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Abstract

A graph of order n ≥ 3 is said to be pancyclic if it contains a cycle of each length from 3 to n.

A chord of a cycle is an edge between two nonadjacent vertices of the cycle. A chorded cycle is

a cycle containing at least one chord. We define a graph of order n ≥ 4 to be chorded pancyclic

if it contains a chorded cycle of each length from 4 to n. In this article, we prove the following:

If G is a graph of order n ≥ 4 with degG(x) + degG(y) ≥ n for each pair of nonadjacent vertices

x, y in G, then G is chorded pancyclic, or G = Kn/2,n/2, or G is one particular small order

exception. We also show this result is sharp, both in terms of the degree sum condition and in

terms of the number of chords we can guarantee exist per cycle. We further extend Bondy’s

meta-conjecture on pancyclic graphs to a meta-conjecture on chorded pancyclic graphs.

1 Introduction

We consider only simple graphs in this paper. For terms not defined here see [3]. The problem

of determining conditions that imply the existence of a particular structure within a graph is

fundamental in graph theory. One common approach to such problems is to control the degrees of

the vertices of the graph in some way. The minimum degree sum of all pairs of nonadjacent vertices

is denoted by σ2(G) (see for example [4], [5]). One important early question was to determine if a

graph was Hamiltonian, that is, contained a cycle spanning the vertex set. This question spurred

hundreds of papers, but one of the earliest and most fundamental results was the following theorem

of Ore [6].

Theorem 1. (Ore, [6]) If G is a graph of order n ≥ 3 with σ2(G) ≥ n, then G is Hamiltonian.

A stronger property is that of being pancyclic, that is, containing cycles of all lengths from 3 to

|V (G)| = n. In 1971, Bondy (see [1], [2]) proposed his now famed meta-conjecture: “Almost any

nontrivial condition on a graph which implies that the graph is Hamiltonian also implies that the

graph is pancyclic.” Bondy further allowed “There may be a simple family of exceptional graphs”.
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He provided several results to support his meta-conjecture including the following extension of

Ore’s theorem. Here the complete bipartite graphs Kn/2,n/2 form the family of exceptions, as they

contain only even length cycles.

Theorem 2. (Bondy, [1]) If G is a graph of order n ≥ 3 with σ2(G) ≥ n, then G is pancyclic or

G = Kn/2,n/2.

In this paper, we wish to extend Bondy’s meta-conjecture. To do so, we need the following

idea. A chord of a cycle is an edge between two nonadjacent vertices of the cycle. A chorded cycle

is a cycle containing at least one chord. We define a graph of order n ≥ 4 to be chorded pancyclic

if it contains a chorded cycle of each length 4 to n. A cycle of length k is called a k-cycle. Note

that by default, a chorded 4-cycle contains a 3-cycle as a subgraph, so the graph is pancyclic. Also

note that there are graphs that are pancyclic that are not chorded pancyclic (see Figure 1). We

will also need the graph G6 of Figure 2 which is not chorded pancyclic.

Figure 1: An infinite class of pancyclic but not chorded pancyclic graphs.

Figure 2: The graph G6 shown two ways.

Our extension of Bondy’s meta-conjecture is the following: Almost any nontrivial condition

on a graph which implies that the graph is Hamiltonian also implies that the graph is chorded
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pancyclic. There may be a simple family of exceptional graphs as well as a finite number of small

order exceptions. As support for our extension, we prove the following extension of Theorems 1

and 2. Here the complete bipartite graphs are again a simple family of exceptional graphs and G6

is a small order exception.

Theorem 3. Let G be a graph of order n ≥ 4. If σ2(G) ≥ n, then G is chorded pancyclic, or

G = Kn/2,n/2, or G = G6.

We note that the graph G = 2K(n−1)/2 + K1 serves as a sharpness example for the degree

condition of Theorems 1, 2, and 3, as G is not Hamiltonian. We also note that the graph H which

can be obtained from Kn/2,n/2 by adding one edge in one of the partite sets, satisfies the conditions

of Theorem 3, and H is chorded pancyclic, but we cannot ask for more than one chord per cycle,

as all of the 4-cycles in H contain at most one chord.

We denote the set NG(v) = {x ∈ V (G) | vx ∈ E(G)}, called the neighborhood of the vertex v

in a graph G, and degG(v) = |NG(v)|. If H and S are subsets of V (G), then we denote by NH(S)

the set of vertices in H which are adjacent to some vertex in S. In particular, if S = {v}, then we

denote NH(v) = NH({v}). We also use the common notation that A is the complement of the set

A.

2 Proof of Theorem 3

In this section, let G,n, and G6 be as described in Theorem 3. Note that by Ore’s theorem,

G must be Hamiltonian. If n = 4, then either G = K2,2 or it is a 4-cycle with chords and is then

chorded pancyclic. If n = 5, then the degree sum condition forces at least two independent chords

into the Hamiltonian cycle and it is easy to see the graph must be chorded pancyclic. Thus, we

now assume n ≥ 6. By Bondy’s theorem, G is either pancyclic or Kn/2,n/2. Suppose G 6= Kn/2,n/2

and G 6= G6. Let x and y be a pair of nonadjacent vertices in V (G) with the smallest number of

common neighbors. Partition V (G)− {x, y} as follows:

M = NG(x) ∩NG(y),

X = NG(x) ∩NG(y),

Y = NG(y) ∩NG(x),

D = NG(x) ∩NG(y).

Note that the degree sum condition implies |M | ≥ 2. Let |M | = 2 + r, r ≥ 0.

Claim 1. |D| ≤ r.

Proof. Suppose not, say |D| = r+ t for some t > 0. Considering the degree sum of the nonadjacent

pair of vertices x and y, we have

n ≤ σ2(G) ≤ degG(x) + degG(y) ≤ (n− 2)− (r + t) + (2 + r) = n− t,
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a contradiction.

Claim 2. There exists a chorded n-cycle in G.

Proof. We may assume that n ≥ 6 by the above observations. Since G contains a Hamiltonian

cycle, say C, it is easy to see that C is a chorded n-cycle by the degree sum condition.

Claim 3. There exists a chorded 4-cycle in G.

Proof. Suppose the claim fails to hold. Since |M | ≥ 2, consider a, b ∈ M . If ab ∈ E(G), then

a, y, b, x, a is a 4-cycle with chord ab, a contradiction. Thus, ab 6∈ E(G). This implies M is an

independent set. By the choice of x and y, |NG(a) ∩ NG(b)| ≥ 2 + r. Let w ∈ NG(a) ∩ NG(b). If

w ∈M , then a,w, b, x, a is a 4-cycle with chord xw, a contradiction. Hence, w 6∈M . If w ∈ X, then

a,w, b, x, a is a 4-cycle with chord xw, a contradiction. Hence, w 6∈ X and by symmetry, w 6∈ Y .

Therefore, w ∈ {x, y} ∪D and all common neighbors of a and b must be in {x, y} ∪D. By Claim

1, we obtain |D| = r. Then note that ND(M) = D, and if D 6= ∅, then D is an independent set,

otherwise, when |D| ≥ 2, there exists a chorded 4-cycle in the subgraph induced by M ∪D.

If X = ∅ = Y , then G = K2+r,2+r = Kn/2,n/2, a contradiction. Thus, we may assume X∪Y 6= ∅
and without loss of generality, that |X| ≥ |Y |. For the nonadjacent pair a and b and their possible

adjacencies to {x, y}, X, Y and D, we have

|M |+ |{x, y}|+ |X|+ |Y |+ |D| = n ≤ σ2(G) ≤ degG(a) + degG(b)

≤ 2(|{x, y}|+ |D|) + |NX∪Y (a)|+ |NX∪Y (b)|.

Since |M | = 2 + r and |D| = r,

(2 + r) + 2 + |X|+ |Y |+ r ≤ 2(2 + r) + |NX∪Y (a)|+ |NX∪Y (b)|,

and therefore,

|X|+ |Y | ≤ |NX∪Y (a)|+ |NX∪Y (b)|. (1)

Since common neighbors of a and b are not contained in X ∪ Y , it follows from (1) that X ∪ Y
is dominated by a and b.

Let w1 ∈ X and without loss of generality, assume aw1 ∈ E(G). Note that w1 cannot be

adjacent to any other vertex in X, otherwise, say w1v ∈ E(G) for any v ∈ X − {w1}, then

w1, v, x, a, w1 is a 4-cycle with chord xw1, a contradiction. Also note that by the definition of X,

w1y /∈ E(G). Also, for any t ∈M −{a}, w1t /∈ E(G) or again a chorded 4-cycle would exist. Thus,

NG(w1) ⊆ {a, x} ∪ Y ∪D.

If Y = ∅, then for the nonadjacent pair w1 and y,

|M |+ |{x, y}|+ |X|+ |D| = n ≤ σ2(G) ≤ degG(w1) + degG(y) ≤ |{a, x}|+ |D|+ |M |
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and hence, |X| ≤ 0, a contradiction. Therefore, Y 6= ∅. If NY (w1) = ∅, then similarly, |X| ≤ 0,

again a contradiction. Therefore, NY (w1) 6= ∅. Let z1 ∈ Y and let w1z1 ∈ E(G). Since X ∪ Y is

dominated by a and b, we have that bz1 ∈ E(G), as otherwise, if az1 ∈ E(G), then a, y, z1, w1, a is

a 4-cycle with chord az1, a contradiction.

We now claim that |M | = 2. Suppose this is not the case and let v ∈ M − {a, b}. Since M is

independent, av /∈ E(G). By the same argument as before, X ∪Y is dominated by a and v. Now as

az1 is not an edge, then vz1 ∈ E(G). Then v, y, b, z1, v is a 4-cycle with chord yz1, a contradiction.

Hence, |M | = 2. Now by Claim 1, D = ∅.
We note that |NX(u)| ≤ 1 and |NY (u)| ≤ 1 for any u ∈ {a, b}, otherwise, there would exist a

chorded 4-cycle, a contradiction. If |X| ≥ 3, then since X ∪ Y is dominated by a and b, one of

a and b would have at least two adjacencies in X, a contradiction. Hence, |X| ≤ 2 and similarly,

|Y | ≤ 2.

If |X ∪ Y | = 2, then G = G6, (see Figure 2) a contradiction. Thus, suppose that |X ∪ Y | ≥ 3.

Then, by |X| ≥ |Y | which is our previous assumption, |X| = 2. Let w2 ∈ X − {w1}. Then note

bw2 ∈ E(G) since aw2 6∈ E(G). Suppose |Y | = 1. Now n = 7. Consider the nonadjacent pair y

and w1. By the degree sum condition, degG(y) + degG(w1) ≥ n = 7. On the other hand, since

degG(y) = 3 and degG(w1) = 3, we have degG(y) + degG(w1) = 6, a contradiction. Thus, |Y | = 2.

Now, n = 8. Let z2 ∈ Y − {z1}. Then az2 ∈ E(G) since bz2 6∈ E(G). If w1z2 ∈ E(G), then

a, z2, w1, x, a is a 4-cycle with chord aw1, a contradiction. Hence, w1z2 /∈ E(G). By the degree sum

condition, degG(y) + degG(w1) ≥ n = 8. On the other hand, since degG(y) = 4 and degG(w1) = 3,

we have degG(y) + degG(w1) = 7, a contradiction. This completes the proof of Claim 3.

Claim 4. If G contains a chorded 4-cycle, then there exists a chorded 5-cycle in G.

Proof. Suppose C = v1, v2, v3, v4, v1 is a 4-cycle in G with chord v2v4. Since n ≥ 6 and G is

connected by σ2(G) ≥ n, there is some x ∈ V (G)− V (C) such that xv ∈ E(G) for some v ∈ V (C).

We will consider two cases based on the adjacency of x.

Case I: Suppose xv1 ∈ E(G) (or by symmetry, xv3 ∈ E(G)). If x is adjacent to any other vertex in

C, then there exists a chorded 5-cycle. Thus, x is not adjacent to any other vertex in C. Since x and

v2 are nonadjacent, they must share at least two common neighbors, and the common neighbors

except v1 must be off of C. Let y ∈ V (G) − V (C) − {x} be such a common neighbor. Then

v1, x, y, v2, v4, v1 is a 5-cycle with chord v1v2.

Case II: Suppose xv2 ∈ E(G) (or by symmetry, xv4 ∈ E(G)). If x is adjacent to v1 or v3, then

there exists a chorded 5-cycle. Thus, xv1 6∈ E(G) and xv3 6∈ E(G). Since x and v1 are nonadjacent,

they must share at least two common neighbors, and let y be such a common neighbor except v2.

If y ∈ V (G) − V (C) − {x}, then there exists a chorded 5-cycle. This implies y = v4 and then

xv4 ∈ E(G). If v1v3 ∈ E(G), then we easily find a chorded 5-cycle, so we may assume v1v3 6∈ E(G).

Based on the degree sum condition, there exists some y ∈ V (G)−V (C)−{x} such that yv ∈ E(G)
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for some v ∈ {v1, v3}. Without loss of generality, suppose yv1 ∈ E(G). Then we are in a case

analogous to Case I, and we have completed the proof of Claim 4.

If n = 6, G 6= K3,3 and G 6= G6, then G is chorded pancyclic by Claims 2, 3, and 4. Thus, we

may assume n ≥ 7.

Claim 5. The graph G contains a chorded k-cycle for all 6 ≤ k ≤ n− 1.

Proof. Recall that since G 6= Kn/2,n/2, G is pancyclic. Let 6 ≤ k ≤ n− 1 and consider a chordless

k-cycle C = v1, v2, . . . , vk, v1 in G. Since C is chordless, v1 and v3 are nonadjacent and therefore,

they must have a common neighbor in V (G) − V (C), say x. Similarly, v2 and v6 are nonadjacent

and they must have a common neighbor in V (G) − V (C), say y. If k = n − 1, then since x = y,

v1, x, v3, v4, . . . , vk, v1 is a k-cycle with chord xv6. Suppose 6 ≤ k ≤ n − 2. If x = y, then there

exists a chorded k-cycle as above. If x 6= y, then v1, x, v3, v2, y, v6, . . . , vk, v1 is a k-cycle with chord

v1v2.

Claims 2, 3, 4 and 5 imply that G is chorded pancyclic. This completes the proof of Theorem

3.

3 Conclusion

We end by making a specific conjecture concerning chorded pancyclic graphs.

Conjecture 1. Let G be a Hamiltonian graph of order n ≥ 4. If |E(G)| ≥ n2/4, then G is chorded

pancyclic, or G = Kn/2,n/2, or G = G6.

If true, this would extend another result of Bondy’s [1].
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