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1. Introduction33

Given a graph G let the vertex set and edge set of G be denoted by V (G) and E(G) respectively. Let34

|G| = |V (G)|, e(G) = |E(G)| and G denote the complement of G. A graph G is called H-saturated if H35

is not a subgraph of G but for every e ∈ E(G), H is a subgraph of G+ e. Let SAT(n,H) denote the set of36

H-saturated graphs of order n. The saturation number of a graph H, denoted sat(n,H), is the minimum37

number of edges in an H-saturated graph on n vertices and SAT(n,H) is the set of H-saturated graphs38

order n with size sat(n,H). The extremal number of a graph H, denoted ex(n,H) (also called the Turán39

number) is the maximum number of edges in an H-saturated graph on n vertices and SAT(n,H) is the40

set of H-saturated graphs order n with size ex(n,H).41

The saturation spectrum of a graph H, denoted spec(n,H), is the set of sizes of H-saturated graphs42

of order n, spec(n,H) = {e(G) : G ∈ SAT(n,H)}.43

In this paper we investigate the saturation spectrum for Pk- and K1,t-saturation, where Pk is a path44

on k vertices. In particular, in Section 3 we show that the saturation spectrum of K1,t contains all values45

from sat(n,K1,t) to ex(n,K1,t) for fixed n such that n ≥ t + 1. Finally, in Section 4 we show when n is46

sufficiently large, the saturation spectrum of Pk contains all values from sat(n, Pk) to ex(n, Pk)− c(k) for47

some constant c(k).48

2. Known Results49

The saturation spectrum of K3 was studied in [3]. Later the saturation spectrum of K4 was studied in50

[1]. Shortly after, the saturation spectrum for larger complete graphs was studied in [2]. In this section51

we will describe the known results relating to the saturation spectrum of stars and paths.52

Theorem 1 [7]. Saturation Numbers for Paths and Stars53

(a) sat(n,K1,t) =


(
t
2

)
+
(
n−t
2

)
if t+ 1 ≤ n ≤ t+ t

2 ,⌈
t−1
2 n− t2

8

⌉
if t+ t

2 ≤ n.
54

(b) For n ≥ 3, sat(n, P3) =
⌊
n
2

⌋
.55

(c) For n ≥ 4, sat(n, P4) =


n
2 n even,

n+3
2 n odd.

56

(d) For n ≥ 5, sat(n, P5) =
⌈
5n−4

6

⌉
.57

In order to prove the main Theorems in sections 3 and 4 it is helpful to understand the structure58

of graphs in SAT(n,K1,t) and SAT(n, Pk). In 1986, Kászonyi and Tuza characterized the K1,t-saturated59

graphs of minimum size. The characterization depends on the order of the host graph and is not in general60

unique.61

Theorem 2 [7]. SAT(n,K1,t) =

Kt ∪Kn−t if t+ 1 ≤ n ≤ 3t
2 ,

G′ ∪Kp if 3t
2 ≤ n,

62

where p =
⌊
t+1
2

⌋
and G′ is a (t−1)-regular graph on n−p vertices. Note that the case when n ≥ 3t

2 , there63

is a single edge connecting G′ and Kp if t− 1 and n− p are both odd.64

Kászonyi and Tuza also described graphs in SAT(n, Pk). In particular they give a tree that is a65

subgraph of all Pk-saturated trees. We begin by describing this tree. A perfect 3-ary tree is a tree such66
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Figure 1. T5 and T6

that every vertex has degree 3 or degree 1 and all degree 1 vertices are the same distance from the center.67

We let Tk−1 denote the perfect 3-ary tree with longest path on exactly k − 1 vertices. (See Figure 1)68

Theorem 3 [7]. Let Pk be a path on k ≥ 3 vertices and let Tk−1 be the perfect 3-ary tree defined above.69

Further let70

ak =

{
3 · 2m−1 − 2 if k = 2m

4 · 2m−1 − 2 if k = 2m+ 1.
71

Then, for n ≥ ak, SAT(n, Pk) consists of a forest with bn/akc components. Furthermore, if T is a72

Pk-saturated tree, then Tk−1 ⊆ T .73

It is also helpful to understand the structure of graphs in SAT(n,K1,t) and SAT(n, Pk). It is well74

known that ex(n,K1,t) =
⌊
n(t−1)

2

⌋
and that SAT(n,K1,t) consists of (t − 1)-regular graphs unless n and75

t− 1 are both odd, in which case there is a single vertex of degree t− 2.76

The structure of graphs in SAT(n, Pk) was studied by Erdős and Gallai in 1959.77

Theorem 4 [5]. Let G be a graph of order n which contains no path with more than k− 1 vertices. Then78

|E(G)| ≤ (k−2)n
2 and equality holds if and only if each component of G is a complete graph of order k− 1.79

In [6], the saturation spectrum of small paths was studied. In particular, spec(n, P5) and spec(n, P6)80

were determined.81

Theorem 5 [6]. Let n ≥ 5 and sat(n, P5) ≤ m ≤ ex(n, P5) be integers, m ∈ spec(n, P5) if and only if
n = 1, 2 (mod 4), or

m /∈


{
3n−5

2

}
if n ≡ 3 (mod 4){

3n
2 − 3, 3n2 − 2, 3n2 − 1

}
if n ≡ 0 (mod 4).

Theorem 6 [6]. Let n ≥ 10 and sat(n, P6) ≤ m ≤ ex(n, P6) be integers, m ∈ spec(n, P6) if and only if
(n,m) /∈ {(10, 10), (11, 11), (12, 12), (13, 13), (14, 14), (11, 14)} and

m /∈


{2n− 4, 2n− 3, 2n− 1} if n ≡ 0 (mod 5)

{2n− 4} if n ≡ 2 (mod 5)

{2n− 4} if n ≡ 4 (mod 5).

This is the starting point for this paper. Following the same lines of investigation we completely82

determine the edge spectrum for saturation of stars and we study the edge spectrum for saturation of83

long paths when n is sufficiently large.84

3. Stars85

In this section we will show that the saturation spectrum of K1,t contains all values from the saturation86

number to the extremal number. The following theorem is the main result of this section.87
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Theorem 7. Let S = K1,t for t ≥ 3. If n ≥ t+1, then spec(n, S) is continuous from sat(n, S) to ex(n, S).88

Before proving Theorem 7 we give two lemmas that describe edge exchanges that can be used to89

transform a K1,t-saturated graph G into a K1,t-saturated graph with one more edge. We will refer to the90

exchange in Lemma 8 as a Type I exchange and the exchange in Lemma 9 as a Type II exchange.91

Lemma 8. In a K1,t-saturated graph G, if there is vertex v of degree at most t− 3 that is nonadjacent to92

u or w where uw ∈ E(G) and d(u) = d(w) = t− 1, then G′ = G− uw + {vw, vu} is K1,t-saturated with93

e(G′) = e(G) + 1.94

Proof. First note that the degrees of dG(u) = dG′(u), dG(w) = dG′(w) and dG(v) + 2 = dG′(v). Since95

dG(v) ≤ t−3, it is easy to see that no vertex of degree t is created and hence K1,t is not a subgraph of G′.96

Now consider e ∈ E(G′). If e is incident to u or w then G′+e contains K1,t since u and w are both of degree97

t− 1. If e is incident to v then G′ + e contains K1,t otherwise G would not be K1,t-saturated. Similarly,98

if e is is not incident to u, v or w then G′ + e contains K1,t; otherwise G would not be K1,t-saturated.99

Lemma 9. In a K1,t-saturated graph G, if there are vertices v1 and v2 of degree at most t − 2 and an100

edge uw such that u and w are of degree t− 1 where v1w, v2u /∈ E(G), then G′ = G− uw+ {v1w, v2u} is101

K1,t-saturated with e(G′) = e(G) + 1.102

Proof. First note that the degrees of dG(u) = dG′(u), dG(w) = dG′(w), dG(v1) + 1 = dG′(v1), and103

dG(v2) + 1 = dG′(v2). Since dG(v1) ≤ t− 2 and dG(v2) ≤ t− 2, no vertex of degree t is created centered104

at v1, v2, u or w. Hence K1,t is not a subgraph of G′. Now consider e ∈ E(G′). If e is incident to u or w105

then G′ + e contains K1,t since u and w are both of degree t− 1. If e is incident to v1 or v2 then G′ + e106

contains K1,t otherwise G would not be K1,t-saturated. Similarly, if e is is not incident to v1, v2, u or w107

then G′ + e contains K1,t; otherwise G would not be K1,t-saturated.108

The proof for Theorem 7 is split into cases according to the number of vertices in the host graph G109

relative to t. To ease reading, cases are listed as Lemmas.110

Lemma 10. Let n = t+ 1. For each t ≥ 3 and m such that sat(n,K1,t) ≤ m ≤ ex(n,K1,t) there exists a111

K1,t-saturated graph G with e(G) = m.112

Proof. We construct a sequence of K1,t-saturated graphs, G1, . . . Gs where e(Gi) + 1 = e(Gi+1), and this113

sequence contains a graph of each size from sat(n,K1,t) to ex(n,K1,t). Let G1 = Kt ∪ {v}, by Theorem 2114

we see that G1 ∈ SAT(n,K1,t). In order to construct the sequence of graphs we will need a large matching115

from Kt so that we may use type I exchanges . Let M be a maximum matching of Kt; clearly M contains116

bt/2c edges. Now to create Gi+1 from Gi we use an edge of M and v to perform a type I exchange.117

Lemma 8 implies that Gi+1 is a K1,t-saturated graph with e(Gi+1) = e(Gi) + 1. We note that we can118

perform bt/2c type I exchanges when t is odd so that Gs = Gbt/2c is a (t − 1)-regular graph and when t119

is even we can perform t/2 − 1 type I exchanges so that dGs(v) = t − 2 and all other vertices in Gs are120

degree t− 1. Notice that in either case, Gs is the extremal graph.121

Lemma 11. For each t ≥ 3, t + 2 ≤ n ≤ 3t
2 and m such that sat(n,K1,t) ≤ m ≤ ex(n,K1,t) there exists122

a K1,t-saturated graph of size m.123

Proof. To show this , we will construct a sequence of K1,t-saturated graphs, G1, . . . Gs, that contains124

a graph of each size from sat(n,K1,t) to ex(n,K1,t). Let G1 = Kt ∪ Kn−t. By Theorem 2 we see that125

G1 ∈ SAT(n,K1,t). In order to construct the sequence of graphs we use large disjoint matchings from126

Kt so that we may use type I and type II exchanges. It is well known (cf. [4]) that Kt contains t − 1127

matchings, M1, . . . ,Mt−1, each of size
⌊
t
2

⌋
. Since n ≤ 3t/2 implies n− t ≤ t/2, each one of the the t− 1128

matchings can be associated with a vertex of Kn−t. For convenience, let V (Kn−t) = {v1, . . . , vn−t} and129

say that vi is associated with Mi for 1 ≤ i ≤ n− t.130
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Starting with G1, iteratively change the degree of each vertex in Kn−t from n − t − 1 to t − 1. In131

order to do this each vertex in V (Kn−t) needs 2t−n more incident edges. Proceed based on the parity of132

2t−n. If 2t−n is odd, pair the vertices in Kn−t so that vi is paired with vi+1 for each odd i < n− t. Note133

that when n − t is odd, vn−t is unpaired. Associate each of the pairs with an edge from Mn−t+1. Then,134

iteratively use each pair and associated edge to preform a type II exchange to create G2, . . . , Gbn−t
2

+1c.135

Notice that in Gbn−t
2

+1c it is possible that vi is adjacent to some vertex in Mi. Thus there are at

least bt/2c − 1 edges in Mi that are not incident to vi. Create the remaining graphs in the sequence by
preforming (2t−n− 1)/2 type I exchanges with each vi and Mi. In order to preform (2t−n− 1)/2 type I
exchanges, it must be verified that (2t−n− 1)/2 ≤ bt/2c− 1, otherwise Mi has too few edges to preform
the type I exchanges with vi. Since n ≥ t+ 2, it follows that:

n ≥ t+ 2

t− 3 ≥ 2t− n− 1

t− 1

2
− 1 ≥ 2t− n− 1

2⌊
t

2

⌋
− 1 ≥ 2t− n− 1

2
.

Lemma 8 and 9 imply that after completing the (2t− n− 1)/2 type I exchanges and a type II with each136

vi we have d(vi) = t− 1 for 1 ≤ i ≤ n− t− 1. Further, if n− t is odd then d(vn−t) = t− 2 and if n− t is137

even then d(vn−t) = t− 1. In either case, it follows that Gs is the extremal graph.138

Now consider the case when 2t−n is even. In this case, only type I exchanges will be used. Construct
G2, . . . , Gs by preforming (2t−n)/2 type I exchanges using each vi and associated Mi. It remains to verify
that (2t− n)/2 ≤ bt/2c so that (2t− n)/2 type I exchanges can be completed. Again, since n ≥ t+ 2, it
follows that:

n ≥ t+ 2

t− 2 ≥ 2t− n
t− 2

2
≥ 2t− n

2⌊
t

2

⌋
≥ 2t− n

2
.

Finally Lemma 8 implies that after completing the (2t − n − 1)/2 type I exchanges to each vi that139

d(vi) = t− 1. So, it follows that Gs is the extremal graph.140

Lemma 12. For each t ≥ 3, n > 3t
2 and m such that sat(n,K1,t) ≤ m ≤ ex(n,K1,t) there exists a141

K1,t-saturated graph of size m.142

Proof. Proceed in a fashion similar to the proof of Lemma 11. Construct a sequence of K1,t-saturated143

graphs, G1, . . . Gs, that contains a graph of each size from sat(n,K1,t) to ex(n,K1,t). Begin by constructing144

a (t − 1)-regular (or nearly regular depending on the parity of n and t) graph, G′, on r vertices where145

r = n − b t+1
2 c such that G′ has a sufficient number of large matchings for the algorithm. A well known146

result (cf. [4]) shows that a complete graph Kr decomposes into r − 1 matchings of size r/2 when r is147

even or r−1
2 hamilton cycles when r is odd will be used.148

First suppose that r is even. To formG′, begin with a matching decomposition ofKr = M1∪· · ·∪Mr−1.149

Let G′ = M1∪· · ·∪Mt−1. Clearly G′ is (t−1)-regular and contains t−1 disjoint matchings, M1, . . . ,Mt−1,150

of size r/2.151

When r is odd begin with a hamiltonian cycle decomposition of Kr = C1 ∪ · · · ∪ C(r−1)/2. If t− 1 is152

even then let G′ = C1 ∪ · · · ∪ C(t−1)/2. If t − 1 is odd then let G′ = C1 ∪ · · · ∪ C(t−2)/2 ∪M where M is153

a maximum matching of Ct/2; in this case there is a single vertex of degree t− 2 all other vertices are of154
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degree t− 1. Further since each hamiltonian cycle of Kr contains two disjoint matchings of size (r− 1)/2,155

G′ contains t− 1 disjoint matchings, M1, . . . ,Mt−1, of size at least (r − 1)/2.156

Let G1 = G′ ∪ Kb t+1
2
c and label the vertices in V (G′) = {u1, . . . , un−b t+1

2
c} and V (Kb t+1

2
c) =157

{v1, . . . vb t+1
2
c}. If r and t − 1 are both odd then a single edge from the vertex of degree t − 2 in G′158

is added to a vertex in Kb t+1
2
c, without loss of generality let this edge be u1vb t+1

2
c. Theorem 2 implies159

that G1 is a minimally K1,t-saturated graph. Associate each vertex vi with a matching Mi in G′.160

Starting with G1, iteratively change the degree of each vertex in Kb t+1
2
c from b t+1

2 c− 1 to t− 1. Each161

vertex, vi, needs b t2c more incident edges. Notice that when r and t − 1 are both odd that only b t2c − 1162

incident edges need to be added to vb t+1
2
c. Proceed based on the parity of b t2c. If b t2c is odd, then pair163

the vertices in Kb t+1
2
c so that vi is paired with vi+1 for each odd i < b t+1

2 c. Note that if b t+1
2 c is odd then164

vb t+1
2
c is unpaired. Associate each of the pairs with an edge from Mb t+1

2
c+1. Then, iteratively use each165

pair and associated edge to preform a type II exchange to create G2, . . . G b t2 c+1

2

.166

Notice that in G b t2 c+1

2

it is possible that vi is adjacent to some vertex in Mi. Thus there are at least

br/2c − 1 in Mi that are not incident to vi. Create the remaining graphs in the sequence by preforming
(1/2)(bt/2c − 1) type I exchanges with each vi and Mi. In order to preform (1/2)(bt/2c − 1) type I
exchanges it must be verified that (1/2)(bt/2c − 1) ≤ br/2c − 1. Since n > 3t

2 , it follows that:

r = n+

⌊
t+ 1

2

⌋
>

3t

2
−
⌊
t+ 1

2

⌋
≥ t− 1.

As r and t are both integers, it follows that r ≥ t and hence (1/2)(bt/2c − 1) ≤ br/2c − 1. Lemma 8167

and 9 imply that after completing the (1/2)(bt/2c − 1) type I exchanges and a type II with each vi that168

d(vi) = t−1 for 1 ≤ i ≤ b t+1
2 c−1. Further, if b t+1

2 c and t−1 are odd and r is even then d(vb t+1
2
c) = t−2169

otherwise d(vb t+1
2
c) = t− 1. In either case it follows that Gs is the extremal graph.170

Now, consider the case when b t2c is even. In this case only type I exchanges will be used. Create171

G2, . . . , Gs by preforming (1/2)(bt/2c) type I exchanges using each vi and associated Mi. Since r ≥ t, it172

follows that (1/2)(bt/2c) ≤ br/2c so that (1/2)(bt/2c) type I exchanges may be done with each vertex vi.173

Finally, Lemma 8 implies that after completing the (1/2)(bt/2c) type I exchanges to each vi that174

d(vi) = t − 1 for 1 ≤ i ≤ b t+1
2 c − 1. If r and t − 1 are odd then then d(vb t+1

2
c) = t − 2 otherwise175

d(vb t+1
2
c) = t− 1. Again, either case it follows that Gs is the extremal graph.176

Theorem 7 follows directly from Lemmas 10, 11 and 12.177

4. Paths178

In this section we show that when n is sufficiently large, spec(n, Pk) contains all values from sat(n, Pk)179

to ex(n, Pk)− c where c is a constant that depends on k. The following is the main result of the section.180

Recall from Theorem 3 that ak =

{
3 · 2m−1 − 2 if k = 2m

4 · 2m−1 − 2 if k = 2m+ 1.
181

Theorem 13. Let P = Pk. If n = r(k − 1) + ak

[(
k−1
2

)
− (k − 1)

]
+ β, where 0 ≤ β < k − 1, then182

spec(n, P ) is continuous from sat(n, P ) to
(
k−1
2

)
r + ak

[(
k−1
2

)
− (k − 1)

]
+ β − 1.183
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Figure 2. T 15
5

As in the previous section we provide two lemmas that transform a Pk-saturated graph G into a Pk-184

saturated graph with one more edge. Let ak = |Tk−1|. An immediate consequence of the proof of Theorem185

3 in [7] is that there exists Pk-saturated trees of every order p such that p ≥ ak. Let v be a vertex with186

pendant neighbors in Tk−1. The graph obtained by adding additional pendant vertices to v in Tk−1 so187

that the order of the new graph is p will be denoted T p
k−1 (See Figure 2). Clearly, T p

k−1 ∈ SAT(n, Pk).188

Let T ∗k−1 denote a Pk-saturated tree of arbitrary order.189

Lemma 14. Let G be a Pk-saturated graph that contains two components T p1
k−1 and T p2

k−1. If H =190

G− {T p1
k−1, T

p2
k−1} then G′ = H ∪ T p1+p2

k−1 is a Pk-saturated graph where e(G′) = e(G) + 1.191

Proof. Let p = p1 + p2. Since T p
k−1 and G are Pk-saturated it follows that G′ does not contain Pk. Let192

e ∈ E(G′). In order to show that G′ + e contians Pk we will consider several cases. First, if e ∈ E(T p
k−1),193

then T p
k−1+e contains Pk since T p

k−1 is Pk-saturated, hence G′+e contains Pk. Now since G is Pk-saturated,194

if e ∈ E(H) then G′ + e contains Pk. Now suppose that e has at least one endpoint in V (H) and one in195

V (T p
k−1). Notice that H∪T p1

k−1 is an induced subgraph of G′. If G′+e does not contain Pk then by deleting196

pendant vertices not incident to e it can be seen that H ∪ T p1
k−1 + e does not contain Pk, since deleting197

vertices can not create a copy of Pk. This implies that G is not Pk-saturated, a contradiction. Therefore198

G′ is Pk-saturated. Finally, note that e(G) = e(H) + (p1− 1) + (p2− 1) and e(G′) = e(H) + (p1 + p2− 1),199

thus e(G′) = e(G) + 1.200

Lemma 15. Let k ≥ 5 and G be a Pk-saturated graph. Let p be an integer such that p ≥ (k − 1) +201

ak

[(
k−1
2

)
− (k − 1)

]
. Let T p

k−1 be a component of G and F =
[(

k−1
2

)
− (k − 1)

]
T ∗k−1 such that |F | =202

p− k + 1. If H = G− T p
k−1 then G′ = H ∪Kk−1 ∪ F is a Pk-saturated graph where e(G′) = e(G) + 1.203

Proof. Notice F is a forest of Pk-saturated trees. By Theorem 3 each component of F must have order204

at least ak. Since p ≥ (k − 1) + ak

[(
k−1
2

)
− (k − 1)

]
, it follows that |F | ≥ ak

[(
k−1
2

)
− (k − 1)

]
. Hence,205

|F | is large enough for each component to be a Pk-saturated tree.206

Note that e(G) = e(H) + p − 1 and e(G′) = e(H) +
(
k−1
2

)
+ e(F ). Since F is a forest on p − k + 1207

vertices and
[(

k−1
2

)
− (k − 1)

]
components it follows that e(F ) = p − k + 1 −

[(
k−1
2

)
− (k − 1)

]
. Thus208

e(G′) = e(H) + p = e(G) + 1209

It now remains to show that G′ is Pk-saturated. Let e ∈ E(G′). First suppose that e ∈ E(F ),210

it follows that G′ + e contains Pk since F is Pk-saturated by Theorem 3. Now suppose that has both211

endpoints in V (H). Clearly since G is Pk-saturated G+e contains a copy of Pk such that V (Pk) ⊆ V (H).212

Thus G′ + e contains a copy of Pk. Finally suppose that e has one endpoint in H and one in F . Assume213

that G′ + e does not contain Pk. Let T be the component of F incident to e. Let Ĝ = G′[H ∪ T ]. Notice214

Ĝ + e does not contain Pk. Further since G = H ∪ T p
k−1 and Ĝ = H ∪ T differ only in the number of215

pendants adjacent to the vertex of highest degree in T and T p
k−1, it is easy to see that G + e does not216

contain Pk. Thus G′ is Pk-saturated.217
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The transformation in Lemma 14 will be referred to as a tree exchange and the transformation in218

Lemma 15 will be referred to a clique exchange. We are now ready to prove Theorem 13.219

Proof. Beginning with a minimally Pk-saturated graph, we will build a sequence of Pk-saturated graphs,220

G1, . . . , Gf , of size sat(n, P ) to
(
k−1
2

)
r + ak

[(
k−1
2

)
− (k − 1)

]
+ β − 1 where e(Gi+1) = e(Gi) + 1 for221

1 ≤ i ≤ f − 1. Let G1 = qTk ∪ T ∗k where q = b n
ak
c − 1. Theorem 3 implies that G1 ∈ SAT(n, Pk). Once222

Gi is built use one of the following exchanges to build Gi+1.223

1. If Gi contains two components T p1
k−1 and T p2

k−1, then use a tree exchange to create Gi+1.224

2. If Gi contains exactly one tree component and the tree has at least ak

[(
k−1
2

)
− (k − 1)

]
+ (k − 1)225

vertices, then use a clique exchange to obtain Gi+1.226

Lemmas 14 and 15 imply that when either a tree exchange or a clique exchange is used, Gi+1 is a227

Pk-saturated graph with e(Gi+1) = e(Gi) + 1. As long as there are at least two tree components or there228

is a single tree component T in Gi such that |T | ≥ ak

[(
k−1
2

)
− (k − 1)

]
+ (k − 1), one of the exchanges229

can be used to build Gi+1. So the final graph built by the algorithm will have one tree component of230

order less than ak

[(
k−1
2

)
− (k − 1)

]
+ (k − 1).231

Since n = r(k−1)+ak

[(
k−1
2

)
− (k − 1)

]
+β, it follows that upon constructing Gi = (r−1)Kk−1∪T ∗k−1

that |T ∗k−1| = ak

[(
k−1
2

)
− (k − 1)

]
+(k−1)+β. Thus another clique exchange can be used followed by tree

exchanges to produce rKk−1 ∪ T q
k−1. At this point it is easy to calculate q = ak

[(
k−1
2

)
− (k − 1)

]
+ β <

ak

[(
k−1
2

)
− (k − 1)

]
+ (k − 1). So the algorithm will terminate with Gf = rKk−1 ∪ T q

k−1. Thus:

e(Gf ) =

(
k − 1

2

)
r + [n− r(k − 1)− 1]

=

(
k − 1

2

)
r + ak

[(
k − 1

2

)
− (k − 1)

]
+ β − 1.

232

Note that the algorithm in Theorem 13 could be altered to include exchanges with Pk-saturated233

graphs other than T p
k−1 and Kk−1. However, the following theorem will show when n is large that the234

algorithm gives Pk-saturated graphs to within a constant of the extremal number.235

Theorem 16. For n sufficiently large and k ≥ 5, spec(n, Pk) contains all values from sat(n, Pk) to236

ex(n, Pk)− c where c = c(k).237

Proof. Let n be expressed as n = r(k − 1) + ak

[(
k−1
2

)
− (k − 1)

]
+ β, where β is a constant such that

0 ≤ β < k − 1. The algorithm in the proof of Theorem 13 gives a sequence of Pk-saturated graphs that

contains graphs of each size from sat(n, Pk) to
(
k−1
2

)
r + ak

[(
k−1
2

)
− (k − 1)

]
+ β − 1. Let G be a Pk-

saturated graph of size
(
k−1
2

)
r+ ak

[(
k−1
2

)
− (k − 1)

]
+ β− 1. Theorem 4 implies that ex(n, Pk) ≤ (k−2)n

2 .
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Now it is possible to estimate ex(n, Pk)− e(G) as follows:

ex(n, Pk)− e(G) ≤ (k − 2)n

2
−
[(
k − 1

2

)
r + ak

[(
k − 1

2

)
− (k − 1)

]
+ β − 1

]

=
(k − 2)(r(k − 1) + ak

[(
k−1
2

)
− (k − 1)

]
+ β)

2
−
[(
k − 1

2

)
r + ak

[(
k − 1

2

)
− (k − 1)

]
+ β − 1

]

=

(
k − 1

2

)
r +

(k − 2)
[
ak

[(
k−1
2

)
− (k − 1)

]
+ β

]
2

−
[(
k − 1

2

)
r + ak

[(
k − 1

2

)
− (k − 1)

]
+ β − 1

]
=

(k − 4)ak
(
k−1
2

)
− ak(k − 1)(k − 4) + (k − 4)β

2
+ 1

≤ (k − 4)
ak
(
k−1
2

)
− ak(k − 1) + (k − 1)

2
+ 1.

Thus, for a fixed k the difference between ex(n, Pk) and e(G) is a constant for all n sufficiently large.238
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