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Abstract: A dominating path in a graph is a path P such that every vertex
outside P has a neighbor on P. A result of Broersma from 1988 implies
that if G is an n-vertex k-connected graph and δ(G) > n−k

k+2 − 1, then G
contains a dominating path. We prove the following results. The lengths
of dominating paths include all values from the shortest up to at least
min{n − 1, 2δ(G)}. For δ(G) > an, where a is a constant greater than 1/3,
the minimum length of a dominating path is at most logarithmic in n when
n is sufficiently large (the base of the logarithm depends on a). The pre-
ceding results are sharp. For constant s and c′ < 1, an s-vertex dominating
path is guaranteed by δ(G) ≥ n − 1 − c′n1−1/s when n is sufficiently large,
but δ(G) ≥ n − c(s ln n)1/sn1−1/s (where c > 1) does not even guarantee a
dominating set of size s. We also obtain minimum-degree conditions for
the existence of a spanning tree obtained from a dominating path by giving
the same number of leaf neighbors to each vertex. C© 2016 Wiley Periodicals, Inc. J.

Graph Theory 84: 202–213, 2017
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1. INTRODUCTION

Many results in extremal graph theory study minimum-degree conditions that force the
occurrence of various structures. For example, connected graphs have spanning trees,
but large minimum degree yields spanning trees with additional properties. The survey
paper on spanning trees by Ozeki and Yamashita [12] has an extensive bibliography on
conditions for spanning trees of various types.

We seek a spanning tree whose nonleaf vertices form a short path. Forcing of spanning
trees with many leaves or few leaves have both been well studied; we sketch the history
to set the context.

A dominating set in a graph G is a set S ⊆ V (G) such that every vertex outside S
has a neighbor in S. A connected dominating set is a dominating set that induces a
connected subgraph; it is just the set of nonleaf vertices in a spanning tree. Let �(n, k)

denote the least t such that every n-vertex graph with minimum degree at least k has a
spanning tree with at least t leaves. It is known that �(n, k) = k−2

k+1 n + ck for k ≤ 6, with
(c2, c3, c4, c5) = (2, 2, 8

5 , 2) [10, 11]. When k is large and fixed, Alon and Wormald [1, 2]
showed probabilistically the existence of k-regular graphs with no dominating set of size
less than 1+ln(k+1)

k+1 n. Hence the bound �(n, k) ≥ (1 − (1+o(1)) ln k
k )n [4] is asymptotically

sharp.
On the other hand, spanning paths are spanning trees with the fewest leaves. Dirac [6]

proved that an n-vertex graph with minimum degree at least (n − 1)/2 has a spanning
path, containing a dominating path with n − 2 vertices.

We combine these streams of research by seeking minimum-degree conditions for
dominating paths and by seeking short dominating paths for given minimum degree. The
first problem has a prior solution. Broersma [3] proved a difficult result about cycles
passing within a fixed distance of every vertex. He stated without proof an analogue for
paths, from which he stated the following corollary, where we have changed notation to
fit our context.
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Corollary 1.1 (Broersma [3]). Fix k, l ∈ N, and let G be a k-connected n-vertex graph.
If the degree-sum is at least n − 2k − 1 − (l − 1)k(k + 2) for any set S of k + 2 vertices
such that the distance between any two vertices of S is more than 2l, then G contains a
path P such that every vertex has distance at most l from P.

Setting l = 1 yields a minimum-degree threshold for dominating paths.

Corollary 1.2. If G is a k-connected n-vertex graph, and δ(G) > n−k
k+2 − 1, then G

contains a dominating path.

Furthermore, the threshold is sharp infinitely often.

Example 1.3. For n ≡ k mod(k + 2) with n ≥ 3k + 4, let t = n−k
k+2 , and begin with

n − k vertices in disjoint t-cliques Q1, . . . , Qk+2. Add k central vertices adjacent to all
but one vertex qi in each Qi. The resulting graph is k-connected, and each qi has degree
t − 1. Every path misses at least one Qj completely, leaving its vertex q j undominated.
This construction is essentially that of Broersma [3].

For l > 1, Broersma’s corollary implies that δ(G) > n−k
k+2 − 1 − (l − 1)k yields a path

within distance l of every vertex. This threshold is also sharp, by a more general con-
struction analogous to the construction Broersma presented for sharpness of his result on
cycles.

Let H be the tree formed by k + 2 copies of the path Pl with a common endpoint; let
v1, . . . , vk+2 be the leaves. Form H ′ by expanding each vertex of H into a k-clique. To
reach a total of n vertices, add disjoint cliques Q1, . . . , Qk+2 of size t − (l − 1)k. Make
the k vertices of H ′ that arose by expanding vi adjacent to all but one vertex qi in Qi.
The vertex qi has degree t − 1 − (l − 1)k, the graph is k-connected, every path P misses
some “branch” of H, and the vertex q j for that branch has distance l + 1 from P.

We begin in Section 2 with a short, self-contained proof of Corollary 1.2 for k = 1
(Theorem 2.1). We also give a short proof of a slightly weaker result for k = 2: δ(G) ≥
(n + 1)/4 is sufficient when G is 2-connected (Theorem 2.2). We also show that in a
connected n-vertex graph having a dominating path, the lengths of dominating paths
include all values from the shortest up to at least min{n − 1, 2δ(G)} (Lemma 2.3), and
this is sharp.

Next, we consider guaranteeing a short dominating path. When δ(G) > a · n +
loga/(1−a) n with a > 1/2 and n is sufficiently large, some dominating path has at most
loga/(1−a) n vertices (Lemma 3.1); this value is log2 n when a = 2/3. We use this to prove
our main result (Theorem 3.2): when δ(G) > an with a > 1/3 and n is sufficiently large,
some dominating path has at most ca log1/(1−a) n vertices.

This order of growth is sharp: for fixed p, ε ∈ (0, 1), in the random graph with edge
probability p any set of size (1 + ε) log1/(1−p) n is a dominating set with probability
tending to 1 (as n → ∞), while sets of size (1 − ε) log1/(1−p) n dominate with probability
tending to 0 (Dreyer [8]). This result was strengthened to two-point concentration for the
domination number by Wieland and Godbole [13], even when p tends (slowly) to 0.

To guarantee a dominating set or dominating path with a constant number of vertices,
the minimum degree must be very high. For a fixed integer s and a fixed constant c
greater than 1, we show that when n is sufficiently large there are graphs with minimum
degree at least n − c(s ln n)1/sn1−1/s having no dominating set of size at most s and hence
no such dominating path (Theorem 4.2). However, when δ(G) ≥ n − 1 − c′n1−1/s an
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s-vertex dominating path is guaranteed (Theorem 4.1; here c′ < 1, and again n must be
sufficiently large).

We also study the distribution of vertices off the dominating path. Flandrin et al. [9]
asked for a degree condition for the existence of a path whose first vertex is adjacent to
all vertices off the path. Such a path yields a spanning broom, where a broom is a tree
formed by identifying an endpoint of a path with a center of a star. Chen et al. [5] proved
that if G is an n-vertex graph with n ≥ 42 and δ(G) ≥ (n − 2)/3, then G has a spanning
broom.

A caterpillar is a tree whose nonleaf vertices form a path called the spine. A dominating
path is the spine of a spanning caterpillar. A caterpillar is balanced if all spine vertices
have the same number of leaf neighbors. It is nearly balanced if the numbers of leaf
neighbors of spine vertices differ by at most 1. In Section 5, we obtain minimum-degree
conditions for balanced or nearly balanced spanning caterpillars. For example, if n is
sufficiently large and is divisible by p + 1, then δ(G) ≥ (1 − p

(p+1)2
)n implies that an

n-vertex graph G contains a balanced spanning caterpillar with n
p+1 spine vertices. The

special case p = 1 is interesting; when n is large and even, δ(G) ≥ 3n/4 guarantees a
spanning tree consisting of a path P with n/2 vertices and a matching joining V (P) to
the remaining vertices.

Our results leave several open questions.

Question 1. For a > 1/3, what is the smallest constant ca such that for large n, every
n-vertex graph G with δ(G) ≥ a · n has a dominating path with at most ca log1/(1−a) n
vertices?

Question 2. For a > 1/(k + 2) and n sufficiently large, what is the least s such
that every k-connected n-vertex graph G with δ(G) ≥ a · n has a dominating path with
at most s vertices? (Since G is connected, the value is at most logarithmic in n. If
k ∈ O(log n), then the results [8, 13] on domination in random graphs imply that s cannot
be sublogarithmic, but the question becomes more interesting when k grows faster than
log n.)

Question 3. For fixed s ∈ N and n sufficiently large, what is the least t such that every
n-vertex graph with minimum degree at least t has a dominating path with at most s
vertices? (The value is at least n − O((s ln n)1/sn1−1/s) and at most n − �(n1−1/s).)

Question 4. For n, p ∈ N, what is the least t such that every n-vertex connected graph
G with δ(G) ≥ t has a nearly balanced spanning caterpillar in which each spine vertex
has p or p + 1 leaf neighbors? (The value is trivially at most n − 1.)

Question 5. For even n, what is the least t such that every n-vertex graph G with
δ(G) ≥ t has a balanced spanning caterpillar whose spine has n/2 vertices? (The value
is at most 3n/4 and at least n/2.) Does the same degree condition yield a nearly balanced
spanning caterpillar with s spine vertices whenever n/2 ≤ s < 2n/3?

2. EXISTENCE OF DOMINATING PATHS

Let V (G) and E(G) denote the vertex and edge set of a graph G (we consider only
simple graphs). We write NG(v) for the neighborhood of a vertex v in G and dG(v) for its
degree. For S, T ⊆ V (G), we extend this notation by letting NG(T ) = ⋃

v∈T NG(v) − T
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and letting NS(T ) = NG(T ) ∩ S and dS(T ) = |NS(T )|. Also δ(G) and �(G) denote the
minimum and maximum of the vertex degrees.

Theorem 2.1. For n ≥ 2, every connected n-vertex graph G with δ(G) > n−1
3 − 1 has

a dominating path, and the inequality is sharp.

Proof. The sharpness construction given in Example 1.3 was stated for n ≡ 1mod3.
To generalize, let Qi in the construction for k = 1 be a clique with �(n + 2 − i)/3
vertices, for i ∈ {1, 2, 3}. The three cliques together then have n − 1 vertices, and δ(G) =⌊

n−1
3

⌋ − 1.
Now suppose that G is an n-vertex connected graph with δ(G) ≥ n/3 − 1 that contains

no dominating path; note that n ≤ 3t + 3, where t = δ(G). Suppose first that G is 2-
connected. Dirac [6] proved that G must then have a cycle with at least min{n, 2δ(G)}
vertices. A path with at least n − t vertices is a dominating path, so we may assume
t < n/2.

When G is 2-connected, we have t ≥ 2, and G has a cycle C of length at least 2t. If
V (C) is not the vertex set of a dominating path, then some vertex u and its neighbors
are not on C. Since G is connected, there is a shortest path Pu to u from V (C). Adding
to Pu a path along C at one end and another neighbor of u at the other end (available
since t ≥ 2) yields a path P with at least 2t + 3 vertices. If P is not a dominating path,
then V (P) omits some other vertex and its neighborhood, which requires n ≥ 3k + 4, a
contradiction.

Hence G must have a cut-vertex v. Each component of G − v has at least t vertices,
so G − v has at most three components. Since G − v has at most 3t + 2 vertices, having
three components with at least t vertices requires one with exactly t vertices. Such a
component of G − v must be a complete graph with all vertices adjacent to v. The other
two components have order at most k + 2, so a vertex w in such a component H is
nonadjacent to at most one other vertex of H if w is also nonadjacent to v. Hence in
this case G has a dominating path consisting of v and two vertices each from two largest
components of G − v.

In the remaining case, G − v has two components. If either has a cut-vertex w, then
G − v − w consists of three nearly complete components yielding a dominating path as
in the preceding paragraph. If each component of G − v is 2-connected, then each has
a cycle that is spanning or has at least 2t − 2 vertices, since deleting v leaves minimum
degree at least t − 1. Since each component has at least t vertices, each has at most 2t + 2
vertices. We obtain a path through v that omits very few vertices and is dominating. �

For 2-connected graphs, another method gives a short proof of almost the optimal
threshold. Dirac’s Theorem implies also that if δ(H) > |V (H)|/2, then H is Hamiltonian-
connected, meaning that any two vertices are the endpoints of a spanning path. For a
path P from u to v and R ⊆ V (P), let R+ denote the set of immediate successors of
vertices of R along P, and let R− denote the set of immediate predecessors. Note that
|R+| = |R−| = |R| when R contains no endpoint of P.

Theorem 2.2. Every 2-connected n-vertex graph G with δ(G) ≥ n+1
4 has a dominating

path, and the conclusion fails when δ(G) = n−6
4 .

Proof. The last part of the claim follows from Example 1.3 with k = 2.
Let P be a longest path in such a graph G, with vertex set S, first vertex u, and last

vertex v. Let s = |S| and t = δ(G) ≥ 2. If s ≥ 3t − 1, then P is a dominating path, since
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a vertex with no neighbor on P requires n ≥ s + 1 + t ≥ 4t > n, a contradiction. Thus,
we may assume s < 3t − 1. If P is not a dominating path, then let H be a component of
G − S containing a vertex z with no neighbor on P, and let T = V (H).

Let D = NS(T ), A = NS(u), and B = NS(v); note that |A|, |B| ≥ t. Every vertex of T
having a neighbor in S is the endpoint of a 3-vertex path in H, since it has a path to z
and dH (z) ≥ 2. Since P is a longest path, the sets A−, B++, D and D+ are thus pairwise
disjoint. Hence s ≥ |A| + |B| + 2|D| ≥ 2t + 2|D|.

Since |T | ≤ n − s and δ(H) ≥ t − |D|, we have 2δ(H) − |T | ≥ 4t − n. With t > n/4,
we have 2δ(H) > |V (H)|, so H is Hamiltonian-connected. Since G is 2-connected and
|T | ≥ 2, there exist vertices x′ and y′ in T having respective distinct neighbors x and
y in P. Let Q be a spanning x′, y′-path in H. Note that P − {x, y} consists of three
(possibly empty) paths. Combining the two longest with x, y, and Q yields a path with
at least 2

3 (s − 2) + 2 + |T | vertices. Since |V (P)| = s, we obtain |T | ≤ s−2
3 < t − 1,

contradicting |T | ≥ t + 1. �
In the introduction, we noted that a graph G with a dominating path has dominating

paths of all orders from the smallest through min{n, 2δ(G) + 1}. This follows imme-
diately from a standard lemma in the theory of long paths and cycles. A longer path
containing the vertices of a dominating path will also dominate. We use this result in
Theorem 5.2.

Lemma 2.3. If P is a path in a connected n-vertex graph G and |V (P)| <

min{n, 2δ(G) + 1}, then G has a path with |V (P)| + 1 vertices that contains V (P).

Proof. Let u and v be the first and last vertices of P. If u or v has a neighbor outside
P, then P extends by one vertex. Hence we may assume A, B ⊆ V (P), where A = N(u)

and B = N(v). If some vertex of A follows a vertex of B, then V (P) is contained in a
cycle, and the fact that G is connected yields a path with |V (P)| + 1 vertices containing
V (P). In the remaining case, A−, B, and {v} are pairwise disjoint subsets of |V (P)|, which
cannot happen since P has at most 2δ(G) vertices. �

The graph Kk,n−k with k < n/2 shows that the guarantee in Lemma 2.3 cannot be
extended beyond 2δ(G) + 1; we have δ(Kk,n−k) = k, and longest paths in Kk,n−k have
2k + 1 vertices.

3. SHORT DOMINATING PATHS WHEN δ(G) > an

In light of both Lemma 2.3 and the theme of finding small connected dominating sets,
we now seek small dominating paths, which by Lemma 2.3 yields dominating paths with
all orders from the smallest up to min{n, 2δ(G) + 1}. We consider δ(G) > n/3 but first
develop a tool that applies when the minimum degree is more than half the number of
vertices. We will apply it to obtain short dominating paths when the minimum degree is
smaller.

Lemma 3.1. Let G be a connected n-vertex graph with δ(G) ≥ a · n + loga/(1−a) n,
where a > 1/2. For n sufficiently large, G has a dominating path with at most loga/(1−a) n
vertices, starting from any vertex x1.

Proof. We grow a dominating path 〈x1, . . . , xr〉 from x1, where r ≤ loga/(1−a) n.
Having grown 〈x1, . . . , x j〉, let Tj = NG(x j) − {x1, . . . , x j−1}, and let S j be the set of
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vertices in G not dominated by {x1, . . . , x j}. Select x j+1 as a vertex of Tj having the most
neighbors in S j.

We claim that x j+1 has at least 2a−1
a |S j| neighbors in S j. Otherwise, in the complement

of G each vertex of Tj has at least 1−a
a |S j| neighbors in S j. Now, some vertex of S j has

degree at least 1−a
a |Tj| in the complement. Since |Tj| ≥ a · n + loga/(1−a) n − ( j − 1),

this contradicts δ(G) ≥ a · n when j ≤ loga/(1−a) n.
We thus have |S j+1| ≤ 1−a

a |S j|. Inductively, |S j+1| ≤ ( 1−a
a ) j|S1|. Thus Sr+1 becomes

empty for some r with r ≤ loga/(1−a) n, at which point we end with an r-vertex dominating
path. �

Lemma 3.1 helps us handle one of the cases in our main result, giving an improved
upper bound on the minimum length of a dominating path even when the minimum
degree is just a bit larger than needed to guarantee having a dominating path.

Theorem 3.2. Let G be a connected n-vertex graph with δ(G) ≥ a · n, where 1/3 <

a < 1. There is a constant ca such that if n is sufficiently large, then G contains a
dominating path with at most ca log1/(1−a) n vertices.

Proof. We consider two cases, depending on the connectivity κ(G). Let k = κ(G).

Case 1. k ≤ log1/(1−a) n. Let Q be a smallest separating set. If G − Q has at least
three components, then one has at most (n − k)/3 vertices, with maximum degree less
than (n + 2k)/3, which contradicts a > 1

3 when n is sufficiently large. Hence G − Q has
only two components, H1 and H2. Since a > 1

3 , we have n
3 < |V (Hi)| < 2n

3 when n is
sufficiently large.

Let Q = {v1, . . . , vk}. Since Q is a smallest cutset, there is a matching from Q into
V (H1); let it be {v1w1, . . . , vkwk}. Since a > 1/3, we have δ(H1) > ( 1

2 + ε)|V (H1)| for
some positive ε. Hence for sufficiently large n we can (iteratively) find distinct common
neighbors y1, . . . , yk−1 for the pairs {w1, w2}, . . . , {wk−1, wk}. We thus have a w1, wk-path
P1 with vertex set W , where W = {w1, . . . , wk} ∪ {y1, . . . , yk−1}. This path dominates Q.

Let H ′
1 = H1 − (W − {wk}); note that δ(H ′

1) ≥ δ(H1) − 3k. Let n1 = |V (H ′
1)| and

n2 = |V (H2)|. Since a > 1
3 , we can choose a constant a′ with 1

2 < a′ < 3
2 a; in partic-

ular, let a′ = b − (1 − b)(b − 1
2 ), where b = 3

2 a. Since ni < 2
3 n, both H ′

1 and H2 have
minimum degree at least a′ni + loga′/(1−a′) ni when n is sufficiently large.

By Lemma 3.1, H ′
1 has a dominating path P′

1 with at most loga′/(1−a′) n vertices, starting
from wk. Moving in the other direction, extend P1 ∪ P′

1 back past its beginning at w1 to
visit v1, then a neighbor u1 of v1 in V (H2), then follow a dominating path P2 in H2 starting
from u1. Again Lemma 3.1 guarantees P2 with at most loga′/(1−a′) n vertices.

The resulting dominating path in G has at most 2 loga′/(1−a′) n + 2 log1/(1−a) n vertices.

Let α = log1/(1−a)
a′

1−a′ . Since loga′/(1−a′) n = (1/α) log1/(1−a) n, our dominating path has
at most (2 + 2/α) log1/(1−a) n vertices.

Case 2. k > log1/(1−a) n. We first obtain a dominating r-set, where r = ⌈
log1/(1−a) n

⌉
.

Choose any x1 ∈ V (G). Having chosen Si = {x1, . . . , xi}, let B be the set of vertices not
dominated by Si. We seek xi+1 ∈ V (G) − Si such that NG(xi+1) ∩ B > a|B|. If no such
vertex exists, then each vertex of G has at least (1 − a)|B| nonneighbors in B (vertices
of Si have no neighbors in B). By averaging, some vertex of B has at least (1 − a)n
nonneighbors and hence degree less than an, a contradiction. Iterating yields Sr of size r
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leaving fewer than (1 − a)rn undominated vertices. Since r ≥ log1/(1−a) n, in fact Sr is a
dominating set.

Dirac [7] observed that an r-connected graph has a cycle through any r vertices, by
Menger’s Theorem. Let C be a shortest such cycle in G containing Sr. We claim that at
most four vertices not in Sr separate consecutive vertices of Sr on C. Otherwise, let x and
z be two vertices of Sr connected along C by a path P with at least five internal vertices
but no other vertex of Sr. Choose y ∈ V (P) with distance at least 3 along P from both x
and z.

Since 3δ(G) > n, the neighborhoods of x, y, and z cannot be disjoint. Two of them
having a common neighbor outside V (C) would contradict the choice of C, yielding
a shorter cycle. Hence the three vertices are incident to at least 3an − b − 6 chords of
C, where C has length n − b. Let c be the number of vertices of C at the other ends
of these chords. The choice of C again implies that none of these vertices lie in P, so
b + 6 + c < n.

After allowing for one chord to each of c vertices, they receive at least 3an − b − 6 − c
“excess” chords, at most two at each vertex. If some segment of C joining vertices of
Sr receives three excess chords, then it has three vertices each receiving at least two
chords, or it has two vertices with one receiving at least two chords and one receiving
three chords. In either case, this segment receives crossing chords from two of {x, y, z}.
That yields a shorter cycle without losing any vertices in Sr, contradicting the choice
of C.

Hence we seek 3an − b − 6 − c > 2r. Since b + 6 + c < n, it suffices to have (3a −
1)n > 2r. Since 3a − 1 > 0 and r = ⌈

log1/(1−a) n
⌉

, this holds for sufficiently large n,
and hence |V (C)| ≤ 5r.

In Case 1 or Case 2, we obtain a dominating path with at most ca log1/(1−a) n vertices
when n is sufficiently large, where ca = max{2 + 2/α, 5}. �

4. DOMINATION WITH CONSTANT SIZE

The minimum degree needed to guarantee dominating paths with constant size is very
large. As n grows, this threshold is asymptotic to n. Nevertheless, one can study the
lower-order terms to understand how sparse the complement must be.

We begin with a minimum-degree threshold in terms of n and s that when n is suf-
ficiently large guarantees a dominating path with at most s vertices. We then provide
a probabilistic construction to show that for fixed s a somewhat smaller value cannot
even guarantee a dominating set with at most s vertices, let alone a dominating path.
This is analogous to the work of Alon and Wormald [2], who for fixed k and large n
gave a probabilistic construction of k-regular n-vertex graphs with no dominating set of
size less than ln(k+1)

k+1 n. By their result, minimum degree k − 1 guaranteeing an s-vertex
dominating path requires s > ln k

k n, or k > n
s (ln

n
s + ln ln n

s ). When s is constant, a direct
argument gives a stronger result, requiring minimum degree asymptotic to n to guarantee
a dominating s–set.

Although the upper and lower bounds are close to optimal, there remains a gap between
the sufficient degree and necessary degree, as noted in Question 3. We begin with the
sufficient condition, since the approach is analogous to that of Lemma 3.1.
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Theorem 4.1. Fix a positive integer s and a real constant c less than 1. For n sufficiently
large in terms of s, each connected n-vertex graph G satisfying δ(G) ≥ n − 1 − cn1−1/s

contains an s-vertex dominating path starting at any vertex.

Proof. Given a starting vertex x1, we prove for 1 ≤ j ≤ s that G has a path through
vertices x1, . . . , x j that dominate all but at most cn1− j/s vertices in G. When j = s,
the resulting number of undominated vertices is less than 1, so {x1, . . . , xs} is then a
dominating set.

For j = 1, the claim is immediate from the condition on δ(G). For 1 < j ≤ k, suppose
that x1, . . . , x j−1 have already been chosen; name this set S. Let B be the set of vertices not
dominated by S; we are given |B| ≤ cn1−( j−1)/s. Let A = NG(x j−1) − S. If some vertex
of A dominates all but at most cn1− j/s vertices in B, then we can choose this vertex as x j.

Otherwise, each vertex of A has more that cn1− j/s nonneighbors in B. By the pigeon-
hole principle, some vertex y ∈ B has more than cn1− j/s|A|/|B| nonneighbors in A. We
compute

cn1− j/s |A|
|B| ≥ cn1− j/s n− j−cn1−1/s

cn1−( j−1)/s
= n−1/s

(
n− j−cn1−1/s

)

= n1−1/s− jn−1/s−cn1−2/s > cn1−1/s.

The last inequality holds for sufficiently large n because c < 1. We obtain dG(y) < δ(G),
a contradiction. Hence y does not exist, and x j can be chosen as desired. �

With a somewhat smaller minimum degree, one cannot guarantee a dominating s−set.

Theorem 4.2. Fix a positive integer s and a real constant c greater than 1. For
n sufficiently large in terms of s and c, there is an n-vertex graph H with �(H) ≤
c(s ln n)1/sn1−1/s whose complement H has no dominating set of size at most s.

Proof. Form a random graph H with n vertices by letting each pair of vertices be
an edge with probability p, independently. We use p = c+1

2 ( s ln n
n )1/s. We claim that for n

sufficiently large, Pr[�(H) > c(s ln n)1/sn1−1/s] < 1/2 and Pr[H has a dominating s −
set] < 1/2. This implies that when n is sufficiently large, some graph with sufficiently
small maximum degree has no dominating s−set in its complement.

The degree distribution for a single vertex v is a binomial distribution with success
probability p; the expectation is (n − 1)p. The probability that dH (v)/np > 2c

c+1 is ex-
ponentially small, by the Chernoff bound. Multiplying by n, the probability that some
vertex has degree exceeding c(s ln n)1/sn1−1/s remains less than 1/2 when n is sufficiently
large.

A set S of s vertices is a dominating set in H if and only if every vertex outside
S is nonadjacent in H to some vertex of S. For x ∈ V (H) − S, the probability that x
is adjacent to all of S is ps. Hence the probability that S dominates H is (1 − ps)n−s.
Since we may use any s−set, the probability that H has a dominating s–set is bounded
by (

n
s )(1 − ps)n−s. Since (

n
s ) < ns and 1 − ps < e−ps

and s is fixed, the probability is
bounded by es ln ne−nps(1+o(1)). This quantity tends to 0 when nps = css ln n with c > 1,
which is precisely how we chose p. Thus, the probability that H has a dominating s–set
is less than 1/2 when n is sufficiently large. �

An immediate corollary of Theorem 4.2 is the following.
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Corollary 4.3. For any constant c with c > 1, when n is sufficiently large there is an n-
vertex graph G having minimum degree at least n − c(s ln n)1/sn1−1/s and no dominating
set of size at most s. In particular, G has no s-vertex dominating path. �

Of course, for s = 1 we can strengthen the lower bound on �(G) to n − 2.

5. BALANCED SPANNING CATERPILLARS

Recall that a caterpillar is balanced if all spine vertices have the same number of leaf
neighbors. For example, K4,5 has a spanning balannced caterpillar with three spine
vertices, where each spine vertex has two leaf neighbors.

We next prove that high minimum degree guarantees balanced caterpillars when ob-
vious necessary divisibility conditions hold. The case p = 1 states that if n is even
and sufficiently large, then δ(G) ≥ 3n/4 guarantees that G contains a balanced spanning
caterpillar consisting of an n

2 -vertex path P and a matching joining V (P) to V (G) − V (P).

Theorem 5.1. Let G be an n-vertex graph, and let p be a positive integer. If n is
sufficiently large and is divisible by p + 1, then δ(G) ≥ (1 − p

(p+1)2 )n implies that G
contains a balanced spanning caterpillar with n

p+1 spine vertices.

Proof. Note that δ(G) > n/2. A nonextendible path has more than δ(G) vertices,
so we may choose a path Q with n

p+1 vertices. Let R = V (G) − V (Q). Given Q, let a
p-packing be a subgraph consisting of disjoint stars with centers in V (Q) and leaves in
R, each having at most p edges. A vertex of Q is saturated by a p-packing if its star has
p edges. Let M be a p-packing with the most edges. If all vertices of Q are saturated by
M, then Q ∪ M is the desired balanced spanning caterpillar. Otherwise, we seek a larger
p-packing.

Let x be a vertex of Q not saturated by M; there is thus also a vertex z in R not covered
by M. By the maximality of M, every neighbor w of z in Q must be saturated. In addition,
each leaf y of the star saturating w must not be adjacent to x, since otherwise we replace
yw with xy and wz to obtain a larger p-packing.

The number of nonneighbors of x is at most n − 1 − δ(G), and hence M has at most
1
p (n − 1 − δ(G)) stars with p edges whose leaves are all nonadjacent to x. On the other
hand, z has at least δ(G) − |R| + 1 neighbors in V (Q), all of which must be centers of
those stars. Therefore, to avoid having a larger p-packing, we must have δ(G) − |R| + 1 ≤
1
p (n − 1 − δ(G)). With |R| = pn

p+1 , the inequality simplifies to δ(G) ≤ (1 − p
(p+1)2 )n − 1.

Hence the assumed lower bound on δ(G) implies that a largest p-packing saturates all of
V (Q). �

Recall that a caterpillar is nearly balanced if the numbers of leaf neighbors of vertices
of the spine differ by at most 1.

Theorem 5.2. Fix a positive integer s and a real constant c less than 1. Let G be a
connected n-vertex graph such that δ(G) ≥ n − cn1−1/s. If n is sufficiently large, then G
contains a nearly balanced spanning caterpillar with k spine vertices for each k such
that s ≤ k < 0.5 log n

log log n .

Proof. Theorem 4.1 provides a dominating s-vertex path. By Lemma 2.3, G has a
dominating k-vertex path P and a spanning caterpillar T with k spine vertices. Let X be
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the set of vertices outside P not adjacent to all of V (P). Since δ(G) ≥ n − cn1−1/k, we
have |X | ≤ kcn1−1/k.

We obtain a new caterpillar. Use P again as the spine. Let the vertices in X have the
same neighbors as in T , contributing ni leaf neighbors to the ith vertex vi of P. If ni < n/k
for all i, then since all of V (P) is adjacent to all of V (G) − V (P) − X , the vertices of
V (G) − V (P) − X can be distributed as leaf neighbors of vertices on P arbitrarily so that
the numbers of leaf neighbors of the vertices of P differ by at most 1.

To ensure ni < n/k, it suffices to have |X | < n/k. For this we require kcn1−1/k < n/k,
or n > ckk2k. With c < 1, it suffices to have n > k2k, which holds when k < 0.5 log n

log log n .�

One may also ask how sharp the minimum-degree thresholds in Theorems 5.1 and 5.2
are.
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