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a b s t r a c t

This paper considers a degree sum condition sufficient to imply the existence of k vertex-
disjoint cycles in a graph G. For an integer t ≥ 1, let σt (G) be the smallest sum of degrees of
t independent vertices of G. We prove that if G has order at least 7k+1 and σ4(G) ≥ 8k−3,
with k ≥ 2, then G contains k vertex-disjoint cycles. We also show that the degree sum
condition on σ4(G) is sharp and conjecture a degree sum condition on σt (G) sufficient to
imply G contains k vertex-disjoint cycles for k ≥ 2.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs are simple. Let G be a graph. For u ∈ V (G), the set of neighbors of u in G is denoted by NG(u), and
we denote dG(u) = |NG(u)|. LetH be a subgraph of G, and let S ⊆ V (G). For u ∈ V (G)−V (H), we denoteNH (u) = NG(u)∩V (H)
and dH (u) = |NH (u)|. For u ∈ V (G) − S, NS(u) = NG(u) ∩ S. Furthermore, NG(S) = ∪w∈SNG(w) and NH (S) = NG(S) ∩ V (H).
Let A, B be two disjoint subgraphs of G. Then NG(A) = NG(V (A)) and NB(A) = NG(A)∩ V (B). The subgraph of G induced by S is
denoted by ⟨S⟩. And let G− S = ⟨V (G)− S⟩ and G− H = ⟨V (G)− V (H)⟩. If S = {u}, then we write G− u for G− S. If there is
no fear of confusion, then we use the same symbol for a graph and its vertex set. For graphs G1 and G2, G1 ∪ G2 denotes the
union of G1 and G2, G1 +G2 denotes the join of G1 and G2, andmG denotes the union ofm copies of G. If Q is a path or a cycle
with a given orientation and x ∈ V (Q ), then x+ denotes the first successor of x on Q and x− denotes the first predecessor of
x on Q . If x, y ∈ V (Q ), then Q [x, y] denotes the path of Q from x to y (including x and y) in the given direction. The notation
Q−

[x, y] denotes the path from y to x in the opposite direction. We also write Q (x, y] = Q [x+, y], Q [x, y) = Q [x, y−
] and

Q (x, y) = Q [x+, y−
]. If Q is a path (or a cycle), say Q = x1, x2, . . . , xt (, x1), then we assume that an orientation of Q is given

from x1 to xt . We say that xi precedes xj on Q if i ≤ j. For u, v ∈ V (Q ), we define the path Q±
[u, v] as follows; if u precedes

v on Q , then Q±
[u, v] = Q [u, v], and if v precedes u on Q , then Q±

[u, v] = Q−
[u, v]. If T is a tree with at least one branch

and x, y ∈ V (T ), where a branch vertex of a tree is a vertex of degree at least three, then we denote the path from x to y as
T [x, y]. For X ⊆ V (G), let dH (X) =

∑
x∈XdH (x). If H = G, then we denote dG(X) = dH (X). For a graph G, |G| is the order of G,

δ(G) is the minimum degree of G, ω(G) is the number of components of G, α(G) is the independence number of G. If G is one
vertex, that is, V (G) = {x}, then we simply write x instead of G. For an integer t ≥ 1, let

σt (G) = min

{∑
v∈X

dG(v) | X is an independent set of Gwith |X | = t.

}
,

and σt (G) = ∞ when α(G) < t . Note that if t = 1, then σ1(G) = δ(G). For an integer r ≥ 1 and two disjoint subgraphs A, B
of G, we denote by (d1, d2, . . . , dr ) a degree sequence from A to B such that dB(vi) ≥ di and vi ∈ V (A) for each 1 ≤ i ≤ r . In
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this paper, since it is sufficient to consider the case of equality in the above inequality, when we write (d1, d2, . . . , dr ), we
assume that dB(vi) = di for each 1 ≤ i ≤ r . For X, Y ⊆ V (G), E(X, Y ) denote the set of edges of G joining a vertex in X and
a vertex in Y . For vertex-disjoint subgraphs H1,H2 of G, we simply write E(H1,H2) instead of E(V (H1), V (H2)). A forest is a
graph whose components are trees, and a leaf is a vertex of a forest whose degree is at most one. A cycle of length ℓ is called
an ℓ-cycle. For terminology and notation not defined here, see [4].

The study of cycles in graphs is an important and rich area. In this paper, ‘‘disjoint’’ means ‘‘vertex-disjoint’’. One of the
more interesting questions is to find conditions that insure the existence of k (k ≥ 2) disjoint cycles. A number of such results
exist. Corrádi and Hajnal [1] proved that if a graph G has order at least 3k and δ(G) ≥ 2k, then G contains k disjoint cycles.
Justesen [5] proved the same result from the condition σ2(G) ≥ 4k. Enomoto [2] and Wang [6] independently improved
Justesen’s bound to σ2(G) ≥ 4k− 1. Fujita et al. [3] proved that if |G| ≥ 3k+ 2 and σ3(G) ≥ 6k− 2, then G contains k disjoint
cycles. The purpose of this paper is to further extend these results. We also conjecture the following:

Conjecture. Let G be a graph of sufficiently large order. If σt (G) ≥ 2kt − (t − 1) for any two integers k ≥ 2 and t ≥ 1, then G
contains k disjoint cycles.

The cases for t = 1, 2, 3 have already been shown. We add to the evidence for this conjecture by showing the following:

Theorem 1. Let G be a graph of order n ≥ 7k + 1 for an integer k ≥ 2. If σ4(G) ≥ 8k − 3, then G contains k disjoint cycles.

The degree sum condition conjectured above would be sharp. And in particular, the degree sum condition of Theorem 1
is sharp. Sharpness is given by G = K2k−1 +mK1. The only independent vertices in G are those inmK1. Each of these vertices
has degree 2k− 1. Thus, for any t with 1 ≤ t ≤ m, σt (G) = t(2k− 1) = 2kt − t , and G fails to contain k disjoint cycles as any
such cycle must contain two vertices of K2k−1.

2. Lemmas

In the proof of Theorem 1, we make use of the following Lemmas A, B and C that were proved by Fujita, Matsumura,
Tsugaki and Yamashita in [3]. Proofs omitted in Chapter 2 appear after the proof of Theorem 1, that is, in Chapter 4.

Let C1, . . . , Cr be r disjoint cycles of a graph G. If C ′

1, . . . , C
′
r are r disjoint cycles of G and |∪

r
i=1V (C ′

i )| < |∪
r
i=1V (Ci)|, then

we call C ′

1, . . . , C
′
r shorter cycles than C1, . . . , Cr . We also call {C1, . . . , Cr} minimal if G does not contain shorter r disjoint

cycles than C1, . . . , Cr .

Lemma A (Fujita et al. [3]). Let r be a positive integer and C1, . . . , Cr be r minimal disjoint cycles of a graph G. Then dCi (x) ≤ 3
for any x ∈ V (G) − ∪

r
i=1V (Ci) and for any 1 ≤ i ≤ r. Furthermore, dCi (x) = 3 implies |Ci| = 3, and dCi (x) = 2 implies |Ci| ≤ 4.

Lemma B (Fujita et al. [3]). Suppose that F is a forest with at least two components and C is a triangle. Let x1, x2, x3 be leaves of
F from at least two components. If dC ({x1, x2, x3}) ≥ 7, then there exist two disjoint cycles in ⟨F ∪ C⟩ or there exists a triangle C ′

in ⟨F ∪ C⟩ such that ω(⟨F ∪ C⟩ − C ′) < ω(F ).

Lemma 1. Suppose that F is a forest with at least two components and C is a triangle. Let x1, x2, x3, x4 be leaves of F from at least
two components. If dC ({x1, x2, x3, x4}) ≥ 9, then there exist two disjoint cycles in ⟨F ∪ C⟩ or there exists a triangle C ′ in ⟨F ∪ C⟩

such that ω(⟨F ∪ C⟩ − C ′) < ω(F ).

Lemma C (Fujita et al. [3]). Let C be a cycle and T be a tree with three leaves x1, x2, x3. If dC ({x1, x2, x3}) ≥ 7, then there exist
two disjoint cycles in ⟨C ∪ T ⟩ or there exists a cycle C ′ in ⟨C ∪ T ⟩ such that |C ′

| < |C |.

Lemma 2. Let C be a cycle and T be a tree with four leaves x1, x2, x3, x4. If dC ({x1, x2, x3, x4}) ≥ 9, then there exist two disjoint
cycles in ⟨C ∪ T ⟩ or there exists a cycle C ′ in ⟨C ∪ T ⟩ such that |C ′

| < |C |.

Proof. Let X = {x1, x2, x3, x4}. If dC (xi0 ) ≤ 2 for some 1 ≤ i0 ≤ 4, then dC (X −{xi0}) ≥ 7, and we apply Lemma C to X −{xi0}.
Otherwise, dC (xi) ≥ 3 for each 1 ≤ i ≤ 4, and we apply Lemma C to any three vertices in X . □

Lemma 3. Let G be a graph satisfying the assumption of Theorem 1, and let C1, . . . , Ck−1 be k − 1 minimal disjoint cycles of G.
Suppose that there exists a tree T with at least four leaves, which is a component of G− ∪

k−1
i=1 Ci. Then G contains k disjoint cycles.

Proof. LetC = ∪
k−1
i=1 Ci, and letX = {x1, x2, x3, x4} be a set of leaves of T . SinceX is an independent set, dC (X) ≥ (8k−3)−4 =

8(k − 1) + 1. Then there exists a cycle Ci for some 1 ≤ i ≤ k − 1 such that dCi (X) ≥ 9. Since {C1, . . . , Ck−1} is minimal, there
exist two disjoint cycles in ⟨Ci ∪ T ⟩ by Lemma 2. Thus G contains k disjoint cycles. □

Lemma 4. Let G be a graph satisfying the assumption of Theorem 1, and let C1, . . . , Ck−1 be k − 1 minimal disjoint cycles of G.
Suppose that H = G − ∪

k−1
i=1 Ci has at least two components at least one of which is a tree T with at least three leaves. Then there

exist two disjoint cycles in ⟨Ci∪T ⟩ for some 1 ≤ i ≤ k−1 or there exists a triangle C in ⟨H∪Ci⟩ such that ω(⟨H∪Ci⟩−C) < ω(H).
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Proof. Let C = ∪
k−1
i=1 Ci. Let x1, x2, x3 be three leaves of the tree T , and let x4 be a leaf from another component, and

X = {x1, x2, x3, x4}. Since X is an independent set, dC (X) ≥ (8k − 3) − 4 = 8(k − 1) + 1. Then there exists a cycle Ci
for some 1 ≤ i ≤ k − 1 such that dCi (X) ≥ 9. If dCi (x4) ≤ 2, then dC ({x1, x2, x3}) ≥ 7. By Lemma C, there exist two disjoint
cycles in ⟨Ci ∪ T ⟩ or there exists a cycle C in ⟨Ci ∪ T ⟩ such that |C | < |Ci|. Since {C1, . . . , Ck−1} is minimal, the lemma holds.
If dCi (x4) ≥ 3, then Ci is a triangle by Lemma A. Thus the lemma holds by Lemma 1. □

Lemma 5. Let C1 and C2 be two disjoint cycles such that |C2| ≥ 6. Suppose that C2 contains vertices with at least one of the
following degree sequences from C2 to C1. Then ⟨C1 ∪C2⟩ contains two disjoint cycles C ′

1 and C ′

2 such that |C ′

1|+ |C ′

2| < |C1|+ |C2|.
(i) (2, 2, 2, 2, 2)
(ii) (5, 3)
(iii) (3, 1, 1, 1, 1, 1)
(iv) (3, 2, 1, 1)
(v) (3, 3, 1)

Lemma 6. Let H be a graph with two components H1,H2, where H1 = x1, . . . , xs (s ≥ 1) is a path and H2 = y1, . . . , yt (t ≥ 3)
is a path. Let W = {x1, y1, yi, yt} for any 2 ≤ i ≤ t − 1, and let C be a triangle. If there exists a degree sequence (3, 3, 2, 0) or
(3, 3, 1, 1) from W to C, then ⟨H ∪ C⟩ contains two disjoint cycles.

3. Proof of Theorem 1

Suppose that the theorem does not hold. Let G be an edge-maximal counter-example. If G is a complete graph, then G
contains k disjoint cycles. Thus wemay assume that G is not a complete graph. Let xy ̸∈ E(G) for some x, y ∈ V (G), and define
G′

= G + xy. Since G′ is not a counter-example by the maximality of G, G′ contains k disjoint cycles C1, . . . , Ck. Without loss
of generality, we may assume that xy ̸∈ ∪

k−1
i=1 E(Ci), that is, G contains k − 1 disjoint cycles C1, . . . , Ck−1. Let C = ∪

k−1
i=1 Ci and

H = G − C . Choose C1, . . . , Ck−1 such that
(1)

∑k−1
i=1 |Ci| is minimal, and

(2) subject to (1), ω(H) is minimal.
Note that any cycle C in C has no chords by (1). Clearly, H is a forest, otherwise, since H contains a cycle, G contains k

disjoint cycles, a contradiction. IfH contains at least two components at least one of which is a tree with at least three leaves,
then by Lemma 4, G contains k disjoint cycles, or contradicting (2). Thus if H contains at least two components, then H must
be a collection of paths. If H has only one component, then it is a tree. IfH is a tree with at least four leaves, then the theorem
holds by Lemma 3. Thus if H has only one component, then H is a tree with at most three leaves.

Now, we consider two cases on |H|.

Case 1. |H| ≤ 7.
Let C be a longest cycle in C . Suppose that |C | ≤ 7. Then |C ′

| ≤ 7 for any cycle C ′ in C , and |C | ≤ 7(k − 1). Since
|G| ≥ 7k + 1, |H| = |G| − |C | ≥ (7k + 1) − 7(k − 1) = 8, contradicting the assumption of this case. Thus |C | ≥ 8. Let
|C | = 4t + r , t ≥ 2 and 0 ≤ r ≤ 3. Then there exist at least t disjoint independent sets in V (C) each of which has four
vertices. By (1) and |C | ≥ 8, dC (v) ≤ 1 for any v ∈ V (H). Thus |E(H, C)| ≤ 7.

Suppose that k = 2. Then C has only one cycle C , and H = G− C . Since |C | ≥ 8, C contains at least two independent sets
each ofwhich has four vertices. Let X1 and X2 be such sets. Since dC (Xi) = 8 for each i ∈ {1, 2}, dH (Xi) ≥ (8k−3)−8 = 8k−11.
Then dH (X1 ∪ X2) ≥ 16k − 22 ≥ 10, since k ≥ 2. Thus |E(C,H)| ≥ 10, a contradiction.

Suppose that k ≥ 3.We claim that |E(C, C ′)| ≥ 8t for some cycle C ′ in C −C . Note that each of t disjoint independent sets
in V (C) sends at least (8k− 3)− 8 = 8k− 11 edges out of C . Since |E(C,H)| ≤ 7 and t ≥ 2, |E(C, C − C)| ≥ t(8k− 11)− 7 >
8t(k− 2). Thus the claim holds. Since |C | = 4t + r ≤ 4t + 3 and |E(C, C ′)|/|C | ≥ 8t/(4t + 3) > 8t(4t + 4) = 2t/(t + 1) > 1,
dC ′ (v) ≥ 2 for some v ∈ V (C).

Suppose that max{dC ′ (v)|v ∈ V (C)} = 2. Let X = {v ∈ V (C)|dC ′ (v) ≤ 1} and Y = V (C) − X . Then noting that t ≥ 2 and
r ≤ 3,

8t ≤ |E(C, C ′)| ≤ |X | + 2|Y | = (|C | − |Y |) + 2|Y | = |C | + |Y |

⇒ |Y | ≥ 8t − |C | = 8t − (4t + r) = 4t − r
≥ 8 − 3 = 5.

Thus we have the degree sequence (2, 2, 2, 2, 2) from C to C ′. By Lemma 5(i), ⟨C ∪ C ′
⟩ contains two shorter disjoint cycles,

contradicting (1).
Suppose that h = max{dC ′ (v)|v ∈ V (C)} ≥ 3. Let dC ′ (v∗) = h for some v∗

∈ V (C). Since |C ′
| ≤ |C | = 4t + r by the choice

of C , dC ′ (v∗) ≤ |C ′
| ≤ 4t + r . Then since t ≥ 2 and r ≤ 3, |E(C − v∗, C ′)| ≥ 8t − (4t + r) = 4t − r ≥ 5. This implies that

NC ′ (C − v∗) ̸= ∅. Let Z = {v ∈ V (C)|NC ′ (v) ̸= ∅}. Then |Z | ≥ 2.
Suppose that |Z | = 2. Then dC ′ (v) ≥ 5 for any v ∈ Z by the above observations. By Lemma 5(ii), ⟨C ∪ C ′

⟩ contains two
shorter disjoint cycles, contradicting (1).

Suppose that |Z | ≥ 3. Since |E(C − v∗, C ′)| ≥ 5, we may assume that the minimum degree sequence S from vertices of C
to C ′ is at least one of (h, 4, 1), (h, 3, 2), (h, 3, 1, 1), (h, 2, 2, 1), (h, 2, 1, 1, 1), or (h, 1, 1, 1, 1, 1), where by the definition of h,
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if S = (h, 4, 1), then h ≥ 4, and if S is the other degree sequence, then h ≥ 3. If S = (h, 4, 1) or (h, 3, 2), then by Lemma 5(v),
⟨C ∪ C ′

⟩ contains two shorter disjoint cycles. If S = (h, 3, 1, 1), (h, 2, 2, 1) or (h, 2, 1, 1, 1), then by Lemma 5(iv), ⟨C ∪ C ′
⟩

contains two shorter disjoint cycles. If S = (h, 1, 1, 1, 1, 1), then by Lemma 5(iii), ⟨C ∪ C ′
⟩ contains two shorter disjoint

cycles.

Case 2. |H| ≥ 8.

Claim 1. H is connected.

Proof. Suppose to the contrary that H is disconnected. Then note that H is a collection of paths. Suppose that X is an
independent set that consists of four leaves from at least two components in H such that dH (X) ≤ 4. Then dC (X) ≥

(8k − 3) − 4 = 8(k − 1) + 1, and dCi0 (X) ≥ 9 for some 1 ≤ i0 ≤ k − 1. Thus dCi0 (x) ≥ 3 for some x ∈ X , and |Ci0 | = 3 by
Lemma A. By Lemma 1 and (2), ⟨H ∪ Ci0⟩ contains two disjoint cycles, and G contains k disjoint cycles, a contradiction. Thus
H does not contain such an independent set.

Now, we consider three cases on ω(H).

Case 1. ω(H) ≥ 4.
We take four leaves x1, x2, x3, x4, one from each component of H . Then X = {x1, x2, x3, x4} is an independent set such

that dH (X) ≤ 4, a contradiction.

Case 2. ω(H) = 3.
We take three leaves x1, x2, x3, one from each component ofH . Since |H| ≥ 8, some component ofH , sayH1, has the order

at least 3. Now, we take the other leaf from H1, call it x4. Then X = {x1, x2, x3, x4} is an independent set such that dH (X) ≤ 4,
a contradiction.

Case 3. ω(H) = 2.
Let H1,H2 be two distinct components in H . Without loss of generality, we may assume that |H1| ≤ |H2|. Suppose that

|H1| ≥ 3. Then we take two leaves from each component of H , yielding a set X of four independent vertices such that
dH (X) = 4, a contradiction. Suppose that |H1| ∈ {1, 2}. Since |H| ≥ 8, |H2| ≥ 6. LetH1 = x1, xs (s ∈ {1, 2}),H2 = y1, y2, . . . , yt
(t ≥ 6), and let W = {x1, y1, y3, yt}. Since W is an independent set and dH (W ) ≤ 5, dC (W ) ≥ (8k − 3) − 5 = 8(k − 1).
Then there is a cycle C0 in C such that dC0 (W ) ≥ 8. By Lemma A, dC0 (u) ≤ 3 for any u ∈ W , and |C0| ≤ 4. Then the minimum
possible degree sequence S from W to C0 is (3, 3, 2, 0), (3, 3, 1, 1), (3, 2, 2, 1) or (2, 2, 2, 2).

Suppose that |C0| = 4. Let C0 = v1, v2, v3, v4, v1. Then dC0 (u) ≤ 2 for any u ∈ W by Lemma A. Thus we must have
degree sequence (2, 2, 2, 2). If some u ∈ W has consecutive neighbors in C0, then u and these two neighbors form a 3-
cycle, contradicting (1). Thus for any u ∈ W , its neighbors in C0 are not consecutive. It follows that for any u ∈ W , either
NC0 (u) = {v1, v3} orNC0 (u) = {v2, v4}.Without loss of generality, wemay assume thatNC0 (x1) = {v1, v3}. If yi0 , yj0 with some
i0, j0 ∈ {1, 3, t} and i0 < j0 do not share neighbors in C0 with x1, then we can easily find two disjoint cycles, as follows. Since
NC0 (ym) = {v2, v4} for each m ∈ {i0, j0}, H2[yi0 , yj0 ], v4, yi0 is a cycle, and x1, v3, v2, v1, x1 is the other disjoint cycle. Thus at
most one vertex in {y1, y3, yt} does not share neighbors in C0 with x1. Suppose that some vertex in {y1, y3, yt} does not share
neighbors in C0 with x1. First, suppose that such a vertex is y1, that is, NC0 (y1) = {v2, v4}. Then y1, v4, v3, v2, y1 is a cycle.
Since v1 ∈ NC0 (yi) for each i ∈ {3, t}, H2[y3, yt ], v1, y3 is the other disjoint cycle. If NC0 (yt ) = {v2, v4}, then yt , v4, v3, v2, yt
and H2[y1, y3], v1, y1 are two disjoint cycles. Suppose that NC0 (y3) = {v2, v4}. Then we form a 4-cycle C ′

0 = y3, v4, v3, v2, y3.
Since v1 ∈ NC0 (yi) for each i ∈ {1, t}, ⟨H∪C0⟩−C ′

0 is connected, contradicting (2). ThusNC0 (x1) = NC0 (yi) for each i ∈ {1, 3, t}.
Then C ′

0 = H2[y1, y3], v1, y1 is a 4-cycle. Since v3 ∈ NC0 (u) for each u ∈ {x1, yt}, ⟨H ∪ C0⟩ − C ′

0 is connected, contradicting
(2). Thus if there exists a 4-cycle in C , we get a contradiction.

Suppose that |C0| = 3. Let C0 = v1, v2, v3, v1.

Subcase 1. S = (3, 3, 2, 0) or S = (3, 3, 1, 1).
By Lemma 6, we can find two disjoint cycles in ⟨C0 ∪ H⟩, a contradiction.

Subcase 2. S = (3, 2, 2, 1).
If dC0 (y3) = 1, then since {x1, y1, yt} satisfies the conditions of Lemma B, we get a contradiction. Thus dC0 (y3) ∈ {2, 3}.
First, suppose that dC0 (x1) = 1. Let v1 ∈ NC0 (x1). Note that dC0 (yi) ≥ 2 for each i ∈ {1, 3, t}. If v1 ̸∈ NC0 (yi0 ) for some

i0 ∈ {1, t}, then dC0 (yi0 ) = 2, and C ′

0 = yi0 , v3, v2, yi0 is a 3-cycle. Since dC0 (yi1 ) = 3 for some i1 ∈ {1, 3, t}−{i0}, v1 ∈ NC0 (yi1 ).
Then ⟨C0 ∪ H⟩ − C ′

0 is connected, contradicting (2) (see Fig. 1). Thus v1 ∈ NC0 (yi) for each i ∈ {1, t}. Since dC0 (yi2 ) = 3 for
some i2 ∈ {1, 3, t}, C ′′

0 = yi2 , v3, v2, yi2 is a 3-cycle. Then ⟨C0 ∪ H⟩ − C ′′

0 is connected, contradicting (2).
Next, suppose that dC0 (x1) = 2.Without loss of generality,wemay assume that v1, v2 ∈ NC0 (x1). Suppose that dC0 (y3) = 2.

Since |C0| = 3, we may assume that v1 ∈ NC0 (x1)∩ NC0 (y3). Since dC0 (yj0 ) = 3 for some j0 ∈ {1, t}, C ′

0 = yj0 , v3, v2, yj0 is a 3-
cycle. Then ⟨C0∪H⟩−C ′

0 is connected, contradicting (2). Suppose that dC0 (y3) = 3. If v3 ∈ NC0 (ym0 ) for somem0 ∈ {1, t}, then
H±

2 [y3, ym0 ], v3, y3 and x1, v2, v1, x1 are two disjoint cycles. Thus v3 ̸∈ NC0 (ym) for eachm ∈ {1, t}, that is,NC0 (ym) ⊆ {v1, v2}.
Since one of y1 and yt has the degree 1 and the other has the degree 2, without loss of generality, we may assume that
v1 ∈ NC0 (y1) ∩ NC0 (yt ). Since dC0 (y3) = 3, C ′′

0 = y3, v3, v2, y3 is a 3-cycle, and ⟨C0 ∪ H⟩ − C ′′

0 is connected, contradicting (2)
(see Fig. 2).
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Fig. 1. The case when i0 = 1 and i1 = 3.

Fig. 2. The case when v1 ∈ NC0 (y1) ∩ NC0 (yt ).

Finally, suppose that dC0 (x1) = 3. Since dC0 (yi0 ) = dC0 (yj0 ) = 2 for some i0, j0 ∈ {1, 3, t} with i0 < j0, we may assume
that v1 ∈ NC0 (yi0 ) ∩ NC0 (yj0 ). Then H2[yi0 , yj0 ], v1, yi0 is a cycle. Since dC0 (x1) = 3, x1, v3, v2, x1 is the other disjoint cycle.

Subcase 3. S = (2, 2, 2, 2).
Without loss of generality, we may assume that NC0 (x1) = {v1, v2}. If v3 ∈ NC0 (yi0 ) ∩ NC0 (yj0 ) for some i0, j0 ∈ {1, 3, t}

with i0 < j0, then H2[yi0 , yj0 ], v3, yi0 and x1, v2, v1, x1 are two disjoint cycles. Thus at most one in {y1, y3, yt} can be adjacent
to v3. Suppose that v3 ∈ NC0 (yi0 ) for some i0 ∈ {1, 3, t}. Since dC0 (yi0 ) = 2, we may assume that v2 ∈ NC0 (yi0 ). Then
C ′

0 = yi0 , v3, v2, yi0 is a 3-cycle. For each i ∈ {1, 3, t}− {i0}, NC0 (yi) = {v1, v2}. Then ⟨C0 ∪H⟩−C ′

0 is connected, contradicting
(2). Thus v3 ̸∈ NC0 (yi) for each i ∈ {1, 3, t}, that is,NC0 (yi) = {v1, v2}. ThenC ′′

0 = H2[y1, y3], v2, y1 is a 3-cycle, and ⟨C0∪H⟩−C ′′

0
is connected, contradicting (2). This completes the proof of Claim 1. □

Claim 2. H is a path.

Proof. Suppose that H is not a path. Then recall that H is a tree with one branch vertex of degree 3 in H . Then H has three
leaves, say x1, x2, x3. Removing the branch vertex inH , there exist three disjoint paths each of which has one in {x1, x2, x3} as
an endpoint. Also, some path has a length at least two, say P , since there exist at least seven vertices distributed over three
paths. Without loss of generality, we may assume that x1 is one of the endpoints of P , and let the other endpoint be x4. Let
X = {x1, x2, x3, x4} (see Fig. 3). Then X is an independent set. Since dH (X) = 5, dC (X) ≥ (8k − 3) − 5 = 8(k − 1). Thus
there exists a cycle Ci0 in C such that dCi0 (X) ≥ 8 for some 1 ≤ i0 ≤ k − 1. Then dCi0 (x) ≥ 2 for some x ∈ X . By Lemma A,
dCi0 (x) ≤ 3 and |Ci0 | ≤ 4.

Case 1. |Ci0 | = 3.
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Fig. 3. The graph H and an independent set X = {x1, x2, x3, x4}.

LetCi0 = v1, v2, v3, v1. Suppose that dCi0 (x) = 2 for each x ∈ X . Let v1, v2 ∈ NCi0
(x1). Since |Ci0 | = 3,NCi0

(x2)∩NCi0
(x3) ̸= ∅.

If v3 ∈ NCi0
(x2) ∩ NCi0

(x3), then H[x2, x3], v3, x2 and x1, v2, v1, x1 are two disjoint cycles. Thus without loss of generality, we
may assume that v1 ∈ NCi0

(x2)∩NCi0
(x3). Then H[x2, x3], v1, x2 is a cycle. Since dCi0 (x4) = 2, NCi0−v1 (x4) ̸= ∅. If v2 ∈ NCi0

(x4),
then H[x1, x4], v2, x1 is the other disjoint cycle, and if v3 ∈ NCi0

(x4), then H[x1, x4], v3, v2, x1 is the other disjoint cycle. Thus
there exists at least one vertex x ∈ X such that dCi0 (x) = 3. Then the minimum possible degree sequences from X to Ci0 are
(3, 3, 2, 0), (3, 3, 1, 1) or (3, 2, 2, 1).

We claim that if there exists a degree sequence (3, 3, 1, 0) from X to Ci0 , then there exist two disjoint cycles in ⟨H ∪ Ci0⟩.
First, suppose that dCi0 (xj0 ) = 1 for some 1 ≤ j0 ≤ 3. Let v1 ∈ NCi0

(xj0 ). If dCi0 (x4) = 0, then since dCi0 (xm) = 3 for each
m ∈ {1, 2, 3} − {j0}, H[xj0 , xm], v1, xj0 is a cycle. Since dCi0 (xm′ ) = 3 for m′

∈ {1, 2, 3} − {j0,m}, xm′ , v3, v2, xm′ is the other
disjoint cycle. If dCi0 (x4) = 3, then H[xj0 , x4], v1, xj0 is a cycle, and since dCi0 (xm0 ) = 3 for some m0 ∈ {1, 2, 3} − {j0},
xm0 , v3, v2, xm0 is the other disjoint cycle. Next, suppose that dCi0 (x4) = 1. Let v1 ∈ NCi0

(x4). Then dCi0 (xm1 ) = 3 and
dCi0 (xm2 ) = 3 for some 1 ≤ m1 < m2 ≤ 3, and H[xm1 , x4], v1, xm1 and xm2 , v3, v2, xm2 are two disjoint cycles.

Thus by the claim, we have only to consider the degree sequence (3, 2, 2, 1). If the degree 3 vertex does not lie on the path
connecting the degree 2 vertices, then since the two vertices with degree 2 must have a common neighbor by |Ci0 | = 3,
we can easily find two disjoint cycles. Thus the degree 3 vertex does lie on the path connecting the two vertices with
degree 2. Then dCi0 (x4) = 3, dCi0 (x1) = 2, and we may assume that dCi0 (x2) = 1 and dCi0 (x3) = 2. Let v1 ∈ NCi0

(x2).
Since |NCi0

(x1) ∩ NCi0
(x4)| = 2, there exists vh0 ∈ NCi0

(x1) ∩ NCi0
(x4) for some h0 ∈ {2, 3}. Then H[x1, x4], vh0 , x1 is a cycle.

Since dCi0 (x3) = 2, there exists vh1 ∈ NCi0
(x3) for some h1 ∈ {1, 2, 3} − {h0}. If h1 = 1, then H[x2, x3], v1, x2 is the other

disjoint cycle, and if h1 ∈ {2, 3}, then H[x2, x3], vh1 , v1, x2 is the other disjoint cycle.

Case 2. |Ci0 | = 4.
Let Ci0 = v1, v2, v3, v4, v1. By Lemma A, dCi0 (x) ≤ 2 for each x ∈ X . Since dCi0 (X) ≥ 8, dCi0 (x) = 2 for each x ∈ X . Any

vertex in X does not have consecutive neighbors in Ci0 , otherwise, we can immediately find a 3-cycle, contradicting (1). Thus
for each x ∈ X , either NCi0

(x) = {v1, v3} or NCi0
(x) = {v2, v4}.

Subcase 1. All four vertices in X have the same two neighbors in Ci0 .
We may assume that NCi0

(X) = {v1, v3}. Then H[x1, x4], v1, x1 and H[x2, x3], v3, x2 are two disjoint cycles.

Subcase 2. Three vertices in X have the same two neighbors in Ci0 .
Suppose that x1, x4 have the same two neighbors in Ci0 . Then we may assume that v1 ∈ NCi0

(x1) ∩ NCi0
(x4), and

H[x1, x4], v1, x1 is a cycle. Since dCi0 (xj) = 2 for each j ∈ {2, 3}, NCi0−v1 (xj) ̸= ∅. Then ⟨H[x2, x3] ∪ (Ci0 − v1)⟩ contains the
other disjoint cycle. Suppose that x1, x4 do not have the same two neighbors in Ci0 . Since x2, x3 have the same two neighbors
in Ci0 , we repeat the above arguments, replacing x1, x4 with x2, x3.

Subcase 3. Two vertices of X have the same two neighbors in Ci0 , and the other two vertices of X have the same two neighbors,
different from the neighbors of the first two.

Suppose that x1, x4 have the same two neighbors. We may assume that v1 ∈ NCi0
(x1) ∩ NCi0

(x4). Then H[x1, x4], v1, x1
is a cycle. Since x2, x3 have the same two neighbors, different from the neighbors of x1 and x4, H[x2, x3], v2, x2 is the other
disjoint cycle. Suppose that x1, x4 have different neighbors. We may assume that v1 ∈ NCi0

(x1) and v2 ∈ NCi0
(x4). Then

H[x1, x4], v2, v1, x1 is a cycle. Since x2, x3 have the neighbors, different from v1, v2, ⟨H[x2, x3] ∪ {v3, v4}⟩ contains the other
disjoint cycle. □

Since H is a path by Claim 2, let H = x1, x2, . . . , xt (t ≥ 8). Let X = {x1, x3, x5, xt}. Then X is an independent set with
dH (X) = 6, and dC (X) ≥ (8k − 3) − 6 = 8k − 9 ≥ 7(k − 1), since k ≥ 2. Thus either dC0 (X) ≥ 8 for some cycle C0 in C , or
dC (X) = 7 for every cycle C in C . If dC (X) ≥ 8 for some cycle C in C , then we have the minimum possible degree sequences
(3, 3, 2, 0), (3, 3, 1, 1), (3, 2, 2, 1) or (2, 2, 2, 2) from X to C . If dC (X) = 7 for some cycle C in C , then we have the minimum
possible degree sequences (3, 3, 1, 0), (3, 2, 1, 1), (3, 2, 2, 0) or (2, 2, 2, 1) from X to C .

Subclaim 1. If there exists a degree sequence (3, 3, 1, 0) from X to C, then there exist two disjoint cycles in ⟨H ∪ C⟩.

Proof. By Lemma A, |C | = 3. Let C = v1, v2, v3, v1. We may assume that dC (xi0 ) = 1 for some i0 ∈ {1, 3}, otherwise,
i0 ∈ {5, t}, and we may argue in a similar manner from the other end of the path H . Let v1 ∈ NC (xi0 ). First, suppose that
i0 = 1, that is, dC (x1) = 1. Then dC (xj1 ) = dC (xj2 ) = 3 for some j1, j2 ∈ {3, 5, t} with j1 < j2. Thus H[x1, xj1 ], v1, x1 and
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xj2 , v3, v2, xj2 are two disjoint cycles. Next, suppose that i0 = 3, that is, dC (x3) = 1. If dC (x1) = 0, then since dC (xj) = 3 for
each j ∈ {5, t}, x3, x4, x5, v1, x3 and xt , v3, v2, xt are two disjoint cycles. If dC (x1) = 3, then x1, x2, x3, v1, x1 is a cycle, and
since dC (xj0 ) = 3 for some j0 ∈ {5, t}, xj0 , v3, v2, xj0 is the other disjoint cycle. □

Subclaim 2. If there exists a degree sequence (2, 2, 2, 1) from X to C, then there exist two disjoint cycles in ⟨H ∪ C⟩.

Proof. By Lemma A, |C | ≤ 4. Let C = v1, v2, . . . , vq, v1, where q = |C |. Wemay assume that dC (xi0 ) = 1 for some i0 ∈ {5, t},
otherwise, i0 ∈ {1, 3}, and we may argue in a similar manner from the other end of the path H . Let v1 ∈ NC (xi0 ).

Case 1. NC (x1) ∩ NC (x3) ̸= ∅.
First, suppose that vj0 ∈ NC−v1 (x1) ∩ NC−v1 (x3) for some 2 ≤ j0 ≤ q. Then x1, x2, x3, vj0 , x1 is a cycle. Since dC (xr ) = 2

for r ∈ {5, t} − {i0}, NC−vj0
(xr ) ̸= ∅. Then ⟨H[x5, xt ] ∪ (C − vj0 )⟩ contains the other disjoint cycle. Next, suppose that

v1 ∈ NC (x1)∩NC (x3). Then x1, x2, x3, v1, x1 is a cycle. Since dC (xr ) = 2 for r ∈ {5, t}− {i0}, if v1 ̸∈ NC (xr ), then ⟨xr ∪ (C − v1)⟩
contains the other disjoint cycle. Thus we may assume that v1 ∈ NC (xr ). Then H[x5, xt ], v1, x5 is a cycle. Since dC (xi) = 2 for
each i ∈ {1, 3}, NC−v1 (xi) ̸= ∅, and ⟨H[x1, x3] ∪ (C − v1)⟩ contains the other disjoint cycle.

Case 2. NC (x1) ∩ NC (x3) = ∅.
In this case, if |C | = 3, then since dC (xi) = 2 for each i ∈ {1, 3}, NC (x1) ∩ NC (x3) ̸= ∅, contradicting our assumption. Thus

|C | = 4, and either NC (x1) = {v1, v3} and NC (x3) = {v2, v4} or NC (x1) = {v2, v4} and NC (x3) = {v1, v3}.
Suppose that NC (x1) = {v1, v3} and NC (x3) = {v2, v4}. Suppose that dC (x5) = 1. Then x5v1 ∈ E(G) by our earlier

assumption, and dC (xt ) = 2. If xtv1 ∈ E(G), then H[x5, xt ], v1, x5 is a cycle, and x3, v4, v3, v2, x3 is the other disjoint cycle.
Thus NC (xt ) = {v2, v4}. Then H[x3, xt ], v4, x3 and x1, v3, v2, v1, x1 are two disjoint cycles. Suppose that dC (xt ) = 1. Then we
can find two disjoint cycles in ⟨H ∪ C⟩ similar to the case where dC (x5) = 1.

Suppose that NC (x1) = {v2, v4} and NC (x3) = {v1, v3}. Then x1, v4, v3, v2, x1 is a cycle, and since dC (xi0 ) = 1 for some
i0 ∈ {5, t} and xi0v1 ∈ E(G), H[x3, xi0 ], v1, x3 is the other disjoint cycle. □

By Subclaims 1 and 2, if dC (X) ≥ 8 for some cycle C in C , noting the minimum possible degree sequences, then ⟨H ∪ C⟩

contains two disjoint cycles. Thus we may assume that dC (X) = 7 for every cycle C in C . Let X ′
= {x2, x4, x6, xt}. Then X ′ is

an independent set with dH (X ′) = 7, and dC (X ′) ≥ (8k − 3) − 7 = 8k − 10 ≥ 6(k − 1), since k ≥ 2. Thus we choose some
cycle C in C such that dC (X ′) ≥ 6. Since dC (xt ) ≤ 3 by Lemma A, note that dC (X ′

− {xt}) ≥ 6 − 3 = 3. Now, we have only to
consider degree sequences (3, 2, 1, 1) and (3, 2, 2, 0) from X to C by Subclaims 1 and 2. Since both degree sequences contain
degree 3, |C | = 3 by Lemma A. Let C = v1, v2, v3, v1.

Case 1. The sequence is (3, 2, 1, 1).
Suppose that dC (x1) = 3. By the degree sequence of this case and |C | = 3, there are distinct integers i1, i2 ∈ {3, 5, t}

with i1 < i2 such that NC (xi1 ) ∩ NC (xi2 ) ̸= ∅. Without loss of generality, we may assume that v1 ∈ NC (xi1 ) ∩ NC (xi2 ). Then
H[xi1 , xi2 ], v1, xi1 is a cycle. Since dC (x1) = 3, x1, v3, v2, x1 is the other disjoint cycle. If dC (xt ) = 3, then we can find two
disjoint cycles similar to the case where dC (x1) = 3. Thus we may assume that dC (xi0 ) = 3 for some i0 ∈ {3, 5}.

Suppose that dC (x1) = 2. Without loss of generality, we may assume that v1, v2 ∈ NC (x1). First, suppose that dC (x3) = 1.
Then dC (x5) = 3. If x3v1 ∈ E(G), then x1, x2, x3, v1, x1 and x5, v3, v2, x5 are two disjoint cycles. If x3v2 ∈ E(G), then we can
find two disjoint cycles similar to the case where x3v1 ∈ E(G), replacing v1 with v2. If x3v3 ∈ E(G), then x3, x4, x5, v3, x3 and
x1, v2, v1, x1 are two disjoint cycles. Next, suppose that dC (x3) = 3. If x5v3 ∈ E(G), then x3, x4, x5, v3, x3 and x1, v2, v1, x1
are two disjoint cycles. Thus x5vj0 ∈ E(G) for some j0 ∈ {1, 2}. If j0 = 1, that is, x5v1 ∈ E(G), then x3, v3, v2, x3 is a 3-cycle,
and ⟨(H − x3) ∪ v1⟩ is connected and not a path. Thus we can find two disjoint cycles in ⟨H ∪ C⟩ as in the proof of Claim 2.
Similarly, we can prove the case where j0 = 2.

If dC (xt ) = 2, then we can find two disjoint cycles similar to the case where dC (x1) = 2. Thus we may assume that
dC (xm0 ) = 2 for some m0 ∈ {3, 5}.

Then dC (xi) = 1 for each i ∈ {1, t}. Let x1v1 ∈ E(G). Then we may assume that dC (x3) = 2 and dC (x5) = 3, otherwise,
dC (x3) = 3 and dC (x5) = 2, and we may argue in a similar manner from the other end of the path H . If x3v1 ∈ E(G),
then H[x1, x3], v1, x1 and x5, v3, v2, x5 are two disjoint cycles. Thus x3vi ∈ E(G) for each i ∈ {2, 3}. If xtv1 ∈ E(G), then
H[x5, xt ], v1, x5 and x3, v3, v2, x3 are two disjoint cycles. If xtv2 ∈ E(G), then H[x5, xt ], v2, x5 and H[x1, x3], v3, v1, x1 are two
disjoint cycles. If xtv3 ∈ E(G), then H[x5, xt ], v3, x5 and H[x1, x3], v2, v1, x1 are two disjoint cycles.

Case 2. The sequence is (3, 2, 2, 0).
We may assume that dC (xi0 ) = 0 for some i0 ∈ {1, 3}, otherwise, i0 ∈ {5, t}, and we may argue in a similar manner

from the other end of the path H . Let j0 ∈ {1, 3} − {i0}. Then dC (xj0 ) ≥ 2. Without loss of generality, we may assume that
v1, v2 ∈ NC (xj0 ).

Suppose that dC (x5) = 2. If dC (xj0 ) = 2, then NC (xj0 ) ∩ NC (x5) ̸= ∅, say v, and H[xj0 , x5], v, xj0 is a cycle. Since dC (xt ) = 3,
⟨xt ∪ (C − v)⟩ contains the other disjoint cycle. If dC (xj0 ) = 3, then dC (xj) = 2 for each j ∈ {5, t}. Since NC (x5) ∩ NC (xt ) ̸= ∅,
say v, H[x5, xt ], v, x5 is a cycle. Since dC (xj0 ) = 3, ⟨xj0 ∪ (C − v)⟩ contains the other disjoint cycle.

Suppose that dC (x5) = 3. If |NC (xj0 ) ∩ NC (xt )| = 1, then let v ∈ NC (xj0 ) − NC (xt ). Then H[xj0 , x5], v, xj0 is a cycle, and
⟨xt ∪ (C − v)⟩ contains the other cycle. Thus xj0 , xt have all the same neighbors in C , say v1, v2. Suppose that NC (x6) ̸= ∅.
If NC (x6) ∩ NC (xt ) ̸= ∅, say v, then H[x6, xt ], v, x6 is a cycle, and ⟨x5 ∪ (C − v)⟩ contains the other disjoint cycle. If
NC (x6) ∩ NC (xt ) = ∅, then x6v3 ∈ E(G). Thus x5, x6, v3, x5 and xt , v2, v1, xt are two disjoint cycles.
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Suppose that NC (x4) ̸= ∅. Then replacing x6 in the above argument with x4 and xt with x1, we can prove this case by the
same arguments above. Thus NC (xi) = ∅ for each i ∈ {4, 6}. This implies that dC (x2) = 3. Then xj0 , x2, v1, xj0 and x5, v3, v2, x5
are two disjoint cycles. □

4. Proofs of Lemmas

4.1. Proof of Lemma 1

Let F , C, xi (1 ≤ i ≤ 4) be as in Lemma 1. Let F1, F2 be two components of F , C = v1, v2, v3, v1, and X = {x1, x2, x3, x4}.
Now, we consider two cases.

Case 1. At most two vertices of X lie in the same component of F .
Since dC (X) ≥ 9, dC (xi0 ) ≥ 3 for some 1 ≤ i0 ≤ 4. By |C | = 3, dC (xi) ≤ 3 for each 1 ≤ i ≤ 4. Thus dC (xi0 ) = 3. Without

loss of generality, we may assume that i0 = 1, that is, dC (x1) = 3. Then dC ({x2, x3, x4}) ≥ 6. Also, we may assume that
dC (x2) ≥ dC (x3) ≥ dC (x4). Now, we claim that dC ({x2, x3}) ≥ 4. Otherwise, if dC ({x2, x3}) ≤ 3, then dC (xj0 ) ≤ 1 for some
j0 ∈ {2, 3}. That implies that dC (x4) ≤ 1, since dC (x4) is the smallest degree in {x2, x3, x4}. Then dC ({x2, x3, x4}) ≤ 3 + 1 = 4,
a contradiction. Thus the claim holds. Noting our assumption of this case, {x1, x2, x3} is a set of leaves from at least two
components of F . Since dC ({x1, x2, x3}) ≥ 3 + 4 = 7, Lemma B applies, completing this case.

Case 2. Three vertices of X lie in the same component of F .
Without loss of generality, we may assume that x1, x2, x3 ∈ V (F1), x4 ∈ V (F2), and dC (x1) ≥ dC (x2) ≥ dC (x3). Recall that

dC (X) ≥ 9. It follows that the minimum possible degree sequence S from X to C is (3, 3, 3, 0), (3, 3, 2, 1) or (3, 2, 2, 2).

Subcase 1. S = (3, 3, 3, 0).
If dC (xi0 ) = 0 for some 1 ≤ i0 ≤ 3, then i0 = 3, that is, dC (x3) = 0. Now, we take {x1, x2, x4} that is a set of leaves from

at least two components of F . Since dC ({x1, x2, x4}) = 9, Lemma B applies. If dC (x4) = 0, then dC (xi) = 3 for each 1 ≤ i ≤ 3.
Since all the xis are leaves, x3 does not lie on the path in F1 connecting x1 and x2. Then F1[x1, x2], v1, x1 and x3, v3, v2, x3 are
two disjoint cycles in ⟨F ∪ C⟩.

Subcase 2. S = (3, 3, 2, 1).
Take {x1, x2, x4}. If dC (x4) ∈ {1, 2}, then dC ({x1, x2}) ≥ 6. If dC (x4) = 3, then dC ({x1, x2}) ≥ 5. Since dC ({x1, x2, x4}) ≥ 7 for

all cases, Lemma B applies.

Subcase 3. S = (3, 2, 2, 2).
Take {x1, x2, x4}. If dC (x4) = 2, then dC ({x1, x2}) ≥ 5. If dC (x4) = 3, then dC ({x1, x2}) ≥ 4. Since dC ({x1, x2, x4}) ≥ 7 for all

cases, Lemma B applies. □

4.2. Proof of Lemma 5

Proof of (i). Let v1, v2, v3, v4, v5 be the vertices such that dC1 (vi) = 2 for each 1 ≤ i ≤ 5, appearing in this order on C2. Let
w1, w2 ∈ NC1 (v1) appear in this order on C1. The neighbors of v1 partition C1 into two intervals C1(w1, w2] and C1(w2, w1].
We claim that each of v2, v3, v4, v5 has one neighbor in different interval of C1.

First, suppose that vi1 , vi2 , vi3 for some 2 ≤ i1 < i2 < i3 ≤ 5 have both their neighbors in a common interval of C1, say
C1(w1, w2]. We may assume that at least one of their neighbors is not w2. Let zi1 ∈ NC1(w1,w2)(vi1 ) and zi2 ∈ NC1(w1,w2)(vi2 ).
Then C±

1 [zi1 , zi2 ], C
−

2 [vi2 , vi1 ], zi1 and C1[w2, w1], v1, w2 are shorter two disjoint cycles, since vi3 is not used.
Next, suppose that vi1 , vi2 for some 2 ≤ i1 < i2 ≤ 5 have both their neighbors in a common interval of C1, say C1(w1, w2].

Then we may assume that i1 = 2 and i2 = 5, otherwise, we can prove the other pairs of i1 and i2 by the same arguments
above. Let zi1 ∈ NC1(w1,w2)(v2) and zi2 ∈ NC1(w1,w2)(v5). If NC1(w1,w2)(vj0 ) ̸= ∅ for some j0 ∈ {3, 4}, then there exist shorter
two disjoint cycles. Thus NC1(w1,w2)(vj) = ∅ for each j ∈ {3, 4}. Since dC1 (vj) = 2 for each j ∈ {3, 4}, NC1(w2,w1](vj) ̸= ∅. Let
zi3 ∈ NC1(w2,w1](v3) and zi4 ∈ NC1(w2,w1](v4). Then C±

1 [zi3 , zi4 ], C
−

2 [v4, v3], zi3 and C±

1 [zi1 , zi2 ], C2[v5, v2], zi1 are shorter two
disjoint cycles, since w2 is not used.

Finally, suppose that vi0 for some 2 ≤ i0 ≤ 5 has both the neighbors in an interval of C1, say C1(w1, w2]. Then we
have only to consider i0 = 2 or i0 = 3, otherwise, we take a cycle from v1 in the opposite direction. First, suppose that
i0 = 2. Let x1, x2 ∈ NC1(w1,w2](v2), appearing in this order on C1. If x2 ̸= w2, then C1[x1, x2], v2, x1 and C1[w2, w1], v1, w2 are
shorter two disjoint cycles, since v3 is not used. Thus x2 = w2. Let y1, y2 ∈ NC1 (v3), appearing in this order on C1. Suppose
that y1 ∈ C1(w1, w2). Then C±

1 [x1, y1], C−

2 [v3, v2], x1 and C1[w2, w1], v1, w2 are shorter two disjoint cycles, since v4 is not
used. Thus y1 ̸∈ C1(w1, w2), that is, y1 ∈ C1[w2, w1]. Note that y2 ∈ C1(w2, w1]. If y1 ̸= w2, then C1[x1, w2], v2, x1 and
C1[y1, y2], v3, y1 are shorter two disjoint cycles, since v1 is not used. Thus y1 = w2. If y2 ̸= w1, then C1[w2, y2], v3, w2 and
C1[w1, x1], C−

2 [v2, v1], w1 are shorter two disjoint cycles, since v4 is not used. Thus y2 = w1. Let z1, z2 ∈ NC1 (v4), appearing in
this order on C1. Suppose that z1 ∈ C1[w1, w2). Then C1[w1, z1], C−

2 [v4, v3], w1 and C2[v1, v2], w2, v1 are shorter two disjoint
cycles, since v5 is not used. Suppose that z1 ∈ C1[w2, w1). Then C1[w1, x1], C−

2 [v2, v1], w1 and C1[w2, z1], C−

2 [v4, v3], w2 are
shorter two disjoint cycles, since v5 is not used. Next, suppose that i0 = 3. Then, by the same arguments as the case where
i0 = 2, we have shorter two disjoint cycles, replacing v2 with v3.
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Thus each of v2, v3, v4, v5 has one neighbor in each interval of C1. Let x ∈ NC1(w1,w2](v2), y ∈ NC1(w1,w2](v3), z ∈

NC1(w2,w1](v4), u ∈ NC1(w2,w1](v5). Then C±

1 [x, y], C−

2 [v3, v2], x and C±

1 [z, u], C−

2 [v5, v4], z are shorter two disjoint cycles, since
v1 is not used. □

Proof of (ii). Let v1, v2 ∈ V (C2) such that dC1 (v1) = 5 and dC1 (v2) = 3, appearing in this order on C2. Letw1, w2, w3, w4, w5 ∈

NC1 (v1), appearing in this order on C1, and let u1, u2, u3 ∈ NC1 (v2), appearing in this order on C1. The neighbors of v1
partition C1 into five intervals C1(wi, wi+1], 1 ≤ i ≤ 5 (mod 5). Suppose that ui0 , uj0 ∈ C1(wm0 , wm0+1] (mod 5) for some
1 ≤ i0 < j0 ≤ 3 and for some 1 ≤ m0 ≤ 5. Without loss of generality, we may assume that i0 = 1, j0 = 2 and m0 = 1.
Then C1[u1, u2], v2, u1 and C1[w3, w4], v1, w3 are shorter two disjoint cycles, since w1 is not used. Thus neighbors of v2
are contained in different intervals. Since C1 is partitioned into five intervals, some two neighbors of v2 lie in neighboring
intervals, say u1 ∈ (w1, w2] and u2 ∈ C1(w2, w3]. Then C1[u1, u2], v2, u1 and C1[w4, w5], v1, w4 are shorter two disjoint
cycles, since w1 is not used. □

Proof of (iii). Let v1, v2, v3, v4, v5, v6 be the vertices on C2 with the degree sequence (3, 1, 1, 1, 1, 1), appearing in this order on
C2. Without loss of generality, we may assume that dC1 (v1) = 3 and dC1 (vi) = 1 for each 2 ≤ i ≤ 6. Let w1, w2, w3 ∈ NC1 (v1),
appearing in this order on C1. The neighbors of v1 partition C1 into three intervals: C1(w1, w2], C1(w2, w3], C1(w3, w1]. Then
there exist some integer 1 ≤ i0 ≤ 3 and distinct integers 2 ≤ j1 < j2 ≤ 5 such that NC1(wi0 ,wi0+1](vj1 ) ̸= ∅ and
NC1(wi0 ,wi0+1](vj2 ) ̸= ∅.Without loss of generality, wemay assume that i0 = 1. Let u1 ∈ NC1(w1,w2](vj1 ) and u2 ∈ NC1(w1,w2](vj2 ).
Then C±

1 [u1, u2], C−

2 [vj2 , vj1 ], u1 and C1[w3, w1], v1, w3 are shorter two disjoint cycles, since v6 is not used. □

Proof of (iv). Let v1, v2, v3, v4 be the vertices on C2 with the degree sequence (3, 2, 1, 1), say dC1 (v1) = 3, dC1 (v2) = 2 and
dC1 (vi) = 1 for each i ∈ {3, 4}. Suppose that v1, v2 are in this order on C2. Let w1, w2, w3 ∈ NC1 (v1) be in this order on C1,
and let u1, u2 ∈ NC1 (v2) be in this order on C1. Let v3, v4 be in this order on C2. Let z1 ∈ NC1 (v3), and let z2 ∈ NC1 (v4). The
neighbors of v1 partition C1 into three intervals: C1(w1, w2], C1(w2, w3], C1(w3, w1]. If v2 has both its neighbors in the same
interval in C1, then we can find shorter two disjoint cycles. If the neighbors of v2 are into two different intervals of C1 and
neither is in {w1, w2, w3}, then we can also find shorter two disjoint cycles. Thus the neighbors of v2 are into two different
intervals of C1 and at least one of them is at an endpoint of these intervals. Without loss of generality, we may assume that
u1 ∈ C1(w1, w2] and u2 ∈ C1(w2, w3]. Now, we consider two cases.

Case 1. v3, v4 ∈ C2(v1, v2) or v3, v4 ∈ C2(v2, v1).
Without loss of generality, we may assume that v3, v4 ∈ C2(v1, v2). If z2 ∈ C1(w1, w3), then C±

1 [u1, z2], C2[v4, v2], u1 and
C1[w3, w1], v1, w3 are shorter two disjoint cycles, since v3 is not used. If z2 ∈ C1[w3, w1), then C1[u2, z2], C2[v4, v2], u2 and
C1[w1, w2], v1, w1 are shorter two disjoint cycles, since v3 is not used. Thus z2 = w1.

If u2 ∈ C1(w2, w3), then C1[u1, u2], v2, u1 and C2[w3, w1], v1, w3 are shorter two disjoint cycles, since v3 is not used. Thus
u2 = w3.

If z1 ∈ C1(w3, u1), then C±

1 [z1, w1], C2[v1, v3], z1 and C1[u1, w3], v2, u1 are shorter two disjoint cycles, since v4 is not used.
Thus z1 ∈ C1[u1, w3].

Suppose that u1 ∈ C1(w1, w2). If z1 ∈ C1[u1, w2), then C1[w1, z1], C2[v3, v4], w1 and C1[w2, w3], v1, w2 are shorter two
disjoint cycles, since v2 is not used. If z1 = w2, then C2[v1, v3], w2, v1 and C1[w1, u1], C−

2 [v2, v4], w1 are shorter two disjoint
cycles, since w3 is not used. If z1 ∈ C1(w2, w3], then C1[z1, w3], C2[v1, v3], z1 and C1[w1, u1], C−

2 [v2, v4], w1 are shorter two
disjoint cycles, since w2 is not used. Thus u1 = w2.

Now, we consider two disjoint cycles C ′
= w1, C2[v1, v4], w1 and C ′′

= C1[w2, w3], v2, w2. Note that |C2| ≥ 6. If
C2(v4, v2) ̸= ∅ or C2(v2, v1) ̸= ∅, then C ′ and C ′′ are shorter two disjoint cycles. Thus C2(v4, v2) = ∅ and C2(v2, v1) = ∅. First,
suppose that z1 ∈ C1[w2, w3). If C2(v1, v3) ̸= ∅, then C1[w3, w1], v1, w3 and C2[v3, v2], C1[w2, z1], v3 are shorter two disjoint
cycles. If C2(v3, v4) ̸= ∅, then C1[w2, z1], C−

2 [v3, v1], w2 and C1[w3, w1], C2[v4, v2], w3 are shorter two disjoint cycles. Next,
suppose that z1 = w3. If C2(v1, v3) ̸= ∅, then C1[w1, w2], v1, w1 and C2[v3, v2], w3, v3 are shorter two disjoint cycles. If
C2(v3, v4) ̸= ∅, then C2[v1, v3], w3, v1 and C1[w1, w2], C−

2 [v2, v4], w1 are shorter two disjoint cycles.

Case 2. v3 ∈ C2(v1, v2) and v4 ∈ C2(v2, v1).
If z1 ∈ C1(w1, w3), then C±

1 [u1, z1], C2[v3, v2], u1 and C1[w3, w1], v1, w3 are shorter two disjoint cycles, since v4 is not
used. If z1 ∈ C1[w3, w1), then C1[u2, z1], C2[v3, v2], u2 and C1[w1, w2], v1, w1 are shorter two disjoint cycles, since v4 is not
used. Thus z1 = w1. Then C2[v1, v3], w1, v1 and C1[u1, u2], v2, u1 are shorter two disjoint cycles, since v4 is not used. □

Proof of (v). Let v1, v2, v3 be the vertices on C2 with the degree sequence (3, 3, 1). Suppose that v1, v2, v3 exist in this
order on C2. Without loss of generality, we may assume that dC1 (vi) = 3 each i ∈ {1, 2} and dC1 (v3) = 1. Suppose that
w1, w2, w3 ∈ NC1 (v1) exist in this order on C1. LetW = {w1, w2, w3}. These neighbors of v1 partition C1 into three intervals:
C1(w1, w2], C1(w2, w3], C1(w3, w1]. Let u1, u2, u3 ∈ NC1 (v2), and suppose that u1, u2, u3 are in this order on C1.

Case 1. Some two neighbors of v2 are in the same interval of C1.
Without loss of generality, we may assume that u1, u2 ∈ C1(w1, w2]. Then C1[u1, u2], v2, u1 and C1[w3, w1], v1, w3 are

shorter two disjoint cycles, since v3 is not used.

Case 2. No two neighbors of v2 are in the same interval of C1.
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Then u1 ∈ C1(w1, w2], u2 ∈ C1(w2, w3], and u3 ∈ C1(w3, w1]. First, suppose that ui0 , uj0 ̸∈ W for some 1 ≤ i0 < j0 ≤ 3.
Without loss of generality, we may assume that i0 = 1 and j0 = 2, that is, u1 ∈ C1(w1, w2) and u2 ∈ C1(w2, w3). Then
C1[u1, u2], v2, u1 and C1[w3, w1], v1, w3 are shorter two disjoint cycles, since v3 is not used.

Next, suppose that ui0 ̸∈ W for only some 1 ≤ i0 ≤ 3. Without loss of generality, we may assume that i0 = 1, that is,
u1 ∈ C1(w1, w2). Then note that u3 = w1, C1[w1, u1], v2, w1 and C1[w2, w3], v1, w2 are shorter two disjoint cycles, since v3
is not used.

Finally, suppose that ui = wi+1 (mod 3) for each 1 ≤ i ≤ 3.Without loss of generality, wemay assume that v3z1 ∈ E(G) for
z1 ∈ (w2, w3]. Now, we have two choices for constructing shorter two disjoint cycles. We may construct C1[w1, w2], v2, w1
and C1[z1, w3], C−

2 [v1, v3], z1, or C1[w1, w2], v1, w1 and C1[z1, w3], C2[v2, v3], z1. Since |C2| ≥ 6, one of these two choices
must leave out a vertex of C2, and hence we may form shorter two disjoint cycles. □

4.3. Proof of Lemma 6

Let C = v1, v2, v3, v1.

Case 1. The sequence is (3, 3, 2, 0).
Suppose that dC (x1) = 0. Then dC (yi0 ) = 3 for some i0 ∈ {1, i, t}, and we may assume that i0 = 1, that is, dC (y1) = 3.

Since dC (yr ) ≥ 2 for each r ∈ {i, t} and |C | = 3, vm0 ∈ NC (yi) ∩ NC (yt ) for some 1 ≤ m0 ≤ 3. Without loss of generality, we
may assume thatm0 = 1. Then H2[yi, yt ], v1, yi and y1, v3, v2, y1 are two disjoint cycles.

Suppose that dC (x1) = 2. Without loss of generality, we may assume that v1, v2 ∈ NC (x1). Then x1, v2, v1, x1 is a cycle.
Since dC (yi0 ) = dC (yj0 ) = 3 for some i0, j0 ∈ {1, i, t} with i0 < j0 and |C | = 3, v3 ∈ NC (yi0 ) ∩ NC (yj0 ). Then H2[yi0 , yj0 ], v3, yi0
is the other disjoint cycle.

Suppose that dC (x1) = 3. Since dC (yi0 ) ≥ 2 and dC (yj0 ) ≥ 2 for some i0, j0 ∈ {1, i, t} with i0 < j0 and |C | = 3,
vm0 ∈ NC (yi0 )∩NC (yj0 ) for some 1 ≤ m0 ≤ 3.Without loss of generality, wemay assume thatm0 = 1. ThenH2[yi0 , yj0 ], v1, yi0
and x1, v3, v2, x1 are two disjoint cycles.

Case 2. The sequence is (3, 3, 1, 1).
Suppose that dC (x1) = 1. Then dC (yi0 ) = 3 for some i0 ∈ {1, i, t}, and we may assume that i0 = 1, that is, dC (y1) = 3.

Since one of yi and yt has degree 3 to C and the other one of them has degree 1 to C , noting that |C | = 3, vm0 ∈ NC (yi)∩NC (yt )
for some 1 ≤ m0 ≤ 3. Without loss of generality, we may assume that m0 = 1. Then H2[yi, yt ], v1, yi and y1, v3, v2, y1 are
two disjoint cycles.

Suppose that dC (x1) = 3. Since one of y1, yi, yt has degree 3 to C and the others of them have degree 1 to C , dC (yi0 ) = 3
and dC (yj0 ) = 1 for some distinct i0, j0 ∈ {1, i, t}. Then note that either i0 < j0 or i0 > j0. Since |C | = 3, vm0 ∈ NC (yi0 )∩NC (yj0 )
for some 1 ≤ m0 ≤ 3. Without loss of generality, wemay assume thatm0 = 1. Then H±

2 [yi0 , yj0 ], v1, yi0 and x1, v3, v2, x1 are
two disjoint cycles. □
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