations suggest that by discussing the existence of a chorded cycle of an individual length, we may be able to refine
Theorem 1. We also discuss this possibility in this paper.

We prove Theorem 1 in the next section. In Section 3, we improve Theorem 1 for sufficiently long cycles. In Section 4, we
make several concluding remarks.

For standard graph-theoretic notation and terminology not explained in this paper, we refer the reader to [5]. Let G be
a graph and let x be a vertex in G. We denote by NG(x) and degGx the neighborhood and the degree of x, respectively. If H
is a subgraph of G, we define NH (x) = NG(x) ∩ V (H). Note that we use this notation even if x ̸∈ V (H). Let A, B ⊂ V (G). If
x ̸∈ A, let eG(x, A) denote the number of edges between x and vertices in A. Note that since we only consider simple graphs,
eG(x, A) = |NG[A](x)|, where G[A] is the subgraph induced by A. Moreover, if A ∩ B = ∅, then we denote by eG(A, B) the
number of edges joining a vertex in A and a vertex in B. In other words, eG(A, B) =

∑
a∈AeG(a, B). We call a cycle C in a graph

G an induced cycle or a chordless cycle if there does not exist a chord of C in G. We denote by G the complement of G. Let
T = v0v1v2 . . . vl be a path or a cycle in a graph. For i, jwith 0 ≤ i ≤ j ≤ l, we let vi

−→
T vj denote the subpath vivi+1vi+2 . . . vj.

The same path traversed in the opposite direction is denoted by vj
←−
T vi. We define v+i and v−i by v+i = vi+1 and v−i = vi−1.

Moreover, we let v++i = vi+2 and v+++i = vi+3. The vertices v−− and v−−− are defined in a similar way. For a positive integer
k, we let v(k)+

= vi+k. If X ⊂ V (T ), we define X+ by X+ = {v+ : v ∈ X}. We similarly define X−, X++ etc.

2. Proof of Theorem 1

In this section, we prove Theorem 1. We first make a simple observation, which plays a crucial role in our inductive
arguments.

Lemma 3. Let n and k be integers with k ≥ 4 and n ≥ k+ 1. Assume that every graph G′ of order n− 1with |E(G′)| > 1
4 (n− 1)2

and with a k-cycle contains a chorded k-cycle. Let G be a graph of order n with |E(G)| ≥ 1
4n

2. Suppose G contains a k-cycle C but
it does not contain a chorded k-cycle. Then degGx ≥

1
2n for every x ∈ V (G)− V (C).

Proof. Assume degG(x) ≤
n−1
2 for some x ∈ V (G)− V (C). Let G′ = G− x. Then G′ contains C . Moreover,

|E(G′)| = |E(G)| − degGx ≥
1
4
n2
−

n− 1
2
=

1
4
(n2
− 2n+ 2) >

1
4
(n− 1)2.

Thus, by the hypothesis, G′ contains a chorded k-cycle, which is also a chorded k-cycle of G. This is a contradiction. □

Note that in the hypothesis of Lemma 3, we assume |E(G′)| > 1
4 (n− 1)2, where we do not allow the equality.

The proof of Theorem 1 is divided into three cases : k = 4, k = 5 and k ≥ 6. First, we handle the case k = 4.

Theorem 4. Let G be a graph of order n. If |E(G)| ≥ 1
4n

2 and G contains a 4-cycle, then either

(1) G contains a chorded 4-cycle,
(2) G = K n

2 , n2
, or

(3) G = K3 □ K2.

In particular, if a graph G of order n with |E(G)| > 1
4n

2 contains a 4-cycle, then G contains a chorded 4-cycle.

Proof. We proceed by induction on n. Since G contains a 4-cycle, n ≥ 4. Let C = v1v2v3v4v1 be a 4-cycle in G.
Suppose n = 4. By the hypothesis of the theorem, |E(G)| ≥ 4. If |E(G)| ≥ 5, then E(C) ⊊ E(G) and an edge in E(G)− E(C)

is a chord of C . If |E(G)| = 4, then G = C and hence G = K2,2. Thus, the theorem holds for n = 4.
Suppose n = 5. Let C = v1v2v3v4v1 be a 4-cycle in G and suppose C does not contain a chord. Let V (G) − V (C) = {x}.

Since |E(G)| ≥
⌈

52
4

⌉
= 7, x is adjacent with at least three vertices in C . We may assume {v1, v2, v3} ⊂ NG(x). Then xv1v2v3x

is a 4-cycle with chord xv2.
Now we assume n ≥ 6. We further assume that G contains a 4-cycle C = v1v2v3v4v1 but does not contain a chorded

4-cycle, and we will prove that G = K n
2 , n2

or G = K3 □ K2. Let H = G− V (C).
By the induction hypothesis, every graph G′ of order n−1 with |E(G′)| > 1

4 (n−1)2 and with a 4-cycle contains a chorded
4-cycle. Hence by Lemma 3, degGx ≥

1
2n for each x ∈ V (H).

Claim 1. For each x ∈ V (H), eG(x, V (C)) ≤ 2.

Proof. Assume eG(x, V (C)) ≥ 3 for some x ∈ V (H). We may assume {v1, v2, v3} ⊂ NG(x). Then xv1v2v3x is a 4-cycle with
chord xv2. This is a contradiction. □
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By Lemma 3 and Claim 1, degHx ≥
1
2n− 2 = 1

2 (n− 4) = 1
2 |V (H)| for each x ∈ V (H).

We consider three cases.

Case 1. n = 6.
In this case, |V (H)| = 2. Let V (H) = {x, y}. Since C is an induced cycle, we have

|E(G)| = |E(C)| + eG(x, V (C))+ eG(y, V (C))+ |E(H)| ≤ 4+ 2+ 2+ 1 = 9.

On the other hand, |E(G)| ≥ 9 by the hypothesis of the theorem. Thus, the equality holds, which yields eG(x, V (C)) =
eG(y, V (C)) = 2 and xy ∈ E(G).

First, suppose that neither NC (x) nor NC (y) consists of a pair of adjacent vertices in C . By symmetry, we may assume
NC (x) = {v1, v3}. If NC (y) = {v1, v3}, then xv1yv3x is a 4-cycle with chord xy, contradicting the assumption. Therefore,
NC (y) = {v2, v4}. Then G is a complete bipartite graph with partite sets {x, v2, v4} and {y, v1, v3}.

Next, suppose NC (x) consists of a pair of adjacent vertices in C . We may assume NC (x) = {v1, v2}. If yv1 ∈ E(G),
then xyv1v2x is a 4-cycle with chord xv1, a contradiction. Hence v1 ̸∈ NG(y). Similarly, we have v2 ̸∈ NG(y), and hence
NC (y) = {v3, v4}. This yields G = K3 □ K2.

Case 2. n = 7.
In this case |V (H)| = 3 and |E(H)| ≤ 3. Let V (H) = {x, y, z}. By Claim 1, we have

|E(G)| = |E(C)| + eG(x, V (C))+ eG(y, V (C))+ eG(z, V (C))+ |E(H)| ≤ 4+ 2 · 3+ 3 = 13.

On the other hand, by the hypothesis of the theorem, we have |E(G)| ≥ 13. Thus, the equality holds, which yields
eG(x, V (C)) = eG(y, V (C)) = eG(z, V (C)) = 2 and H = K3.

Assume NC (x) does not consist of a pair of adjacent vertices in C . By symmetry, we may assume NC (x) = {v1, v3}. If
v1 ∈ NG(y), then xzyv1x is a 4-cycle with chord xy, a contradiction. Hence v1 ̸∈ NG(y). Similarly, v3 ̸∈ NG(y) and hence
NC (y) = {v2, v4}. By applying the same argument to z instead of y, we also have NC (z) = {v2, v4}. However, now yv2zv4y is
a 4-cycle with chord yz, a contradiction. Therefore, NC (x) consists of a pair of adjacent vertices in C . By the same argument,
we have that both NC (y) and NC (z) consist of a pair of adjacent vertices in C .

If NC (x) = NC (y), then we may assume that NC (x) = {v1, v2} and xv1yv2x is a 4-cycle with chord v1v2, a contradiction.
Hence NC (x) ̸= NC (y). By a similar argument, we have that NC (x), NC (y) and NC (z) are all different. Then by symmetry, we
may assume NC (x) = {v1, v2}, NC (y) = {v2, v3} and NC (z) = {v3, v4}. However, now xv2yzx is a 4-cycle with chord xy, a
contradiction. Thus, the theorem follows for n = 7.

Case 3. n ≥ 8.
In this case, |V (H)| ≥ n − 4 ≥ 4. Since δ(H) ≥ 1

2 |V (H)|, H is Hamiltonian by Dirac’s Theorem. Moreover, since
|E(H)| ≥ 1

2δ(H) · |V (H)| ≥ 1
4 |V (H)|2, eitherH is pancyclic or H = K n−4

2 , n−42
by Theorem A. In either case, H contains a 4-cycle.

Therefore, by the induction hypothesis, H contains a chorded 4-cycle, or H is either K n−4
2 , n−42

or K3 □ K2. However, since G
does not contain a chorded 4-cycle, the first possibility does not occur, and we have either H = K n−4

2 , n−42
or H = K3 □ K2. In

either case, |E(H)| = 1
4 |V (H)|2 = 1

4 (n− 4)2. Furthermore, by Claim 1, eG(V (H), V (C)) ≤ 2(n− 4). These imply

|E(G)| ≤ |E(C)| + eG(V (H), V (C))+ |E(H)| ≤ 4+ 2(n− 4)+
1
4
(n− 4)2 =

1
4
n2.

Then by the hypothesis of the theorem, the equality holds in the above. This yields that eG(x, V (C)) = 2 for each x ∈ V (H)
and EG(V (H), V (C)) = 2(n− 4).

First, suppose H = K n−4
2 , n−42

. Let X =
{
x1, x2, . . . , x n−4

2

}
and Y =

{
y1, y2, . . . , y n−4

2

}
be the partite sets of H . Take

vi ∈ V (C) and suppose |NG(vi) ∩ X | ≥ 2. By symmetry, we may assume {x1, x2} ⊂ NG(vi). Then vix1yjx2vi is a 4-cycle in G for
each j, 1 ≤ j ≤ n−4

2 . Since this cycle does not contain a chord by the assumption, viyj ̸∈ E(G). This means NG(vi) ∩ Y = ∅.
Similarly, if |NG(vi)∩Y | ≥ 2, thenNG(vi)∩X = ∅. Therefore, ifNG(vi)∩X ̸= ∅ andNG(vi)∩Y ̸= ∅, thenwehave |NG(vi)∩X | = 1
and |NG(vi)∩ Y | = 1. Let A = {vi ∈ V (C) : NG(vi)∩ X ̸= ∅ and NG(vi)∩ Y ̸= ∅} and B = V (C)− A. By the definition, if vi ∈ A,
then eG(vi, V (H)) = 2 and if vi ∈ B, then NG(vi) ∩ X = ∅ or NG(vi) ∩ Y = ∅, and hence eG(vi, V (H)) ≤ n−4

2 . Therefore,

eG(V (H), V (C)) ≤ 2|A| +
n− 4
2
|B| =

n− 4
2

(|A| + |B|)+
(
2−

n− 4
2

)
|A|

=
n− 4
2
· 4−

1
2
(n− 8)|A| = 2(n− 4)−

1
2
(n− 8)|A|.

Since eG(V (H), V (C)) = 2(n − 4), we have either n = 8 or A = ∅. Moreover, NG(vi) ∩ V (H) = X or NG(vi) ∩ V (H) = Y for
every vi ∈ B.

Suppose A = ∅. By symmetry, we may assume NG(v1) ∩ V (H) = X . If NG(v2) ∩ V (H) = X , then v1x1v2x2v1 is a 4-cycle
with chord v1v2, a contradiction. Hence we have NG(v2) ∩ V (H) = Y . By applying the same argument to v2 and v3, we have
NG(v3) ∩ V (H) = X . Similarly, we have NG(v4) ∩ V (H) = Y . Therefore, G is a complete bipartite graph with partite sets
{v2, v4} ∪ X and {v1, v3} ∪ Y .
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Next, suppose A ̸= ∅. Then n = 8 and V (H) = {x1, x2, y1, y2}. In this case, H is a 4-cycle. Therefore, we can exchange the
role of C and H and argue as above. As a result, we have eG(vi, V (H)) = 2 for each i with 1 ≤ i ≤ 4.

Without loss of generality, we may assume v1 ∈ A and NG(v1) ∩ V (H) = {x1, y1}. If x1 ∈ NG(v2), then v2x1y1v1v2 is a
4-cycle with chord x1v1. If y1 ∈ NG(v2), then v2y1x1v1v2 is a 4-cycle with chord v1y1. Hence we reach a contradiction in
either case. Thus, we have NG(v2) ∩ {x1, y1} = ∅. Since eG(v2, V (H)) = 2, this implies NG(v2) = {x2, y2}. We apply the same
argument to v4 instead of v2 and we obtain NG(v4)∩V (H) = {x2, y2}. However, we now see that v2x2v4y2v2 is a 4-cycle with
chord x2y2. This is a contradiction.

Finally, suppose H = K3 □ K2. In this case n = 10 and eG(V (H), V (C)) = 12. Let V (H) = {x1, y1, z1, x2, y2, z2}, where
both {x1, y1, z1} and {x2, y2, z2} induce K3 and {x1x2, y1y2, z1z2} ⊂ E(H). Since eG(V (H), V (C)) = 12, eG(vi, V (H)) ≥ 3 for
some vi ∈ V (C). Then we have either |NG(vi) ∩ {x1, y1, z1}| ≥ 2 or |NG(vi) ∩ {x2, y2, z2}| ≥ 2. Without loss of generality, we
may assume {x1, y1} ⊂ NG(v1). Then v1x1z1y1v1 is a 4-cycle with chord x1y1. This is a final contradiction, and the theorem
follows. □

Next, we prove the case k ≥ 6.

Theorem 5. Let k and n be integers with k ≥ 6 and n ≥ k. Let G be a graph of order n. If |E(G)| ≥ 1
4n

2 and G contains a k-cycle,
then G contains a chorded k-cycle.

Proof. Weproceed by induction on n. Let C = v1v2 . . . vkv1 be a k-cycle inG. If n = k, then V (G) = V (C) and |E(G)| ≥ 1
4k

2 > k
since k ≥ 6. HenceG contains an edgewhich is not an edge of C . This edge is a chord of C . Therefore,wemay assume n ≥ k+1.

Assume, to the contrary, that G does not contain a chorded k-cycle. By the induction hypothesis, every graph G′ of order
n − 1 with |E(G′)| > 1

4 (n − 1)2 and with a k-cycle contains a chorded k-cycle. Let H = G − V (C). By Lemma 3, degGx ≥
1
2n

for every x ∈ V (H).

Claim 1. eG(x, V (C)) ≤ 1
2k for each x ∈ V (H).

Proof. If NC (x) ∩ NC (x)++ = ∅, then |NC (x)| + |NC (x)++| = |NC (x) ∪ NC (x)++| ≤ |V (C)| = k. Since |NC (x)| = |NC (x)++| =
eG(x, V (C)), we have eG(x, V (C)) ≤ 1

2k.
Suppose NC (x) ∩ NC (x)++ ̸= ∅. We may assume {v1, v3} ⊂ NC (x). Then xv3v4 . . . vkv1x is a k-cycle in G. Since G does not

contain a chorded k-cycle,NC (x)∩{v4, v5, . . . , vk} = ∅, which yieldsNC (x) ⊂ {v1, v2, v3} and hence eG(x, V (C)) ≤ 3 ≤ 1
2k. □

Since |V (H)| = n− k, we have eG(V (H), V (C)) ≤ k
2 (n− k) by Claim 1.

Claim 2. δ(H) ≥ 1
2 |V (H)|.

Proof. Let x ∈ V (H). Then degGx ≥
1
2n by Lemma 3 and eG(x, V (C)) ≤ 1

2k by Claim 1. Therefore,

degHx = degGx− eG(x, V (C)) ≥
1
2
n−

1
2
k =

1
2
(n− k) =

1
2
|V (H)|,

and the claim follows. □

By Claim 2 and Dirac’s Theorem, H is Hamiltonian if |V (H)| ≥ 3.

Claim 3. |E(H)| > 1
4 |V (H)|2.

Proof. Since C is an induced cycle,
1
4
n2
≤ |E(G)| = |E(C)| + eG(V (H), V (C))+ |E(H)| ≤ k+

1
2
k(n− k)+ |E(H)|,

which yields

|E(H)| ≥
1
4
n2
− k−

1
2
k(n− k) =

1
4
(n− k)2 +

1
4
k(k− 4) >

1
4
(n− k)2 =

1
4
|V (H)|2. □

Claim 4. n ≤ 2k− 1.

Proof. Assume n ≥ 2k. Then |V (H)| = n− k ≥ k ≥ 6 and H is Hamiltonian. Then by Claim 3 and Theorem A, H is pancyclic.
In particular, H contains a k-cycle. Then by Claim 3 and the induction hypothesis, H contains a chorded k-cycle, which is also
a chorded k-cycle of G. This is a contradiction. □

By Claim 4, k ≥ n+1
2 . Let k = n+s

2 and |E(H)| = t . Then s ≥ 1 and t ≥ 0. Moreover, since |V (H)| = n − k,
|E(H)| = 1

2 (n− k)(n− k− 1)− t . Therefore,

|E(G)| = |E(C)| + eG(V (H), V (C))+ |E(H)| ≤ k+
1
2
k(n− k)+

1
2
(n− k)(n− k− 1)− t.
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On the other hand, |E(G)| ≥ 1
4n

2 by the hypothesis of the theorem. Therefore, we have 1
4n

2
≤ k+ 1

2k(n− k)+ 1
2 (n− k)(n−

k− 1)− t , which yields n2
− 2n− 4t ≥ 2k(n− 3) = 2(n− 3) · n+s2 = (n− 3)(n+ s). This implies (s− 1)n− 3s+ 4t ≤ 0.

Since n ≥ k+ 1 ≥ 7 and s ≥ 1, we have 0 ≥ 7(s− 1)− 3s+ 4t = 4(s+ t)− 7. Since s ≥ 1, this is possible only if s = 1 and
t = 0. Therefore, we have n = 2k− 1 and H = Kk−1.

Suppose |NG(vi) ∩ V (H)| ≥ 2 for some vi ∈ V (C). Let x, x′ ∈ NG(vi) ∩ V (H) with x ̸= x′. Since H is a complete graph, H
contains a Hamiltonian path P which starts at x and ends at x′. Then vix

−→
P x′vi is a k-cycle with chord xx′. This contradicts the

assumption. Thus, we have eG(vi, V (H)) ≤ 1 for each vi ∈ V (C) and hence eG(V (H), V (C)) ≤ V (C) = k. Now we have

1
4
(2k− 1)2 =

1
4
n2
= |E(G)| = |E(C)| + eG(V (H), V (C))+ |E(H)|

≤ k+ k+
1
2
(n− k)(n− k− 1) = 2k+

1
2
(k− 1)(k− 2),

which yields 2k2 − 6k− 3 ≤ 0. However, in the range of k ≥ 6, 2k2 − 6k+ 3 is monotone increasing. Hence 2k2 − 6k− 3 ≥
2 · 62

− 6 · 6− 3 = 33 > 0. This is a contradiction, and the theorem follows. □

We now consider the remaining case : k = 5.

Theorem 6. Let G be a graph of order n. If |E(G)| ≥ 1
4n

2 and G contains a 5-cycle, then G contains a chorded 5-cycle.

Proof. We proceed by induction on n. By the hypothesis of the theorem, we have n ≥ 5. Let C = v1v2v3v4v5v1 be a 5-cycle
of G.

If n = 5, then V (G) = V (C). Moreover, |E(G)| ≥ 7 by the hypothesis of the theorem. Then G contains an edge which is not
an edge of C . This edge is a chord of C .

Suppose n ≥ 6 and we assume that G does not contain a chorded 5-cycle. Let H = G−V (C). By the induction hypothesis,
every graph of order n − 1 with more than 1

4 (n − 1)2 edges and with a 5-cycle contains a chorded 5-cycle. By Lemma 3,
degGx ≥

1
2n for each x ∈ V (H).

Claim 1. Let x ∈ V (H). Then

(1) |NC (x)| ≤ 3, and
(2) if |NC (x)| = 3, then NC (x) consists of three consecutive vertices in C.

Proof. Suppose |NC (x)| ≥ 3. Then NC (x) contains a pair of non-adjacent vertices in C . Without loss of generality, we may
assume {v1, v3} ⊂ NG(x). Then xv3v4v5v1x is a 5-cycle in G. Since G does not contain a chorded 5-cycle, {v4, v5} ∩ NG(x) = ∅
and hence NC (x) = {v1, v2, v3}. This proves both (1) and (2). □

Claim 2. If |NC (x1)| = |NC (x2)| = 3 for distinct vertices x1 and x2 in H, then |NC (x1) ∩ NC (x2)| = 1.

Proof. ByClaim1,wemay assumeNC (x1) = {v1, v2, v3}. If |NC (x1)∩NC (x2)| ≥ 2, then sinceNC (x2) also consists of consecutive
vertices in C , we may assume {v1, v2} ⊂ NC (x2). Then x1v1x2v2v3x1 is a 5-cycle in G with chord v1v2, This contradicts the
assumption. Therefore, we have |NC (x1) ∩ NC (x2)| = 1. □

By Claims 1 and 2, at most two vertices in H have three neighbors in C and the other vertices in H have at most two
neighbors in C . This implies, eG(V (H), V (C)) ≤ 3 · 2+ 2(|V (H)| − 2) = 6+ 2(n− 7) = 2n− 8.

We consider the cases 6 ≤ n ≤ 9. First, suppose n = 6. In this case, |E(G)| ≥ 9. On the other hand, V (G)− V (C) consists
of exactly one vertex and this vertex has at most three neighbors in C by Claim 1. This implies |E(G)| ≤ |E(C)| + 3 = 8. This
is a contradiction.

Suppose n = 7. In this case, the hypothesis of the theorem yields |E(G)| ≥ 13. On the other hand, |V (H)| = 2 and hence
|E(H)| ≤ 1. Therefore, |E(G)| ≤ |E(C)| + eG(V (H), V (C))+ |E(H)| ≤ 5+ (2 · 7− 8)+ 1 = 12. This is again a contradiction.

Suppose n = 8. Then |V (H)| = 3, and |E(G)| ≥ 16 by the hypothesis of the theorem. Let V (H) = {x1, x2, x3}. Since
|E(H)| ≤ 3, we have 16 ≤ |E(G)| = |E(C)| + eG(V (C), V (H)) + |E(H)| ≤ 5 + (2 · 8 − 8) + 3 = 16. Thus, the equality
holds, which implies H = K3. Also, we may assume eG(x1, V (C)) = eG(x2, V (C)) = 3 and eG(x3, V (C)) = 2. Moreover, by
Claim 2 we may assume NC (x1) = {v1, v2, v3} and NC (x2) = {v4, v5, v1}. Then x1x2v1v2v3x1 is a 5-cycle in Gwith chord x1v1,
a contradiction.

Suppose n = 9. Then |V (H)| = 4 and |E(H)| ≤ 6. LetV (H) = {x1, x2, x3, x4}. By the hypothesis of the theorem, |E(G)| ≥ 21.
On the other hand, |E(G)| ≤ |E(C)| + eG(V (H), V (C)) + |E(H)| ≤ 5 + (2 · 9 − 8) + 6 = 21. Thus, the equality holds. This
implies thatH = K4 and there are two vertices inH , say x1 and x2, that have three neighbors in C . By Claim 1, wemay assume
NC (x1) ∩ NC (x2) = {v1}. However, we now have a 5-cycle v1x1x3x4x2v1 with chord x1x4. This is a contradiction.

Now we assume n ≥ 10.

Claim 3. H is Hamiltonian.
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Proof. Assume H is not Hamiltonian. By Lemma 3 and Claim 1, degHx = degGx − eG(x, V (C)) ≥ 1
2n − 3 = n−6

2 =
|V (H)|−1

2
for each x ∈ V (H). By Dirac’s Theorem, this implies that H contains a Hamiltonian path. Take a Hamiltonian path P =
x1x2 . . . xn−5 so that degHx1 + degHxn−5 is as large as possible. By the assumption, x1xn−5 ̸∈ E(G).

If NH (x1)− ∩ NH (xn−5) ̸= ∅, let xp ∈ NH (x1)− ∩ NH (xn−5), and x1xp+1
−→
P xn−5xp

←−
P x1 is a Hamiltonian cycle of H , a

contradiction. Thus, NH (x1)− ∩ NH (xn−5) = ∅. Since NH (x1)− ∪ NH (xn−5) ⊂ V (H)− {xn−5}, we have

degHx1 + degHxn−5 = |NH (x1)| + |NH (xn−5)| = |NH (x1)−| + |NH (xn−5)|

= |NH (x1)− ∪ NH (xn−5)| ≤ n− 6.

Since degHx1 ≥
1
2n−3 and degH (xn−5) ≥

1
2n−3, the equality holds in the above. This implies eG(x1, V (C)) = eG(xn−5, V (C)) =

3. Since n ≥ 10, x1 ̸= xn−5, and these are the only vertices in H having three neighbors in C . In particular, degHxi ≥
1
2n− 2

for each iwith 2 ≤ i ≤ n− 6.
Since n ≥ 10, degHx1 ≥ 2. Thus, we can take xi ∈ NG(x1) with i ≥ 3. Then xi−1

←−
P x1xi

−→
P xn−5 is a Hamiltonian path in H

with end-vertices xi−1 and xn−5. However, degHxi−1 + degHxn−5 ≥
1
2n − 2 + 1

2n − 3 = n − 5 > degHx1 + degHxn−5. This
contradicts the choice of P . □

Now we can complete the proof. Since |E(G)| ≥ 1
4n

2,

|E(H)| = |E(G)| − |E(C)| − eG(V (H), V (C)) ≥
1
4
n2
− 5− (2n− 8) =

1
4
(n2
− 8n+ 12)

=
1
4
(n− 5)2 +

1
4
(2n− 13) >

1
4
(n− 5)2 =

1
4
|V (H)|2.

Since H is Hamiltonian and |E(H)| > 1
4 |V (H)|2, H is pancyclic. Moreover, since n ≥ 10, |V (H)| ≥ 5 and hence H contains a

5-cycle. Then by the induction hypothesis, H contains a chorded 5-cycle, which is also a chorded 5-cycle in G. This is a final
contradiction, and the theorem follows. □

Theorems 4–6 complete the proof of Theorem 1.

3. Improving the density condition for large cycles

As we have seen in the introduction, as long as we require chorded pancyclicity in a graph G of order n, it seems to be
difficult to relax the density condition |E(G)| ≥ 1

4n
2 since exceptional graphs appear at |E(G)| = 1

4n
2. However, in these

exceptions, only a chorded 4-cycle is missing. Therefore, if we only require a chorded k-cycle for large k, we may be able to
improve the density condition. In this section, we study this possibility, and prove the following theorem.

Theorem 7. Let k be an integer with k ≥ 8 and let G be a graph of order n with |E(G)| ≥ 1
4n

2
− n+ 16. If G contains a k-cycle,

then G contains a chorded k-cycle.

By combining this theorem with Theorem D, we obtain the following corollary.

Corollary 8. A non-bipartite graph G of order n with at least
⌊

n2
4

⌋
− n+ 59 edges contains a chorded k-cycle for every integer

k with 8 ≤ k ≤ c(G).

We use the following theorem in the proof.

Theorem F (Faudree et al. [7]). Let G be a graph of order n ≥ 3 and minimum degree δ = δ(G) < 1
2n. If

⏐⏐{v ∈ V (G) : degGv <
1
2n}

⏐⏐ ≤ δ − 1, then G is Hamiltonian.

Proof of Theorem 7. We proceed by induction on n. The hypothesis requires n ≥ k ≥ 8. For 8 ≤ n ≤ 16, the theorem
follows from Theorem 1. Suppose n ≥ 17 and let G be a graph of order nwith at least 1

4n
2
− n+ 16 edges and with a k-cycle

C . We prove that G contains a chorded k-cycle.
Assume, to the contrary, that G does not contain a chorded k-cycle. Let H = G− V (C).

Claim 1. For every x ∈ V (H), degGx ≥
1
2n− 1.

Proof. Let G′ = G− x. If |E(G′)| ≥ 1
4 (n− 1)2 − (n− 1)+ 16, then since G′ contains C , G′ contains a chorded k-cycle by the

induction hypothesis. This contradicts the assumption. Therefore, we have |E(G′)| < 1
4 (n− 1)2 − (n− 1)+ 16. Then

degGx = |E(G)| − |E(G
′)| >

1
4
n2
− n+ 16−

(
1
4
(n− 1)2 − (n− 1)+ 16

)
=

1
2
n−

5
4
.

Since degGx is an integer, we have degGx ≥
1
2n− 1. □
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Let A = {x ∈ V (H) : NC (x) ∩ NC (x)++ ̸= ∅} and B = V (H)− A. Also let a = |A| and b = |B|. Note a+ b = n− k.

Claim 2. For each x ∈ A, eG(x, V (C)) ≤ 3.

Proof. Since x ∈ A, there exists a vertex v in C with {v, v++} ⊂ NG(x). Then vxv++
−→
C v is a cycle of order k, and it is an

induced cycle by the assumption. This implies NC (x) ⊂ {v, v+, v++} and eG(x, V (C)) ≤ 3. □

Claim 3.

(1) For each x ∈ V (H), eG(x, V (C)) ≤ 1
2k, and

(2) δ(H) ≥ 1
2 |V (H)| − 1.

Proof. (1) If x ∈ A, Claim 2 yields eG(x, V (C)) ≤ 3 < 1
2k. If x ∈ B, then the function f : NC (x) → V (C) − NC (x) defined by

f (x) = x++ is an injection, which implies |NC (x)| ≤ |V (C)| − |NC (x)|. This yields eG(x, V (C)) = |NC (x)| ≤ 1
2 |V (C)| = 1

2k.
(2) By (1) and Claim 1, we have degH (x) = degGx− eG(x, V (C)) ≥ 1

2n− 1− 1
2k =

1
2 (n− k)− 1 = 1

2 |V (H)| − 1. □

Claim 4. Suppose that there exist vertices x0 ∈ V (H) and v ∈ V (C) with {v, v+++} ⊂ NG(x0). Then NC (x) ∩ NC (x)+ ∩
V (v(4)+−→C v) = ∅ for each x ∈ V (H)− {x0}.

Proof. Assume NC (x) ∩ NC (x)+ ∩ V (v(4)+−→C v) ̸= ∅, and let u be a vertex in v+++
−→
C v− with {u, u+} ⊂ NG(x). Then

uxu+
−→
C vx0v+++

−→
C u is a cycle of order kwith the chord uu+. This is a contradiction. □

Claim 5. If there exists a vertex x0 in B with NC (x0) ∩ NC (x0)+++ ̸= ∅, then eG(x, V (C)) ≤ k+2
3 holds for every x ∈ B− {x0}.

Proof. By the assumption, there exists a vertex v ∈ V (C) with {v, v+++} ⊂ NG(x0). Let P = v+++
−→
C v. Let x ∈ B− {x0} and

u ∈ NP (x). If u ̸= v, then u+ ̸∈ NG(x) by Claim 4. Moreover, if u ̸∈ {v, v−}, then u++ ̸∈ NG(x) by the definition of B. These
imply |NP (x)| ≤ |V (P)|+2

3 =
1
3k.

Suppose {v+, v++} ⊂ NG(x). Since v+ ∈ NG(x) and x ∈ B, {v−, v+++} ∩ NG(x) = ∅. Similarly, since v++ ∈ NG(x),
{v, v(4)+

} ∩ NG(x) = ∅. These imply |NP (x)| ≤ |V (P)|−2
3 =

k−4
3 and hence |NC (x)| ≤ k−4

3 + 2 = k+2
3 .

Next, suppose |{v+, v++} ∩ NG(x)| = 1. By symmetry, we may assume {v+, v++} ∩ NG(x) = {v++}. Then v ̸∈ NG(x) and
hence |NP (x)| ≤ |V (P)|+1

3 =
k−1
3 , which yields |NC (x)| ≤ k−1

3 + 1 = k+2
3 .

Finally, suppose {v+, v++} ∩ NG(x) = ∅. In this case, |NC (x)| = |NP (x)| ≤ k
3 . □

Claim 6. If x ∈ B and NC (x) ∩ NC (x)+++ = ∅, then eG(x, V (C)) ≤ 2
5k.

Proof. Assume eG(x, V (C)) > 2
5 |V (C)|. Then there exists a subpath P = v1v2v3v4v5 of order 5 in C with |NG(x) ∩

{v1, v2, v3, v4, v5}| ≥ 3.
If {v1, v2}∩NG(x) = ∅, then {v3, v4, v5} ⊂ NG(x). This contradicts x ∈ B. Hence we have {v1, v2}∩NG(x) ̸= ∅. If v2 ∈ NG(x),

then v4 ̸∈ NG(x) since x ∈ B. Moreover, v5 ̸∈ NG(x) since NC (x) ∩ NC (x)+++ = ∅. These yield {v1, v2, v3} ⊂ NG(x), which
again contradicts x ∈ B. Therefore, v2 ̸∈ NG(x) and hence v1 ∈ NG(x). Since v3 ̸∈ NG(x) by the definition of B, we have
{v1, v4, v5} ⊂ NG(x). However, we have v4 ∈ NC (x) ∩ NC (x)+++, a contradiction. □

Claim 7. If |V (H)| ≥ 5, then H is Hamiltonian.

Proof. Let x ∈ V (H). If x ∈ A, then by Claim 2, eG(x, V (C)) ≤ 3 and by Claim 1, we have degHx ≥
1
2n − 1 − 3 =

1
2 (n− k)+ 1

2k− 4 ≥ 1
2 |V (H)|.

Suppose x ∈ B. If NG(x) ∩ NG(x)+++ = ∅, then eG(x, V (C)) ≤ 2
5k by Claim 6 and

degHx ≥
1
2
n− 1−

2
5
k =

1
2
(n− k)−

1
2
+

k− 5
10

>
1
2
(n− k)−

1
2
,

which implies degHx ≥
1
2 (n− k) = 1

2 |V (H)|.
Suppose NG(x) ∩ NG(x)+++ ̸= ∅. By Claim 3, eG(x, V (C)) ≤ 1

2k and degHx ≥
1
2n− 1− 1

2k =
1
2 |V (H)| − 1. Let x′ ∈ B− {x}.

Then eG(x′, V (C)) ≤ k+2
3 by Claim 5 and

degHx
′
≥

1
2
n− 1−

k+ 2
3
=

1
2
(n− k)−

1
2
+

k− 7
6

>
1
2
(n− k)−

1
2
,

which implies degHx′ ≥
1
2 (n− k).

By the above observations, if NG(x) ∩ NG(x)+++ = ∅ for every x ∈ B, then δ(H) ≥ 1
2 |V (H)| and H is Hamiltonian

by Dirac’s Theorem. If NG(x0) ∩ NG(x0)+++ ̸= ∅ for some x0 ∈ B, then x0 is the only vertex that may have degree
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less than 1
2 |V (H)|. On the other hand, by Claim 3(2), δ(H) ≥

⌈ 1
2 |V (H)|

⌉
− 1 ≥ 2 since |V (H)| ≥ 5. Hence we have⏐⏐{v ∈ V (H) : degHv < 1

2 |V (H)|
}⏐⏐ ≤ 1 ≤ δ(H)− 1 and H is Hamiltonian by Theorem F. □

Claim 8.

(1) If k ≥ 10, then eG(V (H), V (C)) ≤ max
{ k+2

3 (n− k)+ k−4
6 , 2k

5 (n− k)
}
.

(2) If k = 9, then eG(V (H), V (C)) ≤ 3n− 26.
(3) If k = 8, then eG(V (H), V (C)) ≤ 3n− 23.

Proof. (1) Suppose B contains a vertex x0 with NC (x0) ∩ NC (x0)+++ ̸= ∅. Then Claims 2, 3 and 5 yield

eG(V (H), V (C)) =
∑
x∈A∪B

eG(x, V (C))

=

∑
x∈A

eG(x, V (C))+ eG(x0, V (C))+
∑

x∈B−{x0}

eG(x, V (C))

≤ 3a+
1
2
k+

k+ 2
3

(b− 1) = 3a+
k+ 2
3

b+
k− 4
6

.

Next, suppose NC (x) ∩ NC (x)+++ = ∅ for every x ∈ B. Then Claims 2 and 6 yield

eG(V (H), V (C)) =
∑
x∈A

eG(x, V (C))+
∑
x∈B

eG(x, V (C))

≤ 3a+
2k
5
b.

Since k ≥ 10, k+2
3 > 3 and 2k

5 > 3. Thus, under the constraints of a ≥ 0, b ≥ 0 and a+b = n−k, both 3a+ k+2
3 b+ k−4

6 and
3a+ 2k

5 b take the minimum value at (a, b) = (0, n− k), and we have eG(V (H), V (C)) ≤ max
{ k+2

3 (n− k)+ k−4
6 , 2k

5 (n− k)
}
.

(2) If B contains a vertex x0 withNG(x0)∩NG(x0)+++ ̸= ∅, then Claims 3(1) and 5 yield eG(x0, V (C)) ≤ 4 and eG(x, V (C)) ≤ 3
for each x ∈ B− {x0}. Thus, we have

eG(V (H), V (C)) =
∑
x∈A

eG(x, V (C))+ eG(x0, V (C))+
∑

x∈B−{x0}

eG(x, V (C))

≤ 3a+ 4+ 3(b− 1) = 3(a+ b)+ 1 = 3(n− 9)+ 1 = 3n− 26.

On the other hand, if NG(x) ∩ NG(x)+++ = ∅ for each x ∈ B, then Claim 6 yields eG(x, V (C)) ≤ 3 for each x ∈ B and

eG(V (H), V (C)) =
∑
x∈A

eG(x, V (C))+
∑
x∈B

eG(x, V (C))

≤ 3a+ 3b = 3(a+ b) = 3(n− 9) = 3n− 27 < 3n− 26.

(3) We can follow the same arguments as in the proof of (2) and obtain eG(V (H), V (C)) ≤ 3(n− 8)+ 1 = 3n− 23. □

Claim 9. |E(H)| > 1
4 |V (H)|2.

Proof. Assume |E(H)| ≤ 1
4 |V (H)| = 1

4 (n− k)2. Since C is an induced cycle of order k, we have

|E(G)| = |E(C)| + eG(V (H), V (C))+ |E(H)| ≤ eG(V (H), V (C))+
1
4
(n− k)2 + k.

On the other hand, |E(G)| ≥ 1
4n

2
− n + 16 by the hypothesis. By combining these inequalities, we have eG(V (H), V (C)) +

1
4 (n− k)2 + k ≥ 1

4n
2
− n+ 16, which yields

eG(V (H), V (C)) ≥
k− 2
2

(n− k)+
1
4
k2 − 2k+ 16. (1)

If k ≥ 10, then
k− 2
2

(n− k)+
1
4
k2 − 2k+ 16

=
k+ 2
3

(n− k)+
k− 4
6
+

k− 10
6

(n− k)+
1
4
k(k− 10)+

1
3
k+

50
3

>
k+ 2
3

(n− k)+
k− 4
6
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and
k− 2
2

(n− k)+
1
4
k2 − 2k+ 16 =

2k
5
(n− k)+

k− 10
10

(n− k)+
1
4
k(k− 10)+

1
2
k+ 16

>
2k
5
(n− k).

Hence by Claim 8, eG(V (H), V (C)) < k−2
2 (n− k)+ 1

4k
2
− 2k+ 16, which contradicts (1).

If k = 9, then (1) yields eG(V (H), V (C)) ≥ 7
2n −

53
4 > 3n − 26, contradicting Claim 8(2). If k = 8, then (1) yields

eG(V (H), V (C)) ≥ 3n− 8 > 3n− 23, contradicting Claim 8(3). □

Claim 10. k ≤ 1
2n.

Proof. Assume k > 1
2n. Since n ≥ 17, this implies k ≥ 9.

Since C is an induced k-cycle and H is a graph of order n− k, we have

|E(G)| = |E(C)| + eG(V (H), V (C))+ |E(H)| ≤ k+ eG(V (H), V (C))+
1
2
(n− k)(n− k− 1).

On the other hand, by the hypothesis of the theorem, we have |E(G)| ≥ 1
4n

2
− n + 16. By combining these inequalities, we

obtain eG(V (H), V (C))+ 1
2 (n− k)(n− k− 1)+ k ≥ 1

4n
2
− n+ 16, which implies

eG(V (H), V (C)) ≥ −
1
2
k2 +

(
n−

3
2

)
k−

1
4
n2
−

1
2
n+ 16. (2)

If k = 9, then n = 17 and (2) yields eG(V (H), V (C)) ≥ 137
4 . On the other hand, we have eG(V (H), V (C)) ≤ 25 by Claim 8(2).

This is a contradiction. Therefore, we have k ≥ 10.
By Claim 8(1), eG(V (H), V (C)) ≤ max

{ k+2
3 (n− k)+ k−4

6 , 2k
5 (n− k)

}
. This implies either

k+ 2
3

(n− k)+
k− 4
6
≥ −

1
2
k2 +

(
n−

3
2

)
k−

1
4
n2
−

1
2
n+ 16 (3)

or
2k
5
(n− k) ≥ −

1
2
k2 +

(
n−

3
2

)
k−

1
4
n2
−

1
2
n+ 16. (4)

Assume (3) holds. Then

−
1
6
k2 +

(
2
3
n− 1

)
k−

1
4
n2
−

7
6
n+

50
3
≤ 0. (5)

Let f1(k) = − 1
6k

2
+

( 2
3n− 1

)
k− 1

4n
2
−

7
6n+

50
3 = −

1
6

(
k− (2n− 3)

)2
+

5
12n

2
−

19
6 n+ 109

6 . Since n ≥ 17, n < 2n− 3. Thus,
in the range of 1

2n < k ≤ n, f1(k) is monotone increasing, and

f1(k) > f1

(
1
2
n
)
=

1
24

(n− 20)2 ≥ 0.

This contradicts (5).
Next assume that (4) holds. Then we have

−
1
10

k2 +
(
3
5
n−

3
2

)
k−

1
4
n2
−

1
2
n+ 16 ≤ 0. (6)

Let f2(k) = − 1
10k

2
+

( 3
5n−

3
2

)
k − 1

4n
2
−

1
2n + 16 = − 1

10

(
k − (3n − 15

2 )
)2
+

13
20n

2
− 5n + 173

8 . Since n ≥ 17, n < 3n − 15
2 .

Hence in the range of 1
2n < k ≤ n, f2(k) is monotone increasing, and

f2(k) > f2

(
1
2
n
)
=

1
40

n2
−

5
4
n+ 16 =

1
40

(n− 25)2 +
3
8

> 0.

This contradicts (6). □

We now complete the proof of Theorem 7. By Claim 10, k ≤ 1
2n, which implies |V (H)| = n − k ≥ k ≥ 10. Hence H is

Hamiltonian by Claim 7. We also have |E(H)| > 1
4 |V (H)|2 by Claim 9 and hence H is pancyclic by Theorem A. Then again

since |V (H)| ≥ k, H contains a k-cycle. Hence H contains a chorded k-cycle by Theorem 1, which is also a chorded k-cycle of
G. □
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Fig. 1. The graph H (n)
5 .

4. Concluding remarks

We assume k ≥ 8 in Theorem 7. We do not know whether the same conclusion holds for 6 ≤ k ≤ 7. But we know that
the conclusion does not hold for k = 5. Let n be an even integer nwith n ≥ 30. Let H be a copy of K n

2 , n2
. Pick a pair of distinct

vertices u, v in one partite set of H and pick a vertex w from the other partite set. Delete the edge vw, delete all the edges
incident with u except for the edge uw and add the edge uv. Let H (n)

5 be the resulting graph (see Fig. 1). Then H (n)
5 is a graph

of order nwith |E(H (n)
5 )| = 1

4n
2
−

1
2n+1 ≥ 1

4n
2
−n+16, and it contains a 5-cycle, but it does not contain a chorded 5-cycle.

For k = 4, no subgraph ofK n
2 , n2

contains a chorded 4-cycle.Moreover, even ifwe restrict ourselves to non-bipartite graphs,
the conclusion of Theorem 7 does not hold. Let H (n)

4 = H (n)
5 + vw. Then H (n)

4 is not bipartite, |E(H (n)
4 )| ≥ 1

4n
2
−

1
2n + 2 ≥

1
4n

2
− n+ 16 if n ≥ 28, H (n)

4 contains a 4-cycle, but it does not contain a chorded 4-cycle.
We do not know the sharpness of Theorem 7.We actually suspect that we can further relax the density condition. But we

currently do not know how to improve it.
One of the referees suggestswe investigate the relationship between the theme of this paper and the famous Thomassen’s

Chord Conjecture.

Conjecture 2 (Thomassen’s Chord Conjecture [1,9]). Every longest cycle in a 3-connected graph is a chorded cycle.

The results in this paper do not seem to contribute to the solution of this conjecture. The assumption of Theorem 1makes
the graph G of order n have average degree at least 1

2n, while there are infinitely many 3-regular 3-connected graphs. There
is a large gap on the average degree between the classes of graphs considered in this paper and Conjecture 2. (Note that
Conjecture 2 has been solved for 3-regular 3-connected graphs by Thomassen [10].)

On the other hand, in Theorem 7, we slightly relax the density condition of Theorem 1 by restricting ourselves to cycles
of order at least 8. By further pursuing this line of research, we may be able to obtain some hint to tackle Conjecture 2. In
particular, if we obtain a lower bound on the density which is linear in the order of the graph, then it could be a partial
answer to the conjecture. However, we currently do not know whether this is a feasible approach.

Thomassen [11] has recently proved that every 3-connected graph of minimum degree at least 4 contains a longest cycle
which is also a chorded cycle.
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