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Abstract We investigate pairs of forbidden subgraphs that imply a 3-connected
graph is Hamiltonian-connected. In particular we show that the pair {K1,3, P9} is such
a pair. As it is known that P10 cannot replace P9, this result is best possible. Further,
we show that certain other graphs are not possible.

Keywords Hamilton-connected · 3-Connected · Claw-free · Dominating · Closure

1 Introduction

We will begin by outlining some notation that we will use throughout the paper. Of
particular importance is the claw, denoted K1,3, which is the complete bipartite graph
with partite sets of size one and three. Also, we will denote the path on k vertices
as Pk , and the generalized net as N (i, j, k), which is a triangle with disjoint paths of
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length i, j, and k, attached to distinct vertices of the triangle. We use �(v) to denote
the neighborhood of v, �[v] to denote the closed neighborhood of v (i.e. �(v)∪ {v}),
and Łk to denote two vertex disjoint triangles connected by a path with k edges. For
terms not found here, see [4].

Given a graph H , we say that G is H -free if G contains no induced subgraphs
isomorphic to H . For a family of graphs F , G is called F-free if it contains no
subgraph isomorphic to any of the graphs in F . Likewise, we call F a forbidden
family with respect to G when G is F-free. This paper examines families of graphs
F , for which G being F-free implies that it is Hamilton-connected.

If G is Hamiltonian-connected, then it is Hamiltonian. Therefore, if a forbidden
family F implies that a graph G is Hamiltonian-connected, it also implies that G is
Hamiltonian (i.e. the class of families which imply a graph is Hamilton-connected is
a subfamily of the class of families which imply a graph is Hamiltonian). We will
therefore begin by examining what is known in the case of Hamiltonicity.

It is well known that the only single forbidden graph which implies G is Hamiltonian
in general is P3. Therefore, the interesting question is to classify all pairs of graphs
{H1, H2} such that any graph G which is free of this pair necessarily has the desired
Hamiltonian property. A complete classification of forbidden pairs which imply that
a 2-connected graph is Hamiltonian was determined by Bedrossian [1] for all graphs
and further generalized by Faudree and Gould [7] for all sufficiently large graphs.

Any graph which is Hamiltonian-connected must be 3-connected. Therefore, the
natural problem to consider is which forbidden pairs of graphs {H1, H2} imply that
a 3-connected {H1, H2}-free graph G is Hamiltonian-connected. These pairs have
been much harder to determine, and thus a complete classification is not yet known.
However, it is known that one of the two forbidden subgraphs, say H1, must be the
claw. Indeed, in [7], Faudree and Gould began to classify the properties of graphs H2
that could form a forbidden pair with the claw, H1 = K1,3, implying a 3-connected
{H1, H2}-graph is Hamiltonian-connected. A strengthening of these properties was
given in [2]. These results greatly reduce the number of potential graphs that can play
the role of H2.

We now list the known graphs H2 which, together with the claw, imply that a
3-connected {K1,3, H2}-free graph is Hamiltonian-connected.

– [9] N (1, 1, 1)

– [7] N (2, 0, 0)

– [5] N (3, 0, 0), N (2, 1, 0) and P6
– [2] Ł1
– [6] P8, N (1, 1, 3) and N1,2,2.

In the negative direction, Faudree et al. [6] gave examples which proved that 3-
connected {K1,3, H2}-free graphs are not necessarily Hamiltonian-connected when
H2 is any of the following:

– Łk with k ≥ 4
– N (i, j, k) with i + j + k ≥ 8, and
– P10.

Combining these results with the original classification in [7], the only remaining
possibilities for the graph H2 are as follows:
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Fig. 1 Graph G1 eliminating
L1 with trees off the triangles
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(a) P9;
(b) N (i, j, k) with some restrictions on how large i, j, k can be;
(c) Ł3;
(d) Łk with k ≥ 2 and with trees attached to either of the two triangles.

In this paper we work to further classify the pairs of graphs such that G being
3-connected and {K1,3, H2}-free implies G is Hamiltonian-connected. The results of
this paper are presented in two parts. First, we present infinite families of graphs that
are 3-connected and not Hamiltonian-connected in order to further reduce the list of
possible forbidden pairs. In particular, we eliminate (d) from the list above. Second,
and the more substantial part of the paper, we prove the following theorem:

Theorem 1 Every 3-connected {K1,3, P9}-free graph is Hamiltonian-connected.

This result finishes the classification of paths as forbidden subgraphs for 3-
connected Hamiltonian-connected graphs.

1.1 Families of 3-Connected Non-Hamiltonian-Connected Graphs

In this section, we further reduce the list of possible graphs H2 such that every
{K1,3, H2}-free graph is Hamiltonian-connected by presenting some infinite families
of claw-free graphs that are {K1,3, H2}-free, but not Hamiltonian-connected.

Theorem 2 If G being 3-connected, claw-free and Y -free implies G is Hamiltonian-
connected, then Y cannot be an Łk with tree components on either of the two triangles.

Proof In order to prove the theorem, we must provide a class of 3-connected, claw-
free graphs that are not Hamiltonian-connected and do not contain any Łk with trees
attached to either of the end triangles as induced subgraphs. Of course, it is only
necessary to consider Ł1, and Ł3 with tree components, since 3-connected {K1,3, Łk}-
free graphs are not necessarily Hamiltonian-connected for any k �= 1, 3.

The graph G1 in Fig. 1 contains no Ł1 with trees attached to either of the triangles.
This can be seen by noting that the only induced copies of Ł1 occur with triangles
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Fig. 2 Graph G3 eliminating
L3 with trees off the triangles
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contained in separate cliques. Adding an edge off of either triangle would induce an
additional edge between the new vertex and another vertex of the triangle, also in the
clique.

Likewise, the graph G3 in Fig. 2 contains no induced copy of Ł3 with trees attached
to either of the triangles, since any induced Ł3 must occur with the triangles between
the cliques.

2 Proof of Main Result

2.1 Setup

Let G be a {K1,3, P9}-free graph, and fix an arbitrary pair of vertices u and v. We wish
to show that there is a Hamiltonian path between u and v. A tool which we will use to
find this Hamiltonian path is a closure concept introduced by Brandt [3]. We denote
this closure as clu,v(G).

Denote the graph obtained by removing an edge from K4 by K−4 . The graph K−4 has
two vertices of degree three, which we call its center vertices. The closure clu,v(G)

is obtained by creating a sequence of graphs G = G1, G2, . . . , Gn where Gi+1 is
obtained from Gi by adding an edge to in induced copy of K−4 in Gi in which neither
of its center vertices are in {u, v}. The unique maximal graph obtained by this process
will be referred to as clu,v(G).

This closure is especially useful because when applied to G it preserves the length of
the longest u, v path and also preserves the property of G being P�-free. We summarize
the important facts about this closure, obtained in [3,8], below when G is a claw-free
graph:

Theorem 3 Let G be a claw-free graph and suppose G ′ = clu,v(G). Then:

(i) G ′ has a Hamiltonian u, v path if and only if G has a Hamiltonian u, v path,
(ii) If G is P�-free, so is G ′,

(iii) G ′ \ {u, v} is the line graph of a triangle-free graph.
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Fig. 3 The path P ′ in ˜G with the subpath P inside the dotted line

We thus assume that G = clu,v(G) (i.e. G is a closed graph with respect to the
closure clu,v for the remainder of the paper. Let ˜G = L−1(G) denote the inverse line
graph of clu,v(G). A basic property of line graphs is the following:

Fact 1 Suppose G contains some graph H as a (not necessarily induced) subgraph.
Then L(G) contains L(H) as an induced subgraph.

Based on this fact it follows that, if a 3-connected, claw-free graph G is P9-free,
then ˜G does not contain P10 as a subgraphs.

Let S = N (u) denote the neighborhood of u in G, and likewise let T = N (v).
Let R = L−1(S) and B = L−1(T ) be the set of edges in the inverse line graph ˜G
corresponding to the set of vertices S and T in G respectively. We call the edges in R
‘red’ and edges in B ‘blue’. Of course an edge may be both red and blue simultaneously,
i.e. R ∩ B is not necessarily empty. The key to our approach is the following:

We call a trail P an (R, B)-dominating trail if it satisfies the following. P starts at
one of the vertices of a red edge r ∈ R and ends at one of the vertices of a blue edge
b ∈ B, and E(P) does not contain either r or b. Furthermore, P is an edge dominating
trail of ˜G.

It is well known that an edge-dominating trail in a graph corresponds to a Hamil-
tonian path its line graph. By forcing P to start at a vertex of a red edge, and finishing
at a vertex of a blue edge, we ensure that the endpoints of the Hamiltonian path lie in
the neighborhoods of u and v. Hence the path may be extended from a Hamiltonian
path in L(˜G) to a (u, v)-Hamiltonian path in G.

In order to prove Theorem 1, we must show the following. Given any inverse line
graph ˜G of a graph G, which is closed with respect to clu,v and has maximum path
at most P9 contains an (R, B)-dominating trail. Let P ′ = p0 p1 p2 · · · pk−1 denote a
longest path in ˜G, and let P = p1 p2 · · · pk−2 be the vertices in the interior of P ′. Note
that |V (P ′)| < 10, so |V (P)| ≤ 7.

We will now establish some language that we will use throughout the duration of
the paper. First, and most importantly, let us describe a canonical picture of the graph
˜G, so that we may reference certain important vertices in ˜G throughout the paper with
ease. As mentioned above, ˜G has a path of maximum length, P ′ (in fact this path may
not be unique, but if this is the case we will arbitrarily fix one such path as P ′). We
will imagine this path laid out from left to right as in Fig. 3. We will often refer to
P ′ as the path of ˜G. If we remove the vertices of P ′ from ˜G, then the remainder of
the graph is a set of disjoint components. We will let C be the set of these disjoint
components. Since ˜G is connected, any component C ∈ C will be adjacent to one or
more of the vertices of P ′. We will therefore let v(C) denote the number of vertices of
the path which C is adjacent to. Finally, note that it will be convenient to consider each
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component C , together with the vertices of the path which are joined to C (as well as
the edges which join the two). For example, all of the components in Appendix A are
drawn in this way.

The bound on the size of the maximum length path and the triangle free condition
together impose severe restrictions on the structure of the components. Further, the
3-connectedness of G (and hence essential 3-edge connectedness of ˜G) places further
restrictions on the total number of components, as well as the distribution of the red
and blue edges in ˜G. The next lemma gives all of the possible isomorphism types of
the components and partitions them into classes, which we refer to as types. Here, a
component is of type Ti if v(C) = i .

Lemma 1 Let C consist of the set of components of ˜G (see the definition above). Then
v(C) ≤ 4, and hence C = T1 ∪ T2 ∪ T3 ∪ T4. Furthermore if a component C ∈ C
contains an edge, the following must be true:

(i) If there is a single edge joining C to P, then C must contain both a red and a
blue edge (they may be the same). Furthermore, such a component is unique if
it exists.

(ii) If C ∈ T2 If there are precisely two edges joining C and P, then there is either
a red or a blue edge within C. Further there may be at most two components of
such a type for each color (four in total).

(iii) If C ∈ T1 and is joined to P by more than one edge, then there exists a closed
trail dominating C.

Moreover, all components in C are isomorphic to one of the types enumerated in
Appendix A.

Proof That the components fall into one of the types {Ti }4i=1 is immediate from the
fact that |P| ≤ 7, and ˜G is triangle free. The first assertions of (i) and (ii) follow
from G being 3-connected. Consider e, e1, e2 ⊆ ˜G. Define L(e) to be the vertex in
G that corresponds to the edge e in ˜G. Suppose the removal of e from ˜G disconnects
e1 and e2. Since G is 3-connected, the removal of L(e) ∈ V (G) does not disconnect
L(e1) and L(e2). In fact, there must exist two vertex disjoint paths between them in
G as G \ L(e) is at least 2-connected. Since these paths do not correspond to paths in
˜G, they must pass through u and v (and hence there must be red and blue edges on
both sides of the cut). Likewise, if the removal of two edges disconnects ˜G, the three
connectivity of G implies that there must be either a red or a blue edge on each side
of the cut (note: if uv ∈ E(G), then it may be the case that there is a red edge on one
side of the cut, and a blue edge on the other—there need not be the same color on both
sides).

The second part of (ii) follows from the fact that there cannot be three vertex
disjoint red (or blue) edges. If there were, this would correspond to a claw in G.
This observation also helps imply the second part of (i). Suppose there were two such
components, connected to P by e1 and e2. There cannot be a red or blue edge elsewhere
in the graph, other than in those components, as otherwise there would be three disjoint
edges of the same color. But then removing L(e1) and L(e2) disconnects u and v from
the remainder of the graph, violating the condition that G is 3-connected.
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Statement (iii) follows from inspection of the types enumerated in Appendix A. We
also argue that these are the only classes in the appendix.

A brief outline of the proof is as follows: in the case where there are T3 or T4
components, it turns out that the structure of ˜G is very restricted when we take into
consideration that P is a longest path. We will (through some rather tedious, but easy,
case analysis) handle these cases separately. In the case where all components are of
type T1 or T2, we will define a new (multi)graph on a subset S ⊆ P , where a suitably
defined trail hitting all vertices of S (and perhaps a few specified edges) will correspond
to an (R, B)-dominating trail in ˜G. As mentioned already, this (R, B)-dominating trail
in ˜G will correspond to the desired (u, v)-Hamiltonian path in G.

2.2 Graphs Without T3 and T4 Components

Here, as in the previous section, we assume ˜G is a triangle-free graph with maxi-
mum length path P and C is the set of components of ˜G \ E(P). By assumption, all
components in C are of type T1 or T2.

Let S ⊆ V (P)(⊆ V (˜G)) denote the set of vertices x ∈ V (P) satisfying either of
the following:

(i) x is incident to an edge in some component C ∈ C.
(ii) All edges incident to x are colored.

We define a (multi)graph on S where there is an edge xy ∈ E(S) with multiplicity
the total multiplicity of any of the following events:

(i) There is an edge from x to y in ˜G.
(ii) There is a T2 component C such that V (C) ∩ V (P) = {x, y}.

(iii) If x = pi and y = pi+2 ∈ V (P) and pi+1 �∈ S.

Note that we call an edge e ∈ S marked if it arises from case (ii) above and the
component C contains an edge e′ which is vertex disjoint from P . The reason that we
mark these edges is because it will be necessary that our dominating trail in S uses
these edges in order to lift to a trail in ˜G which dominates edges such as e′.

We color an edge xy ∈ E(S) red (respectively blue) if it corresponds to a red (resp.
blue) edge in P or if it corresponds to a component C ∈ C that contains a colored
edge. Note that by part (ii) of Lemma 1, all marked edges are colored. An edge, of
course, may be colored both red and blue.

We will now use the colored edges to color the vertices of S. The following lemma
is key in allowing us to do so in a well-defined manner:

Lemma 2 If an edge in ˜G is colored, then one of its endpoints must be the center of
a monochromatic star.

Proof Let xy be a colored edge. Without loss of generality, we can assume that it is
colored red. If all edges incident to x are red, then x is the center of a monochromatic
star. So assume that there exists an edge xxi such that xxi is not colored red. If there
exists an edge yy j such that yy j is also not red, then the images of xy, xxi , and yy j
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in G = L(˜G) along with the vertex u form an induced claw centered at the image of
xy. Therefore, all edges yy j must be colored red. The argument for an edge colored
blue is similar, with v being the fourth point in the induced claw.

We color a vertex x ∈ S red (or blue) if one of the following conditions hold:

(i) x is the center of a monochromatic star in red (or blue),
(ii) x is adjacent to a marked red (blue) edge.

(iii) x is the attachment point of a component of type (a) or (b) in ˜G.

Notice that in case (iii) above, x is colored both red and blue since, by Lemma 1(i),
the component must contain an edge of each color. Our main tool is the following:

Lemma 3 If there exists a spanning trail T in S with all of the following properties:

(i) One endpoint of T is a red vertex and the other is a blue vertex,
(ii) If a component of type (a) or (b) is present and y ∈ V (S) is the attachment point

of this unique component in ˜G, then T starts at that vertex (which is colored both
red and blue),

(iii) T uses every marked edge;

Then there exists a dominating trail in ˜G connecting a red edge to a blue edge.

Proof There is an obvious lift from such a trail T to a trail T ′ in ˜G. It is clear that
T ′ starts at a red vertex because one of the three conditions listed above. The first
possibility is that T starts at a red vertex that corresponds to the center of a red star
in ˜G then the trail T ′ starts at that vertex. The second possibility is that T starts at a
red edge that corresponds to a marked component C which contains a red edge. In
this case we will consider T ′ as starting at the red edge within C . By Lemma 1 and
inspection we observe that we can find trail starting at a red edge in the interior of
any component of type T1 or T2 that dominates all edges of C with the exception of
possibly one edge incident to P .

At a given vertex x in ˜G, there may exist components of type T1. Note that except
for the case when x is colored both red and blue, there is a loop based at x which
travels through the component and dominates all edges. In the case where there is
a T1 component connected to P by a single edge, we start at the red edge within
this component in order to dominate it. Thus, we may extend T ′ to a trail T ′′ which
dominates all T1 components.

Note that all T2 components which are not a single vertex connected to P by
two edges are marked, and thus are used by assumption. An edge in S that is not
used by T may correspond to an edge in ˜G or may correspond to a T2 component
consisting of a single vertex connected to P by two edges. In these cases the edges
involved are dominated as their endpoints are in S and all vertices in S are visited.
Another possibility is that an edge in S not used by T corresponds to a P3 ⊆ P . Note
that Lemma 1 guarantees that this edge cannot correspond to a longer path. The end
vertices of this path are clearly visited by T ′, which shows that the edges of this P3
are dominated by T ′.

For the rest of the section, we concentrate on finding the desired trail T in S which
uses all of the vertices of S and all of the marked edges.
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We will begin by assuming that V (S) = V (P). That is, none of the vertices on the
main path are lost when we perform the reduction from ˜G to S. We will then remark on
how the case when |V (S)| < |V (P)| is different. Let s1, s2, . . . , s7 denote the vertices
of S and define the graph S′ so that V (S′) = V (S) and E(S′) = E(S) \ {si si+1 : i =
1, 2, . . . , 6}. Note that since we have removed more than three edges from S then S′
may be disconnected.

Our main argument is to find an appropriate connected subgraph in which all of the
vertices are of even degree and there is an edge between a red and blue vertex. The
even degree condition implies that this subgraph has an Eulerian trail. Further, since
there is an edge between a red vertex and a blue vertex, we will thus find an Eulerian
trail from the red vertex to the blue vertex which finishes the argument. The main
obstacle to this goal is that S′ may be disconnected, and in fact might have up to five
components. Since S is connected (in fact essentially three-edge connected) we can
easily reintroduce enough edges to connect S′ with the added edges. The argument is
more complicated however due to the fact that we wish to preserve the parity of the
degrees of all of the vertices as well. Therefore, we split the remainder of the argument
into cases based on the number of components that have at least one color.

Definition 1 Let G be a graph and H ⊆ G be a subgraph such that V (H) = V (G).
Then if H has at least one vertex of odd degree, we rectify H by adding edges from
E(G) \ E(H) in order to make the degree of every vertex even. In this case we call
H rectifiable.

Notice that not every subgraph is necessarily rectifiable. However we will now
show that S′ is always rectifiable.

Lemma 4 It is always possible to rectify S′ by reintroducing a subset of the edge set
{si si+1 : 1 ≤ i ≤ 7}.
Proof It is a simple fact that the number of vertices in S′ with odd degree must be
even. We will therefore pair up the vertices of odd degree, (si , sk), consecutively along
the path from left to right and define a new graph S′′ so that V (S′′) = V (S′) and

E(S′′) = E(S′) ∪ {s j s j+1 : (si , sk) are a pair of vertices with odd degree and

i ≤ j < k}

Note that if s j is of odd degree in S′, then this process increases the degree sum by
one, thereby making it even. Also note that if s j is of even degree and i < j < k then
the degree of s j is increased by two, preserving its even parity. Thus every vertex in
S′′ is of even degree.

Theorem 4 Any graph S′ constructed as described above can be modified by adding
an edge between a red vertex and a blue vertex so that the graph obtained by rectifying
the modified S′ contains an Eulerian circuit.

Proof The argument proceeds by cases depending on the number of components that
contain a colored vertex, and we begin with a simple case that motivates the ideas used
throughout the proof.
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Case 1: (S′ is connected)

We start by adding an edge between a red vertex and a blue vertex, which we will refer to
as a phantom edge since the edge itself does not exist in ˜G. The purpose of the phantom
edge is to directly connect a red and blue vertex, so if they are already connected this
edge is not strictly necessary. Finally since S′ (and hence S′′) is connected and every
vertex in S′′ has even degree by Lemma 4, it follows that we can find an Eulerian
circuit in S′′. Note that since S′′ has an edge between a red and a blue vertex, if we
remove this edge from S′′ the result is an Eulerian trail starting at a red vertex and
ending at a blue vertex. Thus we have found the desired trail when S′ is connected.

For the rest of the proof we will assume that S′ is disconnected, and split the
argument into cases based on the number of components of S′ which have at least
one colored vertex. For each case, we argue that there is a way to connect S′′ by
strategically adding the phantom edge, removing non-marked edges, and rectifying
S′.
Case 2: (Exactly one component of S′ contains colored vertices)

In this case, S′ can contain at most three components. Otherwise if there are four or
more components, a simple averaging argument yields that at least one component
must be an isolated vertex. Any isolated vertex in S′ can be disconnected from S
by at most a 2-cut and hence must be a colored vertex in order to retain the 3-edge
connectivity of ˜G. By the assumption of the case, this must be the only colored vertex in
S. This implies that all of the colored vertices are on one side of a 2-edge cut in S. This
yields a 2-cut in G which cannot happen. Thus there can be at most three components.
Note that we add the phantom edge only to connect a red vertex to a blue vertex, but
otherwise we do not use the phantom edge in this case to increase connectivity among
the components of S′. Also note that since we can place the phantom edge between
any red and blue vertex, if there is a vertex that is colored both red and blue due to a
component of type (a) or (b) we take care to ensure that it is one of the endpoints of
the phantom edge.

If there are two components, let us call them C and N where C is the component
which contains the colored vertices. Since C and N cannot be separated by a two-edge
cut, there must be a vertex from C between two vertices from N (where “between”
here is in reference to the ordering given to the vertices of S′ by the main path).
Thus consider the subpath si si+1 . . . s j such that si , s j ∈ V (N ) and sk ∈ V (C) for
i < k < j . If, after rectifying S′, either of the edges si si+1 or s j−1s j are added, then
the two components will be connected and we can find the desired Eulerian circuit.
Otherwise, neither edge is added in the process of rectification. We can remedy this
situation as follows. Since N is a connected component, there exists a path in N
connecting si to s j . We will remove from S′ the edge of the shortest such path which
passes over the edges si si+1 and s j−1s j in our embedding. Note that there must be a
single edge which passes over both since there are no vertices of N strictly between
si and s j . Since no edges in N are colored by assumption, then the edge which we
remove is not marked, thus its deletion causes no problems. It can easily be observed
that this changes the parity of exactly one vertex to the left of si+1 by one as well as
the parity of exactly one vertex to the right of s j−1. Therefore, when we rectify S′, the
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edges si si+1 and s j−1s j will now be added, which connects N and C . Note that by
removing an edge of N , we may disconnect it into a most two subcomponents, but if
this happens si and s j will be in different components and both are connected to C in
the process. Thus the result of this removal prior to rectifying S′ is a single component
after rectifying S′, and hence we can find the desired Eulerian trail.

If there are three components, then the orders of the three components must be
precisely two, two and three. This follows from the fact that none of the components
are allowed to have order one without there being a 2-edge cut between the component
with colored vertices and at least one of the components without colored vertices.
The vertices {s0, s1, s5, s6} must span at least two components since there are four
vertices. Thus at least one of the edges (s0, s1) or (s5, s6) connects two components of
S′. By forcing either s0 or s6, respectively, to have odd degree in S′, we can force two
components to be connected by rectifying the modified S′. Consider then the outer
vertices along the main path, s0 and s6. If these two vertices are in the same component,
then in order to avoid the 2-edge cut (s0, s1) and (s5, s6) the vertices must be in the
unique component of order three. An easy observation is that we may make the degree
of either s0 or s6 (of our choice) odd by removing edges without disconnecting the
component, since no edge incident to either s0 or s6 is marked. Otherwise, if s0 and
s6 are in different components, then at least one of the two vertices must be in a
component of order two, let us say s0 without loss of generality. Thus we can ensure
that the degree of s0 is odd. Note also that s1 must be in a different component from
s0 since the only edge in S which connects the two vertices is the edge along the main
path (this follows from the fact that S is triangle-free). In both cases the number of
components is reduced from three to two. It is easy to observe that we may apply the
argument from the previous paragraph to connect the third component. Note that the
steps taken in the above argument cannot change the parity of the outer vertex which
we modified.

Case 3: (Exactly two components of S′ contain colored vertices)

Consider the two components of S′ which have a colored vertex. Since there is at
least one blue vertex and at least one red vertex in S′, it follows that one of the
components must contain a red vertex and the other a blue vertex. We therefore connect
the two colored components by adding a phantom edge between the red vertex of one
component and the blue vertex of the other component. Now there is exactly one
component with colored vertices, so the resulting graph can be handled with Case 2.
As in the previous case, we take care to choose any vertex colored both red and blue
due to a component of type (a) or (b) as an endpoint of the phantom edge if such a
vertex is present.

Case 4: (Exactly three components of S′ contain colored vertices)

Let si , s j , sk, 0 ≤ i < j < k ≤ 6 be the first colored vertex from the colored
components C1, C2 and C3 respectively as we traverse the main path of S from left to
right. There must be some �, i ≤ � < j such that all of the vertices from si and s� are
in C1 and s�+1 ∈ C2 ∪ C3. Similarly there must be some integer m, i ≤ m < j such
that sm ∈ C1 ∪ C3 and sm+1 ∈ C2.
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First suppose that si and s j are red and sk is blue. In this case, if the edge smsm+1
is not added when we rectify the graph, then by adding the phantom edge between si

and sk we force the edge smsm+1 to be present after rectifying the modified S′. Hence
all three colored components are connected. Suppose instead that the edge smsm+1
is added by rectifying S′. Notice that, if sm ∈ C1 then simply choosing s j sk as the
phantom edge connects all three components, so suppose that sm ∈ C3. Since sk ∈ C3
then there is a path connecting these vertices. Consider the edge in this path which
passes over the edge smsm+1. This edge could not have been marked, or else sm would
have been colored, and we assumed that sk with k > m is the first colored vertex in
C3. Thus we remove this edge from S′ and add the phantom edge again between si

and sk . The combined result of these two modifications to S′ is that all three colored
components are again connected after rectifying the modified S′. Finally we must
consider the possibility of the presence of components without colored vertices. In
order to satisfy the assumption that sm ∈ C3 for some i < m < j we need that four
vertices are in colored components. Since each noncolored component must contain at
least two vertices and that there are only at most seven vertices total in S′, it follows that
there can be only a single non-colored component in this case, call this component N .
The spanning subtree of N must be a path of length two, so remove all of the “excess”
edges, so that N is isomorphic to a path of length two. Then two of the vertices in N are
both of odd degree, which leaves only two possibilities. Either the two vertices in N of
odd degree are consecutive along the main path of S, or else they are not. Each of the
two vertices will be connected to the vertex to either its immediate left or immediate
right after rectifying S′, so in the latter case, N will always be connected to one of C1,
C2 or C3. In the former case, it is possible that the two vertices in N of odd degree are
paired up in the rectification process. While this initially seems problematic, we can
fix this by removing one of the two edges and isolating the corresponding vertex. The
two vertices will each be connected to a colored component. Thus we conclude that
we can connect all components after rectifying S′ in this case.

Now suppose instead that si and sk are red and s j is blue. If there exists a pair of
vertices s�, s�+1 such that s� ∈ C1 and s�+1 ∈ C3 (or vice versa), then whether or
not the edge s�s�+1 is added after rectifying S′, we can add the phantom edge in such
a way as to connect all three colored components. If no such pair exists, then there
must be an integer m such that j < m < k and sm ∈ C2, sm+1 ∈ C3. Since sm+1 is
not 1-edge disconnectable from S, there must be either a vertex from C3 to the left
of sm or a vertex from C1 ∪ C2 to the right of sm+1. In either case, there is again a
(necessarily unmarked) edge which passes over smsm+1. Removing this edge allows
us to force the edge smsm+1 to be added after rectifying S′ and thus connecting all of
the colored components as before. Finally we can handle the noncolored components
similarly to the previous paragraph.

There is one final case to consider, when one of the colored vertices is colored both
red and blue. In this case the doubly colored vertex must be one of the vertices in the
phantom edge. If si (or symmetrically sk) is the vertex colored both red and blue, then
si is a component of order one. There are two possible choices for the phantom edge,
si s j and si sk , and the choice is dictated by the presence of the edge smsm+1 where m
is defined as above. Instead, suppose that s j is the component of order one which is
colored both red and blue. It is easy to see in this case there must be an �, 1 ≤ � ≤ 6
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such that s� ∈ C3 and s�+1 ∈ C1 (or vice versa) from the fact that s j is the only vertex
in C2 and neither C1 nor C3 can be 1-edge disconnected from S. By the symmetry
present in this case, we may assume that � < j . If s�s�+1 is present after rectification,
we choose s j sk as the phantom edge. If s�s�+1 is not present, then we choose si s j as
the phantom edge.

Case 5: (Exactly four components of S′ contain colored vertices)

There are at most seven vertices in the graph S′, and since there are four components
with color, there must be a colored component which is an isolated vertex. Further
this isolated component cannot be either of the outer two vertices (s0 or s6). Let us
call si the isolated colored component. Since si is of even degree in S′, it will not
interfere with whether or not the edges si−1si and si si+1 are included after rectifying
S. Therefore, we can ignore this vertex and use the argument from Case 4 for the
remaining graph S′ \ {si } which has precisely three colored components.

Thus there is always a way to modify the graph S′ so that rectifying the modified
S′ results in a connected graph with a Eulerian trail from a red vertex to a blue vertex.

2.3 Graphs with T3 or T4 Components

In this section, we will use a case analysis to handle the case when ˜G contains either
a T3 component or a T4 component. Here, we again assume ˜G is a triangle-free graph
with P the interior of a selected longest path P ′ in ˜G.

We will first establish some notation, in order to facilitate the reading, as much as
possible. First, let us label the vertices of P by {0, 1, 2, . . .}. Also, for any vertex x on
P ′, we will use x+ to denote the vertex immediately following x and x− to denote the
vertex immediately preceding x along P (i.e. 2+ = 3 and 2− = 1. If there is a choice
of P ′ without a T3 or T4 component we may select that P ′ and be guaranteed a red-blue
dominating trail from the previous subsection. We can therefore assume that for all
choices of P ′ there is at least one T3 or T4. When referring to a specific component,
we will refer to it as T (X) where X is the set of vertices of P which the component
is incident to. If there exists a vertex within the component that is not incident to P ,
we will denote the component by T ′(X).

In each subsection, we will select one component and refer to it as the primary
component and all other components secondary components. Throughout, we will
use A when referring to a vertex in the primary component that is adjacent to P and
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B when referring to a vertex in the primary component that is not adjacent to P . We
denote by i

−→
P j the subpath of P between vertices i and j and denote by i . . . j (k . . . �)

either the trail i . . . j or the extended trail i . . . jk . . . �.
The claw-free condition on G forces a useful structure on the colored edges of ˜G.

We will use this structure to color the vertices of ˜G and more easily identify red-blue
dominating trails.

We initially color vertices of P based on the colored edges in ˜G. A vertex is colored
red or blue if it is the center of a monochromatic star of that color. If an edge is colored,
at least one of its end vertices is also colored by Lemma 2. If a dominating trail that
starts at a red vertex and ends at a blue vertex can be found, it can be converted to a trail
that begins at one end of a red edge and ends at one end of a blue edge that does not
use either edge in the following way. If there is an edge incident to the colored vertex
that is not used in the dominating trail, we have the necessary trail. If there is not an
edge incident to the colored vertex that is not used in the dominating trail we truncate
the path at the second to last vertex to ensure we end at the end of the colored edge
without actually using it. Note that truncating the trail in this manner only removes
dominance of edges incident to an end vertex, all of which are used in the trail if this
truncation is necessary.

While only one type of T4 component, T (1, 3, 5, 7), can exist, eleven types of
T3 components can exist: T (1, 3, 5), T (1, 3, 6), T (1, 3, 7), T (1, 4, 6), T (1, 4, 7),
T (1, 5, 7), T (2, 4, 6), T (2, 4, 7), T (2, 5, 7), and T (3, 5, 7). Additionally, different
choices of P ′ can give rise to different component types. Therefore, we choose P ′ in
a specific manner so as to obtain one of our preferred primary components if possible.

We select our P ′ by carefully reducing the set of longest paths. We select first
the subset of longest paths that have the maximum number of T4 components. We
further reduce the number of paths in our set by taking the subset with the fewest
T3 components. From this final subset we choose a path that has the most preferred
primary component. Our preference for a primary component is given by the following
order: T (1, 3, 5, 7), T (1, 3, 7), T (1, 3, 5) and finally T (2, 4, 6). We need not extend
our component preferences further because if any of the other seven T3 types is present,
we can find an alternate P ′ that has one of our preferred types and the same number
of T3 components.

We can eliminate the need to consider the components T (3, 5, 7), T (2, 5, 7),
T (2, 4, 7), and T (1, 5, 7) by noting that reversing the path P ′ transforms them to
T (1, 3, 5), T (1, 3, 6), T (1, 4, 7), and T (1, 3, 7), respectively. We can also trade the
components T (1, 3, 6), T (1, 4, 6) and T (1, 4, 7) in favor of T (2, 4, 6), but this requires
a bit more work. In each of the following cases, we first consider an alternate path
with the intention of forcing certain edges to be present. We then show there exists an
alternate path with the preferred component.

Suppose T (1, 3, 6) is present and the number of T3 components is minimized. The
alternate path 01A34567(8) must have a T3 with center 2 because the T3 with center
A was eliminated. Vertex 2 is adjacent to 1 and 3 and must be adjacent to a third
vertex. Edges 02 and 24 create triangles, and edges 25, 27, and 28 create longer paths
012543A7(8), 01A654327(8), and 01A6543287 respectively. The final edge must
then be 26. The alternate path 543A12678 must have a T3 with center 0 because the
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T3 with center A was eliminated. Edge 02 creates a triangle. Edges 04, 05, 07, and 08
create longer paths A32104567(8), 054321A67(8), (8)70123456A, and 780123456A
respectively. The remaining edges are then 03 and 06, and the T3 with center 0 is of
type T (2, 4, 6) relative to this alternate path.

Suppose T (1, 4, 6) is present and the number of T3 components is minimized.
The alternate path 01234A67(8) must have a T3 with center 5 because the T3 at
A was eliminated. Vertex 5 is adjacent to 4 and 6 and must be adjacent to a third
vertex. Edges 35 and 57 create triangles, and edges 05, 25, and 58 create longer paths
054321A67(8), 01A432567(8), and 01234A6587 respectively. The final edge must
then be 15. The alternate path 23451A678 must have a T3 with center 0 because the T3
with center A was eliminated. Edge 02 would create a triangle. Edges 03, 05, 07, and 08
create longer paths 0321A4567(8), 054321A67(8), (8)70123456A, and 780123456A
respectively. The remaining edges are then 04 and 06, and the T3 with center 0 is of
type T (2, 4, 6) relative to this path.

Suppose T (1, 4, 7) is present and the number of T3 components is minimized.
The alternate path 654321A78 must have a T3 with center 0 because the T3 at A
was eliminated. Vertex 0 is adjacent to 1. Edge 02 would create a triangle. Edges
03, 05, 06, and 08, create longer paths 0321A45678, 234A105678, 0654321A78, and
087654321A respectively. The remaining edges are then 04, and 07. Repeating this
argument with the original path reversed implies that edges 18 and 48 are also present.
The original T (1, 4, 7) based at A then becomes type T (2, 4, 6) relative to alternate
path 321048765.

Note that in all three cases, any secondary T3 meets the path at three vertices in
the set {1, 2, 3, 4, 5, 6, 7}, which also appear in the alternate paths and that no new
secondary T3 can be created because no new vertices are added to form the center of a
secondary T3. The alternate paths must then also belong to the subset of longest paths
with the fewest T3 components and so there is indeed a path with one of our preferred
components.

We now turn our attention to finding red-blue dominating trails in ˜G for each
preferred primary component. If we can find a dominating trail between any two
potentially colored vertices from the set {1, 2, 3, 4, 5, 6, 7, A}, then no matter which
vertices are in fact colored we can find a red-blue dominating trail.

2.3.1 Graphs with Primary Component T (1, 3, 5, 7)

We first show that no vertex can be distance two from P . The vertices {1, 2, 3, 4,

5, 6, 7, A} form an 8-cycle. Clearly, any vertex of distance two from this cycle will
form a P10. Also note that the edge 08 creates a P10, 80

−→
P 7A, so all edges must be

dominated by the vertices of P .
Since all edges are dominated by P , if a colored vertex x is not on P and it is

necessary to start or end the dominating trail at that vertex, it is sufficient to find a
dominating trail that starts or ends at a neighbor of x and extend the trail appropriately.

If the start and end vertex are the same or appear consecutively on P, x
−→
P 7A1−→

P x−(x) and x
←−
P 1A7

←−
P x+(x) are dominating trails. For any remaining pair of red and

blue vertices in {1, 2, 3, 4, 5, 6, 7, A} one of the following provides a dominating trail:
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(A)1
−→
P 7(A) 123A7

←−
4 (3)

1
−→
P 5A76(5) 21A7

←−
P 4

21A345A76(5) 21A3
−→
P 7(A)

321A345A76(5) 321A3
−→
P 7(A)

45A123A76 4
←−
P 1A567(A)

5
←−
P 1A567(A) 67A5

←−
P 1A

2.3.2 Graphs with Primary Component T (1, 3, 7)

None of the reasoning in the T (1, 3, 5, 7) section made use of the edge A5 that
T (1, 3, 7) lacks. By the same argument used with a T (1, 3, 5, 7) primary compo-
nent, all edges must be dominated by the vertices of P . The existence of a vertex x

such that x is adjacent to 2, 4, or 6, gives the longer path x21A3
−→
P 8, 0

−→
P 3A7

←−
P 4x ,

or x6
←−
P 1A78 respectively. The edges 04, 60, 26, 28, and 48 give the longer paths

6540123A78, 4560123A78, 0126543A78, 01A7
←−
P 28, 0123A78456, respectively.

All other edges within the set {0, 2, 4, 6, 8} create a triangle, thus all edges from
{0, 2, 4, 6, 8}must be to some subset of {1, 3, 5, 7}. Thus the set {1, 3, 5, 7} dominates
all edges in ˜G, and a dominating trail need only contain these vertices.

As in the previous case, if a colored vertex x is not on P and it is necessary to start
or end the dominating trail at that vertex, it is sufficient to find a dominating trail that
starts or ends at a neighbor of x and extend the trail appropriately.

If the start and end vertex are the same or appear consecutively on P the following
are dominating trails: x

−→
P 7A1

−→
P x−(x) and x

←−
P 1A7

←−
P x+(x).

The following provide dominating trails for several of the remaining possible pairs
of end vertices: (A)1

−→
P 7(A), 123A7

←−
4 (3), 1

−→
P 5A76(5), 21A7

←−
P 4, 21A3

−→
P 7(A),

321A3
−→
P 7(A), 4

−→
P A123A, 5

←−
P 1A7, and 567A123A.

The only pairs not addressed above are {(2, 5), (2, 6), (3, 5), (3, 6), (4, 6), (4, 7),

(6, A)}. These require us to examine a bit more of the structure of ˜G. Since the number
of T3 components is minimized, the alternate path A12345678 must have a T3 cen-
tered at 0. Edges 02, 04, 06, and 08 were already ruled out, so two of the remaining
possible edges, 03, 05, and 07, must be present. If 05 is present, then (2)3

−→
P 7A105,

(2)3
−→
P 501A76, 450123A76, 43210567, and 67A10543A are dominating trails for

the remaining pairs. If not, then 03 and 07 are both present and (3)2107A345(6),
4
−→
P 7A32107, and 6

←−
P 107A are dominating trails for the remaining pairs except

(4, 6).
Lastly, consider the case of finding a dominating trail between 4 and 6 when 05 is

not present. For such a dominating trail to be necessary, 4 and 6 must be the only red
and blue vertices. Also, neither vertex is colored both red and blue, otherwise the trail
that starts and ends at the same vertex will suffice. Without loss of generality, assume
4 is colored red. Vertex 4 is then incident to every red edge because Lemma 2 and
our rules for vertex coloring imply that every red edge is incident to a red vertex and
4 is the only such vertex. By 3-connectivity of G, u has at least three neighbors and
so there are at least three red edges. The only known edges incident to 4 are 34 and
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45. By the previous analysis of edges from 4, the unknown third edge must be either
14 or 47 which produce dominating trails for (4, 6) of 4321A701456 and 4321A7456
respectively.

2.3.3 Modified Coloring for T (1, 3, 5) and T (2, 4, 6) Primary Components

In the cases where the primary component is either a T (1, 3, 5) or T (2, 4, 6) we
modify the coloring process to facilitate finding the required dominating trail. If a
colored vertex y appears in a secondary component T (X), we move the color to P by
coloring every vertex in X with the color that appears on y. Similarly, if the first or
last vertex of P ′ is colored, we move that color to the adjacent vertex on the interior
of the path.

If we wish to use one of these newly colored x’s as an end vertex of our dominating
trail, we temporarily remove the component containing y before finding a dominating
trail. Once we have the dominating trail in this new graph, we extend it to a domi-
nating trail in the original graph by using a path within the removed component. The
only components that can occur with either a T (1, 3, 5) or a T (2, 4, 6) where the
path extension to the colored vertex may not necessarily dominate all edges in the
component are e′ and f ′. These special cases are discussed at the end of this section.

In the event that we wish to use two newly colored vertices that received their
colors from two different components as the end vertices of the dominating trail, we
temporarily remove both components containing the colored y’s. Once again, we can
take the dominating trail in the new graph and extend it to a dominating trail in the
original graph by using paths within the two removed components.

Lastly, it is necessary to address the case where it is necessary to use two of the
newly colored vertices that received their color from the same secondary component.
This is only necessary when all the colored vertices lie in a single component. The
three connectivity of G requires there be three disjoint paths from the neighbors of u
and v to the remainder of the graph, which forces the component to be either a T3 or
a T4. The case where it is a T4 was handled in a previous section, so we may assume
it is a T3. For the dominating trail, we choose distinct start and end vertices from the
three possibilities. It is then easy to extend the trail to start and end at the appropriate
place based on which edges are actually colored.

We now consider how to dominate the edges of e′ and f ′ appropriately. We first
note that the component e′ has very specific color requirements. Since any two edges
within the cycle of the component form a 2-cut, each set of pendant edges must be
colored. Since there are at most two vertex disjoint edges of a single color due to
the claw-free property of the original graph, two sets of pendant edges must be the
same color while the third is different. Thus all edges of a single color are within
this component and one of the colored vertices must be of distance one from P .
It is then required that any dominating trail start at this component and end at the
colored vertex outside of the component. Since a side vertex is colored with the correct
color, the component can be dominated by going around the cycle and ending at that
vertex.
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The component f ′ cannot occur with the T (1, 3, 5), and it can only occur with
T (2, 4, 6) when f ′ is adjacent to 2 and 6 and pendant edges within the component
are not allowed. Every dominating trail that will be presented in the T (2, 4, 6) section
includes both 2 and 6, so the edge that is not dominated by the path extension is
dominated by the original path.

2.3.4 Graphs with Primary Component T (1, 3, 5)

Unlike the previous two preferred components, the longest path need not be a P9.
While much of the following argument implicitly assumes a P9 for P ′, these portions
remain vacuously true if vertices 7 or 8 are not present.

First we consider what components can coexist with a T (1, 3, 5). No vertex x

can be adjacent to vertices 2 or 4 since x21A3
−→
P 6(7(8)) and x4321A56(7(8)) are

longer paths. We also note that there cannot be a path of length 2 incident to vertex
3 since xy321A56(7(8)) would be a longer path. Lastly, if a vertex x is adjacent to
both vertices 3 and 6 then 01A543x6(7(8)) is a longer path and if a vertex is adja-
cent to both vertices 1 and 6 then 2345A1x6(7(8)) is a longer path. This means
that any T2 or T3 component must have all adjacencies from the set {1, 3, 5, 7},
and all edges within these components must be dominated by the path. Further, it
is possible to have T1 components of type b and c incident with 5. The T1 compo-
nent e can also occur incident with 5, but the component cannot have any pendant
edges on the vertices distance one from P . The T1 component a can occur incident
with either 5 or 6, and pendant edges can be incident to any vertex from the set
{1, 3, 5, 6, 7}.

As stated above, a T (1, 3, 5) can in theory coexist with T (1, 3, 7), T (1, 5, 7), and
T (3, 5, 7) components. However, the presence of any of these with a primary T (1, 3, 5)

imply the existence of a longest path with a T (1, 3, 7). With the T (1, 3, 7), P ′ itself
is such a path. With the T (1, 5, 7) the reversal of P ′ is such a path. If a T (3, 5, 7)

with center C is present, then relative to the alternate path 0123C7654 the primary
component, T (1, 3, 5), is a T (1, 3, 7) and this path would have been chosen instead
of P ′. This together with the arguments presented in the preceding paragraph implies
that graphs with primary component T (1, 3, 5) can only have T (1, 3, 5) components
as secondary T3 components.

Now we consider what other structure a graph with a primary T (1, 3, 5)

component must have. The edges 04, 06, 08, 26, 28, and 48 give the longer
paths 04321A5

−→
P , A5

←−
P 106(7(8)), A5

←−
P 10876, 01A5

←−
P 26(7(8)), 01A5

←−
P 2876, or

0123A54876, respectively. Any other edge from within the set {0, 2, 4, 6, 8} cre-
ates a triangle. Also, any edge from {0, 2, 4, A} to vertex 7 would create a T4 so
we may assume that these edges are not present. Edges between pairs of vertices
in the set {1, 3, 5} together with the edges of the primary component form forbid-

den triangles, so 13, 15, and 35 cannot be present. The alternate paths A1
−→
P ′ and

01A3
−→
P ′ must have T3 components centered at 0 and 2 respectively. The restric-

tions already imposed give that both must be T (1, 3, 5) components, and so the

edges 03, 05, and 25 are present. These edges permit the alternate path A32105
−→
P ′
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which must have a T3 based at 4. The only option which does not produce a
T (1, 3, 7) is to include the edge 14, which creates another T (1, 3, 5). The sub-
graph induced on {0, 1, 2, 3, 4, 5, A} is then a K4,3 with partite sets {0, 2, 4, A}
and {1, 3, 5}. To make use of the symmetry of this K4,3 we relabel the partite sets
{a, b, c, d} and {E, F, G}. For any choice of start and end vertices, a trail that dom-
inates the entire K4,3 structure is one of aEbFcGd F(a), (E)aGbFcGd E(b), and
EaGbFcGd F .

It is now necessary to account for the end of the path P ′, as well as any additional
structures that may be adjacent to vertex 5 or 6. If P ′ is a P7, the only additional edges
must be pendant edges incident with vertex 5. In this case all edges are dominated by
the vertices of the K4,3.

If P ′ is a P8, any structure based at vertex 5 cannot contain a path of length three,
otherwise there is a longer path. Any T2 or T3 secondary component based at 5 cannot
also be adjacent to vertex 7 because it gives a longer path. Thus all T2 and T3 compo-
nents must have their adjacencies within {1, 3, 5} and all edges within the components
are dominated by the vertices of the K4,3. The only T1 component that does not contain
a path of length 3 is type (a). When considering the first 6 vertices of P ′ as a path,
Lemma 1 gives that there can be at most one component of this type (a). So without
loss of generality, we can assume that this component is the end of P ′ if it is present.
If 6 or 7 is colored, the necessary dominating trail can be found by extending the
dominating trail starting at a colored vertex within the K4,3 and ending at 5 to include
6 and, if necessary, 7.

If neither 6 nor 7 is colored, 7 must have an adjacency within the K4,3. There
are two symmetric possibilities, either the adjacency is from the set {1, 3} or from
the set {0, 2, 4, A}. Assume 7 is adjacent to 1 or 3. Let {E, F} represent {1, 3}, with
F being the vertex 7 is adjacent to. The following trails give dominating trails for
any pair of starting and ending vertices aEbF765cFd(E(a)), aEbF765cFd(5),
EaF765bEcFd(E), EaF765bEcFd(5), or EaF765bFcEd F . Now assume 7 is
adjacent to a from the set {0, 2, 4, A}. One of the following dominating trails
is the desired trail: a765bEcFd E(a(5)), a765bEcFd E(b, (F)), Ea765bFcEd F ,
Ea765bFcEd5, Ea765bEcFd E , or 567aEbFcEd5.

Now consider when P ′ is a P9. If there is are components of type (c) or (e) adjacent
to 5, we simply add the trail beginning and ending at 5 that dominates the component
into the middle of the trail that dominates the remainder of the graph. Lemma 1 gives
that there is at most one component of type (a) or (b). If there is a component of type
(b) incident to 5 or a component of type (a) incident to 6, we take this component to be
the end of the path. If 7 or 8 is colored, the necessary dominating trail can be found by
extending the dominating trail starting at a colored vertex within the K4,3 and ending
at 5 to include 6 and 7, and, if necessary, 8.

If neither 7 nor 8 is colored, 8 must have an adjacency in the K4,3. The adja-
cency cannot be from the set {0, 2, 4, A} since that would result in the longer path
a8765b1c3d. If 8 is adjacent to 5, we can dominate the end of the path by replacing
one instance of the vertex 5 in the dominating trail with 56785. Lastly, if 8 is adjacent
to 3, the alternate P9 given by 012387654 transforms the primary component to a
T (1, 3, 7).
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2.3.5 Graphs with Primary Component T (2, 4, 6)

Like the previous primary component, a T (2, 4, 6) need not have a P9 as the longest
path. However, if the longest path is a P8 the component can be viewed as a T (1, 3, 5)

when looking at the reversed path.
We first consider what additional structure must be present with this primary com-

ponent. Edges between pairs of vertices in the set {1, 3, 5, 7}, with the exception of
17, form forbidden triangles if they differ by two or create one of the following longer
paths: 015432A678 or 012A654378. The alternate paths 012A45678 and 01234A678
must have a T3 with center 3 and 5 respectively. The only available edges to form these
T3 components are 36 and 25 respectively. The induced subgraph on {2, 3, 4, 5, 6, A}
is then a K3,3 with partite sets {2, 4, 6} and {3, 5, A}. Up to relabeling, the dominating
trails for this K3,3 are aDbEcF(a) or aDbEcFb. Note that this K3,3 structure forbids
24, 26, and 46.

Earlier we noted that 17 can be present, however this case is highly restrictive. If
there is an edge from {2, 3, 4, 5, 6, A} to a vertex, x , not in P ′ ∪ {A}, then 17 cannot
be present. Suppose that such an edge and 17 were both present. We either produce
a path longer than P ′: x32A456710, x5432A6710, x A23456710, or have an alter-
nate longest path with a T (1, 3, 5) component: x23456710, x43256710, x65432178
both contradictions. The only additional vertices that can be present are pendent ver-
tices from 1 or 7. Therefore edges incident to {3, 5, A} are dominated by {2, 4, 6}.
In this case, 1

−→
P 7 suffices as a dominating trail provided both 1 and 7 are colored.

If one of the 1 and 7 is colored and the other is not, without loss of generality we
may assume 7 is colored and 1 is not, then we extend the dominating trail from a
vertex v of the opposite color within the K3,3 to 2 by beginning with the dominating
trail within the K3,3, that begins at v and ends at 2 and appending 217 to the end.
Now consider when neither 1 nor 7 is colored. Let {D, E, F} represent the partite
set {3, 5, A}. The following dominating trails then suffice for any choice of starting
and ending vertices: D2176E4(F(2)), D2176E4(F(6)), 2176D2E4, 6712D6E4,
2176D4E6.

We may now assume that 17 is not present for the rest of the analysis on this primary
component. We are much less restricted in additional components, but can still make
several observations. If there exists a P3 in a component with an endpoint from the set
{3, 5, A} or a P4 in a component with an endpoint from the set {2, 4, 6} we produce
a longer path, e.g. xy32A45678 or xyz456A210 respectively. This observation gives
that the only possible components incident to {3, 5, A} are pendent edges, and the
only components incident to {2, 4, 6} are T1 components of type (a), T2 components
of type (f) (where the type (f) component has no pendant edges) or type (g), or T3
components of type (i). Note that if there is a component of type (a) incident to 2 or
6, we can assume that it serves as the end of the path P .

For the first part of the analysis, we assume that there are no secondary T1, T2 and
T3 components. We will account for these components at the end of this section. Let
{D, E, F} denote the partite set {3, 5, A}. If we wish for the path to begin at 1 and end
at 7, we use the path 12D4E2F67. If one is colored and either 7 is not colored or we
wish to end at a vertex within the K3,3 because it is incident to a type (a) component, it
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must be the case that 7 has an adjacency other than 6 within the K3,3. To prevent a trian-
gle, this adjacency must be 2 or 4. If 7 is adjacent to 2, we can use one of the following
dominating trails: 12D672E4F(6), 12D672E6F(4), or 12D6E4F672. If 7 is adja-
cent to 4, the following dominating trails cover all possibilities: 12D476E4F(2/6)

and 12D476E2F(4).
The only case in which we would need to have both the starting and ending ver-

tices within the K3,3 would be if neither 1 nor 7 is colored. In this case, both 1
and 7 must have a second adjacency from within the set {2, 4, 6}. Both 1 and 7 and
their incident vertices act the same as T2 components, so we set them aside to be
accounted for with the other T2 components and use the appropriate path to dominate
the K3,3.

We now account for the secondary components previously set aside. By Lemma 1,
only one type (a) component can be present, and if present it must have a red and a
blue vertex. There must also be a red and a blue vertex not in the type (a) component.
In this case we extend the dominating trail of the K3,3 ending at the vertex incident
to the component to a trail ending at the appropriately colored vertex in the type (a)
component.

Recall that it was previously argued that any T2 or T3 component must be incident
to vertices within the set {2, 4, 6}. Let x, y ∈ {2, 4, 6}. For a component T (x, y), let
Qi denote a trail that travels through that component. If there are an even number
of components T (x, y), we can dominate these components by adding x Q1 yQ2x to
the middle of the dominating trail the first time we see x . An even number of T3
components can be dominated in a similar manner. This means there are at most 1 of
each of the following types of components that cannot be dominated in this manner:
T (2, 4), T (2, 6), T (4, 6) and T (2, 4, 6).

If there is a component of type T (2, 4, 6) and any T2 component T (x, y), then
these can be paired and dominated in the above fashion. So if there is an unpaired
T (2, 4, 6) component, it must be the only component that cannot be paired and it can
be treated as a T2 since it has a T2 subgraph. If all three of the possible T2 components
remain, they can be dominated by adding 2Q14Q26Q32 into the dominating trail.
Lastly, if two T2 components remain they can be treated as one T2 component. For
example, a T (2, 4) and a T (4, 6) will act the same as a T (2, 6) component since the
path 2Q14Q26 can be added to the middle of the dominating trail in the same way
2Q36 can. Therefore, it is only necessary to consider modifying the dominating trails
to account for one additional T2 component.

When the dominating trail started at 1 and ended at 7, the new dominating trails are
12Q4D2E4F67 for the component T (2, 4) and 12Q6D2E4F67 for the component
T (2, 6). The case where the component is T (4, 6) is symmetric to T (2, 4).

Now consider when the dominating trail began at 1 and ended within the K3,3.
Recall that in this case 7 had an additional adjacency to either 2 or 4. The addi-
tional T2 must have at least one adjacency in common with 7. If the additional T2
has the both adjacencies in common with 7, we add 67x Q6, where x ∈ {2, 4}, into
the middle of 12DaEbF(c). If the T2 has only one adjacency in common, we treat
the edges incident to 7 and the T2 as one component in the same manner as dis-
cussed previously. If this combined component is T (2, 6), we can use one of the
following dominating trails: 12D672E4F(6), 12D672E6F(4), or 12D6E4F672.
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If the component is T (4, 6), the following dominating trails cover all possibilities:
12D476E4F(2/6) and 12D476E2F(4). Lastly, if the component is T (2, 4) we can
use one of 124D6E2F(4, 6) or 124D6E4F(2).

In the case where the dominating trail starts and ends within the K3,3, we modify
the dominating trails as follows. If the component is T (a, b) and the third ver-
tex from the partite set {2, 4, 6} is c, the following dominating trails give all pos-
sibilities: DaQbEcF(a), DaQbEaF(c), aDbQaEcF(a, b), aDbQaEbF6, and
cDaQbEaFc.
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Appendix A

Let G be a 3-connected (K1,3, P9)-free graph. In this section we want to classify
all possible types of components that can be obtained from the inverse line graph
of the closure clu,v(G), namely ˜G. As shown in Lemma 1, there are four types of
components, T1, T2, T3 and T4.

For the components that lie in Tn , with n ≤ 4, we say that the sequence
(x0, x1, . . . , xn) is admissible for component C ∈ Tn if

∑n
i=0 xi = 8 and compo-

nent C can be attached to P with distance xi between the i − 1st and i th attachment
point along the main path P . Here x0 is the length between the left endpoint of the
path and the first attachment point, and similarly xn is the distance between the last
attachment point and the right endpoint of the path. Some general observations about
admissible sequences are:

1. x0, x1 ≥ 1, and xi ≥ 2 for 1 < i < n.
2. If � is the maximum distance between two vertices in a component which are

attached at attachment points i and j then
∑ j

k=i
xk ≤ �.

3. If x0 = 1 or xn = 1 then the component type is trivial. That is, the component is
a single vertex attached to the path P . In general for component C , it must hold
that for any vertex v ∈ C , the distance between the left attachment point and v is
at most x0 and the distance between the right attachment point and v is at most
xn .

4. If component C is attached at vertices i and j then the maximum distance between
i and j through the component must be at most equal to the distance between i
and j along the path.

Using the four criteria above, one can deduce that the only possible non-trivial
components of each type, referenced from the figure below, are as follows:

(Case: T1) The non-trivial admissible sequences (up to symmetry) are (2, 6), (3, 5)

and (4, 4). The only component type possible for sequence (2, 6) is (a) in the fig-
ure below. A component type with sequence (3, 5) may be (a), (b) or (c). Finally, a
component type with sequence (4, 4) may be any of (a)–(e).

(Case: T2) In this case, the possible non-trivial admissible sequences are (2, 4, 2),
(2, 3, 3), and (3, 2, 3). The component types with sequence (2, 4, 2) are (g) and a
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single edge with one attachment point on each vertex (notice this is a special case of
(f) with no pendent edges and only a single path between the two base vertices). The
component types with sequence (2, 3, 3), are (f) and (g). Finally the component types
possible with sequence (3, 2, 3) are (g) and (h).

(Case: T3) For three attachment points, the only non-trivial sequence possible is
(2, 2, 2, 2). The only possible non-trivial component type [with sequence (2, 2, 2, 2)]
is (i).

(Case: T4) Finally, for four attachment points, the only sequence possible is
(1, 2, 2, 2, 1) which is trivial, and thus only the trivial component type is attainable
with four attachment points.

(a) (b) (c)

(d) (e) (e’)

(f) (g) (h)

(h’) (i)
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