On vertex-disjoint cycles and degree sum conditions

Ronald J. Gould ${ }^{\text {a }}$, Kazuhide Hirohata ${ }^{\text {b }}$, Ariel Keller ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA
${ }^{\mathrm{b}}$ Department of Electronic and Computer Engineering, National Institute of Technology, Ibaraki College, Ibaraki, 312-8508, Japan

ARTICLE INFO

Article history:

Received 30 November 2016
Received in revised form 18 August 2017
Accepted 19 August 2017
Available online 15 September 2017

Keywords:

Vertex-disjoint cycles
Minimum degree sum
Degree sequence

Abstract

This paper considers a degree sum condition sufficient to imply the existence of k vertexdisjoint cycles in a graph G. For an integer $t \geq 1$, let $\sigma_{t}(G)$ be the smallest sum of degrees of t independent vertices of G. We prove that if G has order at least $7 k+1$ and $\sigma_{4}(G) \geq 8 k-3$, with $k \geq 2$, then G contains k vertex-disjoint cycles. We also show that the degree sum condition on $\sigma_{4}(G)$ is sharp and conjecture a degree sum condition on $\sigma_{t}(G)$ sufficient to imply G contains k vertex-disjoint cycles for $k \geq 2$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs are simple. Let G be a graph. For $u \in V(G)$, the set of neighbors of u in G is denoted by $N_{G}(u)$, and we denote $d_{G}(u)=\left|N_{G}(u)\right|$. Let H be a subgraph of G, and let $S \subseteq V(G)$. For $u \in V(G)-V(H)$, we denote $N_{H}(u)=N_{G}(u) \cap V(H)$ and $d_{H}(u)=\left|N_{H}(u)\right|$. For $u \in V(G)-S, N_{S}(u)=N_{G}(u) \cap S$. Furthermore, $N_{G}(S)=\cup_{w \in S} N_{G}(w)$ and $N_{H}(S)=N_{G}(S) \cap V(H)$. Let A, B be two disjoint subgraphs of G. Then $N_{G}(A)=N_{G}(V(A))$ and $N_{B}(A)=N_{G}(A) \cap V(B)$. The subgraph of G induced by S is denoted by $\langle S\rangle$. And let $G-S=\langle V(G)-S\rangle$ and $G-H=\langle V(G)-V(H)\rangle$. If $S=\{u\}$, then we write $G-u$ for $G-S$. If there is no fear of confusion, then we use the same symbol for a graph and its vertex set. For graphs G_{1} and $G_{2}, G_{1} \cup G_{2}$ denotes the union of G_{1} and $G_{2}, G_{1}+G_{2}$ denotes the join of G_{1} and G_{2}, and $m G$ denotes the union of m copies of G. If Q is a path or a cycle with a given orientation and $x \in V(Q)$, then x^{+}denotes the first successor of x on Q and x^{-}denotes the first predecessor of x on Q. If $x, y \in V(Q)$, then $Q[x, y]$ denotes the path of Q from x to y (including x and y) in the given direction. The notation $Q^{-}[x, y]$ denotes the path from y to x in the opposite direction. We also write $Q(x, y]=Q\left[x^{+}, y\right], Q[x, y)=Q\left[x, y^{-}\right]$and $Q(x, y)=Q\left[x^{+}, y^{-}\right]$. If Q is a path (or a cycle), say $Q=x_{1}, x_{2}, \ldots, x_{t}\left(, x_{1}\right)$, then we assume that an orientation of Q is given from x_{1} to x_{t}. We say that x_{i} precedes x_{j} on Q if $i \leq j$. For $u, v \in V(Q)$, we define the path $Q^{ \pm}[u, v]$ as follows; if u precedes v on Q, then $Q^{ \pm}[u, v]=Q[u, v]$, and if v precedes u on Q, then $Q^{ \pm}[u, v]=Q^{-}[u, v]$. If T is a tree with at least one branch and $x, y \in V(T)$, where a branch vertex of a tree is a vertex of degree at least three, then we denote the path from x to y as $T[x, y]$. For $X \subseteq V(G)$, let $d_{H}(X)=\sum_{x \in X} d_{H}(x)$. If $H=G$, then we denote $d_{G}(X)=d_{H}(X)$. For a graph $G,|G|$ is the order of G, $\delta(G)$ is the minimum degree of $G, \omega(G)$ is the number of components of $G, \alpha(G)$ is the independence number of G. If G is one vertex, that is, $V(G)=\{x\}$, then we simply write x instead of G. For an integer $t \geq 1$, let

$$
\sigma_{t}(G)=\min \left\{\sum_{v \in X} d_{G}(v) \mid X \text { is an independent set of } G \text { with }|X|=t .\right\}
$$

and $\sigma_{t}(G)=\infty$ when $\alpha(G)<t$. Note that if $t=1$, then $\sigma_{1}(G)=\delta(G)$. For an integer $r \geq 1$ and two disjoint subgraphs A, B of G, we denote by $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$ a degree sequence from A to B such that $d_{B}\left(v_{i}\right) \geq d_{i}$ and $v_{i} \in V(A)$ for each $1 \leq i \leq r$. In

[^0]this paper, since it is sufficient to consider the case of equality in the above inequality, when we write $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$, we assume that $d_{B}\left(v_{i}\right)=d_{i}$ for each $1 \leq i \leq r$. For $X, Y \subseteq V(G), E(X, Y)$ denote the set of edges of G joining a vertex in X and a vertex in Y. For vertex-disjoint subgraphs H_{1}, H_{2} of G, we simply write $E\left(H_{1}, H_{2}\right)$ instead of $E\left(V\left(H_{1}\right), V\left(H_{2}\right)\right)$. A forest is a graph whose components are trees, and a leaf is a vertex of a forest whose degree is at most one. A cycle of length ℓ is called an ℓ-cycle. For terminology and notation not defined here, see [4].

The study of cycles in graphs is an important and rich area. In this paper, "disjoint" means "vertex-disjoint". One of the more interesting questions is to find conditions that insure the existence of $k(k \geq 2)$ disjoint cycles. A number of such results exist. Corrádi and Hajnal [1] proved that if a graph G has order at least $3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles. Justesen [5] proved the same result from the condition $\sigma_{2}(G) \geq 4 k$. Enomoto [2] and Wang [6] independently improved Justesen's bound to $\sigma_{2}(G) \geq 4 k-1$. Fujita et al. [3] proved that if $|G| \geq 3 k+2$ and $\sigma_{3}(G) \geq 6 k-2$, then G contains k disjoint cycles. The purpose of this paper is to further extend these results. We also conjecture the following:

Conjecture. Let G be a graph of sufficiently large order. If $\sigma_{t}(G) \geq 2 k t-(t-1)$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

The cases for $t=1,2,3$ have already been shown. We add to the evidence for this conjecture by showing the following:
Theorem 1. Let G be a graph of order $n \geq 7 k+1$ for an integer $k \geq 2$. If $\sigma_{4}(G) \geq 8 k-3$, then G contains k disjoint cycles.
The degree sum condition conjectured above would be sharp. And in particular, the degree sum condition of Theorem 1 is sharp. Sharpness is given by $G=K_{2 k-1}+m K_{1}$. The only independent vertices in G are those in $m K_{1}$. Each of these vertices has degree $2 k-1$. Thus, for any t with $1 \leq t \leq m, \sigma_{t}(G)=t(2 k-1)=2 k t-t$, and G fails to contain k disjoint cycles as any such cycle must contain two vertices of $K_{2 k-1}$.

2. Lemmas

In the proof of Theorem 1, we make use of the following Lemmas A, B and C that were proved by Fujita, Matsumura, Tsugaki and Yamashita in [3]. Proofs omitted in Chapter 2 appear after the proof of Theorem 1, that is, in Chapter 4.

Let C_{1}, \ldots, C_{r} be r disjoint cycles of a graph G. If $C_{1}^{\prime}, \ldots, C_{r}^{\prime}$ are r disjoint cycles of G and $\left|\cup_{i=1}^{r} V\left(C_{i}^{\prime}\right)\right|<\left|\cup_{i=1}^{r} V\left(C_{i}\right)\right|$, then we call $C_{1}^{\prime}, \ldots, C_{r}^{\prime}$ shorter cycles than C_{1}, \ldots, C_{r}. We also call $\left\{C_{1}, \ldots, C_{r}\right\}$ minimal if G does not contain shorter r disjoint cycles than C_{1}, \ldots, C_{r}.

Lemma A (Fujita et al. [3]). Let r be a positive integer and C_{1}, \ldots, C_{r} be r minimal disjoint cycles of a graph G. Then $d_{C_{i}}(x) \leq 3$ for any $x \in V(G)-\cup_{i=1}^{r} V\left(C_{i}\right)$ and for any $1 \leq i \leq r$. Furthermore, $d_{C_{i}}(x)=3$ implies $\left|C_{i}\right|=3$, and $d_{C_{i}}(x)=2$ implies $\left|C_{i}\right| \leq 4$.

Lemma B (Fujita et al. [3]). Suppose that F is a forest with at least two components and C is a triangle. Let x_{1}, x_{2}, x_{3} be leaves of F from at least two components. If $d_{C}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right) \geq 7$, then there exist two disjoint cycles in $\langle F \cup C\rangle$ or there exists a triangle C^{\prime} in $\langle F \cup C\rangle$ such that $\omega\left(\langle F \cup C\rangle-C^{\prime}\right)<\omega(F)$.

Lemma 1. Suppose that F is a forest with at least two components and C is a triangle. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be leaves of F from at least two components. If $d_{C}\left(\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right) \geq 9$, then there exist two disjoint cycles in $\langle F \cup C\rangle$ or there exists a triangle C^{\prime} in $\langle F \cup C\rangle$ such that $\omega\left(\langle F \cup C\rangle-C^{\prime}\right)<\omega(F)$.

Lemma C (Fujita et al. [3]). Let C be a cycle and T be a tree with three leaves x_{1}, x_{2}, x_{3}. If $d_{C}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right) \geq 7$, then there exist two disjoint cycles in $\langle C \cup T\rangle$ or there exists a cycle C^{\prime} in $\langle C \cup T\rangle$ such that $\left|C^{\prime}\right|<|C|$.

Lemma 2. Let C be a cycle and T be a tree with four leaves x_{1}, x_{2}, x_{3}, x_{4}. If $d_{C}\left(\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right) \geq 9$, then there exist two disjoint cycles in $\langle C \cup T\rangle$ or there exists a cycle C^{\prime} in $\langle C \cup T\rangle$ such that $\left|C^{\prime}\right|<|C|$.

Proof. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. If $d_{C}\left(x_{i_{0}}\right) \leq 2$ for some $1 \leq i_{0} \leq 4$, then $d_{C}\left(X-\left\{x_{i_{0}}\right\}\right) \geq 7$, and we apply Lemma C to $X-\left\{x_{i_{0}}\right\}$. Otherwise, $d_{C}\left(x_{i}\right) \geq 3$ for each $1 \leq i \leq 4$, and we apply Lemma C to any three vertices in X.

Lemma 3. Let G be a graph satisfying the assumption of Theorem 1 , and let C_{1}, \ldots, C_{k-1} be $k-1$ minimal disjoint cycles of G. Suppose that there exists a tree T with at least four leaves, which is a component of $G-\cup_{i=1}^{k-1} C_{i}$. Then G contains k disjoint cycles.

Proof. Let $\mathscr{C}=\cup_{i=1}^{k-1} C_{i}$, and let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be a set of leaves of T. Since X is an independent set, $d_{\mathscr{C}}(X) \geq(8 k-3)-4=$ $8(k-1)+1$. Then there exists a cycle C_{i} for some $1 \leq i \leq k-1$ such that $d_{C_{i}}(X) \geq 9$. Since $\left\{C_{1}, \ldots, C_{k-1}\right\}$ is minimal, there exist two disjoint cycles in $\left\langle C_{i} \cup T\right\rangle$ by Lemma 2. Thus G contains k disjoint cycles.

Lemma 4. Let G be a graph satisfying the assumption of Theorem 1 , and let C_{1}, \ldots, C_{k-1} be $k-1$ minimal disjoint cycles of G. Suppose that $H=G-\cup_{i=1}^{k-1} C_{i}$ has at least two components at least one of which is a tree T with at least three leaves. Then there exist two disjoint cycles in $\left\langle C_{i} \cup T\right\rangle$ for some $1 \leq i \leq k-1$ or there exists a triangle C in $\left\langle H \cup C_{i}\right\rangle$ such that $\omega\left(\left\langle H \cup C_{i}\right\rangle-C\right)<\omega(H)$.

Proof. Let $\mathscr{C}=\cup_{i=1}^{k-1} C_{i}$. Let x_{1}, x_{2}, x_{3} be three leaves of the tree T, and let x_{4} be a leaf from another component, and $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Since X is an independent set, $d_{\mathscr{C}}(X) \geq(8 k-3)-4=8(k-1)+1$. Then there exists a cycle C_{i} for some $1 \leq i \leq k-1$ such that $d_{c_{i}}(X) \geq 9$. If $d_{c_{i}}\left(x_{4}\right) \leq 2$, then $d_{C}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right) \geq 7$. By Lemma C, there exist two disjoint cycles in $\left\langle C_{i} \cup T\right\rangle$ or there exists a cycle C in $\left\langle C_{i} \cup T\right\rangle$ such that $|C|<\left|C_{i}\right|$. Since $\left\{C_{1}, \ldots, C_{k-1}\right\}$ is minimal, the lemma holds. If $d_{C_{i}}\left(x_{4}\right) \geq 3$, then C_{i} is a triangle by Lemma A. Thus the lemma holds by Lemma 1 .

Lemma 5. Let C_{1} and C_{2} be two disjoint cycles such that $\left|C_{2}\right| \geq 6$. Suppose that C_{2} contains vertices with at least one of the following degree sequences from C_{2} to C_{1}. Then $\left\langle C_{1} \cup C_{2}\right\rangle$ contains two disjoint cycles C_{1}^{\prime} and C_{2}^{\prime} such that $\left|C_{1}^{\prime}\right|+\left|C_{2}^{\prime}\right|<\left|C_{1}\right|+\left|C_{2}\right|$.
(i) $(2,2,2,2,2)$
(ii) $(5,3)$
(iii) $(3,1,1,1,1,1)$
(iv) $(3,2,1,1)$
(v) $(3,3,1)$

Lemma 6. Let H be a graph with two components H_{1}, H_{2}, where $H_{1}=x_{1}, \ldots, x_{s}(s \geq 1)$ is a path and $H_{2}=y_{1}, \ldots, y_{t}(t \geq 3)$ is a path. Let $W=\left\{x_{1}, y_{1}, y_{i}, y_{t}\right\}$ for any $2 \leq i \leq t-1$, and let C be a triangle. If there exists a degree sequence $(3,3,2,0)$ or $(3,3,1,1)$ from W to C, then $\langle H \cup C\rangle$ contains two disjoint cycles.

3. Proof of Theorem 1

Suppose that the theorem does not hold. Let G be an edge-maximal counter-example. If G is a complete graph, then G contains k disjoint cycles. Thus we may assume that G is not a complete graph. Let $x y \notin E(G)$ for some $x, y \in V(G)$, and define $G^{\prime}=G+x y$. Since G^{\prime} is not a counter-example by the maximality of G, G^{\prime} contains k disjoint cycles C_{1}, \ldots, C_{k}. Without loss of generality, we may assume that $x y \notin \cup_{i=1}^{k-1} E\left(C_{i}\right)$, that is, G contains $k-1$ disjoint cycles C_{1}, \ldots, C_{k-1}. Let $\mathscr{C}=\cup_{i=1}^{k-1} C_{i}$ and $H=G-\mathscr{C}$. Choose C_{1}, \ldots, C_{k-1} such that
(1) $\sum_{i=1}^{k-1}\left|C_{i}\right|$ is minimal, and
(2) subject to (1), $\omega(H)$ is minimal.

Note that any cycle C in \mathscr{C} has no chords by (1). Clearly, H is a forest, otherwise, since H contains a cycle, G contains k disjoint cycles, a contradiction. If H contains at least two components at least one of which is a tree with at least three leaves, then by Lemma $4, G$ contains k disjoint cycles, or contradicting (2). Thus if H contains at least two components, then H must be a collection of paths. If H has only one component, then it is a tree. If H is a tree with at least four leaves, then the theorem holds by Lemma 3. Thus if H has only one component, then H is a tree with at most three leaves.

Now, we consider two cases on $|H|$.
Case 1. $|H| \leq 7$.
Let C be a longest cycle in \mathscr{C}. Suppose that $|C| \leq 7$. Then $\left|C^{\prime}\right| \leq 7$ for any cycle C^{\prime} in \mathscr{C}, and $|\mathscr{C}| \leq 7(k-1)$. Since $|G| \geq 7 k+1,|H|=|G|-|\mathscr{C}| \geq(7 k+1)-7(k-1)=8$, contradicting the assumption of this case. Thus $|C| \geq 8$. Let $|C|=4 t+r, t \geq 2$ and $0 \leq r \leq 3$. Then there exist at least t disjoint independent sets in $V(C)$ each of which has four vertices. By (1) and $|C| \geq 8, d_{C}(v) \leq 1$ for any $v \in V(H)$. Thus $|E(H, C)| \leq 7$.

Suppose that $k=2$. Then \mathscr{C} has only one cycle C, and $H=G-C$. Since $|C| \geq 8, C$ contains at least two independent sets each of which has four vertices. Let X_{1} and X_{2} be such sets. Since $d_{C}\left(X_{i}\right)=8$ for each $i \in\{1,2\}, d_{H}\left(X_{i}\right) \geq(8 k-3)-8=8 k-11$. Then $d_{H}\left(X_{1} \cup X_{2}\right) \geq 16 k-22 \geq 10$, since $k \geq 2$. Thus $|E(C, H)| \geq 10$, a contradiction.

Suppose that $k \geq 3$. We claim that $\left|E\left(C, C^{\prime}\right)\right| \geq 8 t$ for some cycle C^{\prime} in $\mathscr{C}-C$. Note that each of t disjoint independent sets in $V(C)$ sends at least $(8 k-3)-8=8 k-11$ edges out of C. Since $|E(C, H)| \leq 7$ and $t \geq 2,|E(C, \mathscr{C}-C)| \geq t(8 k-11)-7>$ $8 t(k-2)$. Thus the claim holds. Since $|C|=4 t+r \leq 4 t+3$ and $\left|E\left(C, C^{\prime}\right)\right| /|C| \geq 8 t /(4 t+3)>8 t(4 t+4)=2 t /(t+1)>1$, $d_{C^{\prime}}(v) \geq 2$ for some $v \in V(C)$.

Suppose that $\max \left\{d_{C^{\prime}}(v) \mid v \in V(C)\right\}=2$. Let $X=\left\{v \in V(C) \mid d_{C^{\prime}}(v) \leq 1\right\}$ and $Y=V(C)-X$. Then noting that $t \geq 2$ and $r \leq 3$,

$$
\begin{aligned}
8 t \leq\left|E\left(C, C^{\prime}\right)\right| & \leq|X|+2|Y|=(|C|-|Y|)+2|Y|=|C|+|Y| \\
\Rightarrow|Y| & \geq 8 t-|C|=8 t-(4 t+r)=4 t-r \\
& \geq 8-3=5 .
\end{aligned}
$$

Thus we have the degree sequence $(2,2,2,2,2)$ from C to C^{\prime}. By Lemma $5(\mathrm{i}),\left\langle C \cup C^{\prime}\right\rangle$ contains two shorter disjoint cycles, contradicting (1).

Suppose that $h=\max \left\{d_{C^{\prime}}(v) \mid v \in V(C)\right\} \geq 3$. Let $d_{C^{\prime}}\left(v^{*}\right)=h$ for some $v^{*} \in V(C)$. Since $\left|C^{\prime}\right| \leq|C|=4 t+r$ by the choice of $C, d_{C^{\prime}}\left(v^{*}\right) \leq\left|C^{\prime}\right| \leq 4 t+r$. Then since $t \geq 2$ and $r \leq 3,\left|E\left(C-v^{*}, C^{\prime}\right)\right| \geq 8 t-(4 t+r)=4 t-r \geq 5$. This implies that $N_{C^{\prime}}\left(C-v^{*}\right) \neq \emptyset$. Let $Z=\left\{v \in V(C) \mid N_{C^{\prime}}(v) \neq \emptyset\right\}$. Then $|Z| \geq 2$.

Suppose that $|Z|=2$. Then $d_{C^{\prime}}(v) \geq 5$ for any $v \in Z$ by the above observations. By Lemma 5(ii), $\left\langle C \cup C^{\prime}\right\rangle$ contains two shorter disjoint cycles, contradicting (1).

Suppose that $|Z| \geq 3$. Since $\left|E\left(C-v^{*}, C^{\prime}\right)\right| \geq 5$, we may assume that the minimum degree sequence S from vertices of C to C^{\prime} is at least one of $(h, 4,1),(h, 3,2),(h, 3,1,1),(h, 2,2,1),(h, 2,1,1,1)$, or $(h, 1,1,1,1,1)$, where by the definition of h,
if $S=(h, 4,1)$, then $h \geq 4$, and if S is the other degree sequence, then $h \geq 3$. If $S=(h, 4,1)$ or $(h, 3,2)$, then by Lemma 5(v), $\left\langle C \cup C^{\prime}\right\rangle$ contains two shorter disjoint cycles. If $S=(h, 3,1,1),(h, 2,2,1)$ or $(h, 2,1,1,1)$, then by Lemma 5(iv), $\left\langle C \cup C^{\prime}\right\rangle$ contains two shorter disjoint cycles. If $S=(h, 1,1,1,1,1)$, then by Lemma 5(iii), $\left\langle C \cup C^{\prime}\right\rangle$ contains two shorter disjoint cycles.

Case 2. $|H| \geq 8$.
Claim 1. H is connected.
Proof. Suppose to the contrary that H is disconnected. Then note that H is a collection of paths. Suppose that X is an independent set that consists of four leaves from at least two components in H such that $d_{H}(X) \leq 4$. Then $d_{\mathscr{C}}(X) \geq$ $(8 k-3)-4=8(k-1)+1$, and $d_{c_{i_{0}}}(X) \geq 9$ for some $1 \leq i_{0} \leq k-1$. Thus $d_{c_{i_{0}}}(x) \geq 3$ for some $x \in X$, and $\left|C_{i_{0}}\right|=3$ by Lemma A. By Lemma 1 and (2), $\left\langle H \cup C_{i_{0}}\right\rangle$ contains two disjoint cycles, and G contains k disjoint cycles, a contradiction. Thus H does not contain such an independent set.

Now, we consider three cases on $\omega(H)$.
Case 1. $\omega(H) \geq 4$.
We take four leaves $x_{1}, x_{2}, x_{3}, x_{4}$, one from each component of H. Then $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is an independent set such that $d_{H}(X) \leq 4$, a contradiction.
Case 2. $\omega(H)=3$.
We take three leaves x_{1}, x_{2}, x_{3}, one from each component of H. Since $|H| \geq 8$, some component of H, say H_{1}, has the order at least 3. Now, we take the other leaf from H_{1}, call it x_{4}. Then $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is an independent set such that $d_{H}(X) \leq 4$, a contradiction.

Case 3. $\omega(H)=2$.
Let H_{1}, H_{2} be two distinct components in H. Without loss of generality, we may assume that $\left|H_{1}\right| \leq\left|H_{2}\right|$. Suppose that $\left|H_{1}\right| \geq 3$. Then we take two leaves from each component of H, yielding a set X of four independent vertices such that $d_{H}(X)=4$, a contradiction. Suppose that $\left|H_{1}\right| \in\{1,2\}$. Since $|H| \geq 8,\left|H_{2}\right| \geq 6$. Let $H_{1}=x_{1}, x_{s}(s \in\{1,2\}), H_{2}=y_{1}, y_{2}, \ldots, y_{t}$ $(t \geq 6)$, and let $W=\left\{x_{1}, y_{1}, y_{3}, y_{t}\right\}$. Since W is an independent set and $d_{H}(W) \leq 5, d_{\mathscr{C}}(W) \geq(8 k-3)-5=8(k-1)$. Then there is a cycle C_{0} in \mathscr{C} such that $d_{C_{0}}(W) \geq 8$. By Lemma A, $d_{C_{0}}(u) \leq 3$ for any $u \in W$, and $\left|C_{0}\right| \leq 4$. Then the minimum possible degree sequence S from W to C_{0} is $(3,3,2,0),(3,3,1,1),(3,2,2,1)$ or $(2,2,2,2)$.

Suppose that $\left|C_{0}\right|=4$. Let $C_{0}=v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$. Then $d_{C_{0}}(u) \leq 2$ for any $u \in W$ by Lemma A. Thus we must have degree sequence $(2,2,2,2)$. If some $u \in W$ has consecutive neighbors in C_{0}, then u and these two neighbors form a 3cycle, contradicting (1). Thus for any $u \in W$, its neighbors in C_{0} are not consecutive. It follows that for any $u \in W$, either $N_{C_{0}}(u)=\left\{v_{1}, v_{3}\right\}$ or $N_{C_{0}}(u)=\left\{v_{2}, v_{4}\right\}$. Without loss of generality, we may assume that $N_{C_{0}}\left(x_{1}\right)=\left\{v_{1}, v_{3}\right\}$. If $y_{i_{0}}, y_{j_{0}}$ with some $i_{0}, j_{0} \in\{1,3, t\}$ and $i_{0}<j_{0}$ do not share neighbors in C_{0} with x_{1}, then we can easily find two disjoint cycles, as follows. Since $N_{C_{0}}\left(y_{m}\right)=\left\{v_{2}, v_{4}\right\}$ for each $m \in\left\{i_{0}, j_{0}\right\}, H_{2}\left[y_{i_{0}}, y_{j_{0}}\right], v_{4}, y_{i_{0}}$ is a cycle, and $x_{1}, v_{3}, v_{2}, v_{1}, x_{1}$ is the other disjoint cycle. Thus at most one vertex in $\left\{y_{1}, y_{3}, y_{t}\right\}$ does not share neighbors in C_{0} with x_{1}. Suppose that some vertex in $\left\{y_{1}, y_{3}, y_{t}\right\}$ does not share neighbors in C_{0} with x_{1}. First, suppose that such a vertex is y_{1}, that is, $N_{C_{0}}\left(y_{1}\right)=\left\{v_{2}, v_{4}\right\}$. Then $y_{1}, v_{4}, v_{3}, v_{2}, y_{1}$ is a cycle. Since $v_{1} \in N_{C_{0}}\left(y_{i}\right)$ for each $i \in\{3, t\}, H_{2}\left[y_{3}, y_{t}\right], v_{1}, y_{3}$ is the other disjoint cycle. If $N_{C_{0}}\left(y_{t}\right)=\left\{v_{2}, v_{4}\right\}$, then $y_{t}, v_{4}, v_{3}, v_{2}, y_{t}$ and $H_{2}\left[y_{1}, y_{3}\right], v_{1}, y_{1}$ are two disjoint cycles. Suppose that $N_{C_{0}}\left(y_{3}\right)=\left\{v_{2}, v_{4}\right\}$. Then we form a 4-cycle $C_{0}^{\prime}=y_{3}, v_{4}, v_{3}, v_{2}, y_{3}$. Since $v_{1} \in N_{C_{0}}\left(y_{i}\right)$ for each $i \in\{1, t\},\left\langle H \cup C_{0}\right\rangle-C_{0}^{\prime}$ is connected, contradicting (2). Thus $N_{C_{0}}\left(x_{1}\right)=N_{C_{0}}\left(y_{i}\right)$ for each $i \in\{1,3, t\}$. Then $C_{0}^{\prime}=H_{2}\left[y_{1}, y_{3}\right], v_{1}, y_{1}$ is a 4-cycle. Since $v_{3} \in N_{C_{0}}(u)$ for each $u \in\left\{x_{1}, y_{t}\right\},\left\langle H \cup C_{0}\right\rangle-C_{0}^{\prime}$ is connected, contradicting (2). Thus if there exists a 4 -cycle in \mathscr{C}, we get a contradiction.

Suppose that $\left|C_{0}\right|=3$. Let $C_{0}=v_{1}, v_{2}, v_{3}, v_{1}$.
Subcase 1. $S=(3,3,2,0)$ or $S=(3,3,1,1)$.
By Lemma 6, we can find two disjoint cycles in $\left\langle C_{0} \cup H\right\rangle$, a contradiction.
Subcase 2. $S=(3,2,2,1)$.
If $d_{C_{0}}\left(y_{3}\right)=1$, then since $\left\{x_{1}, y_{1}, y_{t}\right\}$ satisfies the conditions of Lemma B, we get a contradiction. Thus $d_{C_{0}}\left(y_{3}\right) \in\{2,3\}$.
First, suppose that $d_{C_{0}}\left(x_{1}\right)=1$. Let $v_{1} \in N_{C_{0}}\left(x_{1}\right)$. Note that $d_{C_{0}}\left(y_{i}\right) \geq 2$ for each $i \in\{1,3, t\}$. If $v_{1} \notin N_{C_{0}}\left(y_{i_{0}}\right)$ for some $i_{0} \in\{1, t\}$, then $d_{c_{0}}\left(y_{i_{0}}\right)=2$, and $C_{0}^{\prime}=y_{i_{0}}, v_{3}, v_{2}, y_{i_{0}}$ is a 3-cycle. Since $d_{c_{0}}\left(y_{i_{1}}\right)=3$ for some $i_{1} \in\{1,3, t\}-\left\{i_{0}\right\}, v_{1} \in N_{C_{0}}\left(y_{i_{1}}\right)$. Then $\left\langle C_{0} \cup H\right\rangle-C_{0}^{\prime}$ is connected, contradicting (2) (see Fig. 1). Thus $v_{1} \in N_{C_{0}}\left(y_{i}\right)$ for each $i \in\{1, t\}$. Since $d_{C_{0}}\left(y_{i_{2}}\right)=3$ for some $i_{2} \in\{1,3, t\}, C_{0}^{\prime \prime}=y_{i_{2}}, v_{3}, v_{2}, y_{i_{2}}$ is a 3 -cycle. Then $\left\langle C_{0} \cup H\right\rangle-C_{0}^{\prime \prime}$ is connected, contradicting (2).

Next, suppose that $d_{C_{0}}\left(x_{1}\right)=2$. Without loss of generality, we may assume that $v_{1}, v_{2} \in N_{C_{0}}\left(x_{1}\right)$. Suppose that $d_{C_{0}}\left(y_{3}\right)=2$. Since $\left|C_{0}\right|=3$, we may assume that $v_{1} \in N_{C_{0}}\left(x_{1}\right) \cap N_{C_{0}}\left(y_{3}\right)$. Since $d_{C_{0}}\left(y_{j_{0}}\right)=3$ for some $j_{0} \in\{1, t\}, C_{0}^{\prime}=y_{j_{0}}, v_{3}, v_{2}, y_{j_{0}}$ is a 3cycle. Then $\left\langle C_{0} \cup H\right\rangle-C_{0}^{\prime}$ is connected, contradicting (2). Suppose that $d_{c_{0}}\left(y_{3}\right)=3$. If $v_{3} \in N_{C_{0}}\left(y_{m_{0}}\right)$ for some $m_{0} \in\{1$, $t\}$, then $H_{2}^{ \pm}\left[y_{3}, y_{m_{0}}\right], v_{3}, y_{3}$ and $x_{1}, v_{2}, v_{1}, x_{1}$ are two disjoint cycles. Thus $v_{3} \notin N_{C_{0}}\left(y_{m}\right)$ for each $m \in\{1, t\}$, that is, $N_{C_{0}}\left(y_{m}\right) \subseteq\left\{v_{1}, v_{2}\right\}$. Since one of y_{1} and y_{t} has the degree 1 and the other has the degree 2 , without loss of generality, we may assume that $v_{1} \in N_{C_{0}}\left(y_{1}\right) \cap N_{C_{0}}\left(y_{t}\right)$. Since $d_{C_{0}}\left(y_{3}\right)=3, C_{0}^{\prime \prime}=y_{3}, v_{3}, v_{2}, y_{3}$ is a 3-cycle, and $\left\langle C_{0} \cup H\right\rangle-C_{0}^{\prime \prime}$ is connected, contradicting (2) (see Fig. 2).

Fig. 1. The case when $i_{0}=1$ and $i_{1}=3$.

Fig. 2. The case when $v_{1} \in N_{C_{0}}\left(y_{1}\right) \cap N_{C_{0}}\left(y_{t}\right)$.

Finally, suppose that $d_{C_{0}}\left(x_{1}\right)=3$. Since $d_{C_{0}}\left(y_{i_{0}}\right)=d_{C_{0}}\left(y_{j_{0}}\right)=2$ for some $i_{0}, j_{0} \in\{1,3, t\}$ with $i_{0}<j_{0}$, we may assume that $v_{1} \in N_{C_{0}}\left(y_{i_{0}}\right) \cap N_{C_{0}}\left(y_{j_{0}}\right)$. Then $H_{2}\left[y_{i_{0}}, y_{j_{0}}\right], v_{1}, y_{i_{0}}$ is a cycle. Since $d_{C_{0}}\left(x_{1}\right)=3, x_{1}, v_{3}, v_{2}, x_{1}$ is the other disjoint cycle.
Subcase $3 . S=(2,2,2,2)$.
Without loss of generality, we may assume that $N_{C_{0}}\left(x_{1}\right)=\left\{v_{1}, v_{2}\right\}$. If $v_{3} \in N_{C_{0}}\left(y_{i_{0}}\right) \cap N_{C_{0}}\left(y_{j_{0}}\right)$ for some $i_{0}, j_{0} \in\{1,3, t\}$ with $i_{0}<j_{0}$, then $H_{2}\left[y_{i_{0}}, y_{j_{0}}\right], v_{3}, y_{i_{0}}$ and $x_{1}, v_{2}, v_{1}, x_{1}$ are two disjoint cycles. Thus at most one in $\left\{y_{1}, y_{3}, y_{t}\right\}$ can be adjacent to v_{3}. Suppose that $v_{3} \in N_{C_{0}}\left(y_{i_{0}}\right)$ for some $i_{0} \in\{1,3, t\}$. Since $d_{C_{0}}\left(y_{i_{0}}\right)=2$, we may assume that $v_{2} \in N_{C_{0}}\left(y_{i_{0}}\right)$. Then $C_{0}^{\prime}=y_{i_{0}}, v_{3}, v_{2}, y_{i_{0}}$ is a 3 -cycle. For each $i \in\{1,3, t\}-\left\{i_{0}\right\}, N_{C_{0}}\left(y_{i}\right)=\left\{v_{1}, v_{2}\right\}$. Then $\left\langle C_{0} \cup H\right\rangle-C_{0}^{\prime}$ is connected, contradicting (2). Thus $v_{3} \notin N_{C_{0}}\left(y_{i}\right)$ for each $i \in\{1,3, t\}$, that is, $N_{C_{0}}\left(y_{i}\right)=\left\{v_{1}, v_{2}\right\}$. Then $C_{0}^{\prime \prime}=H_{2}\left[y_{1}, y_{3}\right], v_{2}, y_{1}$ is a 3-cycle, and $\left\langle C_{0} \cup H\right\rangle-C_{0}^{\prime \prime}$ is connected, contradicting (2). This completes the proof of Claim 1.

Claim 2. H is a path.
Proof. Suppose that H is not a path. Then recall that H is a tree with one branch vertex of degree $3 \mathrm{in} H$. Then H has three leaves, say x_{1}, x_{2}, x_{3}. Removing the branch vertex in H, there exist three disjoint paths each of which has one in $\left\{x_{1}, x_{2}, x_{3}\right\}$ as an endpoint. Also, some path has a length at least two, say P, since there exist at least seven vertices distributed over three paths. Without loss of generality, we may assume that x_{1} is one of the endpoints of P, and let the other endpoint be x_{4}. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ (see Fig. 3). Then X is an independent set. Since $d_{H}(X)=5, d_{\mathscr{C}}(X) \geq(8 k-3)-5=8(k-1)$. Thus there exists a cycle $C_{i_{0}}$ in \mathscr{C} such that $d_{C_{i_{0}}}(X) \geq 8$ for some $1 \leq i_{0} \leq k-1$. Then $d_{C_{i_{0}}}(x) \geq 2$ for some $x \in X$. By Lemma A, $d_{C_{i_{0}}}(x) \leq 3$ and $\left|C_{i_{0}}\right| \leq 4$.
Case 1. $\left|C_{i_{0}}\right|=3$.

Fig. 3. The graph H and an independent $\operatorname{set} X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.

Let $C_{i_{0}}=v_{1}, v_{2}, v_{3}, v_{1}$. Suppose that $d_{c_{i_{0}}}(x)=2$ for each $x \in X$. Let $v_{1}, v_{2} \in N_{c_{i 0}}\left(x_{1}\right)$. Since $\left|C_{i_{0}}\right|=3, N_{c_{i_{0}}}\left(x_{2}\right) \cap N_{c_{i_{0}}}\left(x_{3}\right) \neq \emptyset$. If $v_{3} \in N_{c_{i_{0}}}\left(x_{2}\right) \cap N_{c_{i 0}}\left(x_{3}\right)$, then $H\left[x_{2}, x_{3}\right], v_{3}, x_{2}$ and $x_{1}, v_{2}, v_{1}, x_{1}$ are two disjoint cycles. Thus without loss of generality, we may assume that $v_{1} \in N_{c_{i_{0}}}\left(x_{2}\right) \cap N{c_{i_{0}}}\left(x_{3}\right)$. Then $H\left[x_{2}, x_{3}\right], v_{1}, x_{2}$ is a cycle. Since $d_{c_{i_{0}}}\left(x_{4}\right)=2, N{c_{i_{0}}-v_{1}}\left(x_{4}\right) \neq \emptyset$. If $v_{2} \in N_{c_{i_{0}}}\left(x_{4}\right)$, then $H\left[x_{1}, x_{4}\right], v_{2}, x_{1}$ is the other disjoint cycle, and if $v_{3} \in N_{c_{i 0}}\left(x_{4}\right)$, then $H\left[x_{1}, x_{4}\right], v_{3}, v_{2}, x_{1}$ is the other disjoint cycle. Thus there exists at least one vertex $x \in X$ such that $d_{C_{i_{0}}}(x)=3$. Then the minimum possible degree sequences from X to $C_{i_{0}}$ are $(3,3,2,0),(3,3,1,1)$ or $(3,2,2,1)$.

We claim that if there exists a degree sequence ($3,3,1,0$) from X to $C_{i_{0}}$, then there exist two disjoint cycles in $\left\langle H \cup C_{i_{0}}\right\rangle$.
First, suppose that $d_{c_{i_{0}}}\left(x_{j_{0}}\right)=1$ for some $1 \leq j_{0} \leq 3$. Let $v_{1} \in N_{c_{i_{0}}}\left(x_{j_{0}}\right)$. If $d_{c_{i_{0}}}\left(x_{4}\right)=0$, then since $d_{c_{i_{0}}}\left(x_{m}\right)=3$ for each $m \in\{1,2,3\}-\left\{j_{0}\right\}, H\left[x_{j_{0}}, x_{m}\right], v_{1}, x_{j_{0}}$ is a cycle. Since $d_{c_{i 0}}\left(x_{m^{\prime}}\right)=3$ for $m^{\prime} \in\{1,2,3\}-\left\{j_{0}, m\right\}, x_{m^{\prime}}, v_{3}, v_{2}, x_{m^{\prime}}$ is the other disjoint cycle. If $d_{c_{i 0}}\left(x_{4}\right)=3$, then $H\left[x_{j_{0}}, x_{4}\right], v_{1}, x_{j 0}$ is a cycle, and since $d_{c_{i_{0}}}\left(x_{m_{0}}\right)=3$ for some $m_{0} \in\{1,2,3\}-\left\{j_{0}\right\}$, $x_{m_{0}}, v_{3}, v_{2}, x_{m_{0}}$ is the other disjoint cycle. Next, suppose that $d_{c_{i_{0}}}\left(x_{4}\right)=1$. Let $v_{1} \in N_{c_{i_{0}}}\left(x_{4}\right)$. Then $d_{c_{i_{0}}}\left(x_{m_{1}}\right)=3$ and $d_{c_{i_{0}}}\left(x_{m_{2}}\right)=3$ for some $1 \leq m_{1}<m_{2} \leq 3$, and $H\left[x_{m_{1}}, x_{4}\right], v_{1}, x_{m_{1}}$ and $x_{m_{2}}, v_{3}, v_{2}, x_{m_{2}}$ are two disjoint cycles.

Thus by the claim, we have only to consider the degree sequence ($3,2,2,1$). If the degree 3 vertex does not lie on the path connecting the degree 2 vertices, then since the two vertices with degree 2 must have a common neighbor by $\left|C_{i_{0}}\right|=3$, we can easily find two disjoint cycles. Thus the degree 3 vertex does lie on the path connecting the two vertices with degree 2. Then $d_{c_{i_{0}}}\left(x_{4}\right)=3, d_{c_{i_{0}}}\left(x_{1}\right)=2$, and we may assume that $d_{c_{i_{0}}}\left(x_{2}\right)=1$ and $d_{c_{i_{0}}}\left(x_{3}\right)=2$. Let $v_{1} \in N_{c_{i_{0}}}\left(x_{2}\right)$. Since $\left|N_{c_{i_{0}}}\left(x_{1}\right) \cap N_{c_{i_{0}}}\left(x_{4}\right)\right|=2$, there exists $v_{h_{0}} \in N_{c_{i_{0}}}\left(x_{1}\right) \cap N_{C_{i_{0}}}\left(x_{4}\right)$ for some $h_{0} \in\{2,3\}$. Then $H\left[x_{1}, x_{4}\right], v_{h_{0}}, x_{1}$ is a cycle. Since $d_{c_{i_{0}}}\left(x_{3}\right)=2$, there exists $v_{h_{1}} \in N_{c_{i}}\left(x_{3}\right)$ for some $h_{1} \in\{1,2,3\}-\left\{h_{0}\right\}$. If $h_{1}=1$, then $H\left[x_{2}, x_{3}\right], v_{1}, x_{2}$ is the other disjoint cycle, and if $h_{1} \in\{2,3\}$, then $H\left[x_{2}, x_{3}\right], v_{h_{1}}, v_{1}, x_{2}$ is the other disjoint cycle.
Case 2. $\left|C_{i_{0}}\right|=4$.
Let $C_{i_{0}}=v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$. By Lemma A, $d_{c_{i_{0}}}(x) \leq 2$ for each $x \in X$. Since $d_{c_{i_{0}}}(X) \geq 8, d_{c_{i_{0}}}(x)=2$ for each $x \in X$. Any vertex in X does not have consecutive neighbors in $C_{i_{0}}$, otherwise, we can immediately find a 3 -cycle, contradicting (1). Thus for each $x \in X$, either $N_{c_{i_{0}}}(x)=\left\{v_{1}, v_{3}\right\}$ or $N_{c_{i 0}}(x)=\left\{v_{2}, v_{4}\right\}$.
Subcase 1. All four vertices in X have the same two neighbors in $C_{i_{0}}$.
We may assume that $N_{c_{i_{0}}}(X)=\left\{v_{1}, v_{3}\right\}$. Then $H\left[x_{1}, x_{4}\right], v_{1}, x_{1}$ and $H\left[x_{2}, x_{3}\right], v_{3}, x_{2}$ are two disjoint cycles.
Subcase 2. Three vertices in X have the same two neighbors in $C_{i_{0}}$.
Suppose that x_{1}, x_{4} have the same two neighbors in $C_{i_{0}}$. Then we may assume that $v_{1} \in N_{C_{i}}\left(x_{1}\right) \cap N_{C_{i_{0}}}\left(x_{4}\right)$, and $H\left[x_{1}, x_{4}\right], v_{1}, x_{1}$ is a cycle. Since $d_{c_{i_{0}}}\left(x_{j}\right)=2$ for each $j \in\{2,3\}, N_{c_{i_{0}}-v_{1}}\left(x_{j}\right) \neq \emptyset$. Then $\left\langle H\left[x_{2}, x_{3}\right] \cup\left(C_{i_{0}}-v_{1}\right)\right\rangle$ contains the other disjoint cycle. Suppose that x_{1}, x_{4} do not have the same two neighbors in $C_{i_{0}}$. Since x_{2}, x_{3} have the same two neighbors in $C_{i 0}$, we repeat the above arguments, replacing x_{1}, x_{4} with x_{2}, x_{3}.
Subcase 3. Two vertices of X have the same two neighbors in $C_{i_{0}}$, and the other two vertices of X have the same two neighbors, different from the neighbors of the first two.

Suppose that x_{1}, x_{4} have the same two neighbors. We may assume that $v_{1} \in N_{C_{i_{0}}}\left(x_{1}\right) \cap N_{c_{i 0}}\left(x_{4}\right)$. Then $H\left[x_{1}, x_{4}\right], v_{1}, x_{1}$ is a cycle. Since x_{2}, x_{3} have the same two neighbors, different from the neighbors of x_{1} and $x_{4}, H\left[x_{2}, x_{3}\right], v_{2}, x_{2}$ is the other disjoint cycle. Suppose that x_{1}, x_{4} have different neighbors. We may assume that $v_{1} \in N_{c_{i 0}}\left(x_{1}\right)$ and $v_{2} \in N_{c_{i_{0}}}\left(x_{4}\right)$. Then $H\left[x_{1}, x_{4}\right], v_{2}, v_{1}, x_{1}$ is a cycle. Since x_{2}, x_{3} have the neighbors, different from $v_{1}, v_{2},\left\langle H\left[x_{2}, x_{3}\right] \cup\left\{v_{3}, v_{4}\right\}\right\rangle$ contains the other disjoint cycle.

Since H is a path by Claim 2, let $H=x_{1}, x_{2}, \ldots, x_{t}(t \geq 8)$. Let $X=\left\{x_{1}, x_{3}, x_{5}, x_{t}\right\}$. Then X is an independent set with $d_{H}(X)=6$, and $d_{\mathscr{C}}(X) \geq(8 k-3)-6=8 k-9 \geq 7(k-1)$, since $k \geq 2$. Thus either $d_{C_{0}}(X) \geq 8$ for some cycle C_{0} in \mathscr{E}, or $d_{C}(X)=7$ for every cycle C in \mathscr{C}. If $d_{C}(X) \geq 8$ for some cycle C in \mathscr{C}, then we have the minimum possible degree sequences $(3,3,2,0),(3,3,1,1),(3,2,2,1)$ or $(2,2,2,2)$ from X to C. If $d_{C}(X)=7$ for some cycle C in \mathscr{C}, then we have the minimum possible degree sequences $(3,3,1,0),(3,2,1,1),(3,2,2,0)$ or $(2,2,2,1)$ from X to C.

Subclaim 1. If there exists a degree sequence ($3,3,1,0$) from X to C, then there exist two disjoint cycles in $\langle H \cup C\rangle$.
Proof. By Lemma $\mathrm{A},|C|=3$. Let $C=v_{1}, v_{2}, v_{3}, v_{1}$. We may assume that $d_{C}\left(x_{i_{0}}\right)=1$ for some $i_{0} \in\{1,3\}$, otherwise, $i_{0} \in\{5, t\}$, and we may argue in a similar manner from the other end of the path H. Let $v_{1} \in N_{C}\left(x_{i_{0}}\right)$. First, suppose that $i_{0}=1$, that is, $d_{C}\left(x_{1}\right)=1$. Then $d_{C}\left(x_{j_{1}}\right)=d_{C}\left(x_{j_{2}}\right)=3$ for some $j_{1}, j_{2} \in\{3,5, t\}$ with $j_{1}<j_{2}$. Thus $H\left[x_{1}, x_{j_{1}}\right], v_{1}, x_{1}$ and
$x_{j_{2}}, v_{3}, v_{2}, x_{j_{2}}$ are two disjoint cycles. Next, suppose that $i_{0}=3$, that is, $d_{C}\left(x_{3}\right)=1$. If $d_{C}\left(x_{1}\right)=0$, then since $d_{C}\left(x_{j}\right)=3$ for each $j \in\{5, t\}, x_{3}, x_{4}, x_{5}, v_{1}, x_{3}$ and $x_{t}, v_{3}, v_{2}, x_{t}$ are two disjoint cycles. If $d_{C}\left(x_{1}\right)=3$, then $x_{1}, x_{2}, x_{3}, v_{1}, x_{1}$ is a cycle, and since $d_{C}\left(x_{j_{0}}\right)=3$ for some $j_{0} \in\{5, t\}, x_{j_{0}}, v_{3}, v_{2}, x_{j_{0}}$ is the other disjoint cycle.

Subclaim 2. If there exists a degree sequence $(2,2,2,1)$ from X to C, then there exist two disjoint cycles in $\langle H \cup C\rangle$.
Proof. By Lemma $A,|C| \leq 4$. Let $C=v_{1}, v_{2}, \ldots, v_{q}, v_{1}$, where $q=|C|$. We may assume that $d_{C}\left(x_{i_{0}}\right)=1$ for some $i_{0} \in\{5, t\}$, otherwise, $i_{0} \in\{1,3\}$, and we may argue in a similar manner from the other end of the path H. Let $v_{1} \in N_{C}\left(x_{i_{0}}\right)$.
Case 1. $N_{C}\left(x_{1}\right) \cap N_{C}\left(x_{3}\right) \neq \emptyset$.
First, suppose that $v_{j_{0}} \in N_{C-v_{1}}\left(x_{1}\right) \cap N_{C-v_{1}}\left(x_{3}\right)$ for some $2 \leq j_{0} \leq q$. Then $x_{1}, x_{2}, x_{3}, v_{j_{0}}, x_{1}$ is a cycle. Since $d_{C}\left(x_{r}\right)=2$ for $r \in\{5, t\}-\left\{i_{0}\right\}, N_{C-v_{j_{0}}}\left(x_{r}\right) \neq \emptyset$. Then $\left\langle H\left[x_{5}, x_{t}\right] \cup\left(C-v_{j_{0}}\right)\right\rangle$ contains the other disjoint cycle. Next, suppose that $v_{1} \in N_{C}\left(x_{1}\right) \cap N_{C}\left(x_{3}\right)$. Then $x_{1}, x_{2}, x_{3}, v_{1}, x_{1}$ is a cycle. Since $d_{C}\left(x_{r}\right)=2$ for $r \in\{5, t\}-\left\{i_{0}\right\}$, if $v_{1} \notin N_{C}\left(x_{r}\right)$, then $\left\langle x_{r} \cup\left(C-v_{1}\right)\right\rangle$ contains the other disjoint cycle. Thus we may assume that $v_{1} \in N_{C}\left(x_{r}\right)$. Then $H\left[x_{5}, x_{t}\right], v_{1}, x_{5}$ is a cycle. Since $d_{C}\left(x_{i}\right)=2$ for each $i \in\{1,3\}, N_{C-v_{1}}\left(x_{i}\right) \neq \emptyset$, and $\left\langle H\left[x_{1}, x_{3}\right] \cup\left(C-v_{1}\right)\right\rangle$ contains the other disjoint cycle.
Case 2. $N_{C}\left(x_{1}\right) \cap N_{C}\left(x_{3}\right)=\emptyset$.
In this case, if $|C|=3$, then since $d_{C}\left(x_{i}\right)=2$ for each $i \in\{1,3\}, N_{C}\left(x_{1}\right) \cap N_{C}\left(x_{3}\right) \neq \emptyset$, contradicting our assumption. Thus $|C|=4$, and either $N_{C}\left(x_{1}\right)=\left\{v_{1}, v_{3}\right\}$ and $N_{C}\left(x_{3}\right)=\left\{v_{2}, v_{4}\right\}$ or $N_{C}\left(x_{1}\right)=\left\{v_{2}, v_{4}\right\}$ and $N_{C}\left(x_{3}\right)=\left\{v_{1}, v_{3}\right\}$.

Suppose that $N_{C}\left(x_{1}\right)=\left\{v_{1}, v_{3}\right\}$ and $N_{C}\left(x_{3}\right)=\left\{v_{2}, v_{4}\right\}$. Suppose that $d_{C}\left(x_{5}\right)=1$. Then $x_{5} v_{1} \in E(G)$ by our earlier assumption, and $d_{C}\left(x_{t}\right)=2$. If $x_{t} v_{1} \in E(G)$, then $H\left[x_{5}, x_{t}\right], v_{1}, x_{5}$ is a cycle, and $x_{3}, v_{4}, v_{3}, v_{2}, x_{3}$ is the other disjoint cycle. Thus $N_{C}\left(x_{t}\right)=\left\{v_{2}, v_{4}\right\}$. Then $H\left[x_{3}, x_{t}\right], v_{4}, x_{3}$ and $x_{1}, v_{3}, v_{2}, v_{1}, x_{1}$ are two disjoint cycles. Suppose that $d_{C}\left(x_{t}\right)=1$. Then we can find two disjoint cycles in $\langle H \cup C\rangle$ similar to the case where $d_{C}\left(x_{5}\right)=1$.

Suppose that $N_{C}\left(x_{1}\right)=\left\{v_{2}, v_{4}\right\}$ and $N_{C}\left(x_{3}\right)=\left\{v_{1}, v_{3}\right\}$. Then $x_{1}, v_{4}, v_{3}, v_{2}, x_{1}$ is a cycle, and since $d_{C}\left(x_{i_{0}}\right)=1$ for some $i_{0} \in\{5, t\}$ and $x_{i_{0}} v_{1} \in E(G), H\left[x_{3}, x_{i_{0}}\right], v_{1}, x_{3}$ is the other disjoint cycle.

By Subclaims 1 and 2, if $d_{C}(X) \geq 8$ for some cycle C in \mathscr{C}, noting the minimum possible degree sequences, then $\langle H \cup C\rangle$ contains two disjoint cycles. Thus we may assume that $d_{C}(X)=7$ for every cycle C in \mathscr{C}. Let $X^{\prime}=\left\{x_{2}, x_{4}, x_{6}, x_{t}\right\}$. Then X^{\prime} is an independent set with $d_{H}\left(X^{\prime}\right)=7$, and $d_{\mathscr{C}}\left(X^{\prime}\right) \geq(8 k-3)-7=8 k-10 \geq 6(k-1)$, since $k \geq 2$. Thus we choose some cycle C in \mathscr{C} such that $d_{C}\left(X^{\prime}\right) \geq 6$. Since $d_{C}\left(x_{t}\right) \leq 3$ by Lemma A, note that $d_{C}\left(X^{\prime}-\left\{x_{t}\right\}\right) \geq 6-3=3$. Now, we have only to consider degree sequences $(3,2,1,1)$ and $(3,2,2,0)$ from X to C by Subclaims 1 and 2 . Since both degree sequences contain degree $3,|C|=3$ by Lemma A. Let $C=v_{1}, v_{2}, v_{3}, v_{1}$.

Case 1. The sequence is $(3,2,1,1)$.
Suppose that $d_{C}\left(x_{1}\right)=3$. By the degree sequence of this case and $|C|=3$, there are distinct integers $i_{1}, i_{2} \in\{3,5, t\}$ with $i_{1}<i_{2}$ such that $N_{C}\left(x_{i_{1}}\right) \cap N_{C}\left(x_{i_{2}}\right) \neq \emptyset$. Without loss of generality, we may assume that $v_{1} \in N_{C}\left(x_{i_{1}}\right) \cap N_{C}\left(x_{i_{2}}\right)$. Then $H\left[x_{i_{1}}, x_{i_{2}}\right], v_{1}, x_{i_{1}}$ is a cycle. Since $d_{C}\left(x_{1}\right)=3, x_{1}, v_{3}, v_{2}, x_{1}$ is the other disjoint cycle. If $d_{C}\left(x_{t}\right)=3$, then we can find two disjoint cycles similar to the case where $d_{C}\left(x_{1}\right)=3$. Thus we may assume that $d_{C}\left(x_{i_{0}}\right)=3$ for some $i_{0} \in\{3,5\}$.

Suppose that $d_{C}\left(x_{1}\right)=2$. Without loss of generality, we may assume that $v_{1}, v_{2} \in N_{C}\left(x_{1}\right)$. First, suppose that $d_{C}\left(x_{3}\right)=1$. Then $d_{C}\left(x_{5}\right)=3$. If $x_{3} v_{1} \in E(G)$, then $x_{1}, x_{2}, x_{3}, v_{1}, x_{1}$ and $x_{5}, v_{3}, v_{2}, x_{5}$ are two disjoint cycles. If $x_{3} v_{2} \in E(G)$, then we can find two disjoint cycles similar to the case where $x_{3} v_{1} \in E(G)$, replacing v_{1} with v_{2}. If $x_{3} v_{3} \in E(G)$, then $x_{3}, x_{4}, x_{5}, v_{3}, x_{3}$ and $x_{1}, v_{2}, v_{1}, x_{1}$ are two disjoint cycles. Next, suppose that $d_{C}\left(x_{3}\right)=3$. If $x_{5} v_{3} \in E(G)$, then $x_{3}, x_{4}, x_{5}, v_{3}, x_{3}$ and $x_{1}, v_{2}, v_{1}, x_{1}$ are two disjoint cycles. Thus $x_{5} v_{j_{0}} \in E(G)$ for some $j_{0} \in\{1,2\}$. If $j_{0}=1$, that is, $x_{5} v_{1} \in E(G)$, then $x_{3}, v_{3}, v_{2}, x_{3}$ is a 3-cycle, and $\left\langle\left(H-x_{3}\right) \cup v_{1}\right\rangle$ is connected and not a path. Thus we can find two disjoint cycles in $\langle H \cup C\rangle$ as in the proof of Claim 2 . Similarly, we can prove the case where $j_{0}=2$.

If $d_{C}\left(x_{t}\right)=2$, then we can find two disjoint cycles similar to the case where $d_{C}\left(x_{1}\right)=2$. Thus we may assume that $d_{C}\left(x_{m_{0}}\right)=2$ for some $m_{0} \in\{3,5\}$.

Then $d_{C}\left(x_{i}\right)=1$ for each $i \in\{1, t\}$. Let $x_{1} v_{1} \in E(G)$. Then we may assume that $d_{C}\left(x_{3}\right)=2$ and $d_{C}\left(x_{5}\right)=3$, otherwise, $d_{C}\left(x_{3}\right)=3$ and $d_{C}\left(x_{5}\right)=2$, and we may argue in a similar manner from the other end of the path H. If $x_{3} v_{1} \in E(G)$, then $H\left[x_{1}, x_{3}\right], v_{1}, x_{1}$ and $x_{5}, v_{3}, v_{2}, x_{5}$ are two disjoint cycles. Thus $x_{3} v_{i} \in E(G)$ for each $i \in\{2,3\}$. If $x_{t} v_{1} \in E(G)$, then $H\left[x_{5}, x_{t}\right], v_{1}, x_{5}$ and $x_{3}, v_{3}, v_{2}, x_{3}$ are two disjoint cycles. If $x_{t} v_{2} \in E(G)$, then $H\left[x_{5}, x_{t}\right], v_{2}, x_{5}$ and $H\left[x_{1}, x_{3}\right], v_{3}, v_{1}, x_{1}$ are two disjoint cycles. If $x_{t} v_{3} \in E(G)$, then $H\left[x_{5}, x_{t}\right], v_{3}, x_{5}$ and $H\left[x_{1}, x_{3}\right], v_{2}, v_{1}, x_{1}$ are two disjoint cycles.

Case 2. The sequence is $(3,2,2,0)$.
We may assume that $d_{C}\left(x_{i_{0}}\right)=0$ for some $i_{0} \in\{1,3\}$, otherwise, $i_{0} \in\{5, t\}$, and we may argue in a similar manner from the other end of the path H. Let $j_{0} \in\{1,3\}-\left\{i_{0}\right\}$. Then $d_{C}\left(x_{j_{0}}\right) \geq 2$. Without loss of generality, we may assume that $v_{1}, v_{2} \in N_{C}\left(x_{j_{0}}\right)$.

Suppose that $d_{C}\left(x_{5}\right)=2$. If $d_{C}\left(x_{j_{0}}\right)=2$, then $N_{C}\left(x_{j_{0}}\right) \cap N_{C}\left(x_{5}\right) \neq \emptyset$, say v, and $H\left[x_{j_{0}}, x_{5}\right], v, x_{j_{0}}$ is a cycle. Since $d_{C}\left(x_{t}\right)=3$, $\left\langle x_{t} \cup(C-v)\right\rangle$ contains the other disjoint cycle. If $d_{C}\left(x_{j_{0}}\right)=3$, then $d_{C}\left(x_{j}\right)=2$ for each $j \in\{5, t\}$. Since $N_{C}\left(x_{5}\right) \cap N_{C}\left(x_{t}\right) \neq \emptyset$, say $v, H\left[x_{5}, x_{t}\right], v, x_{5}$ is a cycle. Since $d_{C}\left(x_{j_{0}}\right)=3,\left\langle x_{j_{0}} \cup(C-v)\right\rangle$ contains the other disjoint cycle.

Suppose that $d_{C}\left(x_{5}\right)=3$. If $\left|N_{C}\left(x_{j_{0}}\right) \cap N_{C}\left(x_{t}\right)\right|=1$, then let $v \in N_{C}\left(x_{j_{0}}\right)-N_{C}\left(x_{t}\right)$. Then $H\left[x_{j_{0}}, x_{5}\right], v, x_{j_{0}}$ is a cycle, and $\left\langle x_{t} \cup(C-v)\right\rangle$ contains the other cycle. Thus $x_{j_{0}}, x_{t}$ have all the same neighbors in C, say v_{1}, v_{2}. Suppose that $N_{C}\left(x_{6}\right) \neq \emptyset$. If $N_{C}\left(x_{6}\right) \cap N_{C}\left(x_{t}\right) \neq \emptyset$, say v, then $H\left[x_{6}, x_{t}\right], v, x_{6}$ is a cycle, and $\left\langle x_{5} \cup(C-v)\right\rangle$ contains the other disjoint cycle. If $N_{C}\left(x_{6}\right) \cap N_{C}\left(x_{t}\right)=\emptyset$, then $x_{6} v_{3} \in E(G)$. Thus $x_{5}, x_{6}, v_{3}, x_{5}$ and $x_{t}, v_{2}, v_{1}, x_{t}$ are two disjoint cycles.

Suppose that $N_{C}\left(x_{4}\right) \neq \emptyset$. Then replacing x_{6} in the above argument with x_{4} and x_{t} with x_{1}, we can prove this case by the same arguments above. Thus $N_{C}\left(x_{i}\right)=\emptyset$ for each $i \in\{4,6\}$. This implies that $d_{C}\left(x_{2}\right)=3$. Then $x_{j_{0}}, x_{2}, v_{1}, x_{j_{0}}$ and $x_{5}, v_{3}, v_{2}, x_{5}$ are two disjoint cycles.

4. Proofs of Lemmas

4.1. Proof of Lemma 1

Let $F, C, x_{i}(1 \leq i \leq 4)$ be as in Lemma 1. Let F_{1}, F_{2} be two components of $F, C=v_{1}, v_{2}, v_{3}, v_{1}$, and $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Now, we consider two cases.

Case 1. At most two vertices of X lie in the same component of F.
Since $d_{C}(X) \geq 9, d_{C}\left(x_{i_{0}}\right) \geq 3$ for some $1 \leq i_{0} \leq 4$. By $|C|=3, d_{C}\left(x_{i}\right) \leq 3$ for each $1 \leq i \leq 4$. Thus $d_{C}\left(x_{i_{0}}\right)=3$. Without loss of generality, we may assume that $i_{0}=1$, that is, $d_{C}\left(x_{1}\right)=3$. Then $d_{C}\left(\left\{x_{2}, x_{3}, x_{4}\right\}\right) \geq 6$. Also, we may assume that $d_{C}\left(x_{2}\right) \geq d_{C}\left(x_{3}\right) \geq d_{C}\left(x_{4}\right)$. Now, we claim that $d_{C}\left(\left\{x_{2}, x_{3}\right\}\right) \geq 4$. Otherwise, if $d_{C}\left(\left\{x_{2}, x_{3}\right\}\right) \leq 3$, then $d_{C}\left(x_{j_{0}}\right) \leq 1$ for some $j_{0} \in\{2,3\}$. That implies that $d_{C}\left(x_{4}\right) \leq 1$, since $d_{C}\left(x_{4}\right)$ is the smallest degree in $\left\{x_{2}, x_{3}, x_{4}\right\}$. Then $d_{C}\left(\left\{x_{2}, x_{3}, x_{4}\right\}\right) \leq 3+1=4$, a contradiction. Thus the claim holds. Noting our assumption of this case, $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a set of leaves from at least two components of F. Since $d_{C}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right) \geq 3+4=7$, Lemma B applies, completing this case.

Case 2. Three vertices of X lie in the same component of F.
Without loss of generality, we may assume that $x_{1}, x_{2}, x_{3} \in V\left(F_{1}\right), x_{4} \in V\left(F_{2}\right)$, and $d_{C}\left(x_{1}\right) \geq d_{C}\left(x_{2}\right) \geq d_{C}\left(x_{3}\right)$. Recall that $d_{C}(X) \geq 9$. It follows that the minimum possible degree sequence S from X to C is $(3,3,3,0),(3,3,2,1)$ or $(3,2,2,2)$.

Subcase 1. $S=(3,3,3,0)$.
If $d_{C}\left(x_{i_{0}}\right)=0$ for some $1 \leq i_{0} \leq 3$, then $i_{0}=3$, that is, $d_{C}\left(x_{3}\right)=0$. Now, we take $\left\{x_{1}, x_{2}, x_{4}\right\}$ that is a set of leaves from at least two components of F. Since $d_{C}\left(\left\{x_{1}, x_{2}, x_{4}\right\}\right)=9$, Lemma B applies. If $d_{C}\left(x_{4}\right)=0$, then $d_{C}\left(x_{i}\right)=3$ for each $1 \leq i \leq 3$. Since all the x_{i} s are leaves, x_{3} does not lie on the path in F_{1} connecting x_{1} and x_{2}. Then $F_{1}\left[x_{1}, x_{2}\right], v_{1}, x_{1}$ and $x_{3}, v_{3}, v_{2}, x_{3}$ are two disjoint cycles in $\langle F \cup C\rangle$.
Subcase 2. $S=(3,3,2,1)$.
Take $\left\{x_{1}, x_{2}, x_{4}\right\}$. If $d_{C}\left(x_{4}\right) \in\{1,2\}$, then $d_{C}\left(\left\{x_{1}, x_{2}\right\}\right) \geq 6$. If $d_{C}\left(x_{4}\right)=3$, then $d_{C}\left(\left\{x_{1}, x_{2}\right\}\right) \geq 5$. Since $d_{C}\left(\left\{x_{1}, x_{2}, x_{4}\right\}\right) \geq 7$ for all cases, Lemma B applies.
Subcase 3. $S=(3,2,2,2)$.
Take $\left\{x_{1}, x_{2}, x_{4}\right\}$. If $d_{C}\left(x_{4}\right)=2$, then $d_{C}\left(\left\{x_{1}, x_{2}\right\}\right) \geq 5$. If $d_{C}\left(x_{4}\right)=3$, then $d_{C}\left(\left\{x_{1}, x_{2}\right\}\right) \geq 4$. Since $d_{C}\left(\left\{x_{1}, x_{2}, x_{4}\right\}\right) \geq 7$ for all cases, Lemma B applies.

4.2. Proof of Lemma 5

Proof of (i). Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ be the vertices such that $d_{C_{1}}\left(v_{i}\right)=2$ for each $1 \leq i \leq 5$, appearing in this order on C_{2}. Let $w_{1}, w_{2} \in N_{C_{1}}\left(v_{1}\right)$ appear in this order on C_{1}. The neighbors of v_{1} partition C_{1} into two intervals $C_{1}\left(w_{1}, w_{2}\right]$ and $C_{1}\left(w_{2}, w_{1}\right]$. We claim that each of $v_{2}, v_{3}, v_{4}, v_{5}$ has one neighbor in different interval of C_{1}.

First, suppose that $v_{i_{1}}, v_{i_{2}}, v_{i_{3}}$ for some $2 \leq i_{1}<i_{2}<i_{3} \leq 5$ have both their neighbors in a common interval of C_{1}, say $C_{1}\left(w_{1}, w_{2}\right]$. We may assume that at least one of their neighbors is not w_{2}. Let $z_{i_{1}} \in N_{C_{1}\left(w_{1}, w_{2}\right)}\left(v_{i_{1}}\right)$ and $z_{i_{2}} \in N_{C_{1}\left(w_{1}, w_{2}\right)}\left(v_{i_{2}}\right)$. Then $C_{1}^{ \pm}\left[z_{i_{1}}, z_{i_{2}}\right], C_{2}^{-}\left[v_{i_{2}}, v_{i_{1}}\right], z_{i_{1}}$ and $C_{1}\left[w_{2}, w_{1}\right], v_{1}, w_{2}$ are shorter two disjoint cycles, since $v_{i_{3}}$ is not used.

Next, suppose that $v_{i_{1}}, v_{i_{2}}$ for some $2 \leq i_{1}<i_{2} \leq 5$ have both their neighbors in a common interval of C_{1}, say $C_{1}\left(w_{1}, w_{2}\right]$. Then we may assume that $i_{1}=2$ and $i_{2}=5$, otherwise, we can prove the other pairs of i_{1} and i_{2} by the same arguments above. Let $z_{i_{1}} \in N_{C_{1}\left(w_{1}, w_{2}\right)}\left(v_{2}\right)$ and $z_{i_{2}} \in N_{C_{1}\left(w_{1}, w_{2}\right)}\left(v_{5}\right)$. If $N_{C_{1}\left(w_{1}, w_{2}\right)}\left(v_{j_{0}}\right) \neq \emptyset$ for some $j_{0} \in\{3,4\}$, then there exist shorter two disjoint cycles. Thus $N_{C_{1}\left(w_{1}, w_{2}\right)}\left(v_{j}\right)=\emptyset$ for each $j \in\{3,4\}$. Since $d_{C_{1}}\left(v_{j}\right)=2$ for each $j \in\{3,4\}, N_{C_{1}\left(w_{2}, w_{1}\right]}\left(v_{j}\right) \neq \emptyset$. Let $z_{i_{3}} \in N_{C_{1}\left(w_{2}, w_{1}\right]}\left(v_{3}\right)$ and $z_{i_{4}} \in N_{C_{1}\left(w_{2}, w_{1}\right]}\left(v_{4}\right)$. Then $C_{1}^{ \pm}\left[z_{i_{3}}, z_{i_{4}}\right], C_{2}^{-}\left[v_{4}, v_{3}\right], z_{i_{3}}$ and $C_{1}^{ \pm}\left[z_{i_{1}}, z_{i_{2}}\right], C_{2}\left[v_{5}, v_{2}\right], z_{i_{1}}$ are shorter two disjoint cycles, since w_{2} is not used.

Finally, suppose that $v_{i_{0}}$ for some $2 \leq i_{0} \leq 5$ has both the neighbors in an interval of C_{1}, say $C_{1}\left(w_{1}, w_{2}\right]$. Then we have only to consider $i_{0}=2$ or $i_{0}=3$, otherwise, we take a cycle from v_{1} in the opposite direction. First, suppose that $i_{0}=2$. Let $x_{1}, x_{2} \in N_{C_{1}\left(w_{1}, w_{2}\right]}\left(v_{2}\right)$, appearing in this order on C_{1}. If $x_{2} \neq w_{2}$, then $C_{1}\left[x_{1}, x_{2}\right], v_{2}, x_{1}$ and $C_{1}\left[w_{2}, w_{1}\right], v_{1}, w_{2}$ are shorter two disjoint cycles, since v_{3} is not used. Thus $x_{2}=w_{2}$. Let $y_{1}, y_{2} \in N_{C_{1}}\left(v_{3}\right)$, appearing in this order on C_{1}. Suppose that $y_{1} \in C_{1}\left(w_{1}, w_{2}\right)$. Then $C_{1}^{ \pm}\left[x_{1}, y_{1}\right], C_{2}^{-}\left[v_{3}, v_{2}\right], x_{1}$ and $C_{1}\left[w_{2}, w_{1}\right], v_{1}, w_{2}$ are shorter two disjoint cycles, since v_{4} is not used. Thus $y_{1} \notin C_{1}\left(w_{1}, w_{2}\right)$, that is, $y_{1} \in C_{1}\left[w_{2}, w_{1}\right]$. Note that $y_{2} \in C_{1}\left(w_{2}, w_{1}\right]$. If $y_{1} \neq w_{2}$, then $C_{1}\left[x_{1}, w_{2}\right], v_{2}, x_{1}$ and $C_{1}\left[y_{1}, y_{2}\right], v_{3}, y_{1}$ are shorter two disjoint cycles, since v_{1} is not used. Thus $y_{1}=w_{2}$. If $y_{2} \neq w_{1}$, then $C_{1}\left[w_{2}, y_{2}\right], v_{3}, w_{2}$ and $C_{1}\left[w_{1}, x_{1}\right], C_{2}^{-}\left[v_{2}, v_{1}\right], w_{1}$ are shorter two disjoint cycles, since v_{4} is not used. Thus $y_{2}=w_{1}$. Let $z_{1}, z_{2} \in N_{C_{1}}\left(v_{4}\right)$, appearing in this order on C_{1}. Suppose that $z_{1} \in C_{1}\left[w_{1}, w_{2}\right)$. Then $C_{1}\left[w_{1}, z_{1}\right], C_{2}^{-}\left[v_{4}, v_{3}\right], w_{1}$ and $C_{2}\left[v_{1}, v_{2}\right], w_{2}, v_{1}$ are shorter two disjoint cycles, since v_{5} is not used. Suppose that $z_{1} \in C_{1}\left[w_{2}, w_{1}\right)$. Then $C_{1}\left[w_{1}, x_{1}\right], C_{2}^{-}\left[v_{2}, v_{1}\right], w_{1}$ and $C_{1}\left[w_{2}, z_{1}\right], C_{2}^{-}\left[v_{4}, v_{3}\right]$, w_{2} are shorter two disjoint cycles, since v_{5} is not used. Next, suppose that $i_{0}=3$. Then, by the same arguments as the case where $i_{0}=2$, we have shorter two disjoint cycles, replacing v_{2} with v_{3}.

Thus each of $v_{2}, v_{3}, v_{4}, v_{5}$ has one neighbor in each interval of \mathcal{C}_{1}. Let $x \in N_{\mathcal{C}_{1}\left(w_{1}, w_{2}\right]}\left(v_{2}\right), y \in N_{\mathcal{C}_{1}\left(w_{1}, w_{2}\right]}\left(v_{3}\right), z \in$ $N_{C_{1}\left(w_{2}, w_{1}\right]}\left(v_{4}\right), u \in N_{C_{1}\left(w_{2}, w_{1}\right]}\left(v_{5}\right)$. Then $C_{1}^{ \pm}[x, y], C_{2}^{-}\left[v_{3}, v_{2}\right], x$ and $C_{1}^{ \pm}[z, u], C_{2}^{-}\left[v_{5}, v_{4}\right], z$ are shorter two disjoint cycles, since v_{1} is not used.
Proof of (ii). Let $v_{1}, v_{2} \in V\left(C_{2}\right)$ such that $d_{C_{1}}\left(v_{1}\right)=5$ and $d_{C_{1}}\left(v_{2}\right)=3$, appearing in this order on C_{2}. Let $w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \in$ $N_{C_{1}}\left(v_{1}\right)$, appearing in this order on C_{1}, and let $u_{1}, u_{2}, u_{3} \in N_{C_{1}}\left(v_{2}\right)$, appearing in this order on C_{1}. The neighbors of v_{1} partition C_{1} into five intervals $C_{1}\left(w_{i}, w_{i+1}\right], 1 \leq i \leq 5(\bmod 5)$. Suppose that $u_{i 0}, u_{j_{0}} \in C_{1}\left(w_{m_{0}}, w_{m_{0}+1}\right](\bmod 5)$ for some $1 \leq i_{0}<j_{0} \leq 3$ and for some $1 \leq m_{0} \leq 5$. Without loss of generality, we may assume that $i_{0}=1, j_{0}=2$ and $m_{0}=1$. Then $C_{1}\left[u_{1}, u_{2}\right], v_{2}, u_{1}$ and $C_{1}\left[w_{3}, w_{4}\right], v_{1}, w_{3}$ are shorter two disjoint cycles, since w_{1} is not used. Thus neighbors of v_{2} are contained in different intervals. Since C_{1} is partitioned into five intervals, some two neighbors of v_{2} lie in neighboring intervals, say $u_{1} \in\left(w_{1}, w_{2}\right]$ and $u_{2} \in C_{1}\left(w_{2}, w_{3}\right]$. Then $C_{1}\left[u_{1}, u_{2}\right], v_{2}, u_{1}$ and $C_{1}\left[w_{4}, w_{5}\right], v_{1}, w_{4}$ are shorter two disjoint cycles, since w_{1} is not used.

Proof of (iii). Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ be the vertices on C_{2} with the degree sequence ($3,1,1,1,1,1$), appearing in this order on c_{2}. Without loss of generality, we may assume that $d_{c_{1}}\left(v_{1}\right)=3$ and $d_{c_{1}}\left(v_{i}\right)=1$ for each $2 \leq i \leq 6$. Let $w_{1}, w_{2}, w_{3} \in N_{c_{1}}\left(v_{1}\right)$, appearing in this order on C_{1}. The neighbors of v_{1} partition C_{1} into three intervals: $C_{1}\left(w_{1}, w_{2}\right], C_{1}\left(w_{2}, w_{3}\right], C_{1}\left(w_{3}, w_{1}\right]$. Then there exist some integer $1 \leq i_{0} \leq 3$ and distinct integers $2 \leq j_{1}<j_{2} \leq 5$ such that $N_{c_{1}\left(w_{i_{0}}, w_{\left.i_{0}+1\right]}\right)}\left(v_{j_{1}}\right) \neq \emptyset$ and $N_{\mathcal{C}_{1}\left(w_{i}, w_{i 0}+1\right)}\left(v_{j_{2}}\right) \neq \emptyset$. Without loss of generality, we may assume that $i_{0}=1$. Let $u_{1} \in N_{c_{1}\left(w_{1}, w_{2}\right]}\left(v_{j_{1}}\right)$ and $u_{2} \in N_{\mathcal{C}_{1}\left(w_{1}, w_{2}\right]}\left(v_{j_{2}}\right)$. Then $C_{1}^{ \pm}\left[u_{1}, u_{2}\right], C_{2}^{-}\left[v_{j_{2}}, v_{j_{1}}\right], u_{1}$ and $C_{1}\left[w_{3}, w_{1}\right], v_{1}, w_{3}$ are shorter two disjoint cycles, since v_{6} is not used.
Proof of (iv). Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the vertices on C_{2} with the degree sequence ($3,2,1,1$), say $d_{C_{1}}\left(v_{1}\right)=3, d_{C_{1}}\left(v_{2}\right)=2$ and $d_{C_{1}}\left(v_{i}\right)=1$ for each $i \in\{3,4\}$. Suppose that v_{1}, v_{2} are in this order on C_{2}. Let $w_{1}, w_{2}, w_{3} \in N_{C_{1}}\left(v_{1}\right)$ be in this order on C_{1}, and let $u_{1}, u_{2} \in N_{C_{1}}\left(v_{2}\right)$ be in this order on C_{1}. Let v_{3}, v_{4} be in this order on C_{2}. Let $z_{1} \in N_{c_{1}}\left(v_{3}\right)$, and let $z_{2} \in N_{c_{1}}\left(v_{4}\right)$. The neighbors of v_{1} partition C_{1} into three intervals: $C_{1}\left(w_{1}, w_{2}\right], C_{1}\left(w_{2}, w_{3}\right], C_{1}\left(w_{3}, w_{1}\right]$. If v_{2} has both its neighbors in the same interval in C_{1}, then we can find shorter two disjoint cycles. If the neighbors of v_{2} are into two different intervals of C_{1} and neither is in $\left\{w_{1}, w_{2}, w_{3}\right\}$, then we can also find shorter two disjoint cycles. Thus the neighbors of v_{2} are into two different intervals of C_{1} and at least one of them is at an endpoint of these intervals. Without loss of generality, we may assume that $u_{1} \in C_{1}\left(w_{1}, w_{2}\right]$ and $u_{2} \in C_{1}\left(w_{2}, w_{3}\right]$. Now, we consider two cases.

Case 1. $v_{3}, v_{4} \in C_{2}\left(v_{1}, v_{2}\right)$ or $v_{3}, v_{4} \in C_{2}\left(v_{2}, v_{1}\right)$.
Without loss of generality, we may assume that $v_{3}, v_{4} \in C_{2}\left(v_{1}, v_{2}\right)$. If $z_{2} \in C_{1}\left(w_{1}, w_{3}\right)$, then $C_{1}^{ \pm}\left[u_{1}, z_{2}\right], C_{2}\left[v_{4}, v_{2}\right], u_{1}$ and $C_{1}\left[w_{3}, w_{1}\right], v_{1}, w_{3}$ are shorter two disjoint cycles, since v_{3} is not used. If $z_{2} \in C_{1}\left[w_{3}, w_{1}\right)$, then $C_{1}\left[u_{2}, z_{2}\right], C_{2}\left[v_{4}, v_{2}\right], u_{2}$ and $C_{1}\left[w_{1}, w_{2}\right], v_{1}, w_{1}$ are shorter two disjoint cycles, since v_{3} is not used. Thus $z_{2}=w_{1}$.

If $u_{2} \in C_{1}\left(w_{2}, w_{3}\right)$, then $C_{1}\left[u_{1}, u_{2}\right], v_{2}, u_{1}$ and $C_{2}\left[w_{3}, w_{1}\right], v_{1}, w_{3}$ are shorter two disjoint cycles, since v_{3} is not used. Thus $u_{2}=w_{3}$.

If $z_{1} \in C_{1}\left(w_{3}, u_{1}\right)$, then $C_{1}^{ \pm}\left[z_{1}, w_{1}\right], C_{2}\left[v_{1}, v_{3}\right], z_{1}$ and $C_{1}\left[u_{1}, w_{3}\right], v_{2}, u_{1}$ are shorter two disjoint cycles, since v_{4} is not used. Thus $z_{1} \in C_{1}\left[u_{1}, w_{3}\right]$.

Suppose that $u_{1} \in C_{1}\left(w_{1}, w_{2}\right)$. If $z_{1} \in C_{1}\left[u_{1}, w_{2}\right)$, then $C_{1}\left[w_{1}, z_{1}\right], C_{2}\left[v_{3}, v_{4}\right], w_{1}$ and $C_{1}\left[w_{2}, w_{3}\right], v_{1}, w_{2}$ are shorter two disjoint cycles, since v_{2} is not used. If $z_{1}=w_{2}$, then $C_{2}\left[v_{1}, v_{3}\right], w_{2}, v_{1}$ and $C_{1}\left[w_{1}, u_{1}\right], C_{2}^{-}\left[v_{2}, v_{4}\right], w_{1}$ are shorter two disjoint cycles, since w_{3} is not used. If $z_{1} \in C_{1}\left(w_{2}, w_{3}\right]$, then $C_{1}\left[z_{1}, w_{3}\right], C_{2}\left[v_{1}, v_{3}\right], z_{1}$ and $C_{1}\left[w_{1}, u_{1}\right], C_{2}^{-}\left[v_{2}, v_{4}\right], w_{1}$ are shorter two disjoint cycles, since w_{2} is not used. Thus $u_{1}=w_{2}$.

Now, we consider two disjoint cycles $C^{\prime}=w_{1}, C_{2}\left[v_{1}, v_{4}\right], w_{1}$ and $C^{\prime \prime}=C_{1}\left[w_{2}, w_{3}\right], v_{2}, w_{2}$. Note that $\left|C_{2}\right| \geq 6$. If $C_{2}\left(v_{4}, v_{2}\right) \neq \emptyset$ or $C_{2}\left(v_{2}, v_{1}\right) \neq \emptyset$, then C^{\prime} and $C^{\prime \prime}$ are shorter two disjoint cycles. Thus $C_{2}\left(v_{4}, v_{2}\right)=\emptyset$ and $C_{2}\left(v_{2}, v_{1}\right)=\emptyset$. First, suppose that $z_{1} \in C_{1}\left[w_{2}, w_{3}\right)$. If $C_{2}\left(v_{1}, v_{3}\right) \neq \emptyset$, then $C_{1}\left[w_{3}, w_{1}\right], v_{1}, w_{3}$ and $C_{2}\left[v_{3}, v_{2}\right], C_{1}\left[w_{2}, z_{1}\right], v_{3}$ are shorter two disjoint cycles. If $C_{2}\left(v_{3}, v_{4}\right) \neq \emptyset$, then $C_{1}\left[w_{2}, z_{1}\right], C_{2}^{-}\left[v_{3}, v_{1}\right], w_{2}$ and $C_{1}\left[w_{3}, w_{1}\right], C_{2}\left[v_{4}, v_{2}\right], w_{3}$ are shorter two disjoint cycles. Next, suppose that $z_{1}=w_{3}$. If $C_{2}\left(v_{1}, v_{3}\right) \neq \emptyset$, then $C_{1}\left[w_{1}, w_{2}\right], v_{1}, w_{1}$ and $C_{2}\left[v_{3}, v_{2}\right], w_{3}, v_{3}$ are shorter two disjoint cycles. If $C_{2}\left(v_{3}, v_{4}\right) \neq \emptyset$, then $C_{2}\left[v_{1}, v_{3}\right], w_{3}, v_{1}$ and $C_{1}\left[w_{1}, w_{2}\right], C_{2}^{-}\left[v_{2}, v_{4}\right], w_{1}$ are shorter two disjoint cycles.

Case 2. $v_{3} \in C_{2}\left(v_{1}, v_{2}\right)$ and $v_{4} \in C_{2}\left(v_{2}, v_{1}\right)$.
If $z_{1} \in C_{1}\left(w_{1}, w_{3}\right)$, then $C_{1}^{ \pm}\left[u_{1}, z_{1}\right], C_{2}\left[v_{3}, v_{2}\right], u_{1}$ and $C_{1}\left[w_{3}, w_{1}\right], v_{1}, w_{3}$ are shorter two disjoint cycles, since v_{4} is not used. If $z_{1} \in C_{1}\left[w_{3}, w_{1}\right.$), then $C_{1}\left[u_{2}, z_{1}\right], C_{2}\left[v_{3}, v_{2}\right], u_{2}$ and $C_{1}\left[w_{1}, w_{2}\right], v_{1}, w_{1}$ are shorter two disjoint cycles, since v_{4} is not used. Thus $z_{1}=w_{1}$. Then $C_{2}\left[v_{1}, v_{3}\right], w_{1}, v_{1}$ and $C_{1}\left[u_{1}, u_{2}\right], v_{2}, u_{1}$ are shorter two disjoint cycles, since v_{4} is not used.
Proof of (\mathbf{v}). Let v_{1}, v_{2}, v_{3} be the vertices on C_{2} with the degree sequence ($3,3,1$). Suppose that v_{1}, v_{2}, v_{3} exist in this order on C_{2}. Without loss of generality, we may assume that $d_{C_{1}}\left(v_{i}\right)=3$ each $i \in\{1,2\}$ and $d_{C_{1}}\left(v_{3}\right)=1$. Suppose that $w_{1}, w_{2}, w_{3} \in N_{C_{1}}\left(v_{1}\right)$ exist in this order on C_{1}. Let $W=\left\{w_{1}, w_{2}, w_{3}\right\}$. These neighbors of v_{1} partition C_{1} into three intervals: $C_{1}\left(w_{1}, w_{2}\right], C_{1}\left(w_{2}, w_{3}\right], C_{1}\left(w_{3}, w_{1}\right]$. Let $u_{1}, u_{2}, u_{3} \in N_{C_{1}}\left(v_{2}\right)$, and suppose that u_{1}, u_{2}, u_{3} are in this order on C_{1}.

Case 1. Some two neighbors of v_{2} are in the same interval of C_{1}.
Without loss of generality, we may assume that $u_{1}, u_{2} \in C_{1}\left(w_{1}, w_{2}\right]$. Then $C_{1}\left[u_{1}, u_{2}\right], v_{2}, u_{1}$ and $C_{1}\left[w_{3}, w_{1}\right], v_{1}, w_{3}$ are shorter two disjoint cycles, since v_{3} is not used.
Case 2. No two neighbors of v_{2} are in the same interval of C_{1}.

Then $u_{1} \in C_{1}\left(w_{1}, w_{2}\right], u_{2} \in C_{1}\left(w_{2}, w_{3}\right]$, and $u_{3} \in C_{1}\left(w_{3}, w_{1}\right]$. First, suppose that $u_{i_{0}}, u_{j_{0}} \notin W$ for some $1 \leq i_{0}<j_{0} \leq 3$. Without loss of generality, we may assume that $i_{0}=1$ and $j_{0}=2$, that is, $u_{1} \in C_{1}\left(w_{1}, w_{2}\right)$ and $u_{2} \in C_{1}\left(w_{2}\right.$, $\left.w_{3}\right)$. Then $C_{1}\left[u_{1}, u_{2}\right], v_{2}, u_{1}$ and $C_{1}\left[w_{3}, w_{1}\right], v_{1}, w_{3}$ are shorter two disjoint cycles, since v_{3} is not used.

Next, suppose that $u_{i_{0}} \notin W$ for only some $1 \leq i_{0} \leq 3$. Without loss of generality, we may assume that $i_{0}=1$, that is, $u_{1} \in C_{1}\left(w_{1}, w_{2}\right)$. Then note that $u_{3}=w_{1}, C_{1}\left[w_{1}, u_{1}\right], v_{2}, w_{1}$ and $C_{1}\left[w_{2}, w_{3}\right], v_{1}, w_{2}$ are shorter two disjoint cycles, since v_{3} is not used.

Finally, suppose that $u_{i}=w_{i+1}(\bmod 3)$ for each $1 \leq i \leq 3$. Without loss of generality, we may assume that $v_{3} z_{1} \in E(G)$ for $z_{1} \in\left(w_{2}, w_{3}\right]$. Now, we have two choices for constructing shorter two disjoint cycles. We may construct $C_{1}\left[w_{1}, w_{2}\right], v_{2}, w_{1}$ and $C_{1}\left[z_{1}, w_{3}\right], C_{2}^{-}\left[v_{1}, v_{3}\right], z_{1}$, or $C_{1}\left[w_{1}, w_{2}\right], v_{1}, w_{1}$ and $C_{1}\left[z_{1}, w_{3}\right], C_{2}\left[v_{2}, v_{3}\right], z_{1}$. Since $\left|C_{2}\right| \geq 6$, one of these two choices must leave out a vertex of C_{2}, and hence we may form shorter two disjoint cycles.

4.3. Proof of Lemma 6

Let $C=v_{1}, v_{2}, v_{3}, v_{1}$.
Case 1. The sequence is $(3,3,2,0)$.
Suppose that $d_{C}\left(x_{1}\right)=0$. Then $d_{C}\left(y_{i_{0}}\right)=3$ for some $i_{0} \in\{1, i, t\}$, and we may assume that $i_{0}=1$, that is, $d_{C}\left(y_{1}\right)=3$. Since $d_{C}\left(y_{r}\right) \geq 2$ for each $r \in\{i, t\}$ and $|C|=3, v_{m_{0}} \in N_{C}\left(y_{i}\right) \cap N_{C}\left(y_{t}\right)$ for some $1 \leq m_{0} \leq 3$. Without loss of generality, we may assume that $m_{0}=1$. Then $H_{2}\left[y_{i}, y_{t}\right], v_{1}, y_{i}$ and $y_{1}, v_{3}, v_{2}, y_{1}$ are two disjoint cycles.

Suppose that $d_{C}\left(x_{1}\right)=2$. Without loss of generality, we may assume that $v_{1}, v_{2} \in N_{C}\left(x_{1}\right)$. Then $x_{1}, v_{2}, v_{1}, x_{1}$ is a cycle. Since $d_{C}\left(y_{i_{0}}\right)=d_{C}\left(y_{j_{0}}\right)=3$ for some $i_{0}, j_{0} \in\{1, i, t\}$ with $i_{0}<j_{0}$ and $|C|=3, v_{3} \in N_{C}\left(y_{i_{0}}\right) \cap N_{C}\left(y_{j_{0}}\right)$. Then $H_{2}\left[y_{i_{0}}, y_{j_{0}}\right], v_{3}, y_{i_{0}}$ is the other disjoint cycle.

Suppose that $d_{C}\left(x_{1}\right)=3$. Since $d_{C}\left(y_{i_{0}}\right) \geq 2$ and $d_{C}\left(y_{j_{0}}\right) \geq 2$ for some $i_{0}, j_{0} \in\{1, i, t\}$ with $i_{0}<j_{0}$ and $|C|=3$, $v_{m_{0}} \in N_{C}\left(y_{i_{0}}\right) \cap N_{C}\left(y_{j_{0}}\right)$ for some $1 \leq m_{0} \leq 3$. Without loss of generality, we may assume that $m_{0}=1$. Then $H_{2}\left[y_{i_{0}}, y_{j_{0}}\right], v_{1}, y_{i_{0}}$ and $x_{1}, v_{3}, v_{2}, x_{1}$ are two disjoint cycles.
Case 2. The sequence is $(3,3,1,1)$.
Suppose that $d_{C}\left(x_{1}\right)=1$. Then $d_{C}\left(y_{i_{0}}\right)=3$ for some $i_{0} \in\{1, i, t\}$, and we may assume that $i_{0}=1$, that is, $d_{C}\left(y_{1}\right)=3$. Since one of y_{i} and y_{t} has degree 3 to C and the other one of them has degree 1 to C, noting that $|C|=3, v_{m_{0}} \in N_{C}\left(y_{i}\right) \cap N_{C}\left(y_{t}\right)$ for some $1 \leq m_{0} \leq 3$. Without loss of generality, we may assume that $m_{0}=1$. Then $H_{2}\left[y_{i}, y_{t}\right], v_{1}, y_{i}$ and $y_{1}, v_{3}, v_{2}, y_{1}$ are two disjoint cycles.

Suppose that $d_{C}\left(x_{1}\right)=3$. Since one of y_{1}, y_{i}, y_{t} has degree 3 to C and the others of them have degree 1 to $C, d_{C}\left(y_{i_{0}}\right)=3$ and $d_{C}\left(y_{j_{0}}\right)=1$ for some distinct $i_{0}, j_{0} \in\{1, i, t\}$. Then note that either $i_{0}<j_{0}$ or $i_{0}>j_{0}$. Since $|C|=3, v_{m_{0}} \in N_{C}\left(y_{i_{0}}\right) \cap N_{C}\left(y_{j_{0}}\right)$ for some $1 \leq m_{0} \leq 3$. Without loss of generality, we may assume that $m_{0}=1$. Then $H_{2}^{ \pm}\left[y_{i_{0}}, y_{j_{0}}\right], v_{1}, y_{i_{0}}$ and $x_{1}, v_{3}, v_{2}, x_{1}$ are two disjoint cycles.

Acknowledgments

The authors would like to thank the referees for valuable suggestions and comments. The first author's research was supported by the Heilbrun Distinguished Emeritus Fellowship.

References

[1] K. Corrádi, A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) $423-439$.
[2] H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18 (4) (1998) 487-492.
[3] S. Fujita, H. Matsumura, M. Tsugaki, T. Yamashita, Degree sum conditions and vertex-disjoint cycles in a graph, Australas. J. Combin. 35 (2006) $237-251$.
[4] R.J. Gould, Graph Theory, Dover Pub. Inc., Mineola, N.Y., 2012.
[5] P. Justesen, On independent circuits in finite graphs and a conjecture of Erdős and Pósa, Ann. Discrete Math. 41 (1989) 299-306.
[6] H. Wang, On the maximum number of independent cycles in a graph, Discrete Math. 205 (1-3) (1999) 183-190.

[^0]: * Corresponding author.

 E-mail addresses: rg@mathcs.emory.edu (R.J. Gould), hirohata@ece.ibaraki-ct.ac.jp (K. Hirohata), agkell2@mathcs.emory.edu (A. Keller).

