Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Forbidden subgraphs for chorded pancyclicity

Megan Cream^a, Ronald J. Gould^b, Victor Larsen^{c,*}

^a Department of Mathematics, Spelman College, 350 Spelman Lane SW, Atlanta, GA 30314, United States

^b Department of Mathematics and Computer Science, Emory University, 400 Dowman Drive, Atlanta, GA 30322, United States

^c Department of Mathematics, Kennesaw State University, 1100 S. Marietta Parkway, Marietta, GA 30060, United States

ARTICLE INFO

Article history: Received 26 October 2016 Received in revised form 26 July 2017 Accepted 30 July 2017 Available online 1 September 2017

Keywords: Pancyclic Chorded cycle Forbidden subgraph Hamiltonian

ABSTRACT

We call a graph *G* pancyclic if it contains at least one cycle of every possible length *m*, for $3 \le m \le |V(G)|$. In this paper, we define a new property called *chorded pancyclicity*. We explore forbidden subgraphs in claw-free graphs sufficient to imply that the graph contains at least one chorded cycle of every possible length 4, 5, ..., |V(G)|. In particular, certain paths and triangles with pendant paths are forbidden.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the past, forbidden subgraphs for Hamiltonian properties in graphs have been widely studied (for an overview, see [1]). A graph containing a cycle of every possible length from three to the order of the graph is called pancyclic. The property of pancyclicity is well-studied. In this paper, we define the notion of chorded pancyclicity, and study forbidden subgraph results for chorded pancyclicity. We consider only $K_{1,3}$ -free (or *claw*-free) graphs, and we forbid certain paths and triangles with pendant paths.

Further, we consider only simple claw-free graphs. In this paper we let *G* be a graph and P_t be a path on *t* vertices. Let Z_i be a triangle with a pendant P_i adjacent to one of the vertices of the triangle. In particular, we will be considering the graphs Z_1 and Z_2 , shown in Fig. 1. For $S \subseteq V(G)$, let G[S] denote the subgraph of *G* induced by *S*. Let $N_G(u)$ denote the set of neighbors of the vertex *u*, that is, the vertices adjacent to *u* in the graph *G*. Let $N_G[u] = N_G(u) \cup \{u\}$. A graph is called *traceable* if it contains a Hamiltonian path. We use $H \square G$ to denote the Cartesian product of *H* and *G*. For terms not defined here see [4]. We will first note well-known results on forbidden subgraphs for pancyclicity.

Theorem 1. Let *R*, *S* be connected graphs and let *G* be a 2-connected graph of order $n \ge 10$ such that $G \ne C_n$. Then if *G* is $\{R, S\}$ -free then *G* is pancyclic for $R = K_{1,3}$ when *S* is either $P_4, P_5, P_6, Z_1, \text{ or } Z_2$.

The proof of a theorem (Theorem 4) in [3] yields the following result.

Theorem 2 ([3]). If G is a 2-connected graph of order $n \ge 10$ that contains no induced subgraph isomorphic to $K_{1,3}$ or Z_1 , then G is either a cycle or G is pancyclic.

Gould and Jacobson proved a similar result for Z_2 in [5].

E-mail addresses: mcream@spelman.edu (M. Cream), rg@emory.edu (R.J. Gould), vlarsen@kennesaw.edu (V. Larsen).

http://dx.doi.org/10.1016/j.disc.2017.07.027 0012-365X/© 2017 Elsevier B.V. All rights reserved.

Corresponding author.

Fig. 1. The graphs Z_1 and Z_2 .

Fig. 2. A pancyclic graph with no chorded 5-cycle.

Fig. 3. An infinite family of pancyclic graphs with no chorded C₄.

Theorem 3 ([5]). If G is a 2-connected graph of order $n \ge 10$ that contains no induced subgraph isomorphic to $K_{1,3}$ or Z_2 , then G is either a cycle or G is pancyclic.

Faudree, Gould, Ryjacek, and Schiermeyer proved a similar result for certain paths in [2].

Theorem 4 ([2]). If G is a 2-connected graph of order $n \ge 6$ that is $\{K_{1,3}, P_5\}$ -free, then G is either a cycle or G is pancyclic.

Theorem 5 ([2]). If G is a 2-connected graph of order $n \ge 10$ that is $\{K_{1,3}, P_6\}$ -free, then G is either a cycle or G is pancyclic.

Theorem 4 implies the following result for P_4 .

Theorem 6 ([2]). If G is a 2-connected graph of order $n \ge 6$ that is $\{K_{1,3}, P_4\}$ -free, then G is either a cycle or G is pancyclic.

In this paper, we will extend each of these theorems to analogous results on chorded pancyclicity.

2. Results

Definition 1. A graph *G* of order *n* is called *chorded pancyclic* if it contains a chorded cycle of every length m, $4 \le m \le n$.

Note first that not all pancyclic graphs are chorded pancyclic. The graph in Fig. 2 is pancyclic, but contains no chorded 5-cycle. Further, the graph in Fig. 3 represents an infinite family of pancyclic graphs that do not contain a chorded 4-cycle. An important tool used in the proofs of this paper is a *k*-tab, which we define here.

Definition 2. Given a subgraph *H* of *G*, a *k*-tab on *H* is a path $a_0a_1 \cdots a_{k+1}$ with *k* internal vertices so that $\{a_1, \ldots, a_k\} \subseteq V(G) - V(H)$ and there exist distinct vertices $u, v \in V(H)$ where $a_0 = u$ and $a_{k+1} = v$.

Note that, because there are no cut-vertices in a 2-connected graph, every proper subgraph must have a k-tab for some k > 0. Another tool we use in proofs, to better highlight when a subgraph is induced in G, is a *frozen set* F. Depending upon particular cases, the frozen set may be modified during the course of a proof. If a vertex is in the frozen set, it has no neighbors other than those already given. In particular, if a subgraph contains only frozen vertices, then it must be induced. Also, if every vertex of G is in F, then we have completely described the graph G. In figures, frozen vertices will be indicated by a solid vertex.

We now turn our attention to extending the results for forbidden subgraphs in Theorem 1. The following simple lemma has appeared many times in the literature.

Lemma 1. Let G be claw-free. For any $x \in V(G)$, $N_G(x)$ is either connected and traceable, or two disjoint cliques.

Using Lemma 1 we prove the following useful lemma.

Lemma 2. Let G be a $K_{1,3}$ -free graph. For any $x \in V(G)$ and any integer $k \ge 3$, if $\deg_G(x) \ge 2k - 1$ then there is a chorded (k + 1)-cycle in G.

Proof. Consider a vertex $x \in V(G)$ such that $\deg_G(x) = m \ge 2k - 1$. Lemma 1 implies that $N_G(x)$ is either connected and traceable, or two disjoint cliques.

Case 1: Suppose that $N_G(x)$ is connected and traceable.

Let $v_1v_2\cdots v_kv_{k+1}\cdots v_m$ be a Hamiltonian path in $N_G(x)$. Then $xv_1v_2\cdots v_kx$ is a (k + 1)-cycle in G with chord xv_2 (in fact, there are k - 2 chords in this (k + 1)-cycle).

Case 2: Suppose that $N_G(x)$ is two disjoint cliques.

Partition the *m* vertices into two cliques. Then at least one clique has at least *k* vertices. If the vertices $\{v_1, v_2, \ldots, v_k\}$ form a clique in $N_G(x)$, then $xv_1v_2 \cdots v_kx$ is a (k + 1)-cycle in *G* with chord xv_2 . Thus, the lemma is proven. \Box

Theorem 7. Let G be a 2-connected graph of order $n \ge 10$. If G is $\{K_{1,3}, Z_2\}$ -free, then $G = C_n$ or G is chorded pancyclic.

Proof. Suppose that *G* is a 2-connected graph of order $n \ge 10$ that is $\{K_{1,3}, Z_2\}$ -free and that *G* is not C_n . By Theorem 3, we know *G* must be pancyclic. For the sake of contradiction, suppose that *G* is not chorded pancyclic. Let *m* be the largest value with $4 \le m < n$ such that every *m*-cycle in *G* does not contain a chord. First we show that *m* must be 4, and then we show that there is a chorded 4-cycle in *G*.

Suppose that $m \ge 5$ and consider an *m*-cycle $C = v_1v_2v_3 \cdots v_mv_1$ in *G*. Since *G* is 2-connected and m < n, there exists a vertex $x \in V(G) - V(C)$ such that $xv \in E(G)$ for some $v \in V(C)$. Without loss of generality, we may assume that $xv_1 \in E(G)$. Then $\{v_1, x, v_2, v_m\}$ induces a claw in *G* unless xv_2, xv_m or v_2v_m is an edge. If v_2v_m is added then *C* is a chorded *m*-cycle and we are done. By symmetry, adding either xv_2 or xv_m as an edge is equivalent so, without loss of generality, we assume that $xv_2 \in E(G)$. Now $\{x, v_1, v_2, v_3, v_4\}$ induces a Z_2 in *G*. The only two edges that can eliminate this induced Z_2 without adding a chord to the *m*-cycle *C* are xv_3 and xv_4 .

If $xv_4 \in E(G)$ then $v_1v_2xv_4v_5\cdots v_mv_1$ is an *m*-cycle with chord v_1x . Thus we may assume that $xv_3 \in E(G)$. Now $\{x, v_2, v_3, v_4, v_5\}$ induces Z_2 in *G*. The only edges that will eliminate this induced Z_2 , but will not add a chord to *C* are xv_4 and xv_5 . If $xv_4 \in E(G)$ then $v_1v_2xv_4v_5\cdots v_mv_1$ is an *m*-cycle with chord xv_1 . If instead $xv_5 \in E(G)$, then $v_1v_2v_3xv_5\cdots v_mv_1$ is an *m*-cycle with chord xv_1 .

Therefore, it follows that m = 4. By Lemma 2, it follows that $\Delta(G) \le 4$. Let D = vwxyzv be a 5-cycle in G with chord vx. Suppose that both v and x can be added to F; that is, suppose that v and x have degree 3 in G. Because G is 2-connected and n > 5, D has a k-tab for some k with two distinct endpoints in $\{w, z, y\}$. By symmetry, we may assume that y is an endpoint of the k-tab and thus ay is an edge for $a \in V(G) - V(D)$. But now $\{y, a, x, z\}$ induces a claw, unless za is an edge (recall that x is frozen). Further, $\{w, v, x, y, a\}$ induces a Z_2 unless one of wy or wa is an edge. Because the edge wy gives a 4-cycle wyxvw in G with chord wx, it follows that za and wa are both edges. But now $G[V(D) \cup \{a\}]$ is isomorphic to $K_3 \Box K_2$, which is vertex-transitive. Therefore, all vertices of G can be added to F, as vertices can be relabeled so that any edge from $V(D) \cup \{a\}$ to $V(G) - (V(D) \cup \{a\})$ is a new edge using the vertex x. As a side note, this symmetry argument is used many times in further proofs to add vertices to F.

Thus it follows that, without loss of generality, ax is an edge for $a \in V(G) - V(D)$. Now $\{x, a, w, y\}$ induces a claw unless one of $\{wy, wa, ay\}$ is an edge. Because wy gives a 4-cycle wyxvw with chord wx and wa gives a 4-cycle waxvw with chord wx, it must be the case that ay is an edge. Note that $\deg_G(x) = 4$ so we may add x to F (now $F = \{x\}$).

Because n > 6 we look for a neighbor for a vertex $b \in V(G) - (V(D) \cup \{a\})$. Suppose that both v and y can be added to F. Then z must also be added to F, as the edge bz would give an induced claw $\{z, b, v, y\}$. Now w and a are the only unfrozen vertices, so we may assume by symmetry that ba is an edge. Now $\{w, v, x, a, b\}$ induces a Z_2 unless wb is an edge, as wa has already been ruled out and v and x are frozen by supposition. If wb is an edge, then note that swapping the labels of v, z, y with w, b, a, respectively, does not change the graph. Thus an additional edge to w, b, or a is equivalent to an additional edge to v, z, or y which are all frozen. Therefore all vertices can be added to F. This implies that n = 7, which is a contradiction.

Thus it follows that, without loss of generality, *by* is an edge. To avoid an induced claw on {*y*, *b*, *z*, *x*} we must have the edge *bz*. Now {*w*, *v*, *x*, *y*, *b*} induces a *Z*₂. Because the edges *yw* and *yv* create chorded 4-cycles on {*w*, *v*, *x*, *y*} and the edge *bv* would give the 4-cycle *bvzyb* with chord *bz*, it follows that *bw* must be an edge to eliminate this induced *Z*₂. Note that $\deg_G(y) = 4$, so we also add *y* to *F* (now *F* = {*x*, *y*}).

Let $R = V(D) \cup \{a, b\}$. Because *G* is 2-connected and n > 7, there exists a vertex $c \in V(G) - R$ with a neighbor in $R - \{a\}$. Because *x* and *y* are frozen, and $G[R-\{a\}]$ is isomorphic to $K_3 \square K_2$, the edges cw, cv, cz, and *cb* are all equivalent. We assume, without loss of generality, that *cz* is an edge (see Fig. 4).

Now to prevent {z, c, v, y} from inducing a claw we must have the edge cv. Because the degree of v and z are now 4, we add them to F (so $F = \{x, y, v, z\}$). To prevent {c, v, z, x, a} from inducing a Z_2 we must have the edge ca as these are the only unfrozen vertices.

Because n > 8 there exists another vertex $d \in V(G) - (R \cup \{c\})$. By symmetry any edge from d to one of the unfrozen vertices $\{w, a, b, c\}$ is equivalent so we may assume without loss of generality that dw is an edge. To prevent $\{w, x, d, b\}$ from

Fig. 4. Adding *c* to *G*[*R*] in the proof of Theorem 7.

Fig. 5. $K_3 \square K_3$ contains no chorded C_4 .

inducing a claw *db* must be an edge. Now to prevent $\{w, b, d, y, a\}$ from inducing a Z_2 we must have the edge *da* because *wa* gives a 4-cycle *waxvw* with chord *wx* and *ba* gives a 4-cycle *bayzb* with chord *by*. Now that *da* is an edge, we must also have the edge *dc* to prevent $\{a, d, c, x\}$ from inducing a claw. But now *G* is isomorphic to $K_3 \square K_3$ (see Fig. 5), all vertices have degree 4 and are thus frozen, and n = 9. This is a contradiction, so the theorem is proven. \square

As Z_1 is an induced subgraph of Z_2 , Theorem 2 implies the following corollary.

Corollary 8. Let G be a 2-connected graph of order $n \ge 10$. If G is $\{K_{1,3}, Z_1\}$ -free, then $G = C_n$ or G is chorded pancyclic.

We now turn our attention to forbidden paths; many of these theorems will be proven using a collection of lemmas.

Theorem 9. Let G be a 2-connected graph of order $n \ge 5$. If G is $\{K_{1,3}, P_4\}$ -free, then G is chorded pancyclic.

Proof. Let *G* be a 2-connected graph of order $n \ge 5$ that is $\{K_{1,3}, P_5\}$ -free. One can easily verify that *G* is chorded pancyclic if n = 5. Therefore we assume that $n \ge 6$. By Theorem 6, we know that *G* is pancyclic. Suppose, for the sake of contradiction, that *G* is not chorded pancyclic. Let *m* be the largest number with $4 \le m \le n$ such that every *m*-cycle in *G* is chordless. Any chordless *m*-cycle for m > 4 contains an induced P_4 , so it follows that m = 4.

Consider a 4-cycle $C = v_1v_2v_3v_4v_1$ in G. Since $n \ge 5$ and G is 2-connected, there exists a vertex $x \notin V(C)$ such that $xv \in E(G)$ for some $v \in V(G)$. Without loss of generality, we may assume that $v_1x \in E(G)$. To avoid an induced claw on $\{v_1, x, v_2, v_4\}$, one of v_2v_4, xv_4 , or xv_2 must be in E(G). If v_2v_4 is an edge, then C is a chorded 4-cycle, which is a contradiction.

Then by symmetry, we may assume without loss of generality that xv_2 is an edge. Because $xv_1v_4v_3$ cannot be an induced P_4 subgraph of G, G must contain either xv_4 , xv_3 , or v_1v_3 as an edge. The edge v_1v_3 creates a chord of the 4-cycle C, a contradiction. The edge v_3x yields the 4-cycle $v_1xv_3v_2v_1$ with chord v_2x , a contradiction. Similarly, the edge v_4x yields the 4-cycle $v_1v_2xv_4v_1$ with chord v_1x , again a contradiction. Thus, every 4-cycle in G must be chorded. \Box

Lemma 3. Let G be a 2-connected graph of order $n \ge 8$. If G is $\{K_{1,3}, P_5\}$ -free and G contains a C₄, then G contains a chorded C₅.

Proof. Let *G* be a 2-connected graph of order $n \ge 8$ that is $\{K_{1,3}, P_5\}$ -free, and let C = wxyzw be a 4-cycle in *G*. Suppose, for the sake of contradiction, that *G* does not have a chorded C_5 . Because n > 4 and *G* is 2-connected, there is a *k*-tab on the cycle *C*. Choose a *k*-tab $Q = a_0 \cdots a_{k+1}$ which minimizes *k*. Over all minimal *k*-tabs, choose one where a_0a_{k+1} is an edge of *C* if possible. Without loss of generality, we may assume that $x = a_0$.

Suppose Q is a 1-tab. If a_2 is y (or w by symmetry), then xa_1yzwx is a 5-cycle with chord xy. If $a_2 = z$ then $\{x, a_1, y, w\}$ cannot be an induced claw. But a_1w and a_1y contradict our choice of Q, so it follows that wy is an edge. Now $wyxa_1zw$ is a 5-cycle with chord xw.

Suppose that $k \ge 3$. Then let a'_0 be a neighbor of $x = a_0$ on C which is not a_{k+1} . Now $a'_0xa_1a_2a_3$ is an induced P_5 unless there is another edge among $\{a'_0, x, a_1, a_2, a_3\}$. However, each of these edges creates either a 1-tab or a 2-tab on C, which contradicts the minimality of Q.

Therefore, it follows that k = 2. If a_3 is y (or w by symmetry), then to avoid an induced claw on $\{x, a_1, y, w\}$ one of wy, ya_1, wa_1 must be an edge. However, each of these creates a chorded 5-cycle. Thus $a_3 = z$. To prevent $\{x, a_1, y, w\}$ from inducing a claw without creating a 1-tab, we must have the edge yw. One can check that any further edge among $R = \{x, y, w, z, a_1, a_2\}$ creates a chorded 5-cycle. However, n > 6, so there exists some $b \in V(G) - R$ that is adjacent to a vertex in R.

Fig. 6. The graph G[R'] from Lemma 3.

If *by* is an edge (or *bw* by symmetry) then to avoid an induced claw $\{y, b, x, z\}$, either *bx*, *bz*, or *xz* is an edge. All three give chorded 5-cycles, so we may add *y* and *w* to the frozen set *F*. Now $F = \{y, w\}$.

Suppose that we can now add both x and z to F so that $F = \{y, w, x, z\}$. Then, without loss of generality, we may assume that ba_1 is an edge. But now ba_1xwz is an induced P_5 because x, w, z are all frozen. This is a contradiction, and thus at least one of $\{x, z\}$ cannot be added to F. In particular, let bx be an edge. To avoid an induced claw $\{x, b, a_1, w\}$ it follows that ba_1 is an edge. Also, $bxwza_2$ cannot be an induced P_5 , so there is another edge among these vertices. Because bz creates a shorter k-tab on C, it follows that ba_2 is an edge. Let $R' = R \cup \{b\}$ and note that any additional edge in G[R'] creates a chorded 5-cycle. By symmetry with $\{y, w\}$ we can now add b and a_1 to F (see Fig. 6).

However, n > 7, so there exists some $c \in V(G) - R'$ that is adjacent to a vertex in R'. If cx is an edge for $c \in V(G) - R'$ then $\{x, c, b, w\}$ induces a claw as b and w are frozen. Therefore, we can also add x to F and, without loss of generality, cz is an edge. But now czwxb is an induced P_5 , which is a contradiction. \Box

Lemma 4. Let G be a 2-connected graph of order $n \ge 7$. If G is $\{K_{1,3}, P_5\}$ -free and G contains a chorded C_5 , then it also contains a chorded C_4 .

Proof. Let *G* be a 2-connected graph of order $n \ge 7$ that is $\{K_{1,3}, P_5\}$ -free, and let C = vwxyzv be a 5-cycle with chord vx. Suppose, for the sake of contradiction, that *G* has no chorded C_4 .

We show that both x and v can be added to F. If $ax \in E(G)$ for some $a \in V(G) - V(C)$, then to avoid a claw there must be some edge among $\{w, a, y\}$. The edge aw gives a 4-cycle vwaxv with chord wx and the edge wy gives a 4-cycle wyxvwwith chord wx. Thus ay must be an edge of G. Any further edge among $\{v, w, x, y, z, a\}$ yields a chorded 4-cycle, but such an edge must exist because otherwise ayzvw is an induced P_5 . Therefore, we conclude that x (and v by symmetry) can be added to F.

Because *G* is 2-connected, there is a tab on *C*. Therefore we may assume that *ay* (or *az* by symmetry) is an edge for some $a \in V(G) - V(C)$. To avoid an induced claw on $\{y, a, x, z\}$, we must have the edge *az*. By symmetry with $\{v, x\}$, both *z* and *y* can now be added to *F*. Because n > 6, there is a vertex *b* adjacent to either *a* or *w*. If *ba* is an edge then *bazvx* is an induced *P*₅, and if *bw* is an edge then *bwvzy* is an induced *P*₅. In either case we arrive at a contradiction, so we have proven the lemma. \Box

Theorem 10. Let G be a 2-connected graph of order $n \ge 8$. If G is $\{K_{1,3}, P_5\}$ -free, then G is chorded pancyclic.

Proof. From Theorem 4 we know *G* must be pancyclic. Then by applying Lemma 3 followed by Lemma 4, we find a chorded *m*-cycle in *G* for m = 4, 5. Any chordless *m*-cycle for m > 5 contains an induced P_5 . Therefore *G* contains a chorded *m*-cycle for $4 \le m \le n$. \Box

Note that the graph in Fig. 6 shows that Theorem 10 is sharp. We now turn to P_6 as a forbidden subgraph. We will prove our result using three lemmas.

Lemma 5. Let G be a 2-connected graph of order $n \ge 11$. If G is $\{K_{1,3}, P_6\}$ -free and G contains a C_4 , then G contains a chorded C_5 .

Proof. Let *G* be a 2-connected graph of order $n \ge 11$ that is $\{K_{1,3}, P_6\}$ -free, and let C = vwxyv be a 4-cycle in *G*. Suppose, for the sake of contradiction, that *G* does not have a chorded C_5 . Because *G* is 2-connected and n > 5, there is a *k*-tab on the cycle *C*. We choose a *k*-tab $Q = a_0a_1 \cdots a_{k+1}$ that minimizes *k*. Over all minimal *k*-tabs, choose one where a_0a_{k+1} is an edge of *C* if possible. If $k \ge 4$, then let a'_0 be a neighbor of a_0 on *C* which is not a_{k+1} and now $a'_0a_0a_1 \cdots a_4$ is an induced P_6 . Therefore we may assume that $1 \le k \le 3$.

Case 1. Suppose that Q is a 1-tab.

If a_0a_2 is an edge of *C* then $G[\{v, w, x, y, a_1\}]$ contains a chorded 5-cycle. Otherwise, we may assume $a_0 = v$ and $a_2 = x$. To avoid a claw centered at v or a 1-tab with endpoints adjacent in *C* it follows that wy is an edge. Now va_1xywv is a 5-cycle with chord wx.

Fig. 7. The graph *G*[*R*] is the starting point for Subcase 2.2 of Lemma 5.

Case 2. Suppose that Q is a 2-tab.

First, we show that a_0a_3 cannot be an edge in *C*. If a_0a_3 is an edge, we may assume it is vw. To avoid a claw induced by $\{v, w, y, a_1\}$ or a 1-tab on *C*, we must have wy as an edge. But now va_1a_2wyv is a 5-cycle with chord vw. Therefore we will assume that $v = a_0$ and $x = a_3$.

Note that wy must be an edge to avoid an induced claw $\{v, w, y, a_1\}$ or a 1-tab on C. If w (or y by symmetry) has another neighbor $z \in V(G) - V(C)$ then to avoid an induced claw $\{w, z, v, x\}$ or a 1-tab on C we must have the edge vx. But now va_1a_2xwv is a 5-cycle with chord vx. Therefore, w and y are added to F for the remainder of this case.

Subcase 2.1. Suppose that *v* and *x* can be added to *F* so that $F = \{w, y, v, x\}$.

Because *G* is 2-connected and $n \ge 8$, there exist distinct vertices b_1 and b_2 so that b_1a_1 and b_2a_2 are edges. To avoid an induced claw on either $\{a_1, b_1, v, a_2\}$ or $\{a_2, b_2, v, a_1\}$ we must also have the edges b_1a_2 and b_2a_1 . Also $\{a_1, b_1, b_2, v\}$ cannot be an induced claw so b_1b_2 is an edge.

Because n > 8 there is another vertex c. If ca_1 (or ca_2 by symmetry) is an edge, then either $\{a_1, c, b_1, v\}$ is an induced claw or $a_1cb_1b_2a_2a_1$ is a 5-cycle with chord a_1b_1 . Thus, without loss of generality we let cb_1 be an edge. But now cba_1vyx is an induced P_6 , which is a contradiction.

Subcase 2.2. Suppose that at least one of *v* and *x* cannot be added to *F*.

In particular, we will assume that bx is an edge for a vertex $b \notin V(C) \cup V(Q)$. The current state of *G* (except for the edge ba_2 which we show next) is given in Fig. 7. Let $R = \{v, w, x, y, a_1, a_2, b\}$. Because $w, y \in F$, the neighborhood of x is not traceable and, by Lemma 1, $N_G(x)$ must be two disjoint cliques. Therefore ba_2 is an edge.

First, we show that ba_1 cannot be an edge. If ba_1 is an edge, then G[V(C)] and $G[\{x, a_2, b, a_1\}]$ are both isomorphic to $K_4 - e$. By symmetry, we may add a_2 and b to F. Because $N_G(x)$ is two disjoint cliques, we may also add x to F. Because G is 2-connected and $n \ge 9$, there exist distinct vertices $c, c' \in V(G) - R$ so that cv and $c'a_1$ are edges. To avoid the induced claw $\{a_1, c', v, b\}$ we also have the edge c'v. By Lemma 1 the neighborhood of v is two disjoint cliques, as it is not traceable. Thus cc' and ca_1 are also edges. If $N_G(v)$ contains a K_4 , then G has a chorded 5-cycle, so v must now be added to F. By symmetry, a_1 is also added to F. If G has another vertex d then either dcvyxb or dc'vyxb is an induced P_6 , so n = 9 which is a contradiction. Therefore ba_1 is not an edge, and to avoid any chorded 5-cycle it follows that the induced subgraph G[R] is exactly the graph shown in Fig. 7.

Now we show that *b* cannot be added to *F* yet. Suppose that *b* is added to *F*, so that $F = \{w, y, b\}$. Because $N_G(x)$ is two disjoint cliques, we may also add *x* to *F*. Either *v* can now be added to *F*, or *v* has another neighbor *c*. If *vc* is an edge then, because $N_G(v)$ is two disjoint cliques, ca_1 is an edge. By symmetry with *b*, *x* we can add *c* and *v* to *F*. However, regardless of whether *v* has degree 3 or 4 in *G*, since *G* is 2-connected and n > 8 we may assume that a_1 has a neighbor $d \notin R$. But now da_1vyxb is an induced P_6 , which is a contradiction.

Because *b* cannot be added to *F*, it follows that *b* has a neighbor $b' \in V(G) - R$. Now $b'bxyva_1$ cannot induce a P_6 so b' has another neighbor among these vertices. Note that $b'a_1$ creates a 5-cycle $b'a_1a_2xbb'$ with chord ba_2 so this cannot be an edge. Thus, the edge b'v would create an induced claw $\{v, b', a_1, y\}$, and it follows that b'x must be an edge. Because $N_G(x)$ is two disjoint cliques, $b'a_2$ is an edge. We can now add *x* to *F*, because otherwise one of the cliques in $N_G(x)$ would be a K_4 which gives a chorded 5-cycle in $N_G[x]$. If *b* has a neighbor $c \notin R \cup \{b'\}$, then to prevent $cbxyva_1$ being an induced P_6 either cv or ca_1 is an edge. When ca_1 is an edge then $ca_1a_2b'bc$ is a 5-cycle with chord a_2b , and when ca_1 is not an edge then cv is an edge and $\{v, c, a_1, y\}$ induces a claw. Therefore *b* (and *b'* by symmetry) is also added to *F*.

Now the only unfrozen vertices are v, a_1 , and a_2 . We claim that a_2 can also be added to F. Suppose instead that a_2 has a neighbor $c \notin R \cup \{b'\}$. Then ca_1 is also an edge to prevent $\{a_2, c, a_1, x\}$ from inducing a claw. Also, ca_1vyxb is not an induced P_6 so cv is an edge. Now $G[\{v, a_1, a_2, c\}]$ is isomorphic to G[V(C)], so by symmetry $\{c, a_1, a_2\}$ are added to F. Because G has no cut vertex, v is also added to F. All vertices are frozen, so it follows that n = 9 which is a contradiction.

Therefore a_2 is added to F, as seen in Fig. 8. Because G is 2-connected and $n \ge 10$, there exist distinct vertices c and c' so that cv and $c'a_1$ are edges. To avoid the induced claw $\{a_1, c', v, a_2\}$ we also have the edge c'v. But $N_G(v)$ is two disjoint cliques, so cc' and ca_1 are also edges. By symmetry with $G[x, b, b', a_2]$, the vertices v, c, c', a_1 are added to F. Thus F = V(G), and it follows that n = 10 which is a contradiction.

Fig. 8. The graph resulting from Subcase 2.2 in Lemma 5.

Case 3. Suppose that Q is a 3-tab.

Recall that C = vwxyv, and that no vertices are in F yet. Let $R = \{v, w, x, y, a_1, a_2, a_3\}$. Note that no 4-cycle can have a 1-tab or a 2-tab, or we reduce to an earlier case.

Subcase 3.1. Suppose that a_0a_4 is an edge of C.

In particular, we may assume that $a_0 = v$ and $a_4 = w$. To prevent $\{v, w, y, a_1\}$ and $\{w, v, x, a_3\}$ from inducing claws without introducing a chorded 5-cycle, vx and wy must be edges. Note that if R induces any other edge in G then there is a 1-tab or 2-tab on C, which is a contradiction. We add y (and x by symmetry) to F by the following argument. If by is an edge, then to prevent $byva_1a_2a_3$ being an induced P_6 there must be another neighbor of b. Because bv, ba_1 , and ba_3 all create 1- or 2-tabs it follows that only ba_2 can be an edge. But then $\{a_2, a_1, a_3, b\}$ induces a claw, because a_1a_3 would make a 2-tab on C.

We now show that v and w can also be added to F. If v has a neighbor $b \in V(G) - R$ then, to prevent the induced claw $\{v, b, a_1, y\}$, ba_1 is also an edge. To prevent $ba_1a_2a_3wx$ being an induced P_6 there must be another neighbor of b among those vertices. However, bw and ba_3 create 1- and 2-tabs on C. Therefore ba_2 is an edge, but now a_2a_3wv is a 2-tab on the 4-cycle $a_2a_1vba_2$, which is a contradiction. Therefore $F = \{x, y, v, w\}$.

Because *G* is 2-connected and n > 7 there is a tab on *G*[*R*]. Because only a_1, a_2, a_3 are unfrozen we may assume that ba_1 (or ba_3 by symmetry) is an edge for some $b \in V(G) - R$. To prevent an induced claw on $\{a_1, b, a_2, v\}$, we must also have the edge ba_2 . If ba_3 were also an edge then a_1vwa_3 would be a 2-tab on the 4-cycle $a_1a_2a_3ba_1$, so ba_3 cannot be an edge. But now a_1 can be added to *F* by the following argument. If a_1 has another neighbor $c \in V(G) - R$ distinct from *b* then by the same reasoning, we must have the edge ca_2 and we cannot have the edge ca_3 . By Lemma 1, the neighborhood of a_1 is two disjoint cliques so bc is also an edge. But now $G[\{a_1, a_2, b, c\}]$ is isomorphic to G[V(C)] and by symmetry all of a_1, a_2, b, c are added to *F*. Because a_3 is not a cut-vertex in *G* it follows that n = 9, which is a contradiction. Therefore, once we have the edge ba_1 we can immediately add a_1 to *F*. Hence $F = \{x, y, v, w, a_1\}$.

Now b, a_2 , and a_3 are the only unfrozen vertices. Suppose that a_3 has a neighbor $c \notin R \cup \{b\}$. Then if cb is not an edge then ca_3wva_1b induces a P_6 , and if cb is an edge then $cba_1a_2a_3c$ is a 5-cycle with chord ba_2 . Both are contradictions, so $\deg_G(a_3) = 2$ and a_3 is added to F. Because n > 8 there must be another vertex c, and now b and a_2 are the only unfrozen vertices. However, if cb is an edge then cba_1vwa_3 is an induced P_6 and if ca_2 is an edge then $\{a_2, c, a_1, a_3\}$ induces a claw. Both are contradictions, so the lemma is proven in this case.

Subcase 3.2. Suppose that a_0 and a_4 are not adjacent in *C*.

In particular, let $a_0 = v$ and $a_4 = x$. Recall that F is empty for now. To prevent $\{v, a_1, w, y\}$ from inducing a claw, and to avoid chorded 5-cycles, wy must be an edge. Note that now vx cannot be an edge, or we reduce to Subcase 3.1. Therefore w (and y by symmetry) cannot have any neighbor in V(G) - R without inducing a claw or creating a chorded 5-cycle. Thus w and y are added to F.

Now we show that at least one element of $\{x, v\}$ cannot be added to F yet. Suppose instead that $F = \{w, y, x, v\}$. Then, because G is 2-connected, there is a tab on G[R] and we may assume that a_1 (or a_3 by symmetry) has a neighbor $b \in V(G) - R$. To prevent the induced claw $\{a_1, b, a_2, v\}$ we must also have the edge ba_2 . To prevent ba_1vyxa_3 from being an induced P_6 we must have the edge ba_3 . But now $G[\{a_1, a_2, a_3, b\}]$ is isomorphic to $G[\{v, w, x, y\}]$, so by symmetry all vertices are added to F. This implies that n = 8, which is a contradiction. Therefore, at least one of x or v has a neighbor in V(G) - R.

Suppose, without loss of generality, that *x* has a neighbor $b \in V(G) - R$. To prevent the induced claw {*x*, *b*, *a*₃, *y*} we must also have the edge ba_3 . Also, $bxyva_1a_2$ cannot be an induced P_6 , so *b* must have another neighbor among these vertices. The edges bv and ba_1 create shorter tabs on *C*, so it follows that ba_2 must be an edge (see Fig. 9).

By symmetry with w and y, the vertices a_3 and b are also added to F, so $F = \{w, y, a_3, b\}$. Because the neighborhood of x is two disjoint frozen cliques, x can also be added to F by Lemma 1. Because $n \ge 9$, there is a tab with endpoints in $\{v, a_1, a_2\}$. Without loss of generality, we may assume that cv is an edge. Now ca_1 must also be an edge to prevent $\{v, c, a_1, y\}$ inducing a claw, and ca_2 must be an edge to prevent $cvyxba_2$ from being an induced P_6 . But now $G[\{a_1, a_2, v, c\}]$ is isomorphic to G[V(C)] and all vertices can be added to F. Therefore n = 9, which is a contradiction. \Box

Lemma 6. Let *G* be a 2-connected graph of order $n \ge 10$. If *G* is $\{K_{1,3}, P_6\}$ -free and *G* contains a chorded C_5 , then it also contains a chorded C_4 .

Fig. 9. A graph for Subcase 3.2 of Lemma 5.

Fig. 10. For Subcase 2.1 of Lemma 6.

Proof. Let *G* be a 2-connected graph of order $n \ge 10$ that is $\{K_{1,3}, P_6\}$ -free, and let C = vwxyzv be a 5-cycle with chord vx. Suppose, for the sake of contradiction, that *G* does not have a chorded C_4 . Then there are no additional edges in G[V(C)] and, by Lemma 2, $\Delta(G) \le 4$. Because n > 5, there is a vertex $a \in V(G) - V(C)$ adjacent to a vertex of *C*.

Case 1. Suppose that $F = \{x, v\}$.

Because there is a *k*-tab on *C*, we may assume without loss of generality that *ay* is an edge. To avoid an induced claw on $\{y, x, z, a\}$ it follows that *az* must also be an edge of *G*. By symmetry we may now add *z* and *y* to *F*. Because n > 7, to avoid a cut-vertex in *G* there must be two distinct vertices *b* and *c* where *ab* and *wc* are edges in *G*.

If *aw* is an edge, then to avoid a claw on $\{a, w, b, y\}$, we must also have the edge *wb*. But then deg_{*G*}(*w*) \geq 5 which contradicts $\Delta(G) \leq$ 4. Therefore, *aw* is not an edge in *G*.

If *ac* is an edge, then to avoid a claw on $\{a, b, c, z\}$, we must also have the edge *bc*. Now *bcwxyz* is an induced P_6 unless *bw* is an edge. However, if *bw* is an edge then *bwcab* is a 4-cycle with chord *bc*. Therefore *ac* (and by symmetry *bw*) is not an edge in *G*.

Now *bayxwc* is an induced P_6 if *bc* is not an edge, and *cbayxv* is an induced P_6 if *bc* is an edge.

Case 2. Suppose that at least one of *v* and *x* cannot be added to *F*.

In particular, we will assume without loss of generality that *ax* is an edge in *G*. To avoid chorded 4-cycles or $\{x, y, a, w\}$ inducing a claw, *ay* must also be an edge in *G*. Because $\Delta(G) \leq 4$ we can now let $F = \{x\}$. Let $R = \{a, v, w, x, y, z\}$ and note that any additional edge in *G*[*R*] creates a chorded *C*₄. Because n > 6 there must be a vertex $b \in V(G) - R$ adjacent to a vertex of *R*.

We cannot add both v and y to F by the following argument. If v and y are added to F then z must also be added to F, as the edge zb would create an induced claw on $\{z, b, y, v\}$. Then only w and a are unfrozen, so we may assume that ba is an edge. Now bayzvw is an induced P_6 unless bw is also an edge. By symmetry with $\{v, y, z\}$, the vertices a, w, b are added to F. Thus |V(G)| = 7 which is a contradiction.

Therefore we may assume, without loss of generality, that *by* is an edge. To avoid $\{y, b, a, z\}$ inducing a claw or a chorded C_4 , *bz* must also be an edge. Because $\Delta(G) \leq 4$, we add *y* to *F* so that $F = \{x, y\}$. Because n > 7 there is another vertex *c* adjacent to a vertex in $R \cup \{b\}$.

Subcase 2.1. Suppose that at least one of z and v cannot be added to F.

Then we may assume, without loss of generality, that cz is an edge. To avoid $\{z, c, b, v\}$ being a claw or a chorded C_4 on $\{z, c, b, y\}$, cv must also be an edge. By symmetry, we can add z and v to F (see Fig. 10). Because n > 8, there is an unpictured vertex d and, without loss of generality, we assume that cd is an edge.

Since *G* does not contain a chorded C_4 , cw is not an edge. But then dw is an edge, because otherwise dczyxw is an induced P_6 . Similarly, db must be an edge to avoid dcvxyb being an induced P_6 . Now ad is also an edge, because otherwise axvzbd is an induced P_6 . We add d to F because $\Delta(G) \le 4$. Thus $F = \{x, y, z, v, d\}$. Now $\{d, b, c, w\}$ induces a claw, and because dbzcd and dcvwd are 4-cycles that are not chorded, it follows that bw is an edge. Similarly, to prevent $\{d, a, b, c\}$ from inducing a claw, we must have the edge ac. But now every vertex of G has 4 neighbors, so F = V(G). Thus n = 9, which is a contradiction.

Subcase 2.2. Suppose that both *z* and *v* can be added to *F*.

Fig. 11. For Subcase 2.2 of Lemma 6.

The current state of *G* (except for the vertex *c*, which we describe next) is given in Fig. 11. Because *G* is 2-connected, there is a *k*-tab with endpoints in the set {*b*, *a*, *w*}. Thus, without loss of generality, we may assume that *cb* is an edge. To avoid *cbzvxa* inducing a P_6 , either *ba* or *ca* must be an edge. However, *ba* gives a chorded C_4 so we may assume that *ca* is an edge. Because *cayzvw* cannot be an induced P_6 , and *aw* creates a chorded C_4 , it follows that *cw* must also be an edge (see Fig. 11).

But now {c, a, b, w} cannot induce a claw, so G contains at least one of {ab, aw, bw}. Because cbyac and caxwc are 4-cycles that are not chorded, it follows that bw is an edge. Since $\Delta(G) \leq 4$, we add b and w to F. The only unfrozen vertices are c and a. If c has a neighbor d then dcbzvx is an induced P_6 , and if a has a neighbor d then dayzvw is an induced P_6 . Therefore it follows that n = 8, which is a contradiction. \Box

Lemma 7. Let G be a 2-connected graph of order $n \ge 13$. If G is $\{K_{1,3}, P_6\}$ -free and G contains a chorded C_5 , then it also contains a chorded C_6 .

Proof. Let *G* be a 2-connected graph of order $n \ge 13$ that is $\{K_{1,3}, P_6\}$ -free, and let C = vwxyzv be a C_5 with chord vx. Suppose, for the sake of contradiction, that *G* does not contain a chorded C_6 . Because *G* is 2-connected and n > 5, there is a *k*-tab on the cycle *C*. We choose a tab $Q = a_0a_1 \cdots a_{k+1}$ that minimizes *k*. Over all minimal *k*-tabs, choose one which minimizes the distance from a_0 to a_{k+1} on *C*. If $k \ge 4$ then let a'_0 be a neighbor of a_0 on *C* which is not a_{k+1} ; now $a'_0a_0a_1 \cdots a_4$ is an induced P_6 . Therefore $1 \le k \le 3$.

Case 1. Suppose that Q is a 1-tab.

If a_0a_2 is an edge of *C*, then this edge is the chord of a 6-cycle. Therefore a_0 and a_2 are not neighbors on *C*. If $a_0 = w$ then by symmetry we may assume that $a_2 = y$. Now wa_1yzvxw is a C_6 with chord vw. Therefore, we may assume without loss of generality that $a_0 = x$ and $a_2 = z$. By minimality of *Q*, neither of va_1 and ya_1 can be edges. Therefore vy is an edge to avoid $\{z, a_1, v, y\}$ inducing a claw. But now $vwxa_1zyv$ is a C_6 with chord vz.

Case 2. Suppose that Q is a 2-tab.

We first consider when one endpoint of Q, say a_0 is y (or z by symmetry). Because {y, a_1 , z, x} cannot induce a claw, zx is an edge by minimality of Q. If $a_3 = x$ or if $a_3 = z$ then we have a 6-cycle on the vertices {y, a_1 , a_2 , x, v, z} with chord zx. If $a_3 = w$ then ya_1a_2wvxy is a 6-cycle with chord wx, and if $a_3 = v$ then ya_1a_2vwxy is a 6-cycle with chord vx. Therefore both a_0 and a_3 must be in {v, w, x}.

We may assume without loss of generality that a_0 is x (or v by symmetry). Now if $a_3 = v$ then xa_1a_2vzyx is a 6-cycle with chord vx, so it follows that $a_3 = w$. Because $\{x, y, v, a_1\}$ cannot induce a claw in G, and both ya_1 and va_1 create 1-tabs on C, it follows that vy must be an edge. But now xa_1a_2wvyx is a 6-cycle with chord vx.

Case 3. Suppose that Q is a 3-tab.

Let $R = \{v, w, x, y, z, a_1, a_2, a_3\}$. We first show that a_0 and a_4 cannot be neighbors in *C*. Suppose that a_0 and a_4 are neighbors in *C*. If $a_0 = y$ then to avoid a claw at *y* or a 1-tab on *C*, *zx* must be an edge. But now the edges $\{yx, zy, xz\}$ along with *Q* form a chorded 6-cycle. The same contradiction arises if $a_0 = z$. So if a_0 and a_4 are neighbors in *C* then they both come from the set $\{v, w, x\}$. But now the edges $\{vw, wx, xv\}$ along with *Q* form a chorded 6-cycle. Therefore we may assume that a_0 and a_4 are not neighbors in *C*.

Up to symmetry, the 3-tab Q has $a_4 = y$ and either $a_0 = w$ or $a_0 = v$. Note that any other edge between C and $\{a_1, a_2, a_3\}$ will create a 1- or 2-tab and contradict minimality. Suppose first that $a_0 = w$. To avoid an induced claw centered at y we must have the edge xz. Also, $vwa_1a_2a_3y$ cannot be an induced P_6 so there must be another edge among these vertices. Because wy creates a chorded 6-cycle $wa_1a_2a_3yxw$, we must have the edge vy. As wy is not an edge and $wa_1a_2a_3yz$ cannot be an induced P_6 , we also have the edge zw. Now $G[\{v, w, x, y, z\}] = K_5 - wy$ where w and y are the endpoints of Q (see Fig. 12). If R induces any other edge in G, then there is a chorded 6-cycle.

We suppose instead that $a_0 = v$ and show that this gives an isomorphic graph to the graph in Fig. 12. Note that the edge yv would create a 6-cycle $yxva_1a_2a_3y$ with chord yv. To avoid 1-tabs or an induced claw on $\{y, a_3, x, z\}$ we must have the edge xz. To avoid $wva_1a_2a_3y$ being an induced P_6 , we must have the edge wy (other edges would contradict the minimality of Q). Further, zw is an edge because $\{v, a_1, z, w\}$ cannot be an induced claw. Now $G[V(C)] = K_5 - e$, so we may continue using the notation used in Fig. 12.

Fig. 12. The graph G[R] in Case 3 of Lemma 7. Note that $G[V(C)] = K_5 - wy$.

Fig. 13. This is G[R']. Only y, a_2 , or a_3 can have neighbors in G - R'.

We claim that x can be added to F (and v and z by symmetry). Suppose instead that there is a vertex $b \in V(G) - R$ with edge bx. Because {x, b, w, y} cannot be an induced claw, either bw or by is an edge. In the first case xbwzvyx is a 6-cycle with chord xw, and in the second case xbyvzwx is a 6-cycle with chord xy. Thus, x, v, z are all added to F.

Subcase 3.1. Suppose that w and y can be added to F.

Now $F = \{x, v, z, w, y\}$. There is a tab on G[R] because G is 2-connected and n > 8. Thus, without loss of generality, there is a vertex b such that ba_1 (or ba_3 by symmetry) is an edge. To avoid an induced claw $\{a_1, w, a_2, b\}$, we must also have the edge ba_2 . Because ba_2a_3yxw cannot be an induced P_6 and $y, x, w \in F$, we also have the edge ba_3 . Because there is no 2-tab on C, $G[R \cup \{b\}]$ induces no other edges. However n > 9, so there must be another vertex c. If a_1 and a_3 can now be added to F, then $\{a_1, a_3, c\}$ and their common neighbor induce a claw. So we may assume that ca_1 is an edge (or ca_3 by symmetry). To avoid inducing claws with $\{a_1, c, w, a_2\}$ or $\{a_1, c, w, b\}$ both ca_2 and cb must be edges. Because cba_3yxw cannot be an induced P_6 , ca_3 must also be an edge. Now $G[\{a_1, a_2, a_3, b, c\}] = K_5 - e$ and by symmetry, F = V(G). Therefore n = 10, which is a contradiction.

Subcase 3.2. Suppose that at least one of *w* and *y* cannot be added to *F*.

Recall that the current state of *G* is described in Fig. 12 and that $F = \{v, x, z\}$. We may assume without loss of generality that *bw* is an edge in *G* for $b \in V(G) - R$. To avoid $\{w, b, v, a_1\}$ inducing a claw, ba_1 must also be an edge. Now $ba_1a_2a_3yz$ is an induced P_6 unless *b* has another neighbor in *R*. Because *by* and ba_3 create 1- and 2-tabs respectively, we must have the edge ba_2 . Note that *b* has no other neighbors in *R*.

We claim that, if *b* has a neighbor $b' \in V(G) - R$, then $N_G[b] = N_G[b']$. Suppose that *b* has a neighbor $b' \in V(G) - R$. Note that *b'y* makes *wbb'y* a 2-tab and that *b'a*₃ gives a 6-cycle $b'a_3a_2a_1wbb'$ with chord a_1b , so neither of these can be edges. Thus $b'bwxya_3$ is an induced P_6 unless b'w is an edge. But now $\{w, v, a_1, b'\}$ is an induced claw unless $b'a_1$ is an edge, and also $b'wxya_3a_2$ is an induced P_6 unless $b'a_2$ is an edge. Therefore $N_G[b] = N_G[b']$.

If deg_{*G*}(*b*) = 3 then *b* (and a_1 by symmetry) is now added to *F*. If *b* has a neighbor *b'* in *V*(*G*) – *R* then *G*[*w*, *b*, *b'*, a_1, a_2] = $K_5 - wa_2$. Thus, by symmetry with *G*[*V*(*C*)] we conclude that *b*, *b'*, and a_1 are all added to *F* now. Whether or not *b'* exists, call $R' = R \cup N_G[b]$. If *w* has a neighbor $c \in V(G) - R'$ then $\{w, c, v, b\}$ is an induced claw because both *v* and *b* are in *F*. Therefore *w* is added to *F* now and the graph *G*[*R'*] is shown in Fig. 13, where the solid vertices (and *b'*, if it exists) are all in *F*.

Because n > 10 there must be a vertex $c \in V(G) - R'$. The only unfrozen vertices are a_2 , a_3 and y. If ca_2 is not an edge, then cy and ca_3 must both be edges because G is claw-free. But then $cyxwba_2$ would be an induced P_6 . Therefore, ca_2 must be an edge. To avoid $\{a_2, c, a_3, b\}$ inducing a claw, ca_3 is also an edge. Also cy is an edge, because ca_2bwxy cannot be an induced P_6 .

Suppose that *c* can be added to *F* (and a_3 as well, by symmetry). Because n > 11 there is another vertex *d* in *G*. However the edge *yd* makes {*y*, *d*, *z*, *c*} induce a claw, and the edge *ya*₂ makes {*a*₂, *d*, *a*₁, *c*} induce a claw. Therefore *c* cannot be added to *F*, and must have a neighbor $c' \in V(G) - R'$. Because c'cyxwb and $c'ca_2bwx$ cannot be induced P_6 subgraphs, both c'y and $c'a_2$ must be edges. Now {*y*, *c'*, *z*, *a*₃} cannot induce a claw, so $c'a_3$ is also an edge. However, we now have $G[y, c, c', a_3, a_2] = K_5 - ya_2$ and by symmetry V(G) = F. It follows that n = 12 (or = 11 if b' does not exist). This is a contradiction because $n \ge 13$. \Box

Theorem 11. Let G be a 2-connected graph of order $n \ge 13$. If G is $\{K_{1,3}, P_6\}$ -free then G is chorded pancyclic.

Fig. 14. This graph has no chorded C_6 , which shows that Theorem 11 is sharp.

Proof. By Theorem 5, we know that *G* is pancyclic. Then by applying Lemma 5, followed by Lemmas 6 and 7, we find a chorded *m*-cycle in *G* for $4 \le m \le 6$. Any chordless *m*-cycle for m > 6 contains an induced P_6 . Therefore *G* contains a chorded *m*-cycle for $4 \le m \le n$. \Box

Fig. 14 shows a 12-vertex, 2-connected, claw-free, and P_6 -free graph which is not chorded pancyclic, because there is no chorded 6-cycle. This proves that Theorem 11 is sharp.

Acknowledgment

The second author was supported by Heilbrun Distinguished Emeritus Fellowship.

References

- [1] R.J. Faudree, R.J. Gould, Characterizing forbidden pairs for hamiltonian properties, Discrete Math. 173 (1997) 45–60.
- [2] R.J. Faudree, Z. Ryjacek, I. Schiermeyer, Forbidden subgraphs and cycle extendability, J. Combin. Math. Combin. 19 (1995) 109–128.
- [3] S. Goodman, S. Hedetniemi, Sufficient conditions for a graph to be hamiltonian, J. Combin. Theory Ser. B 16 (1974) 175–180.
- [4] R.J. Gould, Graph Theory, Dover Pub. Inc, Mineola, N.Y., 2012.
- [5] R.J. Gould, M.S. Jacobson, Forbidden subgraphs and hamiltonian properties of graphs, Discrete Math. 42 (1982) 189–196.