Forbidden subgraphs for chorded pancyclicity

Megan Cream ${ }^{\text {a }}$, Ronald J. Gould ${ }^{\text {b }}$, Victor Larsen ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Mathematics, Spelman College, 350 Spelman Lane SW, Atlanta, GA 30314, United States
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, Emory University, 400 Dowman Drive, Atlanta, GA 30322, United States
${ }^{\text {c }}$ Department of Mathematics, Kennesaw State University, 1100 S. Marietta Parkway, Marietta, GA 30060, United States

ARTICLE INFO

Article history:

Received 26 October 2016
Received in revised form 26 July 2017
Accepted 30 July 2017
Available online 1 September 2017

Keywords:

Pancyclic
Chorded cycle
Forbidden subgraph
Hamiltonian

Abstract

We call a graph G pancyclic if it contains at least one cycle of every possible length m, for $3 \leq m \leq|V(G)|$. In this paper, we define a new property called chorded pancyclicity. We explore forbidden subgraphs in claw-free graphs sufficient to imply that the graph contains at least one chorded cycle of every possible length $4,5, \ldots,|V(G)|$. In particular, certain paths and triangles with pendant paths are forbidden.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the past, forbidden subgraphs for Hamiltonian properties in graphs have been widely studied (for an overview, see [1]). A graph containing a cycle of every possible length from three to the order of the graph is called pancyclic. The property of pancyclicity is well-studied. In this paper, we define the notion of chorded pancyclicity, and study forbidden subgraph results for chorded pancyclicity. We consider only $K_{1,3}$-free (or claw-free) graphs, and we forbid certain paths and triangles with pendant paths.

Further, we consider only simple claw-free graphs. In this paper we let G be a graph and P_{t} be a path on t vertices. Let Z_{i} be a triangle with a pendant P_{i} adjacent to one of the vertices of the triangle. In particular, we will be considering the graphs Z_{1} and Z_{2}, shown in Fig. 1. For $S \subseteq V(G)$, let $G[S]$ denote the subgraph of G induced by S. Let $N_{G}(u)$ denote the set of neighbors of the vertex u, that is, the vertices adjacent to u in the graph G. Let $N_{G}[u]=N_{G}(u) \cup\{u\}$. A graph is called traceable if it contains a Hamiltonian path. We use $H \square G$ to denote the Cartesian product of H and G. For terms not defined here see [4]. We will first note well-known results on forbidden subgraphs for pancyclicity.

Theorem 1. Let R, S be connected graphs and let G be a 2 -connected graph of order $n \geq 10$ such that $G \neq C_{n}$. Then if G is $\{R, S\}$-free then G is pancyclic for $R=K_{1,3}$ when S is either $P_{4}, P_{5}, P_{6}, Z_{1}$, or Z_{2}.

The proof of a theorem (Theorem 4) in [3] yields the following result.
Theorem 2 ([3]). If G is a 2-connected graph of order $n \geq 10$ that contains no induced subgraph isomorphic to $K_{1,3}$ or Z_{1}, then G is either a cycle or G is pancyclic.

Gould and Jacobson proved a similar result for Z_{2} in [5].

[^0]

Fig. 1. The graphs Z_{1} and Z_{2}.

Fig. 2. A pancyclic graph with no chorded 5-cycle.

Fig. 3. An infinite family of pancyclic graphs with no chorded C_{4}.

Theorem 3 ([5]). If G is a 2-connected graph of order $n \geq 10$ that contains no induced subgraph isomorphic to $K_{1,3}$ or Z_{2}, then G is either a cycle or G is pancyclic.

Faudree, Gould, Ryjacek, and Schiermeyer proved a similar result for certain paths in [2].
Theorem 4 ([2]). If G is a 2-connected graph of order $n \geq 6$ that is $\left\{K_{1,3}, P_{5}\right\}$-free, then G is either a cycle or G is pancyclic.
Theorem 5 ([2]). If G is a 2-connected graph of order $n \geq 10$ that is $\left\{K_{1,3}, P_{6}\right\}$-free, then G is either a cycle or G is pancyclic.
Theorem 4 implies the following result for P_{4}.
Theorem 6 ([2]). If G is a 2-connected graph of order $n \geq 6$ that is $\left\{K_{1,3}, P_{4}\right\}$-free, then G is either a cycle or G is pancyclic.
In this paper, we will extend each of these theorems to analogous results on chorded pancyclicity.

2. Results

Definition 1. A graph G of order n is called chorded pancyclic if it contains a chorded cycle of every length $m, 4 \leq m \leq n$.
Note first that not all pancyclic graphs are chorded pancyclic. The graph in Fig. 2 is pancyclic, but contains no chorded 5-cycle. Further, the graph in Fig. 3 represents an infinite family of pancyclic graphs that do not contain a chorded 4-cycle.

An important tool used in the proofs of this paper is a k-tab, which we define here.
Definition 2. Given a subgraph H of G, a k-tab on H is a path $a_{0} a_{1} \cdots a_{k+1}$ with k internal vertices so that $\left\{a_{1}, \ldots, a_{k}\right\} \subseteq$ $V(G)-V(H)$ and there exist distinct vertices $u, v \in V(H)$ where $a_{0}=u$ and $a_{k+1}=v$.

Note that, because there are no cut-vertices in a 2 -connected graph, every proper subgraph must have a k-tab for some $k>0$. Another tool we use in proofs, to better highlight when a subgraph is induced in G, is a frozen set F. Depending upon particular cases, the frozen set may be modified during the course of a proof. If a vertex is in the frozen set, it has no neighbors other than those already given. In particular, if a subgraph contains only frozen vertices, then it must be induced. Also, if every vertex of G is in F, then we have completely described the graph G. In figures, frozen vertices will be indicated by a solid vertex.

We now turn our attention to extending the results for forbidden subgraphs in Theorem 1. The following simple lemma has appeared many times in the literature.

Lemma 1. Let G be claw-free. For any $x \in V(G), N_{G}(x)$ is either connected and traceable, or two disjoint cliques.

Using Lemma 1 we prove the following useful lemma.

Lemma 2. Let G be a $K_{1,3}$-free graph. For any $x \in V(G)$ and any integer $k \geq 3$, if $\operatorname{deg}_{G}(x) \geq 2 k-1$ then there is a chorded $(k+1)$-cycle in G.

Proof. Consider a vertex $x \in V(G)$ such that $\operatorname{deg}_{G}(x)=m \geq 2 k-1$. Lemma 1 implies that $N_{G}(x)$ is either connected and traceable, or two disjoint cliques.

Case 1: Suppose that $N_{G}(x)$ is connected and traceable.
Let $v_{1} v_{2} \cdots v_{k} v_{k+1} \cdots v_{m}$ be a Hamiltonian path in $N_{G}(x)$. Then $x v_{1} v_{2} \cdots v_{k} x$ is a $(k+1)$-cycle in G with chord $x v_{2}$ (in fact, there are $k-2$ chords in this ($k+1$)-cycle).
Case 2: Suppose that $N_{G}(x)$ is two disjoint cliques.
Partition the m vertices into two cliques. Then at least one clique has at least k vertices. If the vertices $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ form a clique in $N_{G}(x)$, then $x v_{1} v_{2} \cdots v_{k} x$ is a $(k+1)$-cycle in G with chord $x v_{2}$. Thus, the lemma is proven.

Theorem 7. Let G be a 2 -connected graph of order $n \geq 10$. If G is $\left\{K_{1,3}, Z_{2}\right\}$-free, then $G=C_{n}$ or G is chorded pancyclic.
Proof. Suppose that G is a 2-connected graph of order $n \geq 10$ that is $\left\{K_{1,3}, Z_{2}\right\}$-free and that G is not C_{n}. By Theorem 3, we know G must be pancyclic. For the sake of contradiction, suppose that G is not chorded pancyclic. Let m be the largest value with $4 \leq m<n$ such that every m-cycle in G does not contain a chord. First we show that m must be 4 , and then we show that there is a chorded 4-cycle in G.

Suppose that $m \geq 5$ and consider an m-cycle $C=v_{1} v_{2} v_{3} \cdots v_{m} v_{1}$ in G. Since G is 2 -connected and $m<n$, there exists a vertex $x \in V(G)-V(C)$ such that $x v \in E(G)$ for some $v \in V(C)$. Without loss of generality, we may assume that $x v_{1} \in E(G)$. Then $\left\{v_{1}, x, v_{2}, v_{m}\right\}$ induces a claw in G unless $x v_{2}, x v_{m}$ or $v_{2} v_{m}$ is an edge. If $v_{2} v_{m}$ is added then C is a chorded m-cycle and we are done. By symmetry, adding either $x v_{2}$ or $x v_{m}$ as an edge is equivalent so, without loss of generality, we assume that $x v_{2} \in E(G)$. Now $\left\{x, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ induces a Z_{2} in G. The only two edges that can eliminate this induced Z_{2} without adding a chord to the m-cycle C are $x v_{3}$ and $x v_{4}$.

If $x v_{4} \in E(G)$ then $v_{1} v_{2} x v_{4} v_{5} \cdots v_{m} v_{1}$ is an m-cycle with chord $v_{1} x$. Thus we may assume that $x v_{3} \in E(G)$. Now $\left\{x, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ induces Z_{2} in G. The only edges that will eliminate this induced Z_{2}, but will not add a chord to C are $x v_{4}$ and $x v_{5}$. If $x v_{4} \in E(G)$ then $v_{1} v_{2} x v_{4} v_{5} \cdots v_{m} v_{1}$ is an m-cycle with chord $x v_{1}$. If instead $x v_{5} \in E(G)$, then $v_{1} v_{2} v_{3} x v_{5} \cdots v_{m} v_{1}$ is an m-cycle with chord $x v_{1}$.

Therefore, it follows that $m=4$. By Lemma 2, it follows that $\Delta(G) \leq 4$. Let $D=v w x y z v$ be a 5 -cycle in G with chord $v x$.
Suppose that both v and x can be added to F; that is, suppose that v and x have degree 3 in G. Because G is 2-connected and $n>5, D$ has a k-tab for some k with two distinct endpoints in $\{w, z, y\}$. By symmetry, we may assume that y is an endpoint of the k-tab and thus $a y$ is an edge for $a \in V(G)-V(D)$. But now $\{y, a, x, z\}$ induces a claw, unless $z a$ is an edge (recall that x is frozen). Further, $\{w, v, x, y, a\}$ induces a Z_{2} unless one of $w y$ or $w a$ is an edge. Because the edge $w y$ gives a 4-cycle $w y x v w$ in G with chord $w x$, it follows that $z a$ and $w a$ are both edges. But now $G[V(D) \cup\{a\}]$ is isomorphic to $K_{3} \square K_{2}$, which is vertex-transitive. Therefore, all vertices of G can be added to F, as vertices can be relabeled so that any edge from $V(D) \cup\{a\}$ to $V(G)-(V(D) \cup\{a\})$ is a new edge using the vertex x. As a side note, this symmetry argument is used many times in further proofs to add vertices to F.

Thus it follows that, without loss of generality, $a x$ is an edge for $a \in V(G)-V(D)$. Now $\{x, a, w, y\}$ induces a claw unless one of $\{w y, w a, a y\}$ is an edge. Because $w y$ gives a 4-cycle $w y x v w$ with chord $w x$ and $w a$ gives a 4-cycle $w a x v w$ with chord $w x$, it must be the case that $a y$ is an edge. Note that $\operatorname{deg}_{G}(x)=4$ so we may add x to F (now $F=\{x\}$).

Because $n>6$ we look for a neighbor for a vertex $b \in V(G)-(V(D) \cup\{a\})$. Suppose that both v and y can be added to F. Then z must also be added to F, as the edge $b z$ would give an induced claw $\{z, b, v, y\}$. Now w and a are the only unfrozen vertices, so we may assume by symmetry that $b a$ is an edge. Now $\{w, v, x, a, b\}$ induces a Z_{2} unless $w b$ is an edge, as $w a$ has already been ruled out and v and x are frozen by supposition. If $w b$ is an edge, then note that swapping the labels of v, z, y with w, b, a, respectively, does not change the graph. Thus an additional edge to w, b, or a is equivalent to an additional edge to v, z, or y which are all frozen. Therefore all vertices can be added to F. This implies that $n=7$, which is a contradiction.

Thus it follows that, without loss of generality, by is an edge. To avoid an induced claw on $\{y, b, z, x\}$ we must have the edge $b z$. Now $\{w, v, x, y, b\}$ induces a Z_{2}. Because the edges $y w$ and $y v$ create chorded 4-cycles on $\{w, v, x, y\}$ and the edge $b v$ would give the 4 -cycle bvzyb with chord $b z$, it follows that $b w$ must be an edge to eliminate this induced Z_{2}. Note that $\operatorname{deg}_{G}(y)=4$, so we also add y to F (now $F=\{x, y\}$).

Let $R=V(D) \cup\{a, b\}$. Because G is 2-connected and $n>7$, there exists a vertex $c \in V(G)-R$ with a neighbor in $R-\{a\}$. Because x and y are frozen, and $G[R-\{a\}]$ is isomorphic to $K_{3} \square K_{2}$, the edges $c w, c v, c z$, and $c b$ are all equivalent. We assume, without loss of generality, that $c z$ is an edge (see Fig. 4).

Now to prevent $\{z, c, v, y\}$ from inducing a claw we must have the edge $c v$. Because the degree of v and z are now 4, we add them to F (so $F=\{x, y, v, z\}$). To prevent $\{c, v, z, x, a\}$ from inducing a Z_{2} we must have the edge $c a$ as these are the only unfrozen vertices.

Because $n>8$ there exists another vertex $d \in V(G)-(R \cup\{c\})$. By symmetry any edge from d to one of the unfrozen vertices $\{w, a, b, c\}$ is equivalent so we may assume without loss of generality that $d w$ is an edge. To prevent $\{w, x, d, b\}$ from

Fig. 4. Adding c to $G[R]$ in the proof of Theorem 7.

Fig. 5. $K_{3} \square K_{3}$ contains no chorded C_{4}.
inducing a claw $d b$ must be an edge. Now to prevent $\{w, b, d, y, a\}$ from inducing a Z_{2} we must have the edge da because $w a$ gives a 4-cycle $w a x v w$ with chord $w x$ and ba gives a 4 -cycle bayzb with chord by. Now that da is an edge, we must also have the edge $d c$ to prevent $\{a, d, c, x\}$ from inducing a claw. But now G is isomorphic to $K_{3} \square K_{3}$ (see Fig. 5), all vertices have degree 4 and are thus frozen, and $n=9$. This is a contradiction, so the theorem is proven.

As Z_{1} is an induced subgraph of Z_{2}, Theorem 2 implies the following corollary.
Corollary 8. Let G be a 2 -connected graph of order $n \geq 10$. If G is $\left\{K_{1,3}, Z_{1}\right\}$-free, then $G=C_{n}$ or G is chorded pancyclic.
We now turn our attention to forbidden paths; many of these theorems will be proven using a collection of lemmas.
Theorem 9. Let G be a 2-connected graph of order $n \geq 5$. If G is $\left\{K_{1,3}, P_{4}\right\}$-free, then G is chorded pancyclic.
Proof. Let G be a 2-connected graph of order $n \geq 5$ that is $\left\{K_{1,3}, P_{5}\right\}$-free. One can easily verify that G is chorded pancyclic if $n=5$. Therefore we assume that $n \geq 6$. By Theorem 6 , we know that G is pancyclic. Suppose, for the sake of contradiction, that G is not chorded pancyclic. Let m be the largest number with $4 \leq m \leq n$ such that every m-cycle in G is chordless. Any chordless m-cycle for $m>4$ contains an induced P_{4}, so it follows that $m=4$.

Consider a 4 -cycle $C=v_{1} v_{2} v_{3} v_{4} v_{1}$ in G. Since $n \geq 5$ and G is 2-connected, there exists a vertex $x \notin V(C)$ such that $x v \in E(G)$ for some $v \in V(G)$. Without loss of generality, we may assume that $v_{1} x \in E(G)$. To avoid an induced claw on $\left\{v_{1}, x, v_{2}, v_{4}\right\}$, one of $v_{2} v_{4}, x v_{4}$, or $x v_{2}$ must be in $E(G)$. If $v_{2} v_{4}$ is an edge, then C is a chorded 4 -cycle, which is a contradiction.

Then by symmetry, we may assume without loss of generality that $x v_{2}$ is an edge. Because $x v_{1} v_{4} v_{3}$ cannot be an induced P_{4} subgraph of G, G must contain either $x v_{4}, x v_{3}$, or $v_{1} v_{3}$ as an edge. The edge $v_{1} v_{3}$ creates a chord of the 4 -cycle C, a contradiction. The edge $v_{3} x$ yields the 4 -cycle $v_{1} x v_{3} v_{2} v_{1}$ with chord $v_{2} x$, a contradiction. Similarly, the edge $v_{4} x$ yields the 4-cycle $v_{1} v_{2} x v_{4} v_{1}$ with chord $v_{1} x$, again a contradiction. Thus, every 4 -cycle in G must be chorded.

Lemma 3. Let G be a 2 -connected graph of order $n \geq 8$. If G is $\left\{K_{1,3}, P_{5}\right\}$-free and G contains a C_{4}, then G contains a chorded C_{5}.
Proof. Let G be a 2 -connected graph of order $n \geq 8$ that is $\left\{K_{1,3}, P_{5}\right\}$-free, and let $C=w x y z w$ be a 4-cycle in G. Suppose, for the sake of contradiction, that G does not have a chorded C_{5}. Because $n>4$ and G is 2 -connected, there is a k-tab on the cycle C. Choose a k-tab $Q=a_{0} \cdots a_{k+1}$ which minimizes k. Over all minimal k-tabs, choose one where $a_{0} a_{k+1}$ is an edge of C if possible. Without loss of generality, we may assume that $x=a_{0}$.

Suppose Q is a 1-tab. If a_{2} is y (or w by symmetry), then $x a_{1} y z w x$ is a 5-cycle with chord $x y$. If $a_{2}=z$ then $\left\{x, a_{1}, y, w\right\}$ cannot be an induced claw. But $a_{1} w$ and $a_{1} y$ contradict our choice of Q, so it follows that $w y$ is an edge. Now $w y x a_{1} z w$ is a 5-cycle with chord $x w$.

Suppose that $k \geq 3$. Then let a_{0}^{\prime} be a neighbor of $x=a_{0}$ on C which is not a_{k+1}. Now $a_{0}^{\prime} x a_{1} a_{2} a_{3}$ is an induced P_{5} unless there is another edge among $\left\{a_{0}^{\prime}, x, a_{1}, a_{2}, a_{3}\right\}$. However, each of these edges creates either a 1-tab or a 2-tab on C, which contradicts the minimality of Q.

Therefore, it follows that $k=2$. If a_{3} is y (or w by symmetry), then to avoid an induced claw on $\left\{x, a_{1}, y, w\right\}$ one of $w y, y a_{1}, w a_{1}$ must be an edge. However, each of these creates a chorded 5-cycle. Thus $a_{3}=z$. To prevent $\left\{x, a_{1}, y, w\right\}$ from inducing a claw without creating a 1-tab, we must have the edge $y w$. One can check that any further edge among $R=\left\{x, y, w, z, a_{1}, a_{2}\right\}$ creates a chorded 5-cycle. However, $n>6$, so there exists some $b \in V(G)-R$ that is adjacent to a vertex in R.

Fig. 6. The graph $G\left[R^{\prime}\right]$ from Lemma 3.

If $b y$ is an edge (or $b w$ by symmetry) then to avoid an induced claw $\{y, b, x, z\}$, either $b x, b z$, or $x z$ is an edge. All three give chorded 5-cycles, so we may add y and w to the frozen set F. Now $F=\{y, w\}$.

Suppose that we can now add both x and z to F so that $F=\{y, w, x, z\}$. Then, without loss of generality, we may assume that $b a_{1}$ is an edge. But now $b a_{1} x w z$ is an induced P_{5} because x, w, z are all frozen. This is a contradiction, and thus at least one of $\{x, z\}$ cannot be added to F. In particular, let $b x$ be an edge. To avoid an induced claw $\left\{x, b, a_{1}, w\right\}$ it follows that $b a_{1}$ is an edge. Also, $b x w z a_{2}$ cannot be an induced P_{5}, so there is another edge among these vertices. Because $b z$ creates a shorter k-tab on C, it follows that $b a_{2}$ is an edge. Let $R^{\prime}=R \cup\{b\}$ and note that any additional edge in $G\left[R^{\prime}\right]$ creates a chorded 5-cycle. By symmetry with $\{y, w\}$ we can now add b and a_{1} to F (see Fig. 6).

However, $n>7$, so there exists some $c \in V(G)-R^{\prime}$ that is adjacent to a vertex in R^{\prime}. If $c x$ is an edge for $c \in V(G)-R^{\prime}$ then $\{x, c, b, w\}$ induces a claw as b and w are frozen. Therefore, we can also add x to F and, without loss of generality, $c z$ is an edge. But now $c z w x b$ is an induced P_{5}, which is a contradiction.

Lemma 4. Let G be a 2 -connected graph of order $n \geq 7$. If G is $\left\{K_{1,3}, P_{5}\right\}$-free and G contains a chorded C_{5}, then it also contains a chorded C_{4}.

Proof. Let G be a 2-connected graph of order $n \geq 7$ that is $\left\{K_{1,3}, P_{5}\right\}$-free, and let $C=v w x y z v$ be a 5 -cycle with chord $v x$. Suppose, for the sake of contradiction, that G has no chorded C_{4}.

We show that both x and v can be added to F. If $a x \in E(G)$ for some $a \in V(G)-V(C)$, then to avoid a claw there must be some edge among $\{w, a, y\}$. The edge $a w$ gives a 4-cycle $v w a x v$ with chord $w x$ and the edge $w y$ gives a 4-cycle $w y x v w$ with chord $w x$. Thus ay must be an edge of G. Any further edge among $\{v, w, x, y, z, a\}$ yields a chorded 4 -cycle, but such an edge must exist because otherwise $a y z v w$ is an induced P_{5}. Therefore, we conclude that x (and v by symmetry) can be added to F.

Because G is 2-connected, there is a tab on C. Therefore we may assume that $a y$ (or $a z$ by symmetry) is an edge for some $a \in V(G)-V(C)$. To avoid an induced claw on $\{y, a, x, z\}$, we must have the edge $a z$. By symmetry with $\{v, x\}$, both z and y can now be added to F. Because $n>6$, there is a vertex b adjacent to either a or w. If $b a$ is an edge then bazvx is an induced P_{5}, and if $b w$ is an edge then bwvzy is an induced P_{5}. In either case we arrive at a contradiction, so we have proven the lemma.

Theorem 10. Let G be a 2 -connected graph of order $n \geq 8$. If G is $\left\{K_{1,3}, P_{5}\right\}$-free, then G is chorded pancyclic.
Proof. From Theorem 4 we know G must be pancyclic. Then by applying Lemma 3 followed by Lemma 4, we find a chorded m-cycle in G for $m=4,5$. Any chordless m-cycle for $m>5$ contains an induced P_{5}. Therefore G contains a chorded m-cycle for $4 \leq m \leq n$.

Note that the graph in Fig. 6 shows that Theorem 10 is sharp. We now turn to P_{6} as a forbidden subgraph. We will prove our result using three lemmas.

Lemma 5. Let G be a 2 -connected graph of order $n \geq 11$. If G is $\left\{K_{1,3}, P_{6}\right\}$-free and G contains a C_{4}, then G contains a chorded C_{5}.

Proof. Let G be a 2-connected graph of order $n \geq 11$ that is $\left\{K_{1,3}, P_{6}\right\}$-free, and let $C=v w x y v$ be a 4 -cycle in G. Suppose, for the sake of contradiction, that G does not have a chorded C_{5}. Because G is 2 -connected and $n>5$, there is a k-tab on the cycle C. We choose a k-tab $Q=a_{0} a_{1} \cdots a_{k+1}$ that minimizes k. Over all minimal k-tabs, choose one where $a_{0} a_{k+1}$ is an edge of C if possible. If $k \geq 4$, then let a_{0}^{\prime} be a neighbor of a_{0} on C which is not a_{k+1} and now $a_{0}^{\prime} a_{0} a_{1} \cdots a_{4}$ is an induced P_{6}. Therefore we may assume that $1 \leq k \leq 3$.
Case 1. Suppose that Q is a 1-tab.
If $a_{0} a_{2}$ is an edge of C then $G\left[\left\{v, w, x, y, a_{1}\right\}\right]$ contains a chorded 5-cycle. Otherwise, we may assume $a_{0}=v$ and $a_{2}=x$. To avoid a claw centered at v or a 1-tab with endpoints adjacent in C it follows that $w y$ is an edge. Now $v a_{1} x y w v$ is a 5-cycle with chord $w x$.

Fig. 7. The graph $G[R]$ is the starting point for Subcase 2.2 of Lemma 5.

Case 2. Suppose that Q is a 2-tab.
First, we show that $a_{0} a_{3}$ cannot be an edge in C. If $a_{0} a_{3}$ is an edge, we may assume it is $v w$. To avoid a claw induced by $\left\{v, w, y, a_{1}\right\}$ or a 1-tab on C, we must have $w y$ as an edge. But now $v a_{1} a_{2} w y v$ is a 5 -cycle with chord $v w$. Therefore we will assume that $v=a_{0}$ and $x=a_{3}$.

Note that $w y$ must be an edge to avoid an induced claw $\left\{v, w, y, a_{1}\right\}$ or a 1-tab on C. If w (or y by symmetry) has another neighbor $z \in V(G)-V(C)$ then to avoid an induced claw $\{w, z, v, x\}$ or a 1-tab on C we must have the edge $v x$. But now $v a_{1} a_{2} x w v$ is a 5-cycle with chord $v x$. Therefore, w and y are added to F for the remainder of this case.
Subcase 2.1. Suppose that v and x can be added to F so that $F=\{w, y, v, x\}$.
Because G is 2-connected and $n \geq 8$, there exist distinct vertices b_{1} and b_{2} so that $b_{1} a_{1}$ and $b_{2} a_{2}$ are edges. To avoid an induced claw on either $\left\{a_{1}, b_{1}, v, a_{2}\right\}$ or $\left\{a_{2}, b_{2}, v, a_{1}\right\}$ we must also have the edges $b_{1} a_{2}$ and $b_{2} a_{1}$. Also $\left\{a_{1}, b_{1}, b_{2}, v\right\}$ cannot be an induced claw so $b_{1} b_{2}$ is an edge.

Because $n>8$ there is another vertex c. If $c a_{1}$ (or $c a_{2}$ by symmetry) is an edge, then either $\left\{a_{1}, c, b_{1}, v\right\}$ is an induced claw or $a_{1} c b_{1} b_{2} a_{2} a_{1}$ is a 5-cycle with chord $a_{1} b_{1}$. Thus, without loss of generality we let $c b_{1}$ be an edge. But now $c b a_{1} v y x$ is an induced P_{6}, which is a contradiction.

Subcase 2.2. Suppose that at least one of v and x cannot be added to F.
In particular, we will assume that $b x$ is an edge for a vertex $b \notin V(C) \cup V(Q)$. The current state of G (except for the edge $b a_{2}$ which we show next) is given in Fig. 7. Let $R=\left\{v, w, x, y, a_{1}, a_{2}, b\right\}$. Because $w, y \in F$, the neighborhood of x is not traceable and, by Lemma $1, N_{G}(x)$ must be two disjoint cliques. Therefore $b a_{2}$ is an edge.

First, we show that $b a_{1}$ cannot be an edge. If $b a_{1}$ is an edge, then $G[V(C)]$ and $G\left[\left\{x, a_{2}, b, a_{1}\right\}\right]$ are both isomorphic to $K_{4}-e$. By symmetry, we may add a_{2} and b to F. Because $N_{G}(x)$ is two disjoint cliques, we may also add x to F. Because G is 2 -connected and $n \geq 9$, there exist distinct vertices $c, c^{\prime} \in V(G)-R$ so that $c v$ and $c^{\prime} a_{1}$ are edges. To avoid the induced claw $\left\{a_{1}, c^{\prime}, v, b\right\}$ we also have the edge $c^{\prime} v$. By Lemma 1 the neighborhood of v is two disjoint cliques, as it is not traceable. Thus $c c^{\prime}$ and $c a_{1}$ are also edges. If $N_{G}(v)$ contains a K_{4}, then G has a chorded 5 -cycle, so v must now be added to F. By symmetry, a_{1} is also added to F. If G has another vertex d then either $d c v y x b$ or $d c^{\prime} v y x b$ is an induced P_{6}, so $n=9$ which is a contradiction. Therefore $b a_{1}$ is not an edge, and to avoid any chorded 5-cycle it follows that the induced subgraph $G[R]$ is exactly the graph shown in Fig. 7.

Now we show that b cannot be added to F yet. Suppose that b is added to F, so that $F=\{w, y, b\}$. Because $N_{G}(x)$ is two disjoint cliques, we may also add x to F. Either v can now be added to F, or v has another neighbor c. If $v c$ is an edge then, because $N_{G}(v)$ is two disjoint cliques, $c a_{1}$ is an edge. By symmetry with b, x we can add c and v to F. However, regardless of whether v has degree 3 or 4 in G, since G is 2 -connected and $n>8$ we may assume that a_{1} has a neighbor $d \notin R$. But now $d a_{1} v y x b$ is an induced P_{6}, which is a contradiction.

Because b cannot be added to F, it follows that b has a neighbor $b^{\prime} \in V(G)-R$. Now $b^{\prime} b x y v a_{1}$ cannot induce a P_{6} so b^{\prime} has another neighbor among these vertices. Note that $b^{\prime} a_{1}$ creates a 5-cycle $b^{\prime} a_{1} a_{2} x b b^{\prime}$ with chord $b a_{2}$ so this cannot be an edge. Thus, the edge $b^{\prime} v$ would create an induced claw $\left\{v, b^{\prime}, a_{1}, y\right\}$, and it follows that $b^{\prime} x$ must be an edge. Because $N_{G}(x)$ is two disjoint cliques, $b^{\prime} a_{2}$ is an edge. We can now add x to F, because otherwise one of the cliques in $N_{G}(x)$ would be a K_{4} which gives a chorded 5 -cycle in $N_{G}[x]$. If b has a neighbor $c \notin R \cup\left\{b^{\prime}\right\}$, then to prevent $c b x y v a_{1}$ being an induced P_{6} either $c v$ or $c a_{1}$ is an edge. When $c a_{1}$ is an edge then $c a_{1} a_{2} b^{\prime} b c$ is a 5 -cycle with chord $a_{2} b$, and when $c a_{1}$ is not an edge then $c v$ is an edge and $\left\{v, c, a_{1}, y\right\}$ induces a claw. Therefore b (and b^{\prime} by symmetry) is also added to F.

Now the only unfrozen vertices are v, a_{1}, and a_{2}. We claim that a_{2} can also be added to F. Suppose instead that a_{2} has a neighbor $c \notin R \cup\left\{b^{\prime}\right\}$. Then $c a_{1}$ is also an edge to prevent $\left\{a_{2}, c, a_{1}, x\right\}$ from inducing a claw. Also, $c a_{1} v y x b$ is not an induced P_{6} so $c v$ is an edge. Now $G\left[\left\{v, a_{1}, a_{2}, c\right\}\right]$ is isomorphic to $G[V(C)]$, so by symmetry $\left\{c, a_{1}, a_{2}\right\}$ are added to F. Because G has no cut vertex, v is also added to F. All vertices are frozen, so it follows that $n=9$ which is a contradiction.

Therefore a_{2} is added to F, as seen in Fig. 8. Because G is 2 -connected and $n \geq 10$, there exist distinct vertices c and c^{\prime} so that $c v$ and $c^{\prime} a_{1}$ are edges. To avoid the induced claw $\left\{a_{1}, c^{\prime}, v, a_{2}\right\}$ we also have the edge $c^{\prime} v$. But $N_{G}(v)$ is two disjoint cliques, so $c c^{\prime}$ and $c a_{1}$ are also edges. By symmetry with $G\left[x, b, b^{\prime}, a_{2}\right]$, the vertices v, c, c^{\prime}, a_{1} are added to F. Thus $F=V(G)$, and it follows that $n=10$ which is a contradiction.

Fig. 8. The graph resulting from Subcase 2.2 in Lemma 5.

Case 3. Suppose that Q is a 3-tab.
Recall that $C=v w x y v$, and that no vertices are in F yet. Let $R=\left\{v, w, x, y, a_{1}, a_{2}, a_{3}\right\}$. Note that no 4-cycle can have a 1 -tab or a 2 -tab, or we reduce to an earlier case.

Subcase 3.1. Suppose that $a_{0} a_{4}$ is an edge of C.
In particular, we may assume that $a_{0}=v$ and $a_{4}=w$. To prevent $\left\{v, w, y, a_{1}\right\}$ and $\left\{w, v, x, a_{3}\right\}$ from inducing claws without introducing a chorded 5-cycle, $v x$ and $w y$ must be edges. Note that if R induces any other edge in G then there is a 1-tab or 2-tab on C, which is a contradiction. We add y (and x by symmetry) to F by the following argument. If by is an edge, then to prevent byv $a_{1} a_{2} a_{3}$ being an induced P_{6} there must be another neighbor of b. Because $b v, b a_{1}$, and $b a_{3}$ all create 1 - or 2-tabs it follows that only $b a_{2}$ can be an edge. But then $\left\{a_{2}, a_{1}, a_{3}, b\right\}$ induces a claw, because $a_{1} a_{3}$ would make a 2-tab on C.

We now show that v and w can also be added to F. If v has a neighbor $b \in V(G)-R$ then, to prevent the induced claw $\left\{v, b, a_{1}, y\right\}, b a_{1}$ is also an edge. To prevent $b a_{1} a_{2} a_{3} w x$ being an induced P_{6} there must be another neighbor of b among those vertices. However, $b w$ and $b a_{3}$ create 1- and 2-tabs on C. Therefore $b a_{2}$ is an edge, but now $a_{2} a_{3} w v$ is a 2-tab on the 4-cycle $a_{2} a_{1} v b a_{2}$, which is a contradiction. Therefore $F=\{x, y, v, w\}$.

Because G is 2-connected and $n>7$ there is a tab on $G[R]$. Because only a_{1}, a_{2}, a_{3} are unfrozen we may assume that $b a_{1}$ (or $b a_{3}$ by symmetry) is an edge for some $b \in V(G)-R$. To prevent an induced claw on $\left\{a_{1}, b, a_{2}, v\right\}$, we must also have the edge $b a_{2}$. If $b a_{3}$ were also an edge then $a_{1} v w a_{3}$ would be a 2 -tab on the 4 -cycle $a_{1} a_{2} a_{3} b a_{1}$, so $b a_{3}$ cannot be an edge. But now a_{1} can be added to F by the following argument. If a_{1} has another neighbor $c \in V(G)-R$ distinct from b then by the same reasoning, we must have the edge $c a_{2}$ and we cannot have the edge $c a_{3}$. By Lemma 1, the neighborhood of a_{1} is two disjoint cliques so $b c$ is also an edge. But now $G\left[\left\{a_{1}, a_{2}, b, c\right\}\right]$ is isomorphic to $G[V(C)]$ and by symmetry all of a_{1}, a_{2}, b, c are added to F. Because a_{3} is not a cut-vertex in G it follows that $n=9$, which is a contradiction. Therefore, once we have the edge $b a_{1}$ we can immediately add a_{1} to F. Hence $F=\left\{x, y, v, w, a_{1}\right\}$.

Now b, a_{2}, and a_{3} are the only unfrozen vertices. Suppose that a_{3} has a neighbor $c \notin R \cup\{b\}$. Then if $c b$ is not an edge then $c a_{3} w v a_{1} b$ induces a P_{6}, and if $c b$ is an edge then $c b a_{1} a_{2} a_{3} c$ is a 5 -cycle with chord $b a_{2}$. Both are contradictions, so $\operatorname{deg}_{G}\left(a_{3}\right)=2$ and a_{3} is added to F. Because $n>8$ there must be another vertex c, and now b and a_{2} are the only unfrozen vertices. However, if $c b$ is an edge then $c b a_{1} v w a_{3}$ is an induced P_{6} and if $c a_{2}$ is an edge then $\left\{a_{2}, c, a_{1}, a_{3}\right\}$ induces a claw. Both are contradictions, so the lemma is proven in this case.

Subcase 3.2. Suppose that a_{0} and a_{4} are not adjacent in C.
In particular, let $a_{0}=v$ and $a_{4}=x$. Recall that F is empty for now. To prevent $\left\{v, a_{1}, w, y\right\}$ from inducing a claw, and to avoid chorded 5-cycles, wy must be an edge. Note that now $v x$ cannot be an edge, or we reduce to Subcase 3.1. Therefore w (and y by symmetry) cannot have any neighbor in $V(G)-R$ without inducing a claw or creating a chorded 5-cycle. Thus w and y are added to F.

Now we show that at least one element of $\{x, v\}$ cannot be added to F yet. Suppose instead that $F=\{w, y, x, v\}$. Then, because G is 2 -connected, there is a tab on $G[R]$ and we may assume that a_{1} (or a_{3} by symmetry) has a neighbor $b \in V(G)-R$. To prevent the induced claw $\left\{a_{1}, b, a_{2}, v\right\}$ we must also have the edge $b a_{2}$. To prevent $b a_{1} v y x a_{3}$ from being an induced P_{6} we must have the edge $b a_{3}$. But now $G\left[\left\{a_{1}, a_{2}, a_{3}, b\right\}\right]$ is isomorphic to $G[\{v, w, x, y\}]$, so by symmetry all vertices are added to F. This implies that $n=8$, which is a contradiction. Therefore, at least one of x or v has a neighbor in $V(G)-R$.

Suppose, without loss of generality, that x has a neighbor $b \in V(G)-R$. To prevent the induced claw $\left\{x, b, a_{3}, y\right\}$ we must also have the edge $b a_{3}$. Also, bxyva $a_{1} a_{2}$ cannot be an induced P_{6}, so b must have another neighbor among these vertices. The edges $b v$ and $b a_{1}$ create shorter tabs on C, so it follows that $b a_{2}$ must be an edge (see Fig. 9).

By symmetry with w and y, the vertices a_{3} and b are also added to F, so $F=\left\{w, y, a_{3}, b\right\}$. Because the neighborhood of x is two disjoint frozen cliques, x can also be added to F by Lemma 1 . Because $n \geq 9$, there is a tab with endpoints in $\left\{v, a_{1}, a_{2}\right\}$. Without loss of generality, we may assume that $c v$ is an edge. Now $c a_{1}$ must also be an edge to prevent $\left\{v, c, a_{1}, y\right\}$ inducing a claw, and $c a_{2}$ must be an edge to prevent $c v y x b a_{2}$ from being an induced P_{6}. But now $G\left[\left\{a_{1}, a_{2}, v, c\right\}\right]$ is isomorphic to $G[V(C)]$ and all vertices can be added to F. Therefore $n=9$, which is a contradiction.

Lemma 6. Let G be a 2 -connected graph of order $n \geq 10$. If G is $\left\{K_{1,3}, P_{6}\right\}$-free and G contains a chorded C_{5}, then it also contains a chorded C_{4}.

Fig. 9. A graph for Subcase 3.2 of Lemma 5.

Fig. 10. For Subcase 2.1 of Lemma 6.

Proof. Let G be a 2-connected graph of order $n \geq 10$ that is $\left\{K_{1,3}, P_{6}\right\}$-free, and let $C=v w x y z v$ be a 5-cycle with chord $v x$. Suppose, for the sake of contradiction, that G does not have a chorded C_{4}. Then there are no additional edges in $G[V(C)]$ and, by Lemma $2, \Delta(G) \leq 4$. Because $n>5$, there is a vertex $a \in V(G)-V(C)$ adjacent to a vertex of C.
Case 1. Suppose that $F=\{x, v\}$.
Because there is a k-tab on C, we may assume without loss of generality that $a y$ is an edge. To avoid an induced claw on $\{y, x, z, a\}$ it follows that $a z$ must also be an edge of G. By symmetry we may now add z and y to F. Because $n>7$, to avoid a cut-vertex in G there must be two distinct vertices b and c where $a b$ and $w c$ are edges in G.

If $a w$ is an edge, then to avoid a claw on $\{a, w, b, y\}$, we must also have the edge $w b$. But then $\operatorname{deg}_{G}(w) \geq 5$ which contradicts $\Delta(G) \leq 4$. Therefore, $a w$ is not an edge in G.

If $a c$ is an edge, then to avoid a claw on $\{a, b, c, z\}$, we must also have the edge $b c$. Now $b c w x y z$ is an induced P_{6} unless $b w$ is an edge. However, if $b w$ is an edge then $b w c a b$ is a 4 -cycle with chord $b c$. Therefore $a c$ (and by symmetry bw) is not an edge in G.

Now bayxwc is an induced P_{6} if $b c$ is not an edge, and $c b a y x v$ is an induced P_{6} if $b c$ is an edge.
Case 2. Suppose that at least one of v and x cannot be added to F.
In particular, we will assume without loss of generality that $a x$ is an edge in G. To avoid chorded 4-cycles or $\{x, y, a, w\}$ inducing a claw, ay must also be an edge in G. Because $\Delta(G) \leq 4$ we can now let $F=\{x\}$. Let $R=\{a, v, w, x, y, z\}$ and note that any additional edge in $G[R]$ creates a chorded C_{4}. Because $n>6$ there must be a vertex $b \in V(G)-R$ adjacent to a vertex of R.

We cannot add both v and y to F by the following argument. If v and y are added to F then z must also be added to F, as the edge $z b$ would create an induced claw on $\{z, b, y, v\}$. Then only w and a are unfrozen, so we may assume that $b a$ is an edge. Now bayzvw is an induced P_{6} unless $b w$ is also an edge. By symmetry with $\{v, y, z\}$, the vertices a, w, b are added to F. Thus $|V(G)|=7$ which is a contradiction.

Therefore we may assume, without loss of generality, that by is an edge. To avoid $\{y, b, a, z\}$ inducing a claw or a chorded $C_{4}, b z$ must also be an edge. Because $\Delta(G) \leq 4$, we add y to F so that $F=\{x, y\}$. Because $n>7$ there is another vertex c adjacent to a vertex in $R \cup\{b\}$.
Subcase 2.1. Suppose that at least one of z and v cannot be added to F.
Then we may assume, without loss of generality, that $c z$ is an edge. To avoid $\{z, c, b, v\}$ being a claw or a chorded C_{4} on $\{z, c, b, y\}, c v$ must also be an edge. By symmetry, we can add z and v to F (see Fig. 10). Because $n>8$, there is an unpictured vertex d and, without loss of generality, we assume that $c d$ is an edge.

Since G does not contain a chorded $C_{4}, c w$ is not an edge. But then $d w$ is an edge, because otherwise dczyxw is an induced P_{6}. Similarly, $d b$ must be an edge to avoid $d c v x y b$ being an induced P_{6}. Now $a d$ is also an edge, because otherwise $a x v z b d$ is an induced P_{6}. We add d to F because $\Delta(G) \leq 4$. Thus $F=\{x, y, z, v, d\}$. Now $\{d, b, c, w\}$ induces a claw, and because $d b z c d$ and $d c v w d$ are 4 -cycles that are not chorded, it follows that $b w$ is an edge. Similarly, to prevent $\{d, a, b, c\}$ from inducing a claw, we must have the edge $a c$. But now every vertex of G has 4 neighbors, so $F=V(G)$. Thus $n=9$, which is a contradiction.
Subcase 2.2. Suppose that both z and v can be added to F.

Fig. 11. For Subcase 2.2 of Lemma 6.

The current state of G (except for the vertex c, which we describe next) is given in Fig. 11. Because G is 2 -connected, there is a k-tab with endpoints in the set $\{b, a, w\}$. Thus, without loss of generality, we may assume that $c b$ is an edge. To avoid cbzvxa inducing a P_{6}, either ba or $c a$ must be an edge. However, ba gives a chorded C_{4} so we may assume that ca is an edge. Because cayzvw cannot be an induced P_{6}, and $a w$ creates a chorded C_{4}, it follows that $c w$ must also be an edge (see Fig. 11).

But now $\{c, a, b, w\}$ cannot induce a claw, so G contains at least one of $\{a b, a w, b w\}$. Because cbyac and caxwc are 4-cycles that are not chorded, it follows that $b w$ is an edge. Since $\Delta(G) \leq 4$, we add b and w to F. The only unfrozen vertices are c and a. If c has a neighbor d then dcbzvx is an induced P_{6}, and if a has a neighbor d then dayzvw is an induced P_{6}. Therefore it follows that $n=8$, which is a contradiction.

Lemma 7. Let G be a 2 -connected graph of order $n \geq 13$. If G is $\left\{K_{1,3}, P_{6}\right\}$-free and G contains a chorded C_{5}, then it also contains a chorded C_{6}.

Proof. Let G be a 2-connected graph of order $n \geq 13$ that is $\left\{K_{1,3}, P_{6}\right\}$-free, and let $C=v w x y z v$ be a C_{5} with chord $v x$. Suppose, for the sake of contradiction, that G does not contain a chorded C_{6}. Because G is 2 -connected and $n>5$, there is a k-tab on the cycle C. We choose a tab $Q=a_{0} a_{1} \cdots a_{k+1}$ that minimizes k. Over all minimal k-tabs, choose one which minimizes the distance from a_{0} to a_{k+1} on C. If $k \geq 4$ then let a_{0}^{\prime} be a neighbor of a_{0} on C which is not a_{k+1}; now $a_{0}^{\prime} a_{0} a_{1} \cdots a_{4}$ is an induced P_{6}. Therefore $1 \leq k \leq 3$.

Case 1. Suppose that Q is a 1-tab.
If $a_{0} a_{2}$ is an edge of C, then this edge is the chord of a 6-cycle. Therefore a_{0} and a_{2} are not neighbors on C. If $a_{0}=w$ then by symmetry we may assume that $a_{2}=y$. Now $w a_{1} y z v x w$ is a C_{6} with chord $v w$. Therefore, we may assume without loss of generality that $a_{0}=x$ and $a_{2}=z$. By minimality of Q, neither of $v a_{1}$ and $y a_{1}$ can be edges. Therefore $v y$ is an edge to avoid $\left\{z, a_{1}, v, y\right\}$ inducing a claw. But now $v w x a_{1} z y v$ is a C_{6} with chord $v z$.

Case 2. Suppose that Q is a 2-tab.
We first consider when one endpoint of Q, say a_{0} is y (or z by symmetry). Because $\left\{y, a_{1}, z, x\right\}$ cannot induce a claw, $z x$ is an edge by minimality of Q. If $a_{3}=x$ or if $a_{3}=z$ then we have a 6 -cycle on the vertices $\left\{y, a_{1}, a_{2}, x, v, z\right\}$ with chord $z x$. If $a_{3}=w$ then $y a_{1} a_{2} w v x y$ is a 6-cycle with chord $w x$, and if $a_{3}=v$ then $y a_{1} a_{2} v w x y$ is a 6-cycle with chord $v x$. Therefore both a_{0} and a_{3} must be in $\{v, w, x\}$.

We may assume without loss of generality that a_{0} is x (or v by symmetry). Now if $a_{3}=v$ then $x a_{1} a_{2} v z y x$ is a 6-cycle with chord $v x$, so it follows that $a_{3}=w$. Because $\left\{x, y, v, a_{1}\right\}$ cannot induce a claw in G, and both $y a_{1}$ and $v a_{1}$ create 1-tabs on C, it follows that $v y$ must be an edge. But now $x a_{1} a_{2} w v y x$ is a 6 -cycle with chord $v x$.

Case 3. Suppose that Q is a 3-tab.
Let $R=\left\{v, w, x, y, z, a_{1}, a_{2}, a_{3}\right\}$. We first show that a_{0} and a_{4} cannot be neighbors in C. Suppose that a_{0} and a_{4} are neighbors in C. If $a_{0}=y$ then to avoid a claw at y or a 1-tab on $C, z x$ must be an edge. But now the edges $\{y x, z y, x z\}$ along with Q form a chorded 6-cycle. The same contradiction arises if $a_{0}=z$. So if a_{0} and a_{4} are neighbors in C then they both come from the set $\{v, w, x\}$. But now the edges $\{v w, w x, x v\}$ along with Q form a chorded 6 -cycle. Therefore we may assume that a_{0} and a_{4} are not neighbors in C.

Up to symmetry, the $3-\operatorname{tab} Q$ has $a_{4}=y$ and either $a_{0}=w$ or $a_{0}=v$. Note that any other edge between C and $\left\{a_{1}, a_{2}, a_{3}\right\}$ will create a 1- or 2-tab and contradict minimality. Suppose first that $a_{0}=w$. To avoid an induced claw centered at y we must have the edge $x z$. Also, $v w a_{1} a_{2} a_{3} y$ cannot be an induced P_{6} so there must be another edge among these vertices. Because $w y$ creates a chorded 6-cycle $w a_{1} a_{2} a_{3} y x w$, we must have the edge $v y$. As $w y$ is not an edge and $w a_{1} a_{2} a_{3} y z$ cannot be an induced P_{6}, we also have the edge $z w$. Now $G[\{v, w, x, y, z\}]=K_{5}-w y$ where w and y are the endpoints of Q (see Fig. 12). If R induces any other edge in G, then there is a chorded 6-cycle.

We suppose instead that $a_{0}=v$ and show that this gives an isomorphic graph to the graph in Fig. 12. Note that the edge $y v$ would create a 6-cycle $y x v a_{1} a_{2} a_{3} y$ with chord $y v$. To avoid 1-tabs or an induced claw on $\left\{y, a_{3}, x, z\right\}$ we must have the edge $x z$. To avoid $w v a_{1} a_{2} a_{3} y$ being an induced P_{6}, we must have the edge $w y$ (other edges would contradict the minimality of Q). Further, $z w$ is an edge because $\left\{v, a_{1}, z, w\right\}$ cannot be an induced claw. Now $G[V(C)]=K_{5}-e$, so we may continue using the notation used in Fig. 12.

Fig. 12. The graph $G[R]$ in Case 3 of Lemma 7. Note that $G[V(C)]=K_{5}-w y$.

Fig. 13. This is $G\left[R^{\prime}\right]$. Only y, a_{2}, or a_{3} can have neighbors in $G-R^{\prime}$.

We claim that x can be added to F (and v and z by symmetry). Suppose instead that there is a vertex $b \in V(G)-R$ with edge $b x$. Because $\{x, b, w, y\}$ cannot be an induced claw, either $b w$ or by is an edge. In the first case $x b w z v y x$ is a 6-cycle with chord $x w$, and in the second case $x b y v z w x$ is a 6 -cycle with chord $x y$. Thus, x, v, z are all added to F.
Subcase 3.1. Suppose that w and y can be added to F.
Now $F=\{x, v, z, w, y\}$. There is a tab on $G[R]$ because G is 2 -connected and $n>8$. Thus, without loss of generality, there is a vertex b such that $b a_{1}$ (or $b a_{3}$ by symmetry) is an edge. To avoid an induced claw $\left\{a_{1}, w, a_{2}, b\right\}$, we must also have the edge $b a_{2}$. Because $b a_{2} a_{3} y x w$ cannot be an induced P_{6} and $y, x, w \in F$, we also have the edge $b a_{3}$. Because there is no 2 -tab on $C, G[R \cup\{b\}]$ induces no other edges. However $n>9$, so there must be another vertex c. If a_{1} and a_{3} can now be added to F, then $\left\{a_{1}, a_{3}, c\right\}$ and their common neighbor induce a claw. So we may assume that $c a_{1}$ is an edge (or $c a_{3}$ by symmetry). To avoid inducing claws with $\left\{a_{1}, c, w, a_{2}\right\}$ or $\left\{a_{1}, c, w, b\right\}$ both $c a_{2}$ and $c b$ must be edges. Because $c b a_{3} y x w$ cannot be an induced $P_{6}, c a_{3}$ must also be an edge. Now $G\left[\left\{a_{1}, a_{2}, a_{3}, b, c\right\}\right]=K_{5}-e$ and by symmetry, $F=V(G)$. Therefore $n=10$, which is a contradiction.

Subcase 3.2. Suppose that at least one of w and y cannot be added to F.
Recall that the current state of G is described in Fig. 12 and that $F=\{v, x, z\}$. We may assume without loss of generality that $b w$ is an edge in G for $b \in V(G)-R$. To avoid $\left\{w, b, v, a_{1}\right\}$ inducing a claw, $b a_{1}$ must also be an edge. Now $b a_{1} a_{2} a_{3} y z$ is an induced P_{6} unless b has another neighbor in R. Because by and $b a_{3}$ create 1- and 2-tabs respectively, we must have the edge $b a_{2}$. Note that b has no other neighbors in R.

We claim that, if b has a neighbor $b^{\prime} \in V(G)-R$, then $N_{G}[b]=N_{G}\left[b^{\prime}\right]$. Suppose that b has a neighbor $b^{\prime} \in V(G)-R$. Note that $b^{\prime} y$ makes $w b b^{\prime} y$ a 2 -tab and that $b^{\prime} a_{3}$ gives a 6 -cycle $b^{\prime} a_{3} a_{2} a_{1} w b b^{\prime}$ with chord $a_{1} b$, so neither of these can be edges. Thus $b^{\prime} b w x y a_{3}$ is an induced P_{6} unless $b^{\prime} w$ is an edge. But now $\left\{w, v, a_{1}, b^{\prime}\right\}$ is an induced claw unless $b^{\prime} a_{1}$ is an edge, and also $b^{\prime} w x y a_{3} a_{2}$ is an induced P_{6} unless $b^{\prime} a_{2}$ is an edge. Therefore $N_{G}[b]=N_{G}\left[b^{\prime}\right]$.

If $\operatorname{deg}_{G}(b)=3$ then b (and a_{1} by symmetry) is now added to F. If b has a neighbor b^{\prime} in $V(G)-R$ then $G\left[w, b, b^{\prime}, a_{1}, a_{2}\right]=$ $K_{5}-w a_{2}$. Thus, by symmetry with $G[V(C)]$ we conclude that b, b^{\prime}, and a_{1} are all added to F now. Whether or not b^{\prime} exists, call $R^{\prime}=R \cup N_{G}[b]$. If w has a neighbor $c \in V(G)-R^{\prime}$ then $\{w, c, v, b\}$ is an induced claw because both v and b are in F. Therefore w is added to F now and the graph $G\left[R^{\prime}\right]$ is shown in Fig. 13, where the solid vertices (and b^{\prime}, if it exists) are all in F.

Because $n>10$ there must be a vertex $c \in V(G)-R^{\prime}$. The only unfrozen vertices are a_{2}, a_{3} and y. If $c a_{2}$ is not an edge, then $c y$ and $c a_{3}$ must both be edges because G is claw-free. But then $c y x w b a_{2}$ would be an induced P_{6}. Therefore, $c a_{2}$ must be an edge. To avoid $\left\{a_{2}, c, a_{3}, b\right\}$ inducing a claw, $c a_{3}$ is also an edge. Also $c y$ is an edge, because $c a_{2} b w x y$ cannot be an induced P_{6}.

Suppose that c can be added to F (and a_{3} as well, by symmetry). Because $n>11$ there is another vertex d in G. However the edge $y d$ makes $\{y, d, z, c\}$ induce a claw, and the edge $y a_{2}$ makes $\left\{a_{2}, d, a_{1}, c\right\}$ induce a claw. Therefore c cannot be added to F, and must have a neighbor $c^{\prime} \in V(G)-R^{\prime}$. Because $c^{\prime} c y x w b$ and $c^{\prime} c a_{2} b w x$ cannot be induced P_{6} subgraphs, both $c^{\prime} y$ and $c^{\prime} a_{2}$ must be edges. Now $\left\{y, c^{\prime}, z, a_{3}\right\}$ cannot induce a claw, so $c^{\prime} a_{3}$ is also an edge. However, we now have $G\left[y, c, c^{\prime}, a_{3}, a_{2}\right]=K_{5}-y a_{2}$ and by symmetry $V(G)=F$. It follows that $n=12$ (or $=11$ if b^{\prime} does not exist). This is a contradiction because $n \geq 13$.

Theorem 11. Let G be a 2-connected graph of order $n \geq 13$. If G is $\left\{K_{1,3}, P_{6}\right\}$-free then G is chorded pancyclic.

Fig. 14. This graph has no chorded C_{6}, which shows that Theorem 11 is sharp.

Proof. By Theorem 5, we know that G is pancyclic. Then by applying Lemma 5, followed by Lemmas 6 and 7, we find a chorded m-cycle in G for $4 \leq m \leq 6$. Any chordless m-cycle for $m>6$ contains an induced P_{6}. Therefore G contains a chorded m-cycle for $4 \leq m \leq n$.

Fig. 14 shows a 12-vertex, 2-connected, claw-free, and P_{6}-free graph which is not chorded pancyclic, because there is no chorded 6-cycle. This proves that Theorem 11 is sharp.

Acknowledgment

The second author was supported by Heilbrun Distinguished Emeritus Fellowship.

References

[1] R.J. Faudree, R.J. Gould, Characterizing forbidden pairs for hamiltonian properties, Discrete Math. 173 (1997) 45-60.
[2] R.J. Faudree, Z. Ryjacek, I. Schiermeyer, Forbidden subgraphs and cycle extendability, J. Combin. Math. Combin. Comput. 19 (1995) $109-128$.
[3] S. Goodman, S. Hedetniemi, Sufficient conditions for a graph to be hamiltonian, J. Combin. Theory Ser. B 16 (1974) 175-180.
[4] R.J. Gould, Graph Theory, Dover Pub. Inc, Mineola, N.Y., 2012.
[5] R.J. Gould, M.S. Jacobson, Forbidden subgraphs and hamiltonian properties of graphs, Discrete Math. 42 (1982) 189-196.

[^0]: * Corresponding author.

 E-mail addresses: mcream@spelman.edu (M. Cream), rg@emory.edu (R.J. Gould), vlarsen@kennesaw.edu (V. Larsen).

