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ABSTRACT. A graph G is called H-saturated if G contains no copy of H,

but for any edge e in the complement of G, the graph G + e contains some
copy of H. The minimum size of an n-vertex H-saturated graph is denoted
by sat(n,H) and is called the saturation number of H. In [KT86], Kászonyi
and Tuza determined the values of sat(n,H) when H is a path or a disjoint
union of edges. In this paper, we determine the values of sat(n,H) for the
disjoint union of paths (a linear forest) within a constant depending only on H .
Moreover, we obtain exact values for some special classes and include several
conjectures.

1. INTRODUCTION

A graph G is called H-saturated if G contains no copy of H, but for any
edge e in the complement of G, the graph G+e contains some copy of H. The set
of H-saturated graphs of order n is denoted by SAT(n,H), and the saturation
number, denoted sat(n,H), is the minimum size of a graph in SAT(n,H). The
maximum size of a graph in SAT(n,H) is the well known Turán extremal num-
ber (see [T41]), and is usually denoted by ex(n,H). The graphs in SAT(n,H)
of minimum size will be denoted by SAT(n,H), and those with a maximum
number of edges will be denoted by SAT(n,H). Thus, all graphs in SAT(n,H)
have sat(n,H) edges and graphs in SAT(n,H) have ex(n,H) edges.

The notion of the saturation number of a graph was introduced by Erdős, Ha-
jnal, and Moon in [EHM64] in which the authors proved
sat(n,Kt) =

(
t−2
2

)
+(n− t+2)(t−2) and SAT(n,Kt) = {Kt−2+Kn−t+2}.
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Since then, sat(n,H) and SAT(n,H) have been investigated for a range of
graphs H . Some examples include trees, cycles, bipartite graphs, matchings,
friendship graphs, and books. However, the exact value of sat(n,H) and a com-
plete characterization of SAT(n,H) are known for very few special classes of
graphs H . For a summary of known results see [FFS] and for results on trees
see [FFGJ09]. There has been extensive study of extremal numbers, ex(n,H),
and a well-developed theory of SAT(n,H) has been established. This is not so
for saturation numbers, sat(n,H), and the graphs in SAT(n,H). For example,
many of the hereditary and monotone properties that hold for SAT(n,H) do not
hold for SAT(n,H).

For t ≥ 2, let F = Pk1
∪Pk2

∪ · · · ∪Pkt
be a linear forest where Pk denotes

a path on k vertices and k1 ≥ k2 ≥ · · · ≥ kt ≥ 2. An example of what is known
about ex(n, F ) for a disjoint union of paths F can be found in results by Bushaw
and Kettle [BK11]. We will show that the value of sat(n, F ) is determined by
the size of the shortest path, Pkt

. We determine the value of sat(n, F ) within
a constant that is a function of the order of F. Moreover, we will improve the
constant for linear forests composed of paths of equal length. Exact values will be
determined in some small order cases.

Only finite graphs without loops or multiple edges will be considered. Nota-
tion will be standard, and generally follow the notation of [CLZ11]. We begin by
defining a particular family of trees which will be used repeatedly in the remainder
of the paper.

A perfect degree three tree is a tree such that every vertex has degree 3 or
degree 1, and all vertices of degree 1 are the same distance from the center. Thus,
all perfect degree three trees differ only by their diameter. For k ≥ 2, we will let
Tk denote the perfect degree three tree whose longest path contains k vertices. By
this definition, T2 = K2 and T3 = K1,3. See Figure 1 for more examples.

(A) T5 (B) T6

FIGURE 1. Examples of perfect degree three trees.

In some instances it will be useful to view Tk as a rooted (or doubly rooted)
tree. Specifically, if k is odd, let the root r be the unique vertex in the center of
Tk. Viewed in this way, the tree has dk2 e levels, the root has three children, all
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vertices in the middle levels have two children, and all vertices of degree 1 are in
the bottom level. If k is even, the center consists of two adjacent vertices. In this
case, all vertices have two children except for those of degree 1, all of which are
in the bottom of the k/2 levels.

Observe that Tk−1 is Pk-saturated for k ≥ 4. In addition, any graph obtained
from Tk−1 by adding more pendant vertices to those already adjacent to vertices
of degree 1 remains Pk-saturated. As Theorem 1.1 will show, for k ≥ 5, the
graphs Tk−1 are building blocks for graphs in SAT(n, Pk). For ease of reference,
when k ≥ 3, we let

ak = |V (Tk−1)| =
{

3 · 2m−1 − 2 if k = 2m
4 · 2m−1 − 2 if k = 2m+ 1,

and we define a2 = 1.

Theorem 1.1. [KT86] Let Pk be a path on k ≥ 5 vertices and let Tk−1
and ak be the tree and the order of the tree defined above, respectively. Then, for
n ≥ ak, every graph in SAT(n, Pk) consists of a forest with bn/akc components
and sat(n, Pk) = n − bn/akc. Furthermore, if T is a Pk-saturated tree, then
Tk−1 ⊆ T.

Note that P2-saturated graphs consist of the set of empty graphs. The set of
P3-saturated graphs consist of independent edges with at most one isolated vertex,
depending upon the parity of n. While T3 is P4-saturated, the set of P4-saturated
graphs of minimum size consists of independent edges with possibly a single K3

as a component, depending upon the parity of n.

In this paper we investigate the saturation number of graphs consisting of a
disjoint union of paths. For convenience, we refer to such graphs as linear forests.
The following theorem established the saturation number for a matching, tK2,
which can be viewed as a particular family of linear forests.

Theorem 1.2. [KT86]
(a) For n ≥ max{2k, 3k − 3}, sat(n, kP2) = 3k − 3.
(b) For n ≥ max{2k, 3k − 3}, SAT(n, kP2) = {(k − 1)K3 ∪ Kn−3k+3} or
k = 2, n = 4 and SAT(n, kP2) = {K1,3,K3 ∪K1}.

Our first result establishes bounds on the saturation number for an arbitrary
linear forest.
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Theorem 1.3. For t ≥ 2, let F = Pk1 ∪ Pk2 ∪ · · · ∪ Pkt be a linear forest

with k1 ≥ k2 ≥ · · · ≥ kt and let k = kt and q =
(∑t

i=1 ki

)
− 1. Then, for n

sufficiently large,

n−
⌊
n

ak

⌋
≤ sat(n, F ) ≤

(
q

2

)
+ n− q −

⌊
n− q

ak

⌋
, if k 6= 4

n−
⌊n
2

⌋
≤ sat(n, F ) ≤

(
q

2

)
+ n− q −

⌊
n− q

2

⌋
, if k = 4.

The proof of Theorem 1.3 will be given in Section 3. The above result shows
that sat(n, F ) is determined by the order of the smallest component of F . An
immediate corollary of Theorem 1.3 is the following:

Corollary 1.1. If F = Pk1
∪ Pk2

∪ · · · ∪ Pkt
is a linear forest with k1 ≥

k2 ≥ · · · ≥ kt ≥ 2 and k = kt, then

sat(n, F ) = n−
⌊
n

ak

⌋
+ c(n) if k 6= 4, and

sat(n, F ) = n−
⌊n
2

⌋
+ c(n) if k = 4,

for some constant c(n) with 0 ≤ c(n) ≤
(
q
2

)
− q +

⌈
q
ak

⌉
.

Since ak+1 > ak if k > 2, sat(n, F ) increases as the smallest component in
F increases provided n is sufficiently large. As a consequence of the the monotone
property, we have the following result.

Corollary 1.2. Let F and F ∗ be two linear forests such that the order of the
smallest components in F and F ∗ are k and k∗. If k > k∗ and (k, k∗) 6= (4, 3),
then sat(n, F ) > sat(n, F ∗) provided n is sufficiently large.

We will now define two families of graphs that will be used throughout the
remainder of the paper.

For k ≥ 3, let Nk be obtained from a K3 by attaching a perfect degree three
tree Tk−1 at each vertex of the K3 beginning with a pendant vertex of the tree. Let
N∗4 be the graph obtained from N4 by adding another single pendant edge to one
of the centers of the stars in the construction of N4. Observe that |V (Nk)| = 3ak.
(See Figure 2.)

For k ≥ 5, we define Z(n, k) to be the graph on n vertices consisting of
bn/akc vertex disjoint copies of a Tk−1 such that the remaining r = n−akbn/akc
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(A) N3 (B) N4 (C) N∗
4 (D) N5

FIGURE 2. Examples of the family Nk

vertices are attached as pendant vertices to the same vertex in the penultimate level
of a single copy of Tk−1. (See Figure 3.) The graph Z(n, k) is shown to be one of
the graphs in SAT(n, Pk) in [KT86]. For k = 4, we define Z(n, k) = bn/2cK2

when n is even, and Z(n, k) = K3 ∪ b(n − 3)/2cK2 when n is odd. For k = 3,
we define Z(n, k) = bn/2cK2. For k = 2, Z(n, k) = Kn.

FIGURE 3. The graph Z(20, 5)

When all components of F are paths with the same order, we make the fol-
lowing conjecture:

Conjecture 1.1. Let t ≥ 2 be an integer. For n sufficiently large,

(1) sat(n, tP3) =
⌊
n+6t−6

2

⌋
and (t−1)N3

⋃⌊
n−6t+6

2

⌋
P2 ∈ SAT(n, tP3).

(2) sat(n, tP4) =

{
(n+ 12t− 12)/2 if n is even
(n+ 12t− 11)/2 if n is odd.

Moreover,

(t− 1)N4 ∪ (1/2)(n− 12t+ 12)P2 ∈ SAT(n, tP4) if n is even and

N∗4 ∪ (t− 2)N4 ∪ (1/2)(n− 12t+ 11)P2 ∈ SAT(n, tP4) if n is odd.

(3) For k ≥ 5, sat(n, tPk) = n−
⌊

n
ak

⌋
+ 3(t− 1), and

(t− 1)Nk ∪ Z(n− 3(t− 1)ak, k) ∈ SAT(n, tPk).

Conjecture 1.1 will be shown to be true for tP3’s for t = 2, 3 in Theorem 4.3
and for 2P4’s in Theorem 4.4.
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2. Lemmas

We next prove seven lemmas that will be used repeatedly in the proofs of the
theorems.

Lemma 2.1. Let F be a linear forest and G an F -saturated graph. If w is a
vertex of G of degree 2 and u, v are the neighbors of w, then uv ∈ E(G).

PROOF. Let F , G, u, v, and w be as stated in the lemma. Assume that
uv 6∈ E(G). Then, G + uv contains a copy of F . Clearly, one of these paths
contains uv. Replacing uv with uw or vw or uwv, shows that there is a copy of
F in G, contradicting the assumption that F 6⊆ G. �

Lemma 2.2. For every integer k ≥ 3, Nk is 2Pk saturated, and Nk ∪Z(n−
3ak, k) is 2Pk-saturated.

PROOF. Recall that the graph Nk has a cycle C with 3 vertices and three
attached trees each isomorphic to Tk−1. Furthermore, recall that the tree Tk−1
contains a Pk−1 and is Pk-saturated. Thus, the addition of an edge to Nk between
two vertices of the same copy of Tk−1 will result in a Pk using at most one vertex
of the cycle. All other edges of the complement of Nk lie between vertices of
distinct copies of Tk−1, say T and T ′. If one of the two endpoints of the added
edge e lies on or between the root (or closest root) and the vertex on C in its
respective tree, say T , then there exists a Pk using the longest path in T , the
added edge, and ending in T ′ − V (C). If both endpoints lie such that the the root
(or closest root) lies between the endpoint and C, then there is a Pk beginning in
T ∩ C, through T to the added edge and ending in T ′ − C. In all three cases, the
addition of an edge to Nk produces a Pk that uses at most two of the Tk’s and at
most one vertex of C. Thus a second vertex disjoint Pk can be constructed in the
remaining Tk and the remaining two vertices of C. Finally, if Nk is 2Pk-saturated,
then Nk ∪ Z(n− 3ak, k) is 2Pk-saturated. �

An immediate corollary of Lemma 2.2 is the following:

Corollary 2.1. For every integer k ≥ 3 and t ≥ 2, (t−1)Nk is tPk saturated,
and also (t− 1)Nk ∪ Z(n− (t− 1)3ak, k) is tPk-saturated.

Lemma 2.3. If m ≥ 2 and k ≥ 3 are integers, then no mPk-saturated graph
is a tree.

PROOF. Suppose the contrary: there is a tree T which is mPk-saturated.
Pick a vertex u ∈ T and treat T as a rooted tree with root u. For each vertex v,
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let Tv denote the subtree of G that consists of v and all its descendants. Clearly,
Tu = T .

Since T is mPk-saturated, T contains a copy of m− 1 disjoint paths Pk. Let
v be the root of a Pk with the lowest rank (that is, the vertex of Pk closest to u is
most distant from the root u). Since T does not contain mPk, T − Tv does not
contain a (m− 1)Pk.

Select a vertex w ∈ V (Tv) such that vw /∈ E(T ). Then T + vw contains a
copy of mPk. By the minimality of the rank of v, T − Tv contains (m− 1)Pk, a
contradiction. Note that such a vertex w must exists unless k = 3, v is the middle
vertex of this path, and v has precisely two children (say x1 and x2) in T both
of which are pendant. In this case, the same argument applies to T + x1x2. This
completes the proof of Lemma 2.3. �

Lemma 2.4. Let t ≥ 2 and let k1 ≥ k2 ≥ · · · ≥ kt ≥ 5 be integers. If a tree
T is Pk1

∪ Pk2
∪ · · · ∪ Pkt

saturated, then |T | ≥ akt
.

PROOF. Since t ≥ 2 and kt ≤ ki for all i ≤ t, the graph T must contain a
path P of length kt. Let k = kt. Let C be the center of P . Note that |C| = 1 if
k is odd and |C| = 2 is k is even. Starting with C, we perform a Breadth-First-
Search and partition V (T ) into V0 = C, V1, V2, . . . such that all vertices in Vi

have distance i from C. Clearly, Vi 6= ∅ for i ≤ k/2− 1.

For each vertex v, let Tv be the subtree consisting of v and all descendants
of v in the tree T under the Breadth-First-Search. (See Figure 4). Let `(v) be
the length of a longest path in Tv starting at v. By Lemma 2.1, T does not have
vertices of degree 2. Thus, every vertex x ∈ Vi is either a pendant vertex or has at
least two children in Vi+1.

v

FIGURE 4. The subtree Tv is shown in bold.
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Recall that a Breadth-First-Search rooted at the center of Tk−1 would have
exactly d(k − 1)/2e levels such that every vertex has exactly two children except
the last level in which all are pendant. Thus, by comparing T with tree Tk−1, if
|V (T )| < |V (Tk−1)| = ak, then, intuitively, some vertex of T must have pendant
children prematurely. More rigorously, if |V (T )| < |V (Tk−1)| = ak, there exists
a vertex v who has a child w such that `(w) > `(w∗) for all other children w∗ of
v and `(w∗) ≤ k/2− 1. Let u be the predecessor of v. (See Figure 5.)

u

v

w

FIGURE 5. Vertices v, w and u from the proof of Lemma 2.4

Now T + uw must contain a copy of F := Pk1 ∪ Pk2 ∪ · · · ∪ Pkt such
that one of the paths uses edge uw. If the new path follows edge uw from u to
w and remains in Tw, then there exists a copy of F in T by replacing edge uw
with the path uvw. Thus, the new path must contain the path uwvw∗ and remain
in Tw∗ . But `(w∗) < `(w) again implies there exists a copy of F in T. Thus,
|V (T )| ≥ ak. �

Lemma 2.5. If H is a connected graph with 8 ≤ |H| ≤ 11, |E(H)| = |H|
and such that all vertices of degree 2 lie on a triangle, then either H contains a
2P4 or the unique cycle in H is a C3.

PROOF. Since H is connected and |E(H)| = |H|, H has a unique cycle C
with no chords and H − E(C) is a forest. If C = K3, the result follows, thus
assume |V (C)| ≥ 4. Now, to avoid vertices of degree 2 on C, there must exist
a set of |V (C)| independent edges between V (C) and V (H) − V (C). But for
cycles on 4 or more vertices, such a graph always contains a 2P4. Thus, under the
hypotheses of the lemma, the unique cycle in H is a C3 or H contains a 2P4. �

Lemma 2.6. If H is a connected graph with 8 ≤ |H| ≤ 9, |E(H)| = |H|+1,
and such that all vertices of degree 2 lie on a triangle, then either H contains a
2P4 or the longest cycle in H is a C5.
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PROOF. Assume that |E(H)| = |H|+1, and let C be the longest cycle in H .
If |C| ≥ 7, then clearly there is a 2P4 in H . If C has no chords and |C| = 6, then
there will always be a vertex of degree 2 on C not on a triangle. Assume there
is a chord in C. Then this is the unique chord in C. So there are two consecutive
vertices on C not incident to the chord, say x and y. Now C along with the two
independent edges that must be adjacent to x and y contain a P8 and therefore a
copy of 2P4. Thus, under the hypothesis of the lemma, either H contains a 2P4 or
the longest cycle in H is a C5. �

Lemma 2.7. If H is a connected graph containing a triangle with 8 ≤ |H| ≤
11 and |E(H)| = |H|, then H is not 2P4-saturated.

PROOF. Suppose H satisfies the hypotheses of the Lemma and is 2P4-saturated.
By assumption, the only cycle in H is C3 and H − E(C3) is a forest. Label the
vertices of the cycle ui for i = 1, 2, 3 and label the tree rooted at ui as Ti. Observe
that Lemma 2.1 implies that no vertex of Ti can have degree 2 other than possibly
ui. This fact will be used repeatedly in the following argument.

If all the vertices of H − V (C3) are pendant, H is not 2P4-saturated. Thus,
there is at least one tree, Ti, containing a path on at least three vertices starting at
ui. Lemma 2.1 implies that such a tree Ti could not be simply a path, forcing Ti

to have at least 4 vertices. Since |V (H)| ≤ 11, at most two trees can have such
paths. We simply consider the two cases.

If ui has a path of length at least 2 in Ti, for i = 1, 2. Then, to avoid a 2P4,
neither tree can have a path of length more than 2. Let uivi be an edge in Ti. Then
H + v1u2 illustrates that H cannot be 2P4-saturated.

Assume that only one tree, say T1, has a path of length at least 2 beginning
at u1. If the longest path in T1 starting at u1 contains 5 or more vertices, the
additional vertices implied by Lemma 2.1 forces H to contain 2P4. Thus, the
longest path in T1 from u1 has either 3 or 4 vertices. If the path has 4 vertices,
T2
∼= T3

∼= K1 to avoid a 2P4 in H. Such an H is not 2P4-saturated. If the
path has 3 vertices (say, u1, v1, v2), adding edge u1v2 illustrates that H cannot be
2P4-saturated. �

3. Proof of Theorem 1.3

Let F = Pk1∪Pk2∪· · ·∪Pkt be a linear forest with k1 ≥ k2 ≥ · · · ≥ kt ≥ 2

and let k = kt and q =
(∑t

i=1 ki

)
−1. To establish the upper bound, we construct

a saturated graph GF for F according to the value of k.
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• If k = 2, let GF := Kq ∪Kn−q .

• If k = 3, let GF := Kq ∪ bn−q2 cK2 ∪ (n− q − 2bn−q2 c)K1.

• If k = 4, let

GF :=

{
Kq ∪ n−q

2 K2 provided n− q is even
Kq ∪ n−q−3

2 K2 ∪K3 provided n− q is odd.

• If k ≥ 5, let GF := Kq ∪ Z(n− q, kt).

We claim that GF ∈ SAT(n, F ) for k ≥ 5, and that all the other cases are
similar. Certainly Kq is not big enough to contain a copy of F and Z(n − q, kt)
does not contain any path of F so GF contains no copy of F as a subgraph. Any
edge added with one vertex in Kq trivially produces a copy of F as a subgraph.
Also any edge added within Z(n− q, kt) produces a Pkt

and the remaining paths
Pk1

, . . . , Pkt−1
in F can be embedded in Kq to produce a copy of F and complete

the proof.

We now show the lower bound holds. Let G ∈ SAT(n, F ).

• If k = 2, then ak = 1, so |E(G)| ≥ n − b n
ak
c = 0. The result holds

vacuously.
• If k = 3, since G is F -saturated, there can be at most one isolated vertex

in G. Consequently, |E(G)| ≥ n
2 .

• If k = 4, then any isolated vertex in G would imply that all of the
other components of G would have at least 3 vertices and |E(G)| >
2(n− 1)/3 > n/2. Thus, clearly sat(n, F ) ≥ n/2.

• Suppose k ≥ 5. Consider any component G′ of G that is a tree. Observe
that G′ must be F ′-saturated for some sub-forest F ′ of F. Since k ≥ 5,
any edge added to H ′ must produce a path Pm for m ≥ k. Therefore,
by Lemma 2.4, |G′| ≥ ak. Hence, if r is the number of vertices in the
components of G that are not trees, then the number of edges in G is at
least r + (n− r)− bn−rak

c ≥ n− n
ak

.

This completes the proof of Theorem 1.3.

4. Improvement of the constant bound

In this section we prove several theorems that improve the bounds of Theorem
1.3 in some special families of linear forests. Specifically, we improve the bounds
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in the cases when all the paths in the linear forest have the same length and when
the forest has exactly two paths. Also, we show that Conjecture 1.1 holds in some
small order cases.

We begin with linear forests such that all paths have the same length.

Theorem 4.1. For n sufficiently large, t ≥ 2 and k ≥ 5,

n−
⌊
n

ak

⌋
≤ sat(n, tPk) ≤ n−

⌊
n

ak

⌋
+ 3(t− 1).

PROOF. By Corollary 2.1, we know that (t − 1)Nk is tPk-saturated, and
also that G = (t − 1)Nk ∪ Z(n − (t − 1)3ak, k) is tPk-saturated. The number
of edges in G is (t − 1)3ak + (n − (t − 1)3ak) − b(n − (t − 1)3ak)/akc =
n− bn/akc+ 3(t− 1). This verifies the upper bound for sat(n, tPk). The lower
bound is a direct consequence of Theorem 1.3. �

In the case when t = 2, the following result gives a very close bound for two
paths.

Theorem 4.2. For n sufficiently large and 5 ≤ k ≤ ` ≤ d(3k − 2)/2e,

n−
⌊
n

ak

⌋
≤ sat(n, Pk ∪ P`) ≤ n−

⌊
n

ak

⌋
+ 3.

Also, the graph Nk ∪ Z(n− 3ak, k) ∈ SAT(n, Pk ∪ P`).

PROOF. Consider the graph G = Nk∪Z(n−3ak, k). Since each of the trees
Tk−1 in Nk contains a Pk−1, the graph Nk has a P2k−2 containing two vertices
of the triangle in Nk. Since any copy of Pk will contain at least 2 vertices of the
triangle in Nk, there does not exist a Pk ∪ Pk in G. The addition of any edge
in Z(n − 3ak, k) will give a Pk disjoint from Nk. Also, each edge added to a
Tk−1 ∈ Nk produces a Pk disjoint from a P2k−2 in Nk. An edge added between
two different copies of Tk−1 with one in Nk and one in Z(n−3ak, k) will produce
a Pk disjoint from a P2k−2 in Nk. Finally, an edge added between two different
copies of Tk−1 in Nk will produce either a Pk in the two copies of Tk−1, and a
disjoint Pl using vertices in the other copy of Tk−1 along with some vertices in
one of the initial Tk−1, or a Pl in the two copies of Tk−1 disjoint from a Pk in the
third Tk−1 along with two vertices of the triangle. It is in this final case that the
longest path Pl possible is l = d(3k−2)/2e, since not all of the vertices of one of
the Tk−1 are available. Thus, G ∈ SAT(n, Pk ∪Pl). The lower bound is a direct
consequence of Theorem 1.3. �
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The previous result provides support for the following conjecture.

Conjecture 4.1. For n sufficiently large, k ≥ 4, and k ≤ ` ≤ d(3k − 2)/2e,

sat(n, Pk ∪ P`) = n−
⌊
n

ak

⌋
+ 3, and

Nk ∪ Z(n− 3ak, k) ∈ SAT(n, Pk ∪ P`).

The next two theorems support Conjecture 1.1.

Theorem 4.3. Let 1 ≤ t ≤ 3 and n ≥ 6t be two positive integers. Then,

sat(n, tP3) =

⌊
n+ 6t− 6

2

⌋
and (t−1)N3∪

⌊
n− 6t+ 6

2

⌋
P2 ∈ SAT(n, tP3).

Theorem 4.4. (a) For an even integer n ≥ 12 and t = 1, 2,

sat(n, tP4) =
n+ 12t− 12

2
and (t−1)N4∪

(
n− 12t+ 12

2

)
P2 ∈ SAT(n, tP4).

(b) For an odd integer n ≥ 13 and t = 1, 2,

sat(n, P4) =
n+ 3

2
and K3 ∪

(
n− 3

2

)
P2 ∈ SAT(n, P4),

sat(n, 2P4) =
n+ 13

2
and N∗4 ∪

(
n− 13

2

)
P2 ∈ SAT(n, 2P4).

PROOF. (Theorem 4.3) It is readily seen that graph (t− 1)N3 ∪ bn−6t+6
2 cP2

is tP3-saturated and it has bn+6t−6
2 c edges. Let G be a tP3-saturated graph of

order n ≥ 6t. We will show that |E(G)| ≥ bn+6t−6
2 c for t = 1, 2, 3.

In [KT86], the case when t = 1 was proven. Observe that for t ≥ 2, if G
contains N3 as a connected component then the theorem follows by induction.
That is, if G is tP3-saturated and G contains a connected component isomorphic
to N3, then G−N3 is a (t− 1)P3-saturated graph on n− 6 > 6(t− 1) vertices.
Thus, |E(G)| = 6 + |E(G − V (N3))| ≥ 6 + bn+6t−12

2 c = bn+6t−6
2 c. We will

first prove some general structural properties of components in SAT(n, tP3).

For ease of reference, let A represent a connected component of a tP3-saturated
graph G such that |V (A)| ≥ 3. We will begin by proving several properties of con-
nected components of tP3-saturated graphs. By Lemma 2.3 no connected compo-
nent of G of order 3 or more can be a tree. Thus, A must contain at least one cycle
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and |E(A)| ≥ |V (A)|. By Lemma 2.1, the neighbors of any vertex of degree 2 in
G must be adjacent. Thus, if A contains a unique cycle, C, on 4 or more vertices,
then A− E(C) is a forest consisting of |V (C)| nontrivial trees.

Furthermore, observe that no vertex of a tP3-saturated graph can be adjacent
to two vertices of degree 1 because the copy of P3 obtained by adding the edge
between these two pendant vertices can be replaced by one already in the graph.
Consequently, if a component A contains a unique cycle, C, on 4 or more vertices,
in fact A − E(C) is a forest consisting of |V (C)| copies of K2. If a component
A contains a single cycle on 3 vertices, the preceding argument implies that each
vertex of the cycle is adjacent to at most one vertex of degree 1. But, unless
A = K3, A must have at least 6 vertices so A− E(C) is again a forest of K2’s.

We now show that if A is a connected component of a tP3-saturated graph G
such that |E(A)| = |V (A)|, then A = N3. By assumption, A contains a unique
cycle. Clearly, A 6= K3 since K3 itself is not tP3-saturated for any t and no edge
added to K3 can produce a new copy of P3 that can’t be replaced by an existing
copy. Thus, A must take the form of a chordless cycle such that each vertex of
the cycle is adjacent to a single pendant vertex. Since A is not complete, A itself
must be (r+1)P3-saturated for some r ≥ 1. Thus, A contains exactly r copies of
P3. Since each copy of P3 must use at least two vertices of the cycle, A must have
either 4r or 4r + 2 vertices. (That is, the cycle is either C2r or C2r+1.) Label the
vertices of C cyclically, v1, v2, · · · . If r ≥ 2, the edge v1v3 is not in C. But the
graph A+ v1v3 does not contain (r + 1)P3. Thus, A = N3.

Consider the case when t = 2. The argument above implies that, if G ∈
SAT(n, 2P3) and G does not have a component isomorphic to N3, then the com-
ponent of G containing the unique copy of P3 must have order less than 6 and
would consequently be complete. But this forces |E(G)| > (n + 6)/2, a contra-
diction. Thus Theorem 4.3 holds for t = 2.

Consider the case when t = 3. The argument above implies that, if G ∈
SAT(n, 3P3) and G does not have a component isomorphic to N3, then the part of
G containing copies of P3 must lie in a single connected component, A, with be-
tween 9 and 11 vertices, such that |E(A)| > |V (A)|. But |E(G)| < bn+6t−6

2 c =
bn+12

2 c only if |V (A)| = 9 and |E(A)| = 10. A case analysis shows that no such
graph is 3P3-saturated. Thus Theorem 4.3 holds for t = 3. �

The lemmas from Section 2 will now be used to prove Theorem 4.4.

PROOF. (Theorem 4.4) It is already known ([KT86]) and easily verified that
n
2P2 ∈ SAT(n, P4) for n even and K3 ∪ n−3

2 P2 ∈ SAT(n, P4) for n odd. If
G ∈ SAT(n, P4) has an isolated vertex, then all of the remaining components of
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G would have to have at least 3 vertices, and so G would have at least 2(n− 1)/3
edges. This implies the previously defined graphs are minimal and this takes care
of the case t = 1.

Consider the case t = 2. It is straightforward to verify that N4, and also
N∗4 , is 2P4-saturated. Also N4 ∪ n−12

2 P2 ∈ SAT(n, 2P4) and N∗4 + n−13
2 P2 ∈

SAT(n, 2P4) for n even and odd respectively. Assume G ∈ SAT(n, 2P4). Let
H be the component of G that contains a P4. Since G−H must be P4-saturated,
all vertices except at most one must have degree at least 1. If H is complete, then
|H| ≥ 6, which would imply that |E(G)| ≥ 15 + (n − 6)/2 = (n + 24)/2.
Thus, we can assume that H is not complete, and so |H| ≥ 8, since the addition
of any edge in H will result in a 2P4. Thus, G − H will be the disjoint union
of independent edges if |G − H| is even, and the disjoint union of a K3 and
independent edges if |G−H| is odd. Lemma 2.3 implies that H is not a tree, and
so |E(H)| ≥ |H|. Also, Lemma 2.1 implies that any vertex of degree 2 must be
on a triangle.

We will first consider the case when n is even. If |H| = m ≥ 12, then
|E(G)| ≥ m+b(n−m)/2c ≥ (n+12)/2, thus we can assume that 8 ≤ |H| < 12.
More specifically, if |H| = 11, then |E(G)| ≥ 11+3+(n−14)/2 > (n+12)/2.
If |H| = 10 and |E(H)| ≥ 11, then |E(G)| ≥ 11 + (n − 10)/2 ≥ (n + 12)/2.
Therefore, if |H| = 10, then |E(H)| = 10. However, Lemma 2.5 and Lemma 2.7
imply that H is not 2P4-saturated. If |H| = 9 and |E(H)| ≥ 9, then |E(G)| ≥
9 + 3 + (n− 12)/2 = (n+ 12)/2. Therefore, we can assume that |H| = 8.

If |H| = 8 and |E(H)| ≥ 10, then |E(G)| ≥ 10 + (n− 8)/2 = (n+ 12)/2.
Therefore, we can assume that |H| = 8 and |E(H)| = 8 or 9. Lemmas 2.5, 2.6
and 2.7 imply that |E(H)| = 9 and that the longest cycle C in H is a C5. Assume
that |C| = 5. If C has no chords, then H will contain a vertex of degree 2 not
on a triangle, which contradicts Lemma 2.1. If C contains a chord, then 2 of the
remaining vertices in H−C must be adjacent to the 2 vertices of degree 2 in C not
on a triangle. Any possibility for the adjacency of the remaining vertex of H −C
will result in a 2P4, a vertex of degree 2 not on a triangle, or 2 vertices of degree
1 adjacent to the same vertex. Thus, H is not 2P4-saturated. If |C| = 4 and there
is a chord e of C in H , then H − {E(C) ∪ e} is a forest. To avoid a vertex of
degree 2 not on a triangle and 2 vertices of degree 1 adjacent to the same vertex,
the remaining vertices of H −C must be adjacent to distinct vertices of C, giving
a 2P4. Thus, H is not 2P4-saturated. If |C| = 4, and there is no chord in C, then
a vertex in H − C is adjacent to 2 nonconsecutive vertices of C forming a K2,3.
Each of the 3 vertices of degree 2 in the K2,3 will be incident to a pendant edge.
It is easily checked, by adding a chord, that this graph H is not 2P4-saturated. If
|C| = 3, then H contains either 2 vertex disjoint triangles T1 and T2 connected by
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an edge, or the triangles share a vertex. In the case of vertex disjoint triangles, any
choice of the remaining 2 edges will result in a 2P4, a pair of vertices of degree
1 with a common adjacency, or 2 edges incident to distinct vertices of say T1,
with 1 of the these vertices incident to the edge between T1 and T2. It is easily
checked that this last graph is not 2P4-saturated. In the case of triangles sharing a
vertex, any choice of the remaining 3 edges will result in a 2P4, a pair of vertices
of degree 1 with a common adjacency, or the 3 independent edges incident to the
shared vertex of T1 and T2, and an additional vertex of each of the triangles. It is
easily checked that this last graph is not 2P4-saturated.

We now consider the case when n is odd. If |H| = m ≥ 13, then |E(G)| ≥
m + (n − m)/2 ≥ (n + 13)/2. Thus, we can assume that 8 ≤ |H| ≤ 12. If
|H| = 12, then |E(G)| ≥ 12 + 3 + (n − 15)/2 > (n + 13)/2. If |H| = 11
and |E(H)| ≥ 12, then |E(G)| ≥ 12 + (n − 11)/2 ≥ (n + 13)/2. Therefore,
if |H| = 11, then |E(H)| = 11. However, Lemma 2.5 and Lemma 2.7 imply
that H is not 2P4-saturated. If |H| = 10 and |E(H)| ≥ 10, then |E(G)| ≥
10 + 3 + (n − 13)/2 = (n + 13)/2. Next consider the case when |H| = 8. If
|E(H)| ≥ 9, then |E(G)| ≥ 9 + 3 + (n− 11)/2 = (n+ 13)/2. If |E(H)| = 8,
then Lemma 2.5 and Lemma 2.7 imply that H is not 2P4-saturated. The only
case remaining is |H| = 9. If |E(H)| ≥ 10, then |E(G)| ≥ (n + 13)/2. If
|E(H)| = 9, then Lemma 2.5 and Lemma 2.7 imply that H is not 2P4-saturated.
Finally, if |E(H)| = 10, Lemmas 2.6 and 2.7 imply that the longest cycle C in H
is a C5. A similar case analysis by cycle length shows that no such 2P4-saturated
graphs exist. This completes he proof of Theorem 4.4. �

More can be said about saturation numbers involving P3 if there are some
copies of P2 in the linear forest. Our next result illustrates this.

Theorem 4.5. For n sufficiently large and t ≥ 0,

sat(n, tP3 ∪ 3P2) = 3t+ 6 and (t+ 2)K3 ∪Kn−3(t+2) ∈ SAT(n, tP3 ∪ 3P2).

PROOF. Clearly for t ≥ 0, (t + 2)K3 ∪Kn−3(t+2) ∈ SAT(n, tP3 ∪ 3P2),
and so sat(n, tP3 ∪ 3P2) ≤ 3t+ 6. Let G ∈ SAT(n, tP3 ∪ 3P2). Let H be the
subgraph of G of components with at least 3 vertices. So, G = H ∪mK2 ∪ (n−
2m− |H|)K1, where m ≥ 0.

We proceed by induction. If t = 0, then by Theorem 1.2, sat(n, 3P2) = 6. If
one of the components of H is a K3, then G−K3 ∈ SAT(n−3, (t−1)P3∪3P2)
and by induction |E(G −K3) ≥ 3(t − 1) + 6, and the result follows. Thus it is
sufficient assume no component of G is a K3 and produce a contradiction.
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We will begin by establishing some properties of H. By Lemma 2.1, any
vertex in H of degree 1 will be adjacent to a vertex of degree at least 3. Also, if
two vertices u and v of degree 1 are adjacent to a vertex w, then the addition of
any edge e between w and an isolated vertices of G will result in a tP3 ∪ 3P2.
Clearly, the edge e can be replaced by one of uw or vw, a contradiction. Thus, no
two vertices of degree 1 in H are adjacent to the same vertex. Thus, no component
of H is a tree and |E(H)| ≥ |V (H)|.

Next we will show that any connected component of H , say A, such that
|E(A)| = |V (A)| must have a particular structure. Clearly A must have a unique
cycle, C. The same argument that implies that no component of H is a tree also
forces A − E(C) to be a forest of K2’s if |V (C)| ≥ 4. If |V (C)| = 3, then
A− E(C) is a forest of K2’s and K1’s.

However, if |V (C)| ≥ 4 and we label the vertices on the cycle v1, v2, · · · ,
then A+v1v3 is not rP3∪sP2-saturated for any r and s. Similiarly, if |V (C)| = 3
and A−E(C) has only one or two K2’s, the graph A is not (rP3∪sP2)-saturated
for any r and s. Thus, A = N3.

Now we split the argument into cases according to the value of m, the number
of K2’s in G.

If m ≥ 3, then the addition of an edge e between vertices in (n−2m−|H|)K1

should result in a tP3 ∪ 3P2, but one of the edges in 3K2 could play that role, a
contradiction. Hence, we can assume that m < 3.

If m = 0, then either H is a complete graph with exactly 3t + 5 vertices or
it is not complete with at least 3t + 6 vertices. Clearly in each of these cases,
|E(H)| ≥ 3t+ 6.

If m = 1, then |H| ≥ 3t+ 4. If H is complete, then |E(G)| ≥
(
3t+4
2

)
+ 1 ≥

3t + 6. If H is not complete, then |E(G)| ≥ (3t + 5) + 1, unless |E(H)| =
4t + 4 = |V (H)|. So H is the disjoint union of components isomorphic to N3.
For t = 1, we see that the graph N3 ∪K2 is not (P3 ∪ 3P2)-saturated. If t ≥ 2,
then H would have to contain tN3. Therefore, |E(G)| ≥ 6t+ 1 ≥ 3t+ 6.

If m = 2, then the addition of an edge between the two independent edges of
G−H will result in a P3, and so H would have to contain at least 3(t− 1)+ 6 =
3t + 3 vertices. Thus, if |E(H)| > |H|, then |E(G)| ≥ (3t + 4) + 2, so we can
assume that H would have to contain tN3. For t = 1, the graph N3∪2K2 already
contains P3 ∪ 3P2, and so is not saturated. If t ≥ 2, then H would have to contain
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tN3, and so |E(G)| ≥ 6t + 2 ≥ 3t + 6. This completes the proof of Theorem
4.5. �

The previous theorem has recently been generalized in [JF]

Theorem 4.6. For n sufficiently large and s ≥ 3,

sat(n, tP3∪sP2) = 3(s+t−1) and (s+t−1)K3∪Kn−3(s+t−1) ∈ SAT(n, tP3∪sP2).
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