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Abstract

A classic result of Dirac states that if G is a 2-connected graph
of order n with minimum degree δ ≥ 3, then G contains a cycle of
length at least min{n, 2δ}. In this paper, we consider the problem
of determining the number of different odd or even cycle lengths
that must exist under the minimum degree condition. We conjecture
that there are δ − 1 even cycles of different lengths, and when G is
nonbipartite, that there are δ− 1 odd cycles of different lengths. We
prove this conjecture when δ = 3. Related results concerning the
number of different even cycle lengths supporting the conjecture are
also included. In particular, we show that there are always at least
(δ − 1)/2 even cycles of different lengths.

1 Introduction

Results regarding cycles in graphs abound in the literature. Many of these
results are concerned with Hamiltonian cycles, many with disjoint cycles
and recently, more of a focus has turned to cycles with specified lengths.
In this article we present a new conjecture and some supporting results
regarding the number of even cycles of different lengths in a graph of order
n having minimum degree δ(G) ≥ d for an integer d ≥ 3. Our work extends
the following classic result of Dirac [2].
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Theorem 1 ([2]). If G is a 2-connected graph of order n ≥ 4 with δ(G) ≥
d ≥ 3, then there exists a cycle in G of length at least min{n, 2d}.

We propose the following conjecture, which would be a direct extension
of the result of Theorem 1 for graphs with at least 2d vertices.

Conjecture 1. If G is a 2-connected graph of order n ≥ 2d with δ(G) ≥
d ≥ 3, then G contains at least d − 1 even cycles of different lengths.

Furthermore, if G is also nonbipartite, then G contains at least d − 1 odd

cycles of different lenths.

The following theorem has been mentioned in several papers.

Theorem 2 ([3, 4, 5, 6]). If G is a 2-connected graph of order n ≥ 2d with

δ(G) ≥ d ≥ 3, then G contains a cycle of even length at least 2d, and if G
is also nonbipartite, then G contains a cycle of odd length at least 2d− 1.

The result above was mentioned in a series of papers by H. J. Voss ([4],
[5], and [6]) as well as a joint paper by H. J. Voss and C. Zuluaga ([3]).
However, it has been difficult to find a proof of this result in these papers,
and this result does not seem to be widely known. Thus, for completeness
of our presentation, we include a proof of the even cycle case of Theorem 2.

We also provide supporting evidence for Conjecture 1. In particular,
we show that a 2-connected graph of order n ≥ 2d with δ(G) ≥ d ≥ 3 will
contain at least d−1

2
cycles of different even lengths.

Theorem 3. If G is a 2-connected graph of order n ≥ 2d with δ(G) ≥ d ≥
3, then G contains at least (d− 1)/2 even cycles of different lengths.

We also prove Conjecture 1 when d = 3 in the following results.

Theorem 4. If G is a 2-connected graph of order n ≥ 6 with δ(G) ≥ 3,
then G contains at least two even cycles of different lengths.

Theorem 5. If G is a 2-connected nonbipartite graph of order n ≥ 6 with

δ(G) ≥ 3, then G contains at least two odd cycles of different lengths.

Our notation generally follows the notation of Chartrand, Lesniak and
Zhang in [1]. Let (u, v)P denote the vertices of the path P strictly between
the vertices u and v. We use similar notation for cycles. Denote by P− the
path P traversed in the opposite direction of its definition. Other necessary
terms and notation will be defined as needed.

2 Results

In this section we will prove our main results. We begin with a useful
lemma.
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Lemma 1. If G is a graph of order n ≥ 2d with δ(G) ≥ d ≥ 3 which

contains a Hamiltonian cycle, then G contains an even cycle of length at

least 2d.

Proof. We may assume that n is odd, since otherwise any Hamiltonian
cycle would give the desired even cycle length. Thus, n ≥ 2d + 1. Over
all Hamiltonian cycles, choose one with the shortest possible chord, say
C : x1, x2, . . . , xn, x1. Let this shortest chord be xy and assume without
loss of generality that x = x1 and y = xt. This chord determines two other
cycles, a short cycle C∗ : x1, x2, . . . , xt, x1 and C′ : x1, xt, xt+1, . . . , xn, x1.
Let P denote the subpath x2, x3, . . . , xt−1 with |P | = t − 2 and let P 1

denote the subpath of C from xt+1 to xn with |P 1| = s. Note, s+ t = n.

Case 1: Suppose t is odd (hence t− 2 is odd).

Then |C′| is even. If t = 3, then C′ is the desired cycle, thus we assume
that t ≥ 3.

Consider any pair of vertices xi, xi+1 ∈ C′. We claim that x2 and xt−1

can collectively have at most two edges to {xi, xi+1}. Suppose this does
not hold and first consider the case when x2xi, xt−1xi, xt−1xi+1 ∈ E(G).
This gives the Hamiltonian cycle

xi+1, xi+2, . . . , x1, xt, xt+1, . . . , xi, x2, . . . , xt−1, xi+1.

However, the edge xt−1xi is a shorter chord of this graph than x1xt is of C,
a contradiction to our choice of C with shortest chord. Next, consider the
case when x2xi+1, xt−1xi, xt−1xi+1 ∈ E(G). This gives the Hamiltonian
cycle

xi+1, xi+2, . . . , x1, xt, . . . , xi, xt−1, xt−2 . . . , x2, xi+1.

In this case the edge xt−1xi+1 is a shorter chord of this cycle than x1xt

is of C, again a contradiction. By symmetry the other cases follow; thus,
{xi, xi+1} has at most two edges to {x2, xt−1}.

Since x1xt is a shortest chord, the vertices x2 and xt−1 have at least
d− 1 adjacencies in C′. But as each consecutive pair of vertices in C′ can
receive at most two edges from {x2, xt−1}, this implies that C′ has precisely
2(d− 1) vertices; otherwise it would be the desired even cycle.

If d = 3, then |C′| = 2(3 − 1) = 4 and then C∗ must be a 3-cycle,
contradicting the fact that t ≥ 3.

Now consider the vertices A = {xn−1, xn, xt, xt+1}. Each vertex in A
has at most one edge to the pair {x2, xt−1} or a shorter chord would exist.
Furthermore, xn−1 and xt+2 have no edges to x2 or xt−1 since otherwise
either we have a shorter chord or, for example,

xt−1, xn−1, xn−2, . . . , xt, x1, x2, . . . , xt−1
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would be the desired long even cycle. Now

|C′ − {xn−1, xn, x1, xt, xt+1, xt+2}| = 2(d− 4),

while these 2(d − 4) vertices must receive a total of 2(d − 1) − 4 = 2(d −
3) edges from {x2, xt−1}, or more than two edges per consecutive pair, a
contradiction. This completes Case 1.

Case 2: Suppose t is even.

Since t is even, s−2 = |C′| is odd, so s is odd. First consider the subcase
when s ≥ 2d − 1. It follows that, x2 cannot be adjacent to consecutive
vertices of C′, or we could insert x2 into C′ to obtain an even cycle with
at least 2d vertices. Let {z1, z2, . . . , zm} be the vertices of C′ adjacent
to x2, ordered using the reverse of the orientation of the cycle C′ (Recall
m ≥ d− 1). The path segment P i between (but not including) any pair of
vertices zi and zi+1 (with indices taken modulom) will be called even or odd
depending on its cardinality. Since |C′| is odd, there will be an odd number
p of even paths, and C′ will have a least 3p+2(m−p) = 2m+p ≥ 2d−2+p
vertices. If p ≥ 3, then replacing one of the even path segments, say P j ,
of C′ with the path segment zjx2zj+1 will result in an even cycle with at
least

3(p− 1) + 2(m− (p− 1)) = 2m+ p− 1 ≥ 2(d− 1) + 2 = 2d

vertices, and we would have the desired cycle. Thus, we can assume that
there is only one even path, say P j. If m ≥ d or if one of the odd paths
has strictly more than one vertex, then replacing the even path P j with
the path segment zjx2zj+1 will again result in an even cycle with at least
2d vertices, as desired.

Hence, we can assume that there are exactly d − 1 paths, and only
one of these is even (say P j), and the all of the odd paths have exactly
one vertex. Observe that xt−1 cannot be adjacent to any of the vertices
{z1, z2, . . . , zd−1}, since then there is an odd path P i that can be replaced
in C′ by P : x2, x3, . . . , xt−1, which is even. This would again create an
even cycle of length at least 2d.

Also, xt−1 cannot be adjacent to any of the vertices zj +1, zj +3, . . . in
the even path P j , since then the path P can replace a path of odd parity
from zj+(2k−1) to zj+1 for the appropriate k, again resulting in the desired
cycle. For the same reason, xt−1 cannot be adjacent to zj+1−1, zj+1−3, . . .
in P j . This implies that xt−1 is adjacent to at most d − 2 vertices of C′,
a contradiction. Thus, we can assume that C′ has at most 2d− 3 vertices
and |P | ≥ 4.

Consider xt−2. Now, if x2xi ∈ E(G), then both xt−2xi+1 and xt−2xi−1

are not in E(G), since this would yield an even cycle of length n− 1 ≥ 2d.
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Thus, each adjacency of x2 forces both a successor and a predecessor that
is not adjacent to xt−2. The vertex x2 cannot be adjacent to alternating
vertices on C′, since dC′(x2) ≥ d− 1 and |C′| ≤ 2d− 3. Thus, the number
of distinct successors and predecessors of the adjacencies of x2 on C′ will be
at least d, and so xt−2 has at most d− 3 adjacencies on C′, which implies
d(xt−2) ≤ 2 + d − 3 < d, a contradiction. This completes the proof of
Lemma 1.

Let us recall the statement of Theorem 2.

Theorem 2 If G is a 2-connected graph of order n ≥ 2d with δ(G) ≥
d ≥ 3, then G contains a cycle of even length at least 2d, and if G is also

nonbipartite, then G contains a cycle of odd length at least 2d− 1.
We include a proof of the even case.

Proof. Let C be a cycle of maximum length in G. By Theorem 1, C has
at least 2d vertices. Let P be a path of maximum length from C that is
vertex disjoint from C except for the one common vertex, which we will
denote by r. Let x denote the other end-vertex of P , and y the vertex of
P adjacent to the vertex r of C.
Case 1: Assume that all of the adjacencies of x are on the path P (see
Figure 1).

We can assume that P is chosen such that the end-vertex x has the
longest chord on the path P . Since dP (x) ≥ d, the path P has length
at least d. Since G is 2-connected there is a path Q from P to C whose
interior vertices are disjoint from C ∪ P . Let s be the initial vertex of Q
on P . By the choice of x, s can be chosen to be closer to x than some of
the adjacencies of x on P . Also let t be the final vertex of Q which is on
C (see Figure 1). Thus, there are 3 paths P1, P2, P3 from r to t. The first
path P1 contains x, all of the adjacencies of x on P , the vertex s, and all
of the vertices of Q. The second path P2 will contain all of the vertices of
C between r and t, and the third path P3 will contain all of the vertices of
C between t and r (for some fixed orientation of the cycle C). The path
P1 has length at least d, since all of the d adjacencies of x are in P1. This
implies that each of P2 and P3 have length at least d, since their length
must be at least as large as P1, for otherwise P1 could replace P3 or P2 on
C to get a longer cycle. At least two of the three paths P1, P2, P3 must
have the same parity, and this results in a cycle of even length at least 2d.
This completes the proof of Case 1.
Case 2: Assume that x has k < d adjacencies on P .

Note that since x has an adjacency on C, it follows that y is also the
end-vertex of a longest path off C. Assume that both x and y each have
at least d − k adjacencies on C, and that P has at least k + 1 vertices.
Let X = {x1, x2, · · · , xd−k} be d − k of the adjacencies of x on C and
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Figure 1: The longest chord from x to P .

Y = {y1, y2, · · · , yd−k} be a corresponding set of d− k adjacencies of y on
C. Let Z = X ∪Y , and so Z = {z1, z2, · · · , zt} with t ≥ d− k. Since C is a
cycle of maximum length, there is at least one vertex on C between zi and
zi+1. Additionally, whenever two vertices u 6= v are selected with u ∈ X
and v ∈ Y , it follows that there are at least k + 1 vertices of C in a path
between u and v along C. We refer to such an interval as a (k + 1)-gap.

First suppose |Z| = 1 so Z = {z1 = r}. Since G is 2-connected, there is
a path Q from a vertex q ∈ P to a vertex c ∈ C that is internally disjoint
from P ∪ C and vertex disjoint from z1. Let xq be the neighbor of x on P
between q and y that is closest to q if such a vertex exists. Since x has d−1
edges to P , at least one of the paths z1yPxqxPqQc, z1yPqQc or z1xPqQc
is a path of length at least d from z1 to c. This path, along with the two
paths in C provides three internally disjoint paths from z1 to c, each of
length at least d. We can then easily find an even cycle of length at least
2d as desired. Thus, we may assume |Z| > 1.

Note that there are at least two (k + 1)-gaps. Since each (k + 1)-gap
of C can be replaced by P and each other gap between vertices of Z can
be replaced by either x or y to yield another cycle of length at least 2d, we
see that the length of each (k + 1)-gap must have the same parity as the
length of P and all other gaps must have even length. If the number of
(k + 1)-gaps is even, then C is even as desired. Also if the length of P is
even, then C is again even. Thus we may assume there are an odd number
of (k + 1)-gaps and each has odd length.

Since there are at least two (k + 1)-gaps and the number must be odd,
there are actually at least three (k + 1)-gaps. With an odd number of
(k+1)-gaps, there must be a (k+1)-gap with one end in X ∩ Y . Suppose,
without loss of generality, that zi ∈ X ∩ Y and zi+1 ∈ Y . We may then
replace this gap with the vertex y to create a new cycle of length at least
2d which has even length.
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Now we give several results supporting our conjecture. Let us recall the
statement of Theorem 3.

Theorem 3 If G is a 2-connected graph of order n ≥ 2d with δ(G) ≥ d ≥ 3,
then G contains at least (d− 1)/2 even cycles of different lengths.

Proof. Let G be as given and let P be a longest path in G. Let v be an
end-vertex of P and let v1, v2, . . . , vδ−1 be the neighbors of v in order along
P away from v arising from chords. Each vertex vi produces a cycle of the
form vPviv. If at least δ−1

2
of these cycles are even, they are certainly all

different lengths so we have the desired result. Suppose at least δ+1

2
of the

cycles are odd, and let i be the smallest index such that vPviv is an odd
cycle.

Now for j > i, consider cycles of the form vviPvjv. The lengths of
these cycles are all different and since there were at least δ+1

2
odd cycles

before, there are at least δ−1

2
even cycles of this form, completing the proof

of Theorem 3.

Now we prove Conjecture 1 in the case δ = 3. First, we consider the
case even cycles case.

Theorem 4 If G is a 2-connected graph of order n ≥ 6 with δ(G) ≥ 3,
then G contains at least two even cycles of different lengths.

Proof. Let P be a longest path in G with the property that an end-vertex
x has its third neighbor z as close to x along P as possible. Let y be the
second neighbor of x on P and x1 the first neighbor of x on P . If P is a
path with initial vertex x and y is a vertex of P distinct from x, then the
vertex immediately preceding y on P is denoted by y−. Note that y− and
z− are also end-vertices of a longest path. By our choice of x, the vertex
y− has no adjacencies (other then y and y−−) in the interval [x, z−]. This
implies that the third adjacency of y− on P is at z or beyond z along P .
Call this adjacency w.

Note that it is possible that z− = y. In this case G has girth 3. But
now note that the cycles x, P, y, x and xP, z, x differ in length by exactly 1.
Further, the cycles x, P, y−, w, P−, y, x and x, P, y−, w, P−, z, x also differ
in length by exactly 1 and these last two cycles are longer than the first
two, or the 4-cycle x, y−, y, z, x results and we would be done by Theorem
1. If y− is adjacent to z−, then x, y, y−, z−, x is a 4-cycle and by Theorem
1 we are done. Thus, we may assume that z− is not y and z is not w.

We denote the order of the interval (x, y−) as a, that of (y, z−) as b and
that of (z, w) as c. We can easily find cycles of lengths a+ 3, b+ 4, a+ 5,
a + b + 5, b + c + 5, a + c + 4, and a + b + 6. We wish to show that this
collection of cycles always contains two even cycles of different lengths.
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Case 1. Assume that a is odd.

Then a + 3 is even. This implies that c is even; otherwise a + c + 4
would be even and different than a+3. But now b must be odd; otherwise
a+ b+ 5 is even and again different than a+ 3. Now a+ b+ c+ 6 is even
and strictly greater than a+ 3. This completes Case 1.

Case 2: Assume that a is even.

If b is even, then b+4 is even. Note, if b = 0, then a 4-cycle results and
we are done by applying Theorem 1. Thus, we may assume b 6= 0. But b
even implies that c is even; otherwise b + c+ 5 would be even and greater
than b + 4. Now a, b and c are all even; hence a + b + c + 6 is even and
greater than b+ 4.

Hence we may assume b is odd. Now a + b + 5 is even. This implies
that c is even; otherwise a + b + c + 6 is even and greater than a + b + 5.
Thus, we have that a is even, b is odd and c is even. This implies that
a+ b+5 = a+ c+4 = b+ c+5 or we would have two different even lengths
for cycles. This implies that a = c = b+ 1.

Claim: The vertex z− has no adjacency in [x, z−−).

First assume that z− has an adjacency, say p, in [y, z−). Let α be the or-
der of the open interval (p, z−). If α is even, then x, . . . y−, y, . . . , p, z−, z, x
is a cycle of length a+ b−α+5, which is even and different than a+ b+5.
If α is odd, then x, y, . . . , z−, z, x is an even cycle of length b−α+4 and is
of different length than a+ b+ 5.

Next suppose that z− has an adjacency p ∈ (x, y−). Let the order
of (p, y−) be α. If α is odd, since a is even, a − α is odd. But then
x, z, z−, p, . . . , x is of order a−α+3, which is even and less then a+ b+5.
If instead α is even, then x, . . . , p, z−, . . . , y, x has order a+b+3−α, which
is even and less than a+ b+ 5.

Hence, the other adjacency of z− must be beyond z along P . Let p be
this adjacency. Now let α be the order of (z, p). We first assume that p
precedes w (the neighbor of y−) along P . Now if α is even, then c − α is
even and the cycle w, . . . , p, z−, z, x, y, y−, w has length c− α+ 6, which is
even. Also, the cycle p, . . . , z, x, . . . , y−, y, . . . , z−, p has length 6+a+b+α,
which is even and different than c− α+ 6 since a = c = b+ 1 and b > 0.

If, on the other hand, α is odd, then the cycle x, . . . , y−, y, . . . , z−,
p, . . . , z, x has length a + b + 5 + α + 1, which is even and greater then
a+ b+ 5.

Finally we assume that p follows w along P . We let α be the order of
the interval (w, p). Now if α is even, then the cycle x, z, . . . , p, z−, . . . , x has
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order a+ b+ c+α+7, which is even and longer than a+ b+5. If instead,
α is odd, then x, y, . . . , z−, p, . . . , z, x has order b+ c+ 5 + α + 1, which is
even and greater than b+ c+ 5.

Thus, in all cases we obtain two even cycles of different lengths. This
completes Case 2 and the proof of the Theorem.

Theorem 5 If G is a 2-connected nonbipartite graph of order n ≥ 6 with

δ(G) ≥ 3, then G contains at least two odd cycles of different lengths.

Proof. Case 1: The girth of G is 3.

Let a, b, c be the vertices of a triangle T in G. Since G is 2-connected,
from any point x 6∈ T there are vertex disjoint paths, to say, a and b of T .
If either of the paths from x to a or b has length at least 2, then clearly
that is an odd cycle with at least five vertices. Thus, x is adjacent to both
a and b. Thus, each vertex in G−T is adjacent to two of the vertices of T .
Since δ(G) ≥ 3, there must be a y 6∈ T that is adjacent to c and with no
loss of generality also to a. This implies there is a cycle of length 5, which
completes the proof of this case.

Case 2 The odd girth of G is at least 5.

Consider the smallest odd cycle, say C. There can be no chords in C,
since any such chord would give an odd cycle of smaller length. If there is
a path P that connects two consecutive vertices of C, then the number of
vertices in P must be odd, for otherwise this would give a longer odd cycle
than C. If there was another path Q with the same property relative to
another pair of consecutive vertices of C, then the number of vertices in Q
must also be odd. However, using both the paths P and Q along with C
will give a longer odd cycle. Thus, there is at most one path with the same
property as P .

Select a shortest path-chord P1 in C, and assume that v1 and v3 are
the end-vertices of P1 and that P1 has x interior vertices. Let v2 be the
predecessor of v3 on C, and select the smallest odd path-chord P2 starting
with v2. Let v4 be the end-vertex of P2 and y the number of interior vertices
of P2. Also, denote by a the number of vertices of C between v1 and v2,
by b the number of vertices of C between v3 and v4, and by c the number
of vertices of C between v4 and v1 on C. Thus, a+ b + c+ 4 is odd, since
it is the length of the cycle C. Thus, either all of a, b, c are odd, or exactly
one of a, b, c is odd.

Using the path-chords and paths of C between v1, v2, v3, v4 there are
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seven different cycles of G, and they have the following lengths.

(1) a+ b+ c+ 4, (2) a+ x+ 3, (3) b + y + 3,
(4) x+ y + c+ 4, (5) x+ b+ c+ 3, (6) y + a+ c+ 3,
(7) x+ y + a+ b+ 4.

In the remainder of the proof, various subcases where a, b, c, x, y are odd
or even are considered.
Case A: Suppose all of a, b, c are odd.

Subcase A1: Suppose both x and y are odd.

This implies that the cycles (1), (2), (3), (4) are all odd cycles, and thus
must all have the same length or we done. Cycles (1) and (2) being even
imply x = b+c+1, and likewise (1) and (3) imply y = a+c+1. Substituting
for x and y in (4) and setting that equal to (1) gives a+ b+2c+2+ c+4 =
a+ b+ c+ 4, a contradiction.

Subcase A2: Suppose both x and y are even.

This implies that the cycles (1), (4), (5), (6) are all odd cycles. Equa-
tions (1) and (4) imply x+ y = a+ b, (1) and (5) imply x = a+ 1, and (1)
and (6) imply y = b+ 1. The last two equations imply x+ y = a+ b+ 2, a
contradiction.

Subcase A3: Suppose x is odd and y is even. (There is the symmetric
case x is even and y is odd.)

This implies that the cycles (1), (2), (6), (7) are all odd cycles. Cycles
(1) and (2) imply x = b+c+1, and (1) and (6) imply y = b+1. Substituting
for x and y in (7) and setting that equal to (1) gives 2b+ c+2+a+ b+4 =
a+ b+ c+ 4, a contradiction.

Case B: Suppose c is odd, and a, b are even.

Subcase B1: Suppose x and y are odd.

This implies (1), (4), (5), (6) are all odd cycles. Equations (4) and (5)
imply y = b − 1, and substituting for y in (6) and setting it equal to (1)
gives b− 1 + a+ c+ 3 = a+ b+ c+ 4, a contradiction.

Subcase B2: Suppose x and y are even.

10



This implies (1), (2), (3), (4) are all odd, and this was shown to lead to
a contradiction in subcase A1.

Subcase B3: Suppose x is even and y is odd. (There is the symmetric
case when x is odd and y is even.)

This implies (1), (2), (6), (7) are all odd cycles. It was shown in subcase
A3 that this leads to a contradiction.

Case C: Suppose a is odd, and b, c are even. (There is the symmetric case
when b is odd, and a, c are even.)

Subcase C1: Suppose x and y are both odd.

This implies (1), (2), (6), (7) are all odd cycles, and this was shown to
imply a contradiction in subcase A3.

Subcase C2: Suppose x and y are both odd.

This implies (1), (2), (5), (7) are all odd cycles. Moreover, (1) and (3)
imply y = a+c+1, and (1) and (5) imply x = a+1. Substituting for x and
y in (7) and setting this equal to (1) implies that a+1+a+c+1+a+b+4 =
a+ b+ c+ 4, a contradiction.

Subcase C3: Suppose x is odd and y is even.

This implies (1), (2), (3), (4) are all odd, and this was shown to lead to
a contradiction in subcase A1.

Subcase C4: Suppose x is even and y is odd.

This implies (1), (4), (5), (6) are all odd cycles, and this was shown to
lead to a contradiction in subcase B1.

This completes the proof.

Dedication: The authors RG, MJ and CM would like to dedicate this
paper to the memory of our friend, Ralph Faudree, who died suddenly dur-
ing the completion of this project, one of the last projects of his illustrious
career.
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