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ABSTRACT

Chvatal established that r(7,,, K,) = (m — 1){n — 1) + 1, where T, is an arbitrary
tree of order m and K, is the complete graph of order n. This result was
extended by Chartrand, Gould, and Polimeni who showed K, could be replaced
by a graph with cliqgue number n and order n + 1 provided n > 3 and /m > 3.
We further extend these results to show that K, can be replaced by any graph
on n + 2 vertices with clique number n, provided n = 5 and m = 4. We then
show that further extensions, in particular to graphs on 7 + 3 vertices with
cliqgue number n are impossible. We also investigats the ramsey number of
trees versus complete graphs minus sets of independent edges. We show that
T Ky —tKy)=(m = 1){n —t—1)+1 form =3, n 2 6, where T, is any tree -
of order m except the star, and for each ¢, 0 < ¢t < [(n — 2)/2]. '

INTRODUCTION

For graphs G and H, the ramsey number r(G H) is the smallest positive
integer p such that if every edge of the complete graph K, is arbitrarily
colored red or blue, then there exists either a red G {a subgraph isomorphic to
G, all of whose edges are colored red) or a blue H. Equivalently, r(G. H) is
the smallest positive integer p such that if K,=~R®B is an arbitrary
factorization of K|, (i.e., R and B have order p and E(R) U E(B) partitions
E(K,)) then GSR or HC B, A (GH Y-blocking pattern of K, is a
factorization K, = R ® B such that G £ R and HZ B. The cligue number
of a graph G is the maximum order of a complete subgraph of G. If
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S € V(G), the subgraph induced by S, denoted ¢S, is the subgraph with

vertex set .S and whose edge set consists of those edges of G incident with two

elements of 5. We denote by G} — G, the graph obtained by deleting the

edges of G, from the graph G|. Note that G — K, is also denoted G — e.
A well known result is the following:

Theorem A. (Chvétajr [1D). If T}, is a tree of order m and n is a positive
integer then (T, K,)=(m —1)(n—1)+ 1.

A result related to Theorem A was given in [3].
Theorem B [3]. For each tree T,, of order m = 3 and each integer n = 4,
T, K, —e)=(m — 1)(n — 2) + 1 and hence, /(T,,, G) = (m — 1){(n — 2)
+ 1 for each graph G of order # and clique number 7 — 1. :

We shall also require the following resuits:

Theorem C [2]. Let G be a graph of order n. Then

n, if G has a 1-factor,

P GY= )0 —28(G)— 1, otherwise,

where f; (G) denotes the edge independence number of the complement of

Theorem D [7]. If P, is a path of order m = 4 and G, is a graph of order
n + 2 with clique number #(n > 3) then

M Py Gy)=(m=-—1}(n—-1)+1

Theorem E [5]. If, =1, m> 2, and

I>(—1)- [;—__li-}(m-—l)

then

(T, K,+IZ’,)=(1+ [t_I])(m—1)+1.
m—1

We note that Theorem E is an extension of Theorem B in that we may
consider K; + X, to be K;,, — K.

N
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Theorem F [6]. If g1, &,..., & €F(H) and G= UL, g, where

F(H)={glg is connected and r(g, H)=(|V(g)| ~ 1) ((H) — +1)
then,

c{(F)
r(G, H)= max {(j—l)(x(H)—2)+ 2 z‘kf},

f</<e(G)

where ¢(G) denotes the order of the largest component of G and %; is the
. number of components of G of order i.

The purpose of this article is to investigate the ramsey number of trees
versus complete graphs minus a set of independent edges. We also further
extend Theorem B, and show that in general this extension cannot be
improved.

Theorem 1. Ifm = 3,7 > 3, and T, is any tree of order m other than X, ,, |
(m = 4) then

ATy Kyner — (1= 2)Ky) = (m — Dn + 1.

Proof. By Theorem A, 1T, Ky, —(n —2)K;) =(m— )n+ 1. We
prove the reverse inequality by induction on n and m. The case for n =3
follows from Theorem B. The case m = 3 follows from Theorem C while the
case form = 4 is a simple induction on # with the anchor cases of r = 3 and
n= 4 following from Theorems B and D, respectively. )

Assume KT, K,,.; — (n—2)Ky)=(m —1)n + 1 for a fixed but arbi-
trary integer # = 3 and for each m = 3. We prove /(T,,,, K;,4; — (n — 1)K;)
=(m — 1)}(n + 1) + 1 for every m = 3, As previously noted, this is true if m
=3 and 4. Hence, we assume "7, Kiy —(n— 1)K)=(m' —1)
(nt1)+1 for all m=m'=3 for a fixed m>4 and show (T,
KZJ’H"! _(n - I)Kz) = m(n + l) + 1. )

Let T'= T,,+, be an arbitrary tree (not a star) of order m + [ and assume
that a (T, K,y — (n — 1)K;)-blocking pattern exists. Let v be an end vertex
of T and u be the vertex of T adjacent to v, such that T — v is a tree
of order m that is not Kj,—,. By the induction hypothesis
T ~v,Kyyy —(n—1)K;)=(m — 1){(n + 1) + 1. Let S denote the set of
vertices of K1)+ that do not belong to the red T'— #, Since | S| = mn + 1
and /T, Ky, —(n—2)K)) =mn+ 1, we see that <S> B2 Ky, —
{(n —2)K,.

If any edge joining # to S is red, a red 7" results, hence u is blue adjacent to
S. Now consider H = K, — (n — 2)K, (formed with the K,,_, — (n—2)K,
contained in <S> N B and the vertex ) and let S’ = MK int1ye1) — H.
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Then |S"| =(m —2)(n + 1) + 3 and since (T},_,, Kpps; — (n— 1K) =
(m —2)(n + 1) + 1, we see that T,,_; C <§'> N R, where T,,_, #K| s
except if m = 4. (We note that since 7T,,(m = 5) is not a star, it is possible
to find vertices % and » such that 7)., — # — » is a tree other than a star, that
8Ty —u—v="T,_,)

Case 1. Suppose u and » (as noted above) are adjacent to distinct vertices x
andy in T,,_,, If either x or Y is blue adjacent to H we are done. So each must
be red adjacent to some vertex of H. If they are red adjacent to distinct
vertices, a red 77, results, Thus x and y must be red adjacent to the same
vertex of H. Let this vertex be p. If p is not an end vertex of ared edge in the
coloring of the vertices of H, then <H U {x}> N B2 Kyppiy — (n — K,.
Thus p is an end vertex of an independent red edge in H. But then
{(VH) —p) Uix 3> N B;-Kznﬂ —(n—2)K; 2 Kypiy — (n — 1)K;.

Case 2. Suppose u and » (as noted above) are adjacent to the same vertex w
in T,4+,. As above, the remaining vertices contain a blue Ky, —(n — DK,
Call this set of vertices H, The vertex w has at most one red edge to H for
otherwise a red T, results. Further, this edge is not incident with any
vertex p € H, where p is not an end vertex of a red edge in (H> N R. Let
we € E(R), v € H, Let H = (H — {2}) U {w}. Clearly, <H' YN B K,, —
(n - 3)K2. Consider S = V(Km(u+1)+1) — H', Since ISi = (m - 2)(” + 1)
+ 3, it follows from the induction hypothesis that T,,_, C ¢§> N R. Repeat
the above process, As in the argument above, there exists a vertex w' in the
red T, such that if W’ were adjacent to two distinct vertices ¢ and b (a, b &

V(Tn-1)) then ared 7,,,, would result. Thus, either a red T}, results or we
find a set of vertices H" =(H' —{v)) U {w} with <H'>NB2K,, —
(n—4)K;. We proceed with this process until a red Tpe1, @ blue
Konir —(n — DK, or a blue K, results. If a blue K,, results, we are
guaranteed that a red 7,,, or a blue K;,.; —(n — 1K, will result on the
next repetition of the process. M

Theorem 2. If m>=3,n=3,and T, is any tree of order m, except K ,,_,
when m = 4, then

HTp Koy —(n— 1)Ky)=(m — 1)(n + 1y+1,
The proof is analogous to that of the previous theorem and is not included.
We note that a similar argument holds if we remove ¢ independent edges from

K, (0=t =<[(n— 2)/2]). This is summarized in the following theorem.,

Theorem 3. If m > 3, n> 6, and T, is any tree of order m, except K ,,
when m = 4, then
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T Ky = tKp)=(m—1}n—-t—1+1

for eacht, 0 <t = [(n — 2)/2].

The following construction shows that stars cannot be mcluded inthe set of
trees in the previous theorems,

Let G=kCy(k =1, m=5). Itis clear that K, ; £ G. f H= K, — tK;,

where
. 1 .
(2[5 [5-[5]3])
3 3 3 3
and ¢t > [m/3)k then H £ G. It follows that in these cases

K, i, K, —tK;) > mk.

This bound is an improvement on the bound obtainable from Chvatal’s
formula for many values of #. For example, the clique number of K;; — 11X,
is 14, From Theorem A we see that r(K, ;, K;; — 11K,) = 40, but by
considering m = 5 and k£ = 8§ in the above construction, we may conclude
that r(K, ;, K55 — 11K,) > 40. As a last example, the clique number of
K3, — 16K, is 18, Theorem A gives us that r(K] ;, K3, — 16K,) = 52, but
by considering m = 7 and & = 8 in the above construction, we may conclude
that r(Kljs, K34 - 16K2) > 56. )

We now note another extension of Theorem B, The proof when
T, = K, p- follows standard inductive techniques,

Corollary 4. If m = 4, n = 5, and T, is any tree of order m, then

ATy Knsz— 2K;)=(m — 1)(n —1) + 1.

Theorem 5. If G is a graph of order # + 2 {n = 5} and clique number n and
m = 4, then

Ty G)y=(m—(n—1)+ 1.

Proof. From Theorem E (with /=# — 1, =3, and m = 4) we see that
"L, Ky —K3)=(m—1)(n— 1)+ 1, when n > 5, Theorem 3 and its
corollary imply (7, K, —2K))=(m—1)n—1)+1 for m=>4 and
n = 6 (while 7= 5 can be shown by a simple induction on m), Now if G is a

gragh of order n +2 and clique number n then GC K4, — 2K, or
K, +2 = K;. Theorem A shows that (T, G)=(m — I}n—1)+1
and the result follows, W
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Corollary 6. If F is a forest with all components of order at least four and G,
is any graph of order # + 2 with clique number n(n > 5) then

o(F)
r(F, G,) = max {(_] ~1)n—2)+ ‘Z:;‘ zk,-}.

Proaf. Theorem 5 implies that T, € #(G,) when m>4 and n > 5.
Since x(G,) = n we may invoke Theorem F. M

It is natural to ask what other graphs G with clique number # follow this
pattern? Although a complete solution to this question has eluded us, we offer
the following observations.

Let V,, be the graph obtained by joining a single vertex of K, ton — 1 other
distinct independent vertices. Let W, be the graph obtained by joining with
an edge each of n — 1 distinct independent vertices to distinct vertices in a
copy of K,,. Let X, denote the graph obtained by identifying one end vertex of
the path P, with a vertex of K,. Let Y, denote the graph obtained by
identifying each of the end vertices of the path P, with a distinct vertex of K,.
Let Z, denote the graph obtained by identifying both end vertices of P, with a
single vertex of X,,. .

Theorem 7. If T, is a tree of order m > 3, then (T, G) = (i — =1y
+1,where GEV, W,, X, Y,in=3} U {Z,n=4).

The proof for any of the classes above follows closely that of Theorem
B.

We now show there are some limitations to the graphs with clique number
n that follow Chvatal’s formula,

Proposition 8. If 7 > 2 then (T}, Ky, — 1K) = (m — D(r—1)+ 2.

Proof. The blocking pattern for Kn—1yn-1y 1 comes from
R=(n—1)K,_; U p} for some distinct vertex p. W

Theorem 9. If m =3 and n > 2, r(P,, K,, —nKy)=(m—1)}n—-1)+2.

Proof. As a consequence of a result in [4], PP Cyy=m+[4/
2] = 1=m + 1(m = 4). Further, by Theorem C, since K,, —nK, has a 1-
factor, H(P3, K, — nK;) = 2n. So we assume r(P,, K-y —(n — DK,) =
(m — 1)(n — 2) + 2 for a fixed but arbitrary n > 3 and each m > 3. We wish
to show r(P,, K, —nK;)=(m —1)(n —1)+2 by induction on m. So
suppose there exists a (P,,+;, K, ~ nK;)-blocking pattern for Kon-1)+2. By
the induction hypothesis P,, C R. Further, in the remaining m{n — 2)+2
vertices Ky, — ;) ~ (n — 1)K; < B. But then by examining the endpoints of



RAMSEY NUMBER 77

the red P, we see that either P,..; C R or K, — nK, C B. Equality follows
from Proposition 8, W
We note that a similar argument shows (see [7])

r( Py Kyyy —(n— DKy)=(m — 1)(n — n+1,

Burr, Faudree, Rousseau, and Schelp [private communication] have
shown that

K m-1, Kisy53s) = (= 1)K -y, Kio)—1)+1,

whens; <53 <+ - - < g, and m is sufficiently large. In particular, this 5ays
for m large and even that H(K, ,—,, Ky,—y — (n — DE)=m(n— 1)+ 1.
Thus, in this case, the Chvatal formula does -not hold.

Finally, we show that Theorem 5 is the best extension possible of Theorem
B.

Lemma 10. If G= K5, —¢Cs then G has clique number j + 2¢f and
X(G)=j + 3¢, thus for any connected graph H,

"G H)Z(|VHEH)| - DG +3t—1)+1.
Observe that if G= K,,4; = Cs then G has order n + 3 and clique number
n (Z 4) and by Lemma 10 we see (T, K,; — C5) = (m — 1)n + 1. This
observation shows that if G is a graph of order # + 3 with clique number n,

then it is not necessarily the case that r(T,, G=m—-—1n—-1+1.

Theorem 10. For m, n >4, /(T,,, K43 — Cs) = (m — In+ 1.

Proof. By Theorem 3, (m — L)n + 1 = (T, Kpyy — 2K5) = KTy,
K,+3 — Cs). The Theorem follows from the observation above. W

Thereom 11. Form,n = 4,r(T,, K,.5, — tCs) = (m — 1){(n + 3t — D+ 1.

Proof. Lemma 10 implies that (7, K5 — tC5) = (m — 1)
(n+3t— 1)+ 1. Since K5~ tCs © K45, — 21K, it is clear that #(T,,
Kivs —tCs) STy Koy — 2Ky =(m— 1)n+ 33— 1)+ 1. A

CONCLUSION

The possible directions are numerous. Some interesting problems which
occur to us include the following;
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(1) Determine ail values of m, n, and ¢ such that
Ky Ky —tKy))=m(n—1t—1)+1.
(2) Determine for other values of m, n, and ¢
MK\ n K, — tK;).

(3) Can similar formulas be found for the removal of multiple‘copies of
other graphs? In particular other complete graphs or paths.
(4) Ultimately, determine all graphs G and trees T,, such that

T G)=(m— 1)(X(G) — 1) + 1.
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